
HAL Id: inria-00292043
https://hal.inria.fr/inria-00292043

Submitted on 30 Jun 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Experiments in validating formal semantics for C
Sandrine Blazy

To cite this version:
Sandrine Blazy. Experiments in validating formal semantics for C. C/C++ Verification Workshop,
2007, Oxford, United Kingdom. pp.95-102. �inria-00292043�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/50252927?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00292043
https://hal.archives-ouvertes.fr


Experiments in validating formal semantics for C

Sandrine Blazy

ENSIIE and INRIA Rocquencourt
Sandrine.Blazy@ensiie.fr

Abstract. This paper reports on the design of adequate on-machine
formal semantics for a certified C compiler. This compiler is an optimiz-
ing compiler, that targets critical embedded software. It is written and
formally verified using the Coq proof assistant. The main structure of
the compiler is very strongly conditioned by the choice of the languages
of the compiler, and also by the kind of semantics of these languages.

1 Introduction

C is still widely used in industry, especially for developing embedded software.
The main reason is the control by the C programmer of all the resources that
are required for program execution (e.g. memory layout, memory allocation) and
that affect performance. C programs can therefore be very efficient, but the price
to pay is a programming effort. For instance, using C pointer arithmetic may be
required in order to compute the address of a memory cell.

However, a consequence of this freedom given to the C programmer is the
presence of run-time errors such as buffer overflows and dangling pointers. Such
errors may be difficult to detect in programs, because of C type casts and more
generally because the C type system is unsafe.

Many static analysis tools attempt to detect such errors in order to ensure
safety properties that may be ensured by more recent languages such as Java. For
instance, CCured is a program transformation system that adds memory safety
guarantees to C programs by verifying statically that memory errors cannot oc-
cur and by inserting run-time checks where static verification is insufficient [1].
Another example is Cyclone, a type-safe dialect of C that makes programs in-
vulnerable to errors such as those detected by CCured [2].

More generally, formal program verification ensures that a program does
what is stated in its specification, written as assertions using logical formulas.
Assertions express expected properties of the program. Formal program verifi-
cation generates proof obligations that are usually discharged towards external
proof assistants or decision procedures (e.g. [3, 4]).

Recently, separation logic has been defined as an extension of Hoare logic
for reasoning about programs that manipulate pointer structures [5]. Separa-
tion logic aims at proving fine-grained properties about pointers and memory
footprints, such as non overlapping (i.e. separation) between memory regions.
Contrary to Hoare logic, separation logic allows local reasoning on the mem-
ory footprint of a statement. Such a local reasoning facilitates program proofs.



Some decision procedures have been defined for separation logic, but they are
dedicated to toy languages (e.g. [6]). Shallow embeddings of separation logic in
theorem provers have also been defined (e.g. [7–9], where [9] handles a large
subset of C).

To sum up, there are several ways to avoid errors in C programs. But, once
a property has been formally verified in a C program, how can we ensure that
it is also verified by the machine code generated by a C compiler? Bugs in the
compiler may invalidate the verification of the source code. It is then necessary
to formally verify a property expressing the equivalence between a source code
and its corresponding machine code. Several kinds of equivalence may be defined;
they may be more or less hard to formally verify. The equivalence may be the
transcription in the target language of the property that has already been for-
mally verified on the source program. For instance, the equivalence can express
memory safety of the target program. Another way to formally verify that two
programs are equivalent consists in verifying that they are computing the same
observable results. A program execution is thus abstracted in the computation
of input-output and final values of the program.

A way to avoid errors in C programs is to formally verify the C compiler itself.
This yields a certified compiler, that is a compiler equipped with a machine-
checked proof that the semantics of the source code is preserved along the
compilation process [10, 11]. The comparison between this approach and other
well-known approaches such as translation validation and proof-carrying code is
detailed in [10].

We are currently developing a realistic, certified compiler called CompCert
that targets critical embedded software [10, 12, 13]. [10] details the back-end of
this compiler, [12] explains its memory model and [13] presents its first front-
end. Since then, the front-end has been rebuilt in order to handle a larger subset
of C and to facilitate the proof of semantic preservation. The formal semantics
have also become more precise. The rest of this paper reports on the design of
formal semantics for the CompCert compiler. It discusses the different kinds of
semantics that have been studied for the languages of the compiler.

2 Formal semantics for certified compilation

This section describes the CompCert compiler, and details the design and the
validation of its formal semantics.

2.1 The CompCert certified compiler

The source language of the CompCert compiler is a large subset of C. Only goto

and longjmp statements are not handled by the CompCert compiler. The target
language is the assembly language for the PowerPC architecture. The CompCert
compiler is an optimizing compiler. It accomplishes a series of program trans-
formation phases. A program transformation is either a translation to a lower

2



level language or a program optimization. The formal verification of the com-
piler consists in formally verifying each of its phases. All the formal verifications
are developed and machine-checked using the Coq proof assistant. The main
optimizations of CompCert are constant propagation, common subexpression
elimination and instruction scheduling. Thus, the CompCert compiler generates
compact and reasonably efficient target code.

There are 6 intermediate languages in the CompCert compiler. Thus, we
have defined a formal semantics for each of the 8 languages of the CompCert
compiler. Each formal semantics relies on a memory model that is common to all
the languages of the compiler. The CompCert compiler ensures memory safety,
mainly concerning reads and writes in memory [12].

The formal verification of the CompCert compiler is the proof of the following
semantic preservation theorem (that is written in Coq in Fig. 1): for all source
code S, if the compiler transforms S into machine code C without reporting
error, and if S has well defined semantics, then C has the same semantics as S,
modulo observational equivalence. Thus, S and C are considered as semantically
equivalent if there is no observable difference between their executions. Let us
note that the successful compilation of a program does not necessarily imply
that this program has well defined semantics. An erroneous program is not con-
form to some formal semantics or it is not transformed successfully during the
compilation process, thus simplifying the definition of both the formal semantics
and program transformations.

Generally speaking, during the formal verification of a C compiler, only some
events are observed. Usually, these are the final results of the C programs. Other
events may also be observed, according to the precision of the semantics for C.
For instance, the call graph, or the trace of read and write accesses may also
be observed, together with the final results. The trust in the certified compiler
increases in proportion to the number and variety of observable events. However,
there is a tradeoff between the trust gained by a higher amount of observable
events, and the admissible optimizations that the compiler may perform.

2.2 On-machine formal semantics

The kind of formal semantics has a strong impact on the semantic preservation
properties that can be verified. There are mainly two kinds of formal seman-
tics that are adapted to formal reasoning on program equivalence. These are
operational semantics.

Big-step operational semantics (a.k.a. natural semantics) relate formally a
program to its final result, and lend themselves well to the proof of compiler-like
program transformations. However, these semantics apply only to terminating
programs, and do not allow observing intermediate states during program execu-
tion. These two features are distinct disadvantages for the intended application
domain of the CompCert compiler: embedded software is typically reactive in
nature, meaning that programs do not normally terminate and their interactions
with the outside world is what matters, not their final result.

3



Small-step operational semantics based on (finite or infinite) sequences of el-
ementary reductions of the program source allow precise observations of the pro-
gram execution and also the observation of non-terminating programs. However,
such reduction semantics are difficult to exploit when proving the correctness of
compiler transformations such as the generation of a control-flow graph from a
structured program.

As big-step semantics are simpler than small-step semantics, they are usually
preferred in order to define and reason on languages such as C, with non-local
constructs (i.e. return, continue and break statements) mixed with structured
programming (e.g. loops). A recurring issue in the formal verification of a C
compiler is the development of appropriate operational semantics for the source,
intermediate and target languages. Designing adequate on-machine operational
semantics for C is not a trivial task. Adequate on-machine semantics are such
that their associated induction principles are quite easy to formulate and the
corresponding induction steps are provable without too much difficulty.

The validation of the formal semantics is another recurrent issue. The best
way to validate the formal semantics for a language such as C is to prove a
great deal of properties about the semantics. The formal verification of a C
compiler provides an indirect but original way to validate the semantics of the
C language. It is relatively straightforward to formalize operational semantics,
but much harder to make sure that these semantics are correct and capture
the intended meaning of programs. In our experience, proving the correctness
of a translation to a lower-level language has detected many small errors in
the semantics of the source and target languages, and therefore has generated
additional confidence in both.

An interesting result is that the main structure of the CompCert compiler is
not conditioned by the program transformations, but very strongly by the choice
of the languages of the compiler, and also by the kind of semantics of these
languages. Thus, the intermediate languages of the CompCert compiler have
been designed in order to facilitate the proofs of translation between languages.
When a proof of translation from a language L1 to a simpler, lower-level language
L2 required to specify different concepts (e.g. correspondences between memory
states) that made the reasoning more complex, an intermediate language Li

between L1 and L2 has been defined. The formal verification of both translations
from and to Li happened to be much easier to achieve than the formal verification
of the translation from L1 to L2. This is why there are 6 intermediate languages
in the CompCert compiler.

Having so many intermediate languages is not common for a compiler. From
the programming point of view, it seems to be easier to define as few intermediate
languages as possible and to write as few program translations as possible. From
the proof point of view, it is easier to define several intermediate languages and
elementary translations between slightly different languages.

Turning to the kind of formal semantics we adopted in CompCert, most of
the semantics were initially of the big-step operational kind. These big-step se-
mantics capture the final result of program execution, as well as traces of calls

4



to input and output functions. Thus, the formal verification of the CompCert
compiler proves that a target program computes the same result as its corre-
sponding source program, and also that the trace of all input-output activities
of the program is preserved by all the phases of the compiler. This addition of
traces leads to a significantly stronger observational equivalence between source
and machine code.

Fig.1 shows this semantics preservation theorem written in Coq. As explained
previously in Section 2.1, if a program called prog is compiled into a PowerPC
program called tprog without reporting error (first hypothesis of the theorem),
and if the execution (in C) of prog terminates and yields a trace and a final
integer value (i.e. the return value of the main function of prog), then the
execution of tprog (in PowerPC assembly) yields the same results (i.e. the
same trace and integer value).

Theorem transf_c_program_correct:

forall prog tprog trace n,

transf_c_program prog = Some tprog ->

Csem.exec_program progr trace (Vint n) ->

PPCsem.exec_program tprog trace (Vint n).

Fig. 1. Main theorem: semantic preservation of the CompCert compiler

We also investigated other forms of on-machine semantics in order to observe
non-terminating programs. We have defined several kinds of small-step semantics
for some intermediate languages, and proved the equivalence between small-step
and big-step semantics for terminating programs, thus giving the opportunity
to validate differently the semantics. Small-step semantics have been defined for
the languages of the compiler back-end and the semantic preservation proofs
have been adapted rather easily.

Another direction that we are currently investigating is coinductive big-step
semantics, where evaluation rules still relate programs and program fragments
to their final outcome, but some of the rules are interpreted coinductively (infi-
nite derivation trees) instead of inductively (finite derivation trees) as usual. The
coinductive interpretation enables these semantics to describe the evaluation of
non-terminating programs. In coinductive semantics, inference rules are similar
to those of natural semantics, provided that these rules are interpreted coinduc-
tively instead of the usual inductive interpretation, or in other terms provided
that infinite evaluation derivations are considered in addition to the usual finite
evaluation derivations. Such coinductive big-step semantics have been defined
for smaller languages than those of the CompCert compiler [14]. These results
are encouraging and in the near future, we intend to define coinductive semantics
for the languages of the compiler front-end.

Lastly, we also defined a deep embedding of a separation logic for an inter-
mediate language of the CompCert that is close to C [15]. The separation logic

5



consists of an assertion language (with operators that are specific to separation
logic) and an axiomatic semantics. We have proved the soundness of this ax-
iomatic semantics with respect to the natural semantics used in the verification
of the Compcert compiler, thus giving another opportunity to validate differently
the semantics. This experiment is a first bridge between, on the one hand, pro-
gram proof in the style of Hoare, and on the other hand the Compcert compiler
verification effort.

2.3 Quantitative results

Most of the CompCert compiler is written directly in the Coq specification lan-
guage, as pure functions. Using the extraction facility of Coq (which translates
Coq specifications to Caml code), as well as the CIL library that provides an
industrial-strength parser and type-checker for the C language [16], and adding
a PowerPC printer written directly in Caml, we obtain Caml source code for
the whole compiler, making it directly executable. To our knowledge, this is the
biggest Caml code that has been automatically extracted from a Coq develop-
ment. Figure 2 details the architecture if the CompCert compiler. The box in
the middle of the figure represents the Coq development and shows the different
translations between the languages of the compiler.

CIL

parser and

type−checker
C IL1 IL2 IL6 PPC

equivalence

semantic semantic semantic
semantic

semantic

equivalence equivalence equivalence equivalence

Coq development

program
PPC

program

C

Fig. 2. Architecture of the CompCert certified compiler

Benchmarking on a set of realistic examples of C programs of a few thou-
sand lines shows that the performance of the generated PowerPC code is entirely
acceptable: performance is much better than that of the gcc compiler at opti-
mization level 0, and only slightly inferior to that of gcc at optimization level
1.

The certified compiler represents about 45 000 lines of Coq. The formal se-
mantics represent 8% of this code. The transformations performed by the com-
piler represent 13% of the code. The rest of the code correspond to the correctness
proofs (22% for the lemmas and 50% for the proofs in Coq of these lemmas) and
libraries (7% of the code).

3 Conclusion

In conclusion, several solutions exist for producing trusted C software. Formal
program verification ensures properties written as assertions in programs. Formal

6



compiler verification (i.e. certified compilation) ensures that target code behaves
as prescribed by the semantics of the corresponding source code. The design of
adequate on-machine semantics is crucial for program verification and certified
compilation.

This paper has reported on the design of formal semantics for a certified com-
piler, the CompCert compiler. These formal semantics have been validated by
two kinds of machine-checked proofs: correctness of translations, and semantic
equivalence between different kinds of semantics. Designing a certified C opti-
mizing compiler gives a good opportunity to validate its formal semantics for C.
The future of C program verification is to connect machine-verified source pro-
grams to machine-verified compilers, and run the object code on machine-verified
hardware.

References

1. George C. Necula, Scott McPeak, and Westley Weimer. Ccured: type-safe
retrofitting of legacy code. In POPL ’02: Proceedings of the 29th ACM SIGPLAN-
SIGACT symposium on Principles of programming languages, pages 128–139, New
York, NY, USA, 2002. ACM Press.

2. Trevor Jim, J. Gregory Morrisett, Dan Grossman, Michael W. Hicks, James Ch-
eney, and Yanling Wang. Cyclone: A safe dialect of C. In Carla Schlatter El-
lis, editor, USENIX Annual Technical Conference, General Track, pages 275–288.
USENIX, 2002.

3. Jean-Christophe Filliâtre and Claude Marché. Multi-prover verification of C pro-
grams. In Jim Davies, Wolfram Schulte, and Michael Barnett, editors, Formal
Methods and Software Engineering, 6th International Conference on Formal Engi-
neering Methods, ICFEM 2004, Seattle, WA, USA, November 8-12, 2004, Proceed-
ings, volume 3308 of Lecture Notes in Computer Science, pages 15–29. Springer,
2004.

4. Norbert Schirmer. A verification environment for sequential imperative programs
in Isabelle/HOL. In F. Baader and A. Voronkov, editors, Logic for Programming,
Artificial Intelligence, and Reasoning, volume 3452 of Lecture Notes in Artificial
Intelligence, pages 398–414. Springer Verlag, 2005.

5. Peter W. O’Hearn, John C. Reynolds, and Hongseok Yang. Local reasoning about
programs that alter data structures. In Laurent Fribourg, editor, CSL, volume
2142 of Lecture Notes in Computer Science, pages 1–19. Springer, 2001.

6. Josh Berdine, Cristiano Calcagno, and Peter W. O’Hearn. Smallfoot: Modular
automatic assertion checking with separation logic. In Frank S. de Boer and, editor,
Formal Methods for Components and Objects, 4th International Formal Methods
for Components and Objects, 4th International Formal Methods for Components
and Objects, 4th International, volume 4111 of Lecture Notes in Computer Science,
pages 115–137. Springer, 2005.

7. Tjark Weber. Towards mechanized program verification with separation logic.
In Jerzy Marcinkowski and Andrzej Tarlecki, editors, Computer Science Logic –
18th International Workshop, CSL 2004, 13th Annual Conference of the EACSL,
Karpacz, Poland, September 2004, Proceedings, volume 3210 of Lecture Notes in
Computer Science, pages 250–264. Springer, September 2004.

7



8. Nicolas Marti, Reynald Affeldt, and Akinori Yonezawa. Formal verification of the
heap manager of an operating system using separation logic. In Zhiming Liu and
He Jifeng, editors, 8th International Conference on Formal Engineering Methods
(ICFEM 2006), Macao SAR, China, October 29–November 3, 2006, volume 4260
of Lecture Notes in Computer Science, pages 400–419. Springer-Verlag, Oct. 2006.

9. Harvey Tuch, Gerwin Klein, and Michael Norrish. Types, bytes, and sepa-
ration logic. In Martin Hofmann and Matthias Felleisen, editors, Proc. 34th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(POPL’07), pages 97–108, Nice, France, January 2007.

10. Xavier Leroy. Formal certification of a compiler back-end or: programming a com-
piler with a proof assistant. In J. Gregory Morrisett and Simon L. Peyton Jones,
editors, Proc. 33rd ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages (POPL’06), pages 42–54. ACM, 2006.

11. Dirk Leinenbach, Wolfgang Paul, and Elena Petrova. Towards the formal verifica-
tion of a C0 compiler: Code generation and implementation correctness. In IEEE
Conference on Software Engineering and Formal Methods (SEFM’05), 2005.

12. Sandrine Blazy and Xavier Leroy. Formal verification of a memory model for C-
like imperative languages. In Kung-Kiu Lau and Richard Banach, editors, Formal
Methods and Software Engineering, 7th International, volume 3785 of Lecture Notes
in Computer Science, pages 280–299. Springer, November 2005.

13. Sandrine Blazy, Zaynah Dargaye, and Xavier Leroy. Formal verification of a C
compiler front-end. In Jayadev Misra, Tobias Nipkow, and Emil Sekerinski, edi-
tors, FM 2006: Formal Methods, 14th International Symposium on, volume 4085
of Lecture Notes in Computer Science, pages 460–475. Springer, 2006.

14. Xavier Leroy. Coinductive big-step operational semantics. In Peter Sestoft, editor,
Programming Languages and Systems, 15th European Symposium on Programming,
ESOP 2006, Held as Part of the Joint European Conferences on Theory and Prac-
tice of Software, ETAPS 2006, Vienna, Austria, March 27-28, 2006, Proceedings,
volume 3924 of Lecture Notes in Computer Science, pages 54–68. Springer, 2006.

15. Andrew W. Appel and Sandrine Blazy. Separation logic for small-step Cminor. In
Theorem Proving in Higher Order Logics, 20th International Conference, TPHOLs
2007, Kaiserslautern, Germany, Proceedings, Lecture Notes in Computer Science,
September 2007. Accepted for publication.

16. George C. Necula, Scott McPeak, Shree Prakash Rahul, and Westley Weimer. CIL:
Intermediate language and tools for analysis and transformation of C programs. In
CC ’02: Proceedings of the 11th International Conference on Compiler Construc-
tion, pages 213–228, 2002.

8


