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long version
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Abstract. Superdeduction and deduction modulo are methods specially
designed to ease the use of first-order theories in predicate logic. Super-
deduction modulo, which combines both, enables the user to make a dis-
tinct use of computational and reasoning axioms. Although soundness
is ensured, using superdeduction and deduction modulo to extend de-
duction with awkward theories can jeopardize essential properties of the
extended system such as cut-elimination or completeness w.r.t. predicate
logic. Therefore one has to design criteria for theories which can safely
be used through superdeduction and deduction modulo. In this paper we
revisit the superdeduction paradigm by comparing it with the focusing
approach. In particular we prove a focalization theorem for cut-free su-
perdeduction modulo: we show that permutations of inference rules can
transform any cut-free proof in deduction modulo into a cut-free proof in
superdeduction modulo and conversely, provided that some hypotheses
on the synchrony of reasoning axioms are verified. It implies that cut-
elimination for deduction modulo and for superdeduction modulo are
equivalent. Since several criteria have already been proposed for theories
that do not break cut-elimination of the corresponding deduction modulo
system, these criteria also imply cut-elimination of the superdeduction
modulo system, provided our synchrony hypotheses hold. Finally we de-
sign a tableaux method for superdeduction modulo which is sound and
complete provided cut-elimination holds.

Key words: proof theory, superdeduction, focusing, deduction modulo

1 Introduction

Computer science and mathematics are both concerned with the construction of
formal proofs. These proofs are used as certificates for assertions, theorems or
programs since once they have been constructed, they can be easily communi-
cated, replayed and understood. Therefore formal proofs are the highest criterion
for trusting a piece of software. The construction of proofs usually relies on the
definition of some proof system which contains both a discipline which the user
? UMR 7503 CNRS-INPL-INRIA-Nancy2-UHP
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has to follow, and deductive as well as some computing abilities which empower
the user. The proof system may then be used to backup automated theorem
provers such as Simplify, Harvey, Zenon or implemented in interactive proof as-
sistants like Coq, Isabelle, PVS or HOL that work as a framework for the proof
engineering process. In this context, a proof is usually constructed with respect
to a theory (a set of axioms) which is plugged into the deduction process. Indeed
the deductive power of a deduction system comes from its association with a the-
ory. In frameworks such as first-order natural deduction or sequent calculus, the
use of some theory is always uniform since the proofs only express atomic steps
which correspond to decompositions of logical connectives. Higher-level notions
such as sets, set inclusion, natural numbers or addition have to be encoded in the
first-order language and handled through these atomic inference steps, leading
often to long, hardly-readable and redundant “assembly like” proofs.

Several paradigms propose ad hoc systems for specific theories. Let us cite
Huang’s Assertion level [1] mainly motivated by the presentation of machine
found proofs in natural language. Another approach proposed by Negri and von
Plato in [2] is closely related to the handling of axioms which we will use here.
They express first-order axioms through so-called non-logical rules. However
these inference rules only act on the left-hand side of sequents. Consequently they
can only poorly interact with an elimination of cuts. Our approach is much closer
to Definitional Reflection [3], which is extended with induction in [4]. Indeed
Definitional Reflection adds left and right introduction rules to an intuitionistic
sequent calculus in order to reflect some definitional clause which is in turn
a special axiom, corresponding to what we will call proposition rewrite rules.
In addition, cut-elimination results are proven for these logics with definitions
and induction. However working in classical sequent calculus will allow us to
deal with more general definitions. Besides our main concern in this paper will
not be the normalisation of proofs, even if our approach is provided in [5] with
a proofterm language and a cut-elimination procedure which is proven to be
strongly normalising under appropriate assumptions.

The approach we are about to study in this paper is related to Focusing
introduced by Andreoli in [6] which was meant to remove irrelevant choices in
backward reasoning for sequent calculus: Indeed syntactically different proofs
can still be identical up to some permutations or simplifications of the applica-
tions of the inference rules. Our point of view is that usually when one wishes to
reason with an axiom (such as one used in the definition of natural numbers), in
sequent calculus for instance, it is necessary to destruct the logical connectives of
the axiom. These steps are typically always identical, at least up to permutations
or simplifications of the applications of the inference rules. Superdeduction, in-
troduced in [5], is an adaptation of the focusing paradigm especially designed
to reason with axiom: It allows to use the deductive part of some theory to en-
rich the deductive system, obtaining thus a custom-made system devoted to the
theory. However there is still a gap between focusing and superdeduction, which
we propose to fill in this paper. Superdeduction was initially founded on the
work of Benjamin Wack in [7] on supernatural deduction which was introduced
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in order to provide a logical interpretation to the rewriting calculus [8,9]. Based
on Urban’s work on the classical sequent calculus [10], a proof-term language for
superdeduction is proposed in [5] along with a cut-elimination procedure whose
normalisation is proved in [11] under appropriate hypotheses.

In this paper superdeduction is combined with a dual approach which is
also designed to structure the use of some first-order theory: Deduction modulo,
which was introduced ten years ago by Dowek, Hardin and Kirchner [12]. It is a
paradigm which allows one to transform any formula at any point of some deduc-
tion process. Since the transformation is not explicit in the constructed proof, it
has to be redone during proofchecking and therefore cannot be more than com-
putation. For instance it is commonly defined as a congruence on formulæ which
is constructed from a convergent rewrite system [13]. Since the rewrite system is
convergent, verifying some formula transformation is decidable. Hence deduction
modulo allows to make use of the computational part of a theory Th for true
computations modulo which deduction is performed. Deduction modulo leads to
interesting automated theorem proving procedures like ENAR [12] or TaMeD
[14]. Another line of work is to formalize theories of interest, such as Heyting
arithmetic [15,16], Zermelo’s set theory [17] or higher-order logics [18,19,20],
using rewrite systems so that they can be used in deduction modulo. Finally,
besides simplicity, deduction modulo admits unbounded proof size speed-up [21].

In this work, these two approaches are combined in the following way, as
it was already put forward in [5]. Instead of constructing a proof of Th ` ∆ in
natural deduction or sequent calculus using the theory Th uniformly, we propose
to split Th in three parts Γ ∪ Th1 ∪ Th2. While Γ will still be used as a context
to our deductions, Th1 will represent computational axioms and will be handled
by the deduction modulo paradigm, and Th2 will represent reasoning axioms
and therefore will be handled by the superdeduction paradigm. We obtain then
a custom deduction system in which we prove a sequent Γ `+Th2

≡Th1
∆.

As already explained in [5], superdeduction modulo may be used as an in-
novative foundation for new proof assistants. First it allows to naturally encode
custom reasoning and computational schemes, such as induction over natural
numbers and addition. Furthermore it suggests a convenient representation of
proofs especially adapted to human interaction and in contrast with the proofs
that are typically constructed with existing proof-assistants such as Coq or Is-
abelle. These usually consist in tactics or proof-terms which are bound to con-
vince the user of the correctness of the proof (through a typechecking process)
but not actually explain it. Indeed the main steps are flooded with a multitude of
usually not explicit and often straightforward logical arguments caused by both
the underlying calculus and the presence of purely computational parts. While
deduction modulo addresses the issue of computational parts, superdeduction
eliminates trivial logical arguments in a proof. Moreover the expressiveness of
superdeduction modulo is promising. For instance an encoding of Pure Type
Systems in (a weak version of) superdeduction modulo is shown in [22].

Using awkward theories in deduction modulo or superdeduction can break
cut-elimination (admissibility of the cut-rule) and strong normalisation (of a
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cut-elimination procedure), even for consistent theories. However several criteria
exists for theories which do not threaten cut-elimination or strong normalisa-
tion when used in deduction modulo: Criteria have been developed for strong
normalisation, using reducibility candidates [23] leading to the notion of truth
values algebras and superconsistency [24,25], and for cut-elimination using se-
mantic methods [26,27] or abstract completion [28]. One of our aims in this pa-
per is to relate superdeduction modulo and sheer deduction modulo by proving
(under appropriate hypotheses) that cut-elimination in one system is equiva-
lent to cut-elimination in the other. Indeed we prove that any cut-free proof of
Γ `+∅

≡Th1∪Th2
∆ can be turned into a cut-free proof of Γ `+Th2

≡Th1
∆ and conversely.

As a consequence, the numerous criteria for cut-elimination of deduction modulo
also hold for superdeduction modulo. Finally this cut-elimination result allows
us to write a sound and complete tableaux method for superdeduction modulo.

The definition of superdeduction modulo is written in Section 2. In this con-
text, our contributions are the following: First we give a presentation of su-
perdeduction modulo through a focusing system, which consequently leads to
a clear comparison of superdeduction with the focusing approach (Section 3).
Then we prove a focalization theorem for superdeduction modulo, which states
that a cut-free proof in superdeduction modulo can be translated into a cut-free
proof in raw deduction modulo (the converse being obvious), and which leads
to criteria for theories which can extend deduction through the superdeduction
modulo paradigm without endangering cut-elimination (Section 4); Finally we
design a tableau method for superdeduction modulo which is sound and com-
plete, provided cut-elimination holds (Section 5). Detailed proofs of lemmas and
theorems are written in Appendix A.

This article is a long version of a paper submitted to LPAR 2008.

2 Superdeduction Modulo

In this section we define superdeduction modulo which is the combination of
deduction modulo and superdeduction. Let us recall the classical sequent calculus
LK which contains the deduction core of our superdeduction modulo systems.

Ax
Γ, ϕ ` ϕ,∆

⊥L
Γ,⊥ ` ∆

>R
Γ ` >, ∆

∧L

Γ, ϕ1, ϕ2 ` ∆
Γ,ϕ1 ∧ ϕ2 ` ∆

∧R

Γ ` ϕ1, ∆ Γ ` ϕ2, ∆

Γ ` ϕ1 ∧ ϕ2, ∆
∨L

Γ, ϕ1 ` ∆ Γ,ϕ2 ` ∆
Γ,ϕ1 ∨ ϕ2 ` ∆

⇒R

Γ, ϕ1 ` ϕ2, ∆

Γ ` ϕ1 ⇒ ϕ2, ∆
⇒L

Γ ` ϕ1, ∆ Γ, ϕ2 ` ∆
Γ,ϕ1 ⇒ ϕ2 ` ∆

∨R

Γ ` ϕ1, ϕ2, ∆

Γ ` ϕ1 ∨ ϕ2, ∆

∀R

Γ ` ϕ,∆
Γ ` ∀x.ϕ,∆

x /∈ FV(Γ,∆) ∀L

Γ, ϕ[t/x] ` ∆
Γ,∀x.ϕ ` ∆

∃L

Γ, ϕ ` ∆
Γ,∃x.ϕ ` ∆

x /∈ FV(Γ,∆)

CR

Γ ` ϕ,ϕ,∆
Γ ` ϕ,∆

CL

Γ, ϕ, ϕ ` ∆
Γ,ϕ ` ∆

Cut
Γ ` ϕ,∆ Γ, ϕ ` ∆

Γ ` ∆
∃R

Γ ` ϕ[t/x], ∆
Γ ` ∃x.ϕ,∆
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A term rewrite rule rewrites first-order terms into first-order terms and a
proposition rewrite rule rewrites an atomic proposition into an arbitrary for-
mula. For instance plus(zero, x)→ x is a term rewrite rule while a ⊆ b→ ∀x.x ∈
a⇒ x ∈ b is a proposition rewrite rule. We will consider two sets of rewrite rules:
Th1 contains both term and proposition rewrite rules ; Th2 is a set of proposi-
tion rewrite rules. As Th1 will be used to extend the deduction system through
deduction modulo, our intuition is that it contains the computational axioms.
Dually as Th2 will be used to enrich the deduction system through superdeduc-
tion, our intuition is that it contains the deductive axioms. We suppose that
each rewrite rule P → ϕ of Th2 is associated with some name R then denoted
R : P → ϕ. For i ∈ {1, 2}, the one-step rewrite reduction associated with Thi
is denoted →i. The reflexive and transitive closure of →i is denoted →∗i . The
symmetric, reflexive and transitive closure of →i is denoted ≡i. The notations
→1,2, →∗1,2, and ≡1,2 are used for Th1 ∪ Th2. The first-order axiom associated
with a proposition rewrite rule P → ϕ is ∀x̄.(P ⇔ ϕ), where x̄ represents the
free variables of P and ϕ, denoted FV(P,ϕ). The first-order axiom associated
with a term rewrite rule l→ r is ∀x̄.(l = r), where x̄ represents the free variables
of l and r. This way of representing a term rewrite rule as a first-order axiom
supposes that the logic contains an equality symbol. If it does not, one may add
this predicate and the corresponding axioms in a conservative way as detailed
in [29]. An other way to proceed with the term rewrite rules of Th1 is to use
axioms of the form ∀x̄. P ⇔ Q for all P ≡1 Q. When writing `+Th2

≡Th1
, Th1 and

Th2 will represent the rewrite rules, and when writing Th1 ` or Th2 `, they
will represent the first-order axioms. For some deduction system `?∗, we will just
write Γ `?∗ ∆ instead of the sentence there is a proof of Γ `?∗ ∆. The sequents
in the corresponding cut-free deduction system will be denoted Γ `cf?∗ ∆.

Superdeduction stands for the addition to LK of new superdeduction infer-
ence rules that are computed from Th2 in the following way.

Definition 1 (Superdeduction rules computation [5]) Let Calc be the set
of inference rules formed of Ax, ⊥L, >R, ∨L, ∨R, ∧L, ∧R, ⇒L, ⇒R, ∀L, ∀R,

∃L, ∃R, >L
Γ ` ∆
Γ,> ` ∆

and ⊥R
Γ ` ∆
Γ ` ⊥, ∆

. Let us suppose R : P → ϕ ∈ Th2. To

get the right (resp. left) rule associated with R, apply bottom-up the rules of Calc
to the sequent Γ ` ϕ,∆ (resp. Γ, ϕ ` ∆) until no connective of ϕ remain, collect
the premises and side conditions, and finally replace ϕ by P in the conclusion.

For instance, the rules associated with ⊆def : a ⊆ b→ ∀x.x ∈ a⇒ x ∈ b are

⊆defR

Γ, x ∈ a ` x ∈ b,∆
Γ ` a ⊆ b,∆

x /∈ FV(Γ,∆) ⊆defL

Γ, t ∈ b ` ∆ Γ ` t ∈ a,∆
Γ, a ⊆ b ` ∆

Since the propositional rules of Calc commute with any other rules, they may
be applied in any order to reach axioms. However the application order of rules
concerning quantifiers can be significant. Even if it will not affect the result-
ing premises, the side condition may differ: Decomposing P → (∃x.A(x)) ⇒
(∃x.B(x)) on the right can lead to
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Γ,A(x) ` B(t), ∆
Γ ` P,∆

x /∈ FV(Γ,∆)
or

Γ,A(x) ` B(t), ∆
Γ ` P,∆

x /∈ FV(Γ,∆, t)

depending on which existential quantifier is decomposed first. Although both
rules are sound, only the first is complete. Therefore when computing superde-
duction rules, we give ∃L and ∀R a higher priority than the other rules, conse-
quently ensuring that we always obtain the weakest side condition.

Definition 2 (Superdeduction modulo) The superdeduction modulo system
associated with (Th1, Th2) is formed of the rules of LK and the rules built upon
Th2, where each first-order term or proposition is considered modulo rewriting
through Th1. Sequents in this system are denoted Γ `+Th2

≡Th1
∆, or simply Γ `+2

≡1
∆.

If Th2 is empty, then we are in raw deduction modulo and sequents are
denoted Γ `≡1 ∆. If Th1 is empty, then we are in raw superdeduction and
sequents are denoted Γ `+2 ∆. There are two equivalent ways to present the
use of inference rules where propositions and first-order terms are considered
modulo rewriting through Th1: One can use new inference rules such as

≡1R

Γ ` ψ,∆
Γ ` ϕ,∆

ψ ≡1 ϕ ≡1L

Γ, ψ ` ∆
Γ,ϕ ` ∆

ψ ≡1 ϕ

or one can replace the inference rules of the system by rules such as

⇒R

Γ, ϕ1 ` ϕ2, ∆

Γ ` ϕ,∆
ϕ ≡1 ϕ1 ⇒ ϕ2 Cut

Γ ` ϕ,∆ Γ, ψ ` ∆
Γ ` ∆

ϕ ≡1 ψ · · ·
For example in this latter presentation, the rules associated with ⊆def become

⊆defR

Γ, x∈a ` x∈b,∆
Γ ` ϕ,∆


x /∈FV(Γ,∆)
ϕ ≡1 a ⊆ b

⊆defL

Γ, t∈b ` ∆ Γ ` t∈a,∆
Γ, ϕ ` ∆

ϕ ≡1 a ⊆ b

Let us recall that we allow Th1 to contain proposition rewrite rules (rewriting
on formulæ). This can lead to odd situations: For instance a conjunction ϕ1∧ϕ2

may be congruent to a disjunction ψ1 ∨ ψ2, and then one can perform a cut
between a decomposition of the first on the left and a decomposition of the
second on the right.

Cut

∨R

. . .
Γ `+2

≡1
ϕ1, ϕ2, ∆

Γ `+2
≡1

ϕ1 ∨ ϕ2, ∆
∧L

. . .
Γ, ψ1, ψ2 `cf+2

≡1
∆

Γ,ψ1 ∧ ψ2 `cf+2
≡1

∆

Γ `+2
≡1

∆

Obviously there is no way to eliminate this cut a priori, especially when ϕi≡/ 1ψj
for all i, j ∈ {1, 2}. In order to avoid this kind of awkward situation, deduction
modulo is usually only considered for confluent rewrite systems: Since Th1 only
rewrites first-order terms and atomic predicates, if ϕ1∧ϕ2 ≡1 ψ1∨ψ2 and if Th1

is confluent, then the common reduct of ϕ1∧ϕ2 and ψ1∨ψ2 is both a conjunction
and a disjunction, which is contradictory. Consequently we will always suppose
that Th1 is confluent besides of only rewriting atoms.

It is interesting to notice that our superdeduction modulo systems are com-
bination of superdeduction and deduction modulo in the following order: first
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the superdeduction inference rules are computed, then they are used modulo
rewriting. Therefore deduction modulo does not interfere with the computation
of the superdeduction rules, but only with their use. However we could have cho-
sen to compute these new inference rules by already using deduction modulo.
This computation is deterministic if and only if Th1 is confluent: Indeed in this
case, rewriting through Th1 cannot erase the logical connectives of some formula
(since it only rewrites atomic predicates) and cannot spawn distinct logical con-
nectives at the same position of the formula (since it is confluent). Besides the
computation is terminating if and only if Th1 is terminating.

The first properties of superdeduction modulo systems that we will prove are
its soundness (in the present section) and completeness (in the following section)
w.r.t. classical predicate logic. The first is a straightforward consequence of the
soundness of deduction modulo proven in [12]:

Theorem 1 ([12]) Γ `≡1 ∆ if and only if Th1, Γ ` ∆.

The soundness of superdeduction modulo is then a direct consequence of the
following lemma.

Lemma 1 (From `+2
≡1

to `≡1,2)
If Γ `+2

≡1
∆, then Γ `≡1,2 ∆. If Γ `cf+2

≡1 ∆, then Γ `cf≡1,2 ∆.

Proof. By definition of the superdeduction rules for P → ϕ ∈ Th2, they can be
replaced by several rules of Calc followed by a conversion step ϕ ≡2 P . The proof
is detailed in Appendix A.

Theorem 2 (Soundness of `+2
≡1

) If Γ `+2
≡1

∆, then Th1, Th2, Γ ` ∆.

Proof. Using Lemma 1, the proof of Γ `+2
≡1

∆ is translated into a proof of Γ `≡1,2

∆, then by soundness of deduction modulo into a proof of Th1, Th2, Γ ` ∆.

Let us now demonstrate the use of superdeduction modulo through an ex-
ample. Deduction modulo is convenient for representing the computational part
of some theory. For instance one can define the addition using 0 + y → y and
S(x) + y → S(x + y), and the multiplication using 0 ∗ x → 0 and S(x) ∗ y →

y+(y∗x). Let us also define sum(x) =
x−1∑
k=0

(2∗k+1) with the rules sum(0)→ 0 and

sum(S(x))→ S(x+(x+sum(x))). We obtain a convergent rewrite system, which
is suitable for representing computation in deduction modulo. Superdeduction is
convenient for representing the deductive part of a theory. Let us define natural
numbers (and induction) using the rules N(n) → ∀P. 0 ∈ P ⇒ H(P ) ⇒ n ∈ P
and H(P ) → ∀k. k ∈ P ⇒ S(k) ∈ P . Let us also define Leibniz’s equality with
the rule x = y → ∀P. x ∈ P ⇒ y ∈ P . In the three latter rules, we wrote x ∈ P
instead of P (x), for some formula P . This is allowed if we use (in Th1) the ax-
iom x ∈ P̃ → P (x) coming from the theory of classes, where P̃ denotes fresh
constants associated with each formula P . The new inference rules for natural
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numbers and equality are then

NR

Γ, 0∈P,H(P ) `+2
≡1 n∈P,∆

Γ `+2
≡1 N(n),∆

P /∈ FV(Γ,∆) HL

Γ `+2
≡1 m∈P,∆ Γ, S(m)∈P `+2

≡1 ∆

Γ,H(P ) `+2
≡1 ∆

NL

Γ `+2
≡1 0∈P,∆ Γ `+2

≡1 H(P ),∆ Γ, n∈P `+2
≡1 ∆

Γ,N(n) `+2
≡1 ∆

HR

Γ,m∈P `+2
≡1 S(m)∈P,∆

Γ `+2
≡1 H(P ),∆

=R

Γ, x ∈ P `+2
≡1 y ∈ P,∆

Γ `+2
≡1 x = y,∆

P /∈ FV(Γ,∆) =L

Γ, y ∈ P `+2
≡1 ∆ Γ `+2

≡1 x ∈ P,∆
Γ, x = y `+2

≡1 ∆

Besides, the system is considered modulo the rules for addition, multiplica-
tion and sum(x). Then one can easily prove in the system that N(n) implies
n−1∑
k=0

(2 ∗ k + 1) = n2. The proof is

NL

=R

Ax(0 ∈ A)

`+2
≡1 0 = 0

HR

=L

=R

Ax(S(m+ (m+ sum(m))) ∈ A)

`+2
≡1 S(m+ (m+ sum(m))) = S(m+ (m+ sum(m)))

Ax(S(m+ (m+ sum(m))) = S(m+ (m+ (m ∗m))))
·······

sum(m) = m ∗m `+2
≡1 S(m+ (m+ sum(m))) = S(m+ (m+ (m ∗m)))

`+2
≡1 H(P̃ )
···· Ax(sum(n) = n ∗ n)

N(n) `+2
≡1 sum(n) = n ∗ n

where P̃ is the first-order constant associated with the formula sum(m) = m∗m

and Ax(ϕ) stands for the proof
Ax

ϕ `cf+2
≡1

ϕ . Let us notice that the proof uses
only superdeduction rules and Ax rules.

3 Superdeduction and focusing systems

The aim of this section is to explore how focusing and superdeduction are related.
For example the distinction between the two kinds of sequents that focusing in-
troduces, namely unfocused and focused sequents, is very similar to the distinc-
tion between sequents used in the superdeduction toplevel and (meta)sequents
used during the superdeduction inference rules computation: In this latter case,
a specific formula ϕ appearing in a proposition rewrite rule P → ϕ replaces P
and is then focused until the complete decomposition of its connectives.

Let us propose an extension of classical sequent calculus based on this dis-
tinction between focused and unfocused sequents, but more general than both
focusing and superdeduction in the sense that both of them are instances of this
extension. Starting from the classical sequent calculus LK (as written in Section
2), we add the following rules.
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Γ (` ϕ)∆

Γ ` ψ,∆
InR

Γ (ϕ `)∆

Γ,ψ ` ∆
InL

Γ, Γ ′ ` ∆′,∆
Γ (Γ ′ ` ∆′)∆

Out

Γ (Γ ′, A ` A,∆′)∆
Ax

Γ (Γ ′,⊥ ` ∆′)∆
⊥L

Γ (Γ ′ ` >,∆′)∆
>R

Γ (Γ ′ ` ∆′)∆
Γ (Γ ′ ` ⊥,∆′)∆

⊥R

Γ (Γ ′ ` ∆′)∆
Γ (Γ ′,> ` ∆′)∆

>L

Γ (Γ ′ ` ϕ1,∆
′)∆ Γ (Γ ′ ` ϕ2,∆

′)∆

Γ (Γ ′ ` ϕ1 ∧ ϕ2,∆
′)∆

∧R

Γ (Γ ′, ϕ1, ϕ2 ` ∆′)∆
Γ (Γ ′, ϕ1 ∧ ϕ2 ` ∆′)∆

∧L

Γ (Γ ′ ` ϕ1, ϕ2,∆
′)∆

Γ (Γ ′ ` ϕ1 ∨ ϕ2,∆
′)∆
∨R

Γ (Γ ′, ϕ1 ` ∆′)∆ Γ (Γ ′, ϕ2 ` ∆′)∆
Γ (Γ ′, ϕ1 ∨ ϕ2 ` ∆′)∆

∨L

Γ (Γ ′, ϕ2 ` ∆′)∆ Γ (Γ ′ ` ϕ1,∆
′)∆

Γ (Γ ′, ϕ1 ⇒ ϕ2 ` ∆′)∆
⇒R

Γ (Γ ′, ϕ1 ` ϕ2,∆
′)∆

Γ (Γ ′ ` ϕ1 ⇒ ϕ2,∆
′)∆
⇒L

∀R

Γ (Γ ′ ` ϕ,∆′)∆
Γ (Γ ′ ` ∀x.ϕ,∆′)∆

x /∈ FV(Γ, Γ ′,∆,∆′) ∀L

Γ (Γ ′, ϕ[t/x] ` ∆′)∆
Γ (Γ ′, ∀x.ϕ ` ∆′)∆

∃R

Γ (Γ ′ ` ϕ[t/x],∆′)∆

Γ (Γ ′ ` ∃x.ϕ,∆′)∆
∃L

Γ (Γ, ϕ ` ∆′)∆
Γ (Γ,∃x.ϕ ` ∆′)∆

x /∈ FV(Γ, Γ ′,∆,∆′)

The system features then two kinds of sequents: Unfocused sequents denoted
Γ ` ∆ and focused sequents denoted Γ (Γ ′ ` ∆′)∆. Unfocused sequents are
handled by the rules of classical sequent calculus; focused sequents are handled
by the overlined rules; entering a focusing sequence is handled by rules InR and
InL; finally leaving a focusing sequence is handled by rule Out. In addition, the
obtained sequent calculus has the three following parameters: A condition CIn
which is enforced when applying the rules InR and InL, a condition COut which is
enforced when applying the rule Out, a condition CFocus which is enforced when
applying any of the overlined rules and a condition CUnfocus which is enforced
when applying any of the raw LK rules. Therefore the resulting deduction system
is denoted LK(CIn, COut, CFocus, CUnfocus). CIn and COut are meant to respectively
control the bottom-up entrance and exit of focusing phases; CFocus and CUnfocus

are meant to respectively control the deduction inside of focused and unfocused
phases. For instance if CTh1 is the condition that forces ϕ ≡1 ψ in the rules InR
and InL, then LK(CTh1 , true, false, true) is equivalent to deduction modulo Th1:
The overlined rules are simply discarded, and the InR and InL rules are turned
into conversion rules for Th1. Both focusing proofs and superdeduction can also
be formulated as instances of LK(CIn, COut, CFocus, CUnfocus).

Focusing. We will say that a (focused or unfocused) sequent is positive if the
head connectives of its non-atomic formulæ are ∀ on the left and ∃ on the right.
Then one can define the following focusing system for LK: F+ is the condition
which restricts the conclusion of the applied inference rule to be a positive se-
quent. F− is the condition which restricts the conclusion of the applied inference
rule not to be a positive sequent. Then LK(F+ ∧ϕ = ψ,F−,F+,F−) is a focus-
ing system for LK. It is quite different from the focusing system LKF presented
in [30], in particular regarding our asynchronous treatment of propositional con-
nectives. However both systems only allow to focus on a single formula. It is
syntactically ensured in LKF, while ensured by F+ together with the shape of
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∃R and ∀L (the only overlined rules allowed by F+) in LK(F+,F−,F+,F−).
Focused sequents which are denoted 7→ [Θ], P in [30], are denoted (` P )Θ here.

Superdeduction. The explicit superdeduction system associated with Th2

is defined as LK(CTh2 , Catoms, true, true) where CTh2 is the condition (for the
application of rules InR and InL) which states that ψ → ϕ is a rule of Th2 and
Catoms is the condition which restricts the focused part of the conclusion of the
rule Out to contain only atoms. LK(CTh2 , Catoms, true, true) is equivalent to the
superdeduction system associated with Th2, since each focused phase exactly
corresponds with the computation of some superdeduction inference rule.

On the one hand, LK(CIn, COut, CFocus, CUnfocus), as the supremum of focusing
and superdeduction, makes clear the similarities between these two approaches:

– Focused and unfocused sequents are syntactically identified.
– Focused sequents focus on a special part of the sequent.
– The system features three kinds of inferences which either handle focused

sequents, handle unfocused sequents or controls the enter/exit of the focus.

On the other hand, it also underlines the dissimilarities:

– Focused sequents usually focus on a single formula in the focusing approach,
but they may focus on several in the superdeduction approach.

– Focusing phases of superdeduction contain an unfolding step (In rules) be-
sides purely logical steps.

– The focusing approach divides logical connectives into positive and negative
connectives. Usually, no connective is both positive and negative, and the
De Morgan dual of a positive connective is negative and conversely. On the
contrary, superdeduction locally divides connectives into toplevel connectives
(decomposed in unfocused phases) and connectives appearing in axioms of
Th2, but a conjunction, for instance, can appear as a toplevel connective
somewhere and in the explicit decomposition of a superdeduction axiom.

– In the focusing approach, F+ and F− state that the focusing phase is entered
(bottom-up) only when no negative connective remains (the latest possible),
and is left as soon as a negative connective is found (the soonest possible).
This aspect plays an important role in the completeness of the focusing
approach. In the superdeduction approach, CTh2 and Catoms state that the
focusing phase is entered anytime a superdeduction axiom is unfolded, and
is left only when no connective of the axiom remains (the latest).

More generally, let us stress the fact in the superdeduction approach, the fo-
cused phases are directed by axioms of Th2 (therefore axiom directed focusing).
In particular these axioms direct when the focusing phases can be entered and
exited. They also direct which connectives will be decomposed during a single
focusing phase. Consequently one can propose syntactical criteria on Th2 to en-
sure completeness or cut-elimination of the system. Completeness is the subject
of the remaining of the section. Cut-elimination will be handled in Section 4.
But let us introduce some terminology first.
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Definition 3 (Polarity of a subformula) The polarity polϕ(ψ) of ψ in ϕ where
ψ is an occurrence of a subformula of ϕ is defined as
true if ϕ = ψ;
polϕi(ψ) if ϕ = ϕ1 ∧ ϕ2 or ϕ1 ∨ ϕ2 or ∀x.ϕ1 or ∃x.ϕ1, and ψ occurs in ϕi;
¬polϕ1(ψ) if ϕ = ϕ1 ⇒ ϕ2 and if ψ occurs in ϕ1;
polϕ2(ψ) if ϕ = ϕ1 ⇒ ϕ2 and if ψ occurs in ϕ2.

There are four cases for which two steps of LK cannot be permuted:

∀R

∃R

Γ `cf+2
≡1 A(x), B(x),∆

Γ `cf+2
≡1 A(x), ψ,∆

ψ ≡1 ∃x.B(x) ∃L receives the variable x

Γ `cf+2
≡1 ϕ,ψ,∆

ϕ ≡1 ∀x.A(x) ∀R emits the variable x

and similarly where ∀R is replaced by ∃L and/or ∃R is replaced by ∀L. It leads
to the following definition of positive and negative connectives.

Definition 4 (Neutral/Positive/Negative connectives) In a formula ϕ, we
will say that an occurrence of a connective is neutral if it is not a quantifier,
positive (or synchronous) if it is a universal quantifier of polarity true or an exis-
tential quantifier of polarity false, negative (or asynchronous) if it is a universal
quantifier of polarity true or an existential quantifier of polarity false.

Definition 5 (Monopoles/Bipoles) Monopoles are formulæ built from atoms
with neutral and negative connectives. Bipoles are formulæ built from monopoles
with neutral and positive connectives.

Bipoles, whose definition is adapted from [31] may be seen as a characteri-
zation of which formulæ can be used in Th2 in order to obtain a superdeduction
system which is complete: If for some R : P → ϕ ∈ Th2, ϕ is a bipole, then
the rule RR (focusing on ϕ on the right) is complete. Dually if ¬ϕ is a bipole,
then the rule RL (focusing on ϕ on the left) is complete. These assertions are
summarized in the following completeness theorem (extended from [11]).

Theorem 3 (Completeness of superdeduction modulo)
If for all ϕ appearing in P → ϕ ∈ Th2, ϕ and ¬ϕ are both bipoles, then
Th1, Th2, Γ ` ∆, implies Γ `+2

≡1
∆.

Proof. From the completeness of superdeduction which is proven in [11], for all
ϕ ∈ Th2, there exists a proof of `+2 ϕ. From the completeness of deduction
modulo, for all ϕ ∈ Th1, there exists a proof of `≡1 ϕ. Starting from a proof of
Th1, Th2, Γ ` ∆, using cuts with the proofs of `+2

≡1
ϕ for all ϕ ∈ Th1 ∪ Th2, we

get a proof of Γ `+2
≡1

∆.

-
-

-
-

+

+

+

+

+
+

+
+

+

-

-
-

-

-
- +

+

-These pictures represent respec-
tively a bipole, a formula whose
negation is a bipole and a bipole
whose negation is also a bipole.
Minuses represent negative connec-
tives, pluses represent positive con-
nectives and the grey background
represents neutral connectives.
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Finally a procedure, greatly inspired by Andreoli’s Bipolarisation [31], has
been proposed in [5] to transform any set of proposition rewrite rules into an
equivalent one verifying this property, namely, for all P → ϕ ∈ Th2, re-
placing ϕ by its greatest prefix which is a bipole and whose negation is also
a bipole; any subformula ψ of ϕ which is consequently separated from ϕ is
then replaced in the prefix by a fresh predicate symbol Q parametrised by
the free variables of ψ; finally the rule Q → ψ is recursively processed by the
procedure and then added to Th2. For instance the proposition rewrite rule

P → (∀xA(x)⇒ (∀x.∃y.B(x, y)) is transformed into
{

(∀x.A(x))⇒ (∀x.Q(x))
Q(x)→ ∃y.B(x, y) .

Consequently we make the following hypothesis for the rest of the paper.
Hypothesis 1 If P → ϕ ∈ Th2, then ϕ and ¬ϕ are both bipoles.

4 Focalization in cut-free superdeduction modulo

Using awkard theories to extend deduction through deduction modulo or super-
deduction is known to jeopardize cut-elimination (completeness of the cut-free
deduction system) and normalisation (termination of a cut-elimination proce-
dure): For example if A ≡1,2 A ⇒ A, one can easily build a proof of `+2

≡1
A 1,

but there exists no cut-free proof of it. However cut-elimination and normalisa-
tion are well-studied for deduction modulo: Several criteria have been presented
for theories which do not endanger cut-elimination or normalisation of the re-
sulting deduction modulo system. Let us cite first the early work of Dowek and
Werner [23], where the following theorem for classical sequent calculus modulo
is proved.

Theorem 4 ([23]) If the light double negation of a rewrite system R has a
premodel, cut-elimination holds for the classical sequent calculus modulo R.

Both definitions of light double negation and pre-model can be found in [23].
Dowek also proposed in [24] an extension of Heyting algebras called truth values
algebras which allows to distinguish provable equivalence from computational
equivalence. A theory is said to be superconsistent if it has a model in all truth
values algebras. Superconsistency of some theory has been proved in [24] and in
[25] to imply strong normalisation in the intuitionistic natural deduction modulo
the theory. However this criterion does not apply here since we consider classical
sequent calculus.

Hermant deeply studied cut-elimination for the intuitionistic and classical se-
quent calculus particularly using semantic methods in [27,32,26]. Among others,
he proved the following cut-elimination theorem for classical sequent calculus
modulo.

Theorem 5 ([26]) If R is a rewrite system compatible with a well-founded or-
der, if R+ is a positive rewrite system whose right-hand sides are R-normal
forms and if R ∪ R+ is confluent, then cut-elimination holds for the classical
sequent calculus modulo R∪R+.
1 the proof may be written (λx. x x) (λx. x x) in a λ-calculus style.
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The definition of a positive rewrite system can be found in [26]. Bonichon and
Hermant also developed a constructive proof of cut-elimination for the intuition-
istic sequent calculus modulo in [33].

Finally Burel and Kirchner proposed another approach in [28] where they
use abstract canonical systems and abstract completion in order to mechanically
transform a classical sequent calculus system into an equivalent one having the
cut-elimination property.

Theorem 6 ([28]) A sequent has a proof in classical sequent calculus modulo
some theory R if and only if it has a cut-free proof in the saturated theory
corresponding to R.

Our aim is now to relate superdeduction modulo to deduction modulo in
order to prove that all these criteria are extendible to superdeduction modulo.
We will only consider cut-free deduction systems and show that they allow to
prove exactly the same sequents: A sequent Γ `cf+2

≡1 ∆ is provable if and only if
Γ `cf≡1,2 ∆ is. The translation of a proof in superdeduction modulo into sheer
deduction modulo is already shown in Lemma 1. Now let us prove the converse:
If Γ `cf≡1,2 ∆, then Γ `cf+2

≡1 ∆. To achieve this goal, we will first consider some
proposition rewrite rule R : P → ϕ of Th2 and prove that if Γ `cf+2

≡1 ϕ,∆,
then Γ `cf+2

≡1 P,∆ ; if Γ, ϕ `cf+2
≡1 ∆, then Γ, P `cf+2

≡1 ∆. This property then

implies the admissibility of rules ≡2R

Γ ` ϕ,∆
Γ ` ψ,∆

ϕ ≡2 ψ and ≡2L

Γ, ϕ ` ∆
Γ,ψ ` ∆

ϕ ≡2 ψ

in cut-free superdeduction modulo, which in turn implies that if Γ `cf≡1,2 ∆,
then Γ `cf+2

≡1 ∆. The proof of the property deals with permutability problems
in classical sequent calculus: Indeed the intuition is to unite the steps of the
proof that decompose ϕ. Considering the permutability problems that one can
have when dealing with quantifiers (see Section 3), we can easily build a proof
of some sequent Γ `+2

≡1
ϕ,∆ where the three steps decomposing ϕ, marked with

the symbol ∗, cannot be united using sheer permutations:

⇒R

∀R

∀L

∃L

∀L

. . .

A(y0)⇒ B(x0), A(y0) ` B(x0)

A(y0)⇒ B(x0), (∀x.A(x)) ` B(x0)
∗

∃y.(A(y)⇒ B(x0)), (∀x.A(x)) ` B(x0)

∀x.∃y.(A(y)⇒ B(x)), (∀x.A(x)) ` B(x0)

∀x.∃y.(A(y)⇒ B(x)), (∀x.A(x)) ` (∀x.B(x))
∗

∀x.∃y.(A(y)⇒ B(x)) ` (∀x.A(x))⇒(∀x.B(x))
∗

where ϕ is (∀x.A(x))⇒ (∀x.B(x)). Let us notice both ϕ and ¬ϕ are bipoles. A
solution is to combine the permutations with contractions as follows.
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ContrR

⇒R

∀R

∀L

∀L

∃L

⇒R

∀L

∀R

. . .

A(y0)⇒B(x0), A(x0), A(y0)`B(x1), B(x0)

A(y0)⇒B(x0), A(x0), A(y0)`∀x.B(x), B(x0)
∗

A(y0)⇒B(x0), A(x0), ∀x.A(x)`∀x.B(x), B(x0)
∗

A(y0)⇒B(x0), A(x0)`ϕ,B(x0)
∗

∃y.A(y)⇒B(x0), A(x0)`ϕ,B(x0)

∀x.∃y.A(y)⇒B(x), A(x0)`ϕ,B(x0)

∀x.∃y.A(y)⇒B(x), ∀x.A(x)`ϕ,B(x0)
∗

∀x.∃y.A(y)⇒B(x), ∀x.A(x)`ϕ, ∀x.B(x)
∗

∀x.∃y.A(y)⇒B(x)`ϕ, (∀x.A(x))⇒(∀x.B(x))
∗

∀x.∃y.(A(y)⇒B(x))`(∀x.A(x))⇒(∀x.B(x))

In this proof, all the steps decomposing (∀x.A(x))⇒ (∀x.B(x)) have been du-
plicated and then united. It seems that this manipulation allows to transform
any proof using several LK inference rules to decompose a formula ϕ into a
proof using several occurrences of a single superdeduction inference rule decom-
posing the corresponding predicate P (P → ϕ ∈ Th2). However proving that
this manipulation always solves the problem remains an open question to our
knowledge. We choose to avoid this kind of manipulation by making the following
hypothesis.

Hypothesis 2 If P → ϕ ∈ Th2, then ϕ is in prenex normal form.

Let us notice that together with Hypothesis 1, it implies the following lemma.

Lemma 2 If P → ϕ ∈ Th2, then ϕ is either ∀x1 . . . xn.ψ or ∃x1 . . . xn.ψ for
some propositional formula ψ. We will respectively say that ϕ is right-handed
and left-handed.

Hypotheses 2 and 1 can be replaced by the following single hypothesis (which
we will call Hypothesis 3): For any ϕ appearing in P → ϕ ∈ Th2, either ϕ or its
negation is a monopole. Then the only quantifiers of ϕ are either positive ∀ and
negative ∃, or negative ∀ and positive ∃. Indeed in this case, one can always find
a prenex normal form ψ classically equivalent to ϕ which satisfies Hypotheses 2
and 1 and such as the inference rules associated with P → ϕ are the same as the
rules associated with P → ψ. The deduction system is consequently unchanged
and then our final result also holds if we just replace Hypotheses 2 and 1 by
Hypothesis 3. Furthermore the procedure proposed in [5] which turns any set of
proposition rewrite rules into an equivalent one verifying Hypothesis 1 can easily
be strengthened into a procedure which turns any set of proposition rewrite rules
into an equivalent one verifying this new single hypothesis.

Let us illustrate this with an example: The proposition rewrite rule R : P →
(∀x.A(x)) ⇒ (∃y.B(y)) verifies Hypothesis 3 (which in turn implies Hypoth-
esis 1), but does not verify Hypothesis 2. However (∀x.A(x)) ⇒ (∃y.B(y)) is
classically equivalent to ∃x.∃y.(A(x)⇒ B(y)). Furthermore we obtain the same
superdeduction inference rules if we replace the proposition rewrite rule R by
R′ : P → ∃x.∃y.(A(x)⇒ B(y)), namely
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Γ,A(t1) ` B(t2),∆

Γ ` P,∆
Γ,B(y) ` ∆ Γ ` A(x),∆

Γ, P ` ∆
y /∈ FV(Γ,∆)

Finally R′ satisfies both Hypotheses 1 and 2.
Now let us prove that `cf+2

≡1 is equivalent to `cf≡1,2 . Dealing with right-handed
formulæ on the right and left-handed formulæ on the left of a sequent needs the
following lemma, adapted from a central lemma in Hermant’s semantic proofs
of cut-elimination for deduction modulo [26].

Lemma 3 (Kleene’s lemma adapted to `+2
≡1

)
Let A1 ≡1 A2 ≡1 . . . An ≡1 ϕ be some propositions. Let Θ = A1, A2 . . . An.

– If ϕ = ¬A and Γ,Θ `cf+2
≡1 ∆ then Γ `cf+2

≡1 A,∆.
– If ϕ = A ∧B and Γ,Θ `cf+2

≡1 ∆ then Γ,A,B `cf+2
≡1 ∆.

– If ϕ = A ∨B and Γ,Θ `cf+2
≡1 ∆ then Γ,A `cf+2

≡1 ∆ and Γ,B `cf+2
≡1 ∆.

– If ϕ = A⇒ B and Γ,Θ `cf+2
≡1 ∆ then Γ,B `cf+2

≡1 ∆ and Γ `cf+2
≡1 A,∆.

– If ϕ=∃x.Q and Γ,Θ`cf+2
≡1 ∆ then Γ,Q[c/x]`cf+2

≡1 ∆ for some fresh variable c.

– If ϕ = ¬A and Γ `cf+2
≡1 Θ,∆ then Γ,A `cf+2

≡1 ∆.
– If ϕ = A ∧B and Γ `cf+2

≡1 Θ,∆ then Γ `cf+2
≡1 A,∆ and Γ `cf+2

≡1 B,∆.
– If ϕ = A ∨B and Γ `cf+2

≡1 Θ,∆ then Γ `cf+2
≡1 A,B,∆.

– If ϕ = A⇒ B and Γ `cf+2
≡1 Θ,∆, then Γ,A `cf+2

≡1 B,∆.
– If ϕ=∀x.Q and Γ `cf+2

≡1 Θ,∆ then Γ `cf+2
≡1 Q[c/x], ∆ for some fresh variable c.

Proof. For each assertion, by induction on the derivation and detailed in Ap-
pendix A.

It implies the following lemma.

Lemma 4 Let us consider some R : P → ϕ ∈ Th2.
– If ϕ is right-handed and Γ `cf+2

≡1 ϕ,∆, then there exists (cut-free) proofs of
each premise of RR. Therefore Γ `cf+2

≡1 P,∆.
– If ϕ is left-handed and Γ, ϕ `cf+2

≡1 ∆, then there exists (cut-free) proofs of
each premise of RL. Therefore Γ, P `cf+2

≡1 ∆.

Proof. By iteration of Lemma 3. The proof is detailed in Appendix A. The idea
is to unite the decomposition of ϕ at the root of the proof: All these steps can
move downward since ϕ is right-handed and decomposed on the right. The proof
is detailed in Appendix A.

Lemma 5 deals with right-handed formulæ on the left and left-handed for-
mulæ on the right.

Lemma 5 Let us consider R : P → ϕ ∈ Th2.
– If ϕ is right-handed and Γ, ϕ `cf+2

≡1 ∆, then Γ, P `cf+2
≡1 ∆.

– If ϕ is left-handed and Γ `cf+2
≡1 ϕ,∆, then Γ `cf+2

≡1 P,∆.

Proof. The proof is detailed in Appendix A. The idea is to fully decompose ϕ,
partially eliminate contractions, and then to pull up the decomposition of ϕ.
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Lemmas 4 and 5 are concentrated in the following theorem, which proves that
rewriting through Th1 ∪ Th2 preserves provability in superdeduction modulo.

Theorem 7 If ϕ ≡1,2 ψ, then
{
Γ `cf+2

≡1 ϕ,∆ if and only if Γ `cf+2
≡1 ψ,∆

Γ,ϕ `cf+2
≡1 ∆ if and only if Γ, ψ `cf+2

≡1 ∆

Proof. First by Lemmas 4 and 5, provability is preserved by one-step head re-
duction through Th2 (i.e. if ϕ = Pσ for some substitution σ and ψ = φσ and
P → φ ∈ Th2). By induction on ϕ, we prove that it extends to any one-step
reduction (ϕ→2 ψ). Then by induction on ϕ ≡1,2 ψ, we obtain the final result.

Lemma 6 (From `cf≡1,2 to `cf+2
≡1 ) If Γ `cf≡1,2 ∆, then Γ `cf+2

≡1 ∆.

Proof. By induction on the proof of Γ `cf≡Th1∪Th2
∆: The raw deductive steps and

the steps modulo Th1 are unchanged. A step
Γ `cf≡1,2

ψ,∆

Γ `cf≡1,2
ϕ,∆

ψ ≡2 ϕ is translated

(by induction hypothesis) into a proof of Γ `cf+2
≡1 ψ,∆ which is translated using

Theorem 7 into a proof of Γ `cf+2
≡1 ϕ,∆.

The transformation from `cf≡1,2 to `cf+2
≡1 is called a focalization procedure in

the focusing terminology. It transforms (cut-free) unstructured proofs into (cut-
free) structured focusing proofs (superdeduction proofs here). In addition, using
superdeduction rules instead of atomic deduction steps gives intuitive informa-
tions about the structure of proofs. We can therefore imagine building proofs
only through superdeduction rules, as in the proof of the example of Section 2.
An important difference with usual focalization is that in superdeduction, when-
ever this transformation has to focalize a sequence of connectives on one side
of sequents, then it also has to focalize it on the other side of sequents, poten-
tially in the same proof. Difficulties also arise from the fact that superdeduction
modulo allows inferences to spawn new connectives from atoms. Finally we get
the equivalence between cut-free deduction modulo and cut-free superdeduction
modulo.

Theorem 8 Γ `cf≡1,2 ∆ if and only if Γ `cf+2
≡1 ∆.

Proof. By Lemmas 1 and 6.

As a corollary we directly obtain that cut-elimination holds for deduction
modulo Th1 ∪ Th2 if and only if it holds for the superdeduction modulo sys-
tem associated with (Th1, Th2). In particular it holds if (Th1, Th2) verifies the
criterion of Theorem 4, 5 or 6.

5 A tableau method for superdeduction modulo

An interesting use of the cut-elimination property for superdeduction modulo is
to express the system through a sound and complete tableau method. In this
section we choose to extend TaMeD —Tableau Method for Deduction modulo
[34,14]— whose rules are depicted in Figure 1.
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Tableau form transformation Tab(T )

B, (ϕ1 ∨ ϕ2)l | T tab−→ B, ϕl
1 | B, ϕl

2 | T B,¬⊥l | T tab−→ B | T
B,¬(ϕ1 ∧ ϕ2)l | T tab−→ B,¬ϕl

1 | B,¬ϕl
2 | T B,>l | T tab−→ B | T

B, (ϕ1 ∧ ϕ2)l | T tab−→ B, ϕl
1, ϕ

l
2 | T B,¬¬ϕl | T tab−→ B, ϕl | T

B,¬(ϕ1 ∨ ϕ2)l | T tab−→ B,¬ϕl
1,¬ϕl

2 | T B,⊥l | T tab−→ T
B, (ϕ1 ⇒ ϕ2)l | T tab−→ B,¬ϕl

1 | B, ϕl
2 | T B,¬>l | T tab−→ T

B,¬(ϕ1 ⇒ ϕ2)l |T tab−→ B, ϕl
1,¬ϕl

2 | T
B, (∀x.P )l

nx
| T tab−→ B, (∀x.P )l

nx−1, P
l,x | T (x fresh and nx > 1)

B,¬(∃x.P )l
nx
| T tab−→ B,¬(∃x.P )l

nx−1,¬P l,x |T (x fresh and nx > 1)

B, (∃x.P )l | T tab−→ B, (P [f(l)/x])l | T (f fresh skolem symbol)

B,¬(∀x.P )l | T tab−→ B, (¬P [f(l)/x])l | T (f fresh skolem symbol)

TaMeD rules
B, ϕ1,¬ϕ2 | T [C]

T [C ∪ {ϕ1
?
= ϕ2}]

B, U | T [C]

T ′ | T [C ∪ {U|w
?
= l}]

if l→1 r, U|w is an atomic proposition and T ′ = Tab(B, U [r]w)

Fig. 1. Tableaux for Deduction Modulo.

We use the presentation of TaMeD of [34], where each formula ϕ is annotated
with a set of first-order variables l, denoted ϕl. This set at least contains the
free variables of ϕ. In addition, each formula ψ of the form ∀x.ϕ or ¬(∃x.ϕ) is
annotated with an integer n, denoted ψn. This integer is the maximal number of
decomposition of ψ that are allowed, in order to keep the method terminating.

The extension of TaMeD is done in the following manner. Each superdeduc-
tion rule on the left (Γ, Γi ` ∆i, ∆)16i6n

Γ, P ` ∆
X ∩ FV(Γ,∆) = ∅

is translated into B1, P
l
nP
| T tab−→

B1, P
l
nP−1, Γ

′l∪Y
1 σ,¬∆′l∪Y1 σ | · · · | B1, P

l
nP−1, Γ

′l∪Y
n σ,¬∆′l∪Yn σ | T if nP > 0

where Γ ′i and ∆′i stand respectively for Γi and ∆i where each meta-term (such
as t in the ∃R-rule) is replaced by a fresh variable, Y stands for the set of these
fresh variables, and σ stands for a substitution replacing each variable xi of
X = x1, x2, . . . by a fresh skolem function fi(l). The construction of the tableau
rule corresponding to superdeduction rules on the right is done in a similar way.

Together with the rules of Figure 1, we obtain a sound and complete tableau
method for superdeduction modulo, provided that the superdeduction modulo
system enjoys cut-elimination: Each use of a superdeduction tableau transforma-
tion can be translated into a use of the corresponding superdeduction inference
rule and conversely. Since it also holds for the other rules of TaMeD (soundness
and completeness of TaMeD [34,14]), we consequently obtain the equivalence
between the superdeduction modulo tableau method and the corresponding cut-
free superdeduction modulo system.
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Let us show how it operates on the example of Section 2 The tableau rule
which is associated with the NL inference rule is

B,N(n)ln | T
tab−→ B,N(n)ln−1,¬(0 ∈ Y )l∪{Y } | B,N(n)ln−1,¬(H(Y ))l∪{Y }

| B,N(n)ln−1, (n ∈ Y )l∪{Y } | T
It corresponds to the first step of the proof in the example of Section 2, except
that a first-order variable Y replaces the first-order constant P̃ which relates
to sum(x) = x ∗ x. However Y may be instantiated to P̃ through the extended
narrowing rule (see [34] or Figure 1)

B, U | T [C]

T ′ | T [C ∪ {U|w
?= l}]

8<:
l→1 r
U|w is an atomic proposition
T ′ = Tab(B, U [r]w)

where U|w denotes the subformula of U at some position w and U [r]w denotes U
where this subformula at this position is replaced by r. We can use this TaMeD
rule to instantiate Y to P̃ in any t ∈ Y which may appear, using the fact that
t ∈ P̃ →1 P (t). The generated constraint (U|w

?= l) is then t ∈ Y ?= t ∈ P̃ which

will always be equivalent to Y ?= P̃ .

6 Conclusion

Superdeduction modulo is the combination of superdeduction and deduction
modulo with both inference rules systematically derived from an axiomatic the-
ory and the ability to conduct deduction modulo computation. In this paper,
we have filled the gap with the focusing approach by proposing an extension of
classical sequent calculus and by showing that both focusing and superdeduction
are instances of this extension. Our analysis then indicates that superdeduction
stands in fact for introducing focusing phases which are directed by the unfolding
of axioms, and which are made explicit in the explicit superdeduction system
we have presented. Then we proved a focalization result for superdeduction,
namely that cut-free deduction modulo can be translated into cut-free super-
deduction modulo using permutations of the applications of the inference rules,
provided that some hypothesis on the synchrony of the superdeduction axioms
are verified. The inverse translation being trivial, we acquired as a corollary that
cut-elimination for superdeduction modulo is equivalent to cut-elimination for
deduction modulo, consequently obtaining that the numerous criteria for cut-
elimination in deduction modulo also hold for superdeduction modulo. Finally we
proposed a tableau method for superdeduction modulo which is sound and com-
plete provided that the corresponding deduction system enjoys cut-elimination.

Our comparison of superdeduction and focusing is meant to be carried for-
ward. In particular we believe that our focalization proof is rather complicated.
This is greatly due to the fact that our proof handles superdeduction modulo, con-
sequently allowing inference rules to spawn new connectives from atoms. However
we wish to compare our focalization proof with Andreoli’s original one and with
the elegant focalization graph technique introduced by Miller and Saurin in [35].
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This analysis could lead us to simpler focalization proofs and weaker conditions
for deductive theories which can be safely used in superdeduction modulo.

Superdeduction modulo is a promising framework for proof engineering. Our
tableau method may be in particular the foundation of automated proof con-
struction procedures based on superdeduction modulo. Besides let us notice that
superdeduction modulo is already the core of a small proof assistant named
Lemuridæ which can be downloaded at http://rho.loria.fr/lemuridae.html .
Superdeduction modulo is also used in [22] in a restricted manner since modulo
is only used on first-order terms (and not first-order propositions). Its expres-
siveness is nevertheless demonstrated by an encoding of functional PTS.

Building bridges between superdeduction and deduction modulo is also done
in a related approach by Brauner and Dowek [36]. Whereas we proved the equiv-
alence of cut-elimination for superdeduction modulo and deduction modulo, they
proved the equivalence of normalisation for deduction modulo and supernatu-
ral deduction. Superdeduction and supernatural deduction stand for the same
paradigm applied to classical sequent calculus for the first and to intuitionistic
natural deduction for the second. However in this latter system, permutability
problems forbid the paradigm to handle disjunctions or existential quantifica-
tions. Therefore an interesting extension would be to apply their approach to
(classical sequent calculus) superdeduction.
Acknowledgements: The author thanks Claude Kirchner for his useful comments
and advices. Many thanks also to Richard Bonichon and Cody Roux for fertile
discussions, to anonymous referees for their comments on a previous version of
this paper, to the Modulo meetings and to the Pareo team for many interactions.
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A Proofs of theorems and lemmas

Lemma 1 If Γ `+2
≡1

∆, then Γ `≡1,2 ∆. If Γ `cf+2
≡1 ∆, then Γ `cf≡1,2 ∆.

Proof. For some R : P →2 ϕ ∈ Th2 the superdeduction step RR
H1 H2 . . . Hn

Γ `+2
≡1

P,∆
can be translated by definition into

H1 H2 . . . Hn

[Calc]
Γ `≡1,2 ϕ,∆

Γ `≡1,2 P,∆
P ≡2 ϕ

and similarly for superdeduction steps on the left.

In the rest of this appendix, we use the second presentation of deduction
modulo (i.e. not the ≡1R/≡1L one).

Definition 6 A proof of Γ `cf+2
≡1 ∆ only rewrites atomic predicates if when

using rules such as

∧R

Γ ` ψ1, ∆ Γ ` ψ2, ∆

Γ ` ϕ,∆
ϕ ≡1 ψ1 ∧ ψ2 ∧L

Γ, ψ1, ψ2 ` ∆
Γ,ϕ ` ∆

ϕ ≡1 ψ1 ∧ ψ2

ϕ is either an atomic predicate or syntactically equal to ψ1 ∧ ψ2, and similarly
for all the rules of the cut-free deduction system, except axioms.

Lemma 7 Any cut-free proof of Γ `cf+2
≡1 ∆ can be turned into a cut-free proof

of the same sequent which only rewrites atomic predicates.

Proof. By induction on the proof:

axiom the proof already only rewrites atomic predicates.
conjunction on the right the proof is

∧R

Γ `cf+2
≡1

ψ1, ∆ Γ `cf+2
≡1

ψ2, ∆

Γ `cf+2
≡1

ϕ,∆
ϕ ≡1 ψ1 ∧ ψ2

Since ϕ ≡1 ψ1∧ψ2, since Th1 is confluent and since Th1 only rewrites atomic
predicates, either ϕ = ϕ1 ∧ ϕ2 with ϕi ≡1 ψi, either ϕ is atomic.
– If ϕ is atomic, then by induction hypothesis, we obtain proofs of Γ `cf+2

≡1

ψ1, ∆ and of Γ `cf+2
≡1 ψ2, ∆ which only rewrites atomic predicates and

through ∧R we get a proof of Γ `cf+2
≡1 ϕ,∆ which only rewrites atomic

predicates.
– If ϕ = ϕ1 ∧ ϕ2 with ϕi ≡1 ψi, then a proof of Γ `cf+2

≡1 ψi, ∆ is also a
proof of Γ `cf+2

≡1 ϕi, ∆. Then by induction hypothesis we obtain proofs of
Γ `cf+2

≡1 ϕi, ∆ which only rewrite atomic predicates and we get through
∧R a proof of Γ `cf+2

≡1 ϕ,∆ which only rewrites atomic predicates.
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other cases are handled the same way.

Definition 7 Γ ′, ∆′ is fully decomposed in some proof of Γ, Γ ′ `cf+2
≡1 ∆′, ∆ if

this proof only rewrites atomic predicates and when applying Ax-rules in this
proof, no logical connective of Γ ′, ∆′ remain (they have been fully decomposed).

Let us notice that if a proof only rewrites atomic predicates, the only way a
logical connective of Γ ′, ∆′ can disappear is if it is decomposed by some rule of
LK. Let us first prove the following auxiliary lemma.

Lemma 8 A proof of Γ `cf+2
≡1 ∆ can be transformed into a proof of the same

sequent where Γ,∆ is fully decomposed.

Proof. First by Lemma 7, we can suppose that the proof of Γ `cf+2
≡1 ∆ only

rewrites atomic predicates. Then we proceed by induction on the multiset con-
taining the number of logical connectives of Γ,∆ that remains in an Ax-rule,
for each Ax-rule of the proof.

– If no logical connective of Γ,∆ remain, the proof is fully decomposed.
– If a logical connective of Γ,∆ appears in a principal formula of an Ax-rule,

for instance a conjunction on the right:

Ax
Γ ′, ϕ `cf+2

≡1
ψ1 ∧ ψ2, ∆

′ ϕ ≡1 ψ1 ∧ ψ2

Since Th1 only rewrites atomic predicates and is confluent, either ϕ is atomic,
either ϕ = ϕ1 ∧ ϕ2 with ϕi ≡1 ψi.
In the first case the corresponding subproof can be turned into

∧L

∧R

Ax
Γ ′, ψ1, ψ2,`cf+2

≡1
ψ1, ∆

′ Ax
Γ ′, ψ1, ψ2,`cf+2

≡1
ψ2, ∆

′

Γ ′, ψ1, ψ2 `cf+2
≡1

ψ1 ∧ ψ2, ∆
′

Γ ′, ϕ `cf+2
≡1

ψ1 ∧ ψ2, ∆
′


ϕ ≡1 ψ1 ∧ ψ2

ϕ atomic

Since ϕ is atomic, the modified proof still only rewrites atomic predicates.
Besides the logical connectives of Γ,∆ which remains in Γ ′, ψ1, ψ2 `cf+2

≡1

ψi, ∆
′ for some i ∈ {1, 2} are those of Γ ′, ∆′ and ψi. (The occurrence

of ψ1, ψ2 on the left-hand side must not be taken into account since
it comes from the decomposition of ϕ which is atomic.) These logical
connectives consequently already appeared in the Ax-rule which we are
replacing, and which also contains an additionnal logical connective of
Γ,∆ (the ∧ we are decomposing). Therefore the induction hypothesis
may be applied on the global proof of Γ `cf+2

≡1 ∆ obtaining consequently
a proof of Γ `cf+2

≡1 ∆ which fully decomposes Γ,∆.
In the second case (ϕ = ϕ1 ∧ ϕ2), the corresponding subproof can be

turned into

∧L

∧R

Ax
Γ ′, ϕ1, ϕ2 `cf+2

≡1
ψ1, ∆

′ ϕ1 ≡1 ψ1 Ax
Γ ′, ϕ1, ϕ2 `cf+2

≡1
ψ2, ∆

′ ϕ2 ≡1 ψ2

Γ ′, ϕ1, ϕ2 `cf+2
≡1

ψ1 ∧ ψ2, ∆
′

Γ ′, ϕ `cf+2
≡1

ψ1 ∧ ψ2, ∆
′
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The modified proof still only rewrites atomic predicates. Besides there
are fewer logical connectives of Γ,∆ in a sequent Γ ′, ϕ1, ϕ2 `cf+2

≡1 ψi for
some i ∈ {1, 2} than in Γ ′, ϕ `cf+2

≡1 ψ1 ∧ ψ2, ∆
′. Therefore the induction

hypothesis may be applied on the global proof of Γ `cf+2
≡1 ∆ obtaining

consequently a proof of Γ `cf+2
≡1 ∆ which fully decomposes Γ,∆.

– If a logical connective appears in a non-principal formula of an Ax-rule, for
instance a disjunction on the right:

Ax
Γ ′, ϕ `cf+2

≡1
ψ, φ1 ∨ φ2, ∆

′ ϕ ≡1 ψ

Then the corresponding subproof can be turned into

∨R

Ax
Γ ′, ϕ `cf+2

≡1
ψ, φ1, ∆

′ ϕ ≡1 ψ Ax
Γ ′, ϕ `cf+2

≡1
ψ, φ2, ∆

′ ϕ ≡1 ψ

Γ ′, ϕ `cf+2
≡1

ψ, φ1 ∨ φ2, ∆
′

The modified proof still only rewrites atomic predicates. Besides there are
fewer logical connectives of Γ,∆ in a sequent Γ ′, ϕ `cf+2

≡1 ψ, φi, ∆
′ for some i ∈

{1, 2} than in Γ ′, ϕ `cf+2
≡1 ψ, φ1 ∨ φ2, ∆

′. Therefore the induction hypothesis
may be applied on the global proof of Γ `cf+2

≡1 ∆ obtaining consequently a
proof of Γ `cf+2

≡1 ∆ which fully decomposes Γ,∆.

Definition 8 – A partial decomposition of a right-handed formula ∀x1 . . . xn.ϕ
is a formula ∀xk . . . xn.ϕσ for some substitution σ on the variables x1 . . . xk−1.

– A partial decomposition of a left-handed formula ∃x1 . . . xn.ϕ is a formula
∃xk . . . xn.ϕσ for some substitution σ on the variables x1 . . . xk−1.

Definition 9 A right-handed formula ϕ = ∀x1 . . . xn.φ is non-contracted in a
proof of Γ, ϕ . . . ϕ `cf+2

≡1 ∆ if no contraction is done on some formula ∀xk . . . xn.φσ
coming from the partial decomposition of ϕ. A left-handed formula ϕ = ∃x1 . . . xn.φ
is non-contracted in a proof of Γ `cf+2

≡1 ϕ . . . ϕ,∆ if no contraction is done on
some formula ∃xk . . . xn.φσ coming from the partial decomposition of ϕ.

Lemma 9 Any proof of Γ, ϕ1 . . . ϕn `cf+2
≡1 ∆ where ϕi is right-handed and fully

decomposed can be transformed into a proof of Γ, ϕ1 . . . ϕ1, ϕ2 . . . ϕ2 . . . ϕn `cf+2
≡1

∆ where each ϕi is fully decomposed and non-contracted.
The same holds for left-handed formulæ on the right.

Proof. The proof is conducted by induction on the proof of Γ, ϕ1 . . . ϕn `cf+2
≡1 ∆.

axiom on ϕi:
Ax

Γ, ϕ1 . . . ϕn `cf+2
≡1

ψ,∆′
ϕi ≡1 ψ

The ϕk are already non-contracted in the proof.
axiom on Γ,∆:

Ax
Γ ′, ψ1, ϕ1 . . . ϕn `cf+2

≡1
ψ2, ∆

ψ1 ≡1 ψ2

The ϕk is already non-contracted in the proof.
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contraction on some formula of Γ or ∆: We just apply the induction hypoth-
esis.

contraction on some ϕi (i = 1 without loss of generality):

Γ, ϕ1, ϕ1 . . . ϕn, ϕ `cf+2
≡1

∆

Γ,ϕ1 . . . ϕn `cf+2
≡1

∆

By induction hypothesis applied on the proof of Γ, ϕ1, ϕ1 . . . ϕn `cf+2
≡1 ∆, we

obtain the proof where each ϕi is fully decomposed and non-contracted.
decomposition of some formula of Γ,∆: we just apply the induction hypothesis

on the premises.
decomposition of some ϕi = ∀x1 . . . xn.φ (i = 1 without loss of generality):

Γ,∀x2 . . . xn.φ[t/x1], ϕ2 . . . ϕn `cf+2
≡1

∆

Γ,ϕ1, ϕ2 . . . ϕn `cf+2
≡1

∆
∀L

Then by induction hypothesis, we obtain a proof of
Γ,∀x2 . . . xn.φ[t/x1] . . . ∀x2 . . . xn.φ[t/x1], ϕ2 . . . ϕ2 . . . ϕn `cf+2

≡1 ∆ where
∀x2 . . . xn.φ[t/x] and each ϕi (i > 1) is fully decomposed and non-contracted.
Then using several ∀L we obtain a proof of Γ, ϕ1 . . . ϕ1, ϕ2 . . . ϕ2 . . . ϕn `cf+2

≡1

∆.
decomposition of some propositional ϕi (i = 1 without loss of generality): it

is sufficient to apply the induction on each premiss, obtaining proofs where
each ϕi (i > 1) is non-contracted and fully decomposed. Then using the
same inference rule we obtain a proof of Γ, ϕ1 . . . ϕ1, ϕ2 . . . ϕ2 . . . ϕn `cf+2

≡1 ∆
where each ϕi is non-contracted and fully decomposed.

Let us prove Lemma 3.

Lemma 3
Let A1 ≡1 A2 ≡1 . . . An ≡1 ϕ be some propositions. Let Θ = A1, A2 . . . An.

– If ϕ = ¬A and Γ,Θ `cf+2
≡1 ∆ then Γ `cf+2

≡1 A,∆.
– If ϕ = A ∧B and Γ,Θ `cf+2

≡1 ∆ then Γ,A,B `cf+2
≡1 ∆.

– If ϕ = A ∨B and Γ,Θ `cf+2
≡1 ∆ then Γ,A `cf+2

≡1 ∆ and Γ,B `cf+2
≡1 ∆.

– If ϕ = A⇒ B and Γ,Θ `cf+2
≡1 ∆ then Γ,B `cf+2

≡1 ∆ and Γ `cf+2
≡1 A,∆.

– If ϕ=∃x.Q and Γ,Θ`cf+2
≡1 ∆ then Γ,Q[c/x]`cf+2

≡1 ∆ for some fresh variable c.

– If ϕ = ¬A and Γ `cf+2
≡1 Θ,∆ then Γ,A `cf+2

≡1 ∆.
– If ϕ = A ∧B and Γ `cf+2

≡1 Θ,∆ then Γ `cf+2
≡1 A,∆ and Γ `cf+2

≡1 B,∆.
– If ϕ = A ∨B and Γ `cf+2

≡1 Θ,∆ then Γ `cf+2
≡1 A,B,∆.

– If ϕ = A⇒ B and Γ `cf+2
≡1 Θ,∆, then Γ,A `cf+2

≡1 B,∆.
– If ϕ=∀x.Q and Γ `cf+2

≡1 Θ,∆ then Γ `cf+2
≡1 Q[c/x], ∆ for some fresh variable c.

Proof. Let us prove the first proposition by induction on the proof of
Γ,Θ `cf+2

≡1 ∆.
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If the last step of the proof of Γ,Θ `cf+2
≡1 ∆ decomposes Ai ≡1 ¬A (we

suppose without loss of generality that i = 1), then since Th1 is confluent and
only rewrites atomic propositions and first-order terms, the decomposition of A1

is consequently ¬L, and we have a proof of Γ,A2 . . . An `cf+2
≡1 A′, ∆ with A ≡1 A

′.
Therefore by induction hypothesis, we obtain a proof of Γ `cf+2

≡1 A,A′, ∆ and
using a contraction, we finally get a proof of Γ `cf+2

≡1 A,∆ (since A′ ≡1 A).
Otherwise let us consider the inference rule applied at the root of the proof.

contraction the contraction may be applied on a formula of Θ, Γ or ∆, but in
all cases it is sufficient to apply the induction hypothesis on the premiss of
the contraction.

axiom if the proof is
Ax

Γ,Θ `cf+2
≡1

∆ then there exists some C ∈ Γ and
D ∈ ∆ such that C ≡1 D or some E ≡1 Ai appears in ∆. In the first

case we can write the proof
Ax

Γ `cf+2
≡1

A,∆ . In the second case the proof
Ax

Γ,Θ `cf+2
≡1

E,∆′ where ∆ = E,∆′ can be transformed into

¬R

Ax
Γ,A `cf+2

≡1
A,∆′

Γ `cf+2
≡1

A,E,∆′
E ≡1 ¬A

exists-right if the proof is
∃R

. . .

Γ,Θ `cf+2
≡1

Q[t/x], ∆

Γ,Θ `cf+2
≡1

ψ,∆
ψ ≡1 ∃x.Q

then by induc-
tion hypothesis we obtain a proof of Γ `cf+2

≡1 A,Q[t/x], ∆ and through ∃R we
get a proof of Γ `cf+2

≡1 A,ψ,∆.

exists-left if the proof is
∃L

. . .

Γ,Θ,Q `cf+2
≡1

∆

Γ,Θ, ψ `cf+2
≡1

∆


x /∈ FV(Γ,Θ,∆)
ψ ≡1 ∃x.Q This proof holds

for any x /∈ FV(Γ,Θ,∆), especially one such that x /∈ FV(A). Then by in-
duction hypothesis we obtain a proof of Γ,Q `cf+2

≡1 A,∆ and through ∃L we
get a proof of Γ, ψ `cf+2

≡1 A,∆.
superdeduction-right if the proof is

RR

. . .

Γ, Γ1, Θ `cf+2
≡1

∆1, ∆

. . .

Γ, Γ2, Θ `cf+2
≡1

∆2, ∆ . . .

. . .

Γ, Γn, Θ `cf+2
≡1

∆n, ∆

Γ,Θ `cf+2
≡1

P,∆
C

with R : P → ϕ ∈ Th2. Let us remark that since the variables concerned
with the side condition C do not appear in FV(Γ,Θ,∆) (because C holds),
they can even be chosen such that they do not appear in FV(A). Then
by induction hypothesis we obtain proofs of the

(
Γ, Γi `cf+2

≡1 A,∆i, ∆
)
i

for

1 6 i 6 n and therefore through RR we obtain a proof of Γ `cf+2
≡1 A,P,∆ (in

particular the side condition of this instance of RR is verified).
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other cases are handled the same way.

Let us prove the fifth proposition by induction on the proof of Γ,Θ `cf+2
≡1 ∆.

If the last step of the proof of Γ,Θ `cf+2
≡1 ∆ decomposes Ai ≡1 ∃x.Q (we suppose

without loss of generality that i = 1), then since Th1 is confluent and only
rewrites atomic propositions and first-order terms, the decomposition of A1 is
∃L, and we have a proof of Γ,Q′[c/x], A2 . . . An `cf+2

≡1 ∆ for Q ≡1 Q
′ and for

some fresh variable c. Therefore by induction hypothesis, we obtain a proof of
Γ,Q′[c/x], Q[d/x] `cf+2

≡1 ∆. c and d being two distinct fresh variables, this latter
proof also holds if we replace them by another fresh variable e. Therefore we
obtain a proof of Γ,Q′[e/x], Q[e/x] `cf+2

≡1 ∆. Using a contraction (since Q′[e/
x] ≡1 Q[e/x]), we get a proof of Γ,Q[e/x] `cf+2

≡1 ∆. Otherwise let us consider the
inference rule applied at the root of the proof of Γ,∃x.Q `cf+2

≡1 ∆.

contraction the contraction may be applied on a formula of Θ, Γ or ∆, but in
all cases it is sufficient to apply the induction hypothesis on the premiss of
the contraction.

axiom if the proof is
Ax

Γ,Θ `cf+2
≡1

∆ then there exists B ∈ Γ ∪Θ and C ∈ ∆
such that B ≡1 C. If B ∈ Γ then we have a trivial proof of Γ,Q[c/x] `cf+2

≡1 ∆.

If B ∈ Θ then the proof is
Ax

Γ,Θ `cf+2
≡1

C,∆′ where ∆ = C,∆′ and it can
be transformed into

∃R

Ax
Γ,Q[c/x] `cf+2

≡1
Q[c/x], ∆′

Γ,Q[c/x] `cf+2
≡1

C,∆′
C ≡1 ∃x.Q

exists-right if the proof is
∃R

. . .

Γ,Θ `cf+2
≡1

P [t/y], ∆

Γ,Θ `cf+2
≡1

ψ,∆
ψ ≡1 ∃y.P

then by induction
hypothesis we obtain a proof of Γ,Q[c/x] `cf+2

≡1 P [t/y], ∆ and through ∃R we
get a proof of Γ,Q[c/x] `cf+2

≡1 ψ,∆.

exists-left if the proof is
∃L

. . .

Γ,Θ, P `cf+2
≡1

∆

Γ,Θ, ψ `cf+2
≡1

∆


y /∈ FV(Γ,Θ,∆)
ψ ≡1 ∃y.P This proof holds

for any y /∈ FV(Γ,Θ,∆), especially one such that y /∈ FV(Q). Then by in-
duction hypothesis we obtain a proof of Γ,Q[c/x], P `cf+2

≡1 ∆ and through
∃L we get a proof of Γ,Q[c/x], ψ `cf+2

≡1 ∆ (c being a fresh variable, we may
suppose it is not y and therefore y /∈ FV(Γ,Q[c/x], ∆)).

superdeduction-right if the proof is

RR

. . .

Γ, Γ1, Θ `cf+2
≡1

∆1, ∆

. . .

Γ, Γ2, Θ `cf+2
≡1

∆2, ∆ . . .

. . .

Γ, Γn, Θ `cf+2
≡1

∆n, ∆

Γ,Θ `cf+2
≡1

P,∆
C
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with R : P → ϕ ∈ Th2. Let us remark that since the variables concerned
with the side condition C do not appear in FV(Γ,Θ,∆) (because C holds),
they can even be chosen such that they do not appear in FV(Q). Then by
induction hypothesis we obtain proofs of the

(
Γ, Γi, Q[c/x] `cf+2

≡1 ∆i, ∆
)
i

for
1 6 i 6 n and for some fresh variable c and therefore through RR we obtain a
proof of Γ,Q[c/x] `cf+2

≡1 P,∆ (in particular the side condition of this instance
of RR is verified).

other cases are handled the same way.

The other propositions are proved the same way.

Then we prove the following lemma.

Lemma 10 – For some right-handed φ, if there is a proof of Γ `cf+2
≡1 φ,∆ and

(Γ, Γi `cf+2
≡1 ∆i, ∆)i is a list of sequents representing a step of the decompo-

sition using rule of Calc of φ in Γ `cf+2
≡1 φ,∆, then for all i, there is a proof

of Γ, Γi `cf+2
≡1 ∆i, ∆.

– For some left-handed φ, if there is a proof of Γ, φ `cf+2
≡1 ∆ and (Γ, Γi `cf+2

≡1

∆i, ∆)i is a list of sequents representing a step of the decomposition using
rule of Calc of φ in Γ, φ `cf+2

≡1 ∆, then for all i, there is a proof of Γ, Γi `cf+2
≡1

∆i, ∆.

Proof. Let us prove the first proposition. By induction on the number of steps
from Γ `cf+2

≡1 φ,∆ to (Γ, Γi `cf+2
≡1 ∆i, ∆)i using rules of Calc.

– If the list of sequents contains only Γ `cf+2
≡1 φ,∆, by hypothesis there is a

proof of Γ `cf+2
≡1 φ,∆.

– If the step (Γ, Γi `cf+2
≡1 ∆i, ∆)i is obtained from previous step (Γ, Γ ′k `

cf+2
≡1

∆′k, ∆)k using the rule
axiom then all the sequents Γ, Γi `cf+2

≡1 ∆i, ∆ are already in the list (Γ, Γ ′k `
cf+2
≡1

∆′k, ∆)k. Therefore by induction hypothesis, for all i there exists a proof
of Γ, Γi `cf+2

≡1 ∆i, ∆.
implication left then all the sequents Γ, Γi `cf+2

≡1 ∆i, ∆ are already in the
list (Γ, Γ ′k `

cf+2
≡1 ∆′k, ∆)k except some sequents Γ, Γ ′, ψ `cf+2

≡1 ∆′, ∆ and
Γ, Γ ′ `cf+2

≡1 ϕ,∆′, ∆ that comes from decomposing ϕ ⇒ ψ in Γ, Γ ′, ϕ ⇒
ψ `cf+2

≡1 ∆′, ∆. From induction hypothesis, there exists proofs of all se-
quents from the previous step. Therefore there exists a proof of Γ, Γ ′, ϕ⇒
ψ `cf+2
≡1 ∆′, ∆. By Lemma 3, we obtain proofs of Γ, Γ ′, ψ `cf+2

≡1 ∆′, ∆ and
Γ, Γ ′ `cf+2

≡1 ϕ,∆′, ∆ and consequently we have proofs of all sequents
(Γ, Γi `cf+2

≡1 ∆i, ∆).
forall right then all the sequents Γ, Γi `cf+2

≡1 ∆i, ∆ are already in the list
(Γ, Γ ′k `

cf+2
≡1 ∆′k, ∆)k except some sequent Γ, Γ ′ `cf+2

≡1 ψ[c/x], ∆′, ∆ that
comes from decomposing ∀x.ψ in Γ, Γ ′ `cf+2

≡1 ∀x.ψ,∆′, ∆ where c is a
fresh variable. By induction hypothesis, there exists proofs of all sequents
from the previous step. Therefore there exists a proof of Γ, Γ ′ `cf+2

≡1
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∀x.ψ,∆′, ∆. By Lemma 3, we obtain a proof of Γ, Γ ′ `cf+2
≡1 ψ[c/x], ∆′, ∆

and hence we have proofs of all sequents (Γ, Γi `cf+2
≡1 ∆i, ∆).

exists right This case is contradictory since φ is right-handed.
forall left This case is contradictory since φ is right-handed.
exists left This case is contradictory since φ is right-handed.
other cases are handled the same way.

The second proposition is symmetrical.

Let us prove now Lemma 4.

Lemma 4 Let us consider some R : P → ϕ ∈ Th2.

– If ϕ is right-handed and Γ `cf+2
≡1 ϕ,∆, then there exists (cut-free) proofs of

each premise of the introduction of P on the right. Therefore Γ `cf+2
≡1 P,∆.

– If ϕ is left-handed and Γ, ϕ `cf+2
≡1 ∆, then there exists (cut-free) proofs of

each premise of the introduction of P on the left. Therefore Γ, P `cf+2
≡1 ∆.

Proof. Let us prove the first proposition: Since there exists a proof of Γ `cf+2
≡1

ϕ,∆, by Lemma 10 and since the premises of the RR rule represent a step (the
last one) of the decomposition of ϕ in Γ `cf+2

≡1 ϕ,∆, by Lemma 10 there exists
proofs of each premise (where the variables appearing in the side condition of
RR are replaced by fresh variables: consequently this side condition is verified).
Therefore through RR we obtain a proof of Γ `cf+2

≡1 P,∆.
The second proposition is proved in a symmetrical manner.

Before proving Lemma 5, we prove this auxiliary lemma:

Lemma 11 Let us consider R : P → ϕ.

– If ϕ is right-handed, if ϕ′ is some partial decomposition of ϕ and if Γ, ϕ′ `cf+2
≡1

∆, then there is a proof of Γ, P `cf+2
≡1 ∆.

– If ϕ is left-handed, if ϕ′ is some partial decomposition of ϕ and if Γ `cf+2
≡1

ϕ′, ∆, then there is a proof of Γ `cf+2
≡1 P,∆.

Proof. Let us prove the first proposition. First by Lemmas 7, 8, 9, we can suppose
that ϕ′ is fully decomposed and non-contracted in the proof. Then we proceed
by induction on this proof.

axiom on ϕ′: The proof is
Ax

Γ, ϕ′ `cf+2
≡1

ψ,∆′
ϕ′ ≡1 ψ

Since ϕ′ is fully decom-
posed in the proof, it is then an atomic predicate (= φσ for some σ). Then

the RL rule is
RL

Γ, φρ ` ∆
Γ,P ` ∆ (for any substitution ρ) and then the following

proof holds.

RL

Ax
Γ, φσ `cf+2

≡1
ψ,∆′

φσ ≡1 ψ

Γ, P `cf+2
≡1

ψ,∆
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axiom on Γ,∆. This case is obvious.
contraction on Γ,∆. This case is obvious.
contraction on ϕ′. Since ϕ′ is non-contracted in the proof, it can only be a

propositional formula φσ. Then by Lemma 4, there are proofs of each premise
Γ, Γiσ `cf+2

≡1 ∆iσ,∆ of a decomposition of φσ on the left in Γ, ϕ′ `cf+2
≡1 ∆.

Besides the RL inference rule is

RL

(Γ, Γiρ ` ∆iρ,∆)i
Γ, P `cf+2

≡1
∆

(for any substitution ρ). Then through RL we get a proof of Γ, P `cf+2
≡1 ∆.

decomposition of a formula of Γ,∆. We simply apply the induction hypothesis
on each premise.

decomposition of ϕ′ = φσ: This case is handled the same way as a contraction
on ϕ′ = φσ.

decomposition of ϕ′ = ∀xk . . . xn.φσ:

∃L

Γ,∀xk+1 . . . xn.φσ
′ `cf+2
≡1

∆

Γ,∀xk . . . xn.φσ `cf+2
≡1

∆

Then by induction hypothesis, there exists a proof of Γ, P `cf+2
≡1 ∆.

Since the second proposition is symmetrical, it is proved in a similar way.

Let us prove now Lemma 5.

Lemma 5 Let us consider R : P → ϕ ∈ Th2.

– If ϕ is right-handed and Γ, ϕ `cf+2
≡1 ∆, then Γ, P `cf+2

≡1 ∆.
– If ϕ is left-handed and Γ `cf+2

≡1 ϕ,∆, then Γ `cf+2
≡1 P,∆.

Proof. If ϕ is right-handed (resp. left-handed), then ϕ is a partial decomposition
of itself and consequently by Lemma 11, if there is a proof of Γ, ϕ `cf+2

≡1 ∆ (resp.
Γ `cf+2

≡1 ϕ,∆), then there is a proof of Γ, P `cf+2
≡1 ∆ (resp. Γ `cf+2

≡1 P,∆).


