
HAL Id: inria-00293649
https://hal.inria.fr/inria-00293649

Submitted on 7 Jul 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

No Double Discount: Condition-based Simultaneity
Yields Limited Gain

Y. Moses, Michel Raynal

To cite this version:
Y. Moses, Michel Raynal. No Double Discount: Condition-based Simultaneity Yields Limited Gain.
[Research Report] PI 1898, 2008. �inria-00293649�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/50251557?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00293649
https://hal.archives-ouvertes.fr

I
 R

 I
 S

 A
IN

S
T
IT

U
T
 D

E
 R

E
C

H
E
R

C
H

E
 E

N
 IN

FO

R
M

ATIQ
UE E

T S
YSTÈMES ALÉATOIRES

P U B L I C A T I O N
I N T E R N E
No

I R I S A
CAMPUS UNIVERSITAIRE DE BEAULIEU - 35042 RENNES CEDEX - FRANCEIS

S
N

 1
16

6-
86

87

1898

NO DOUBLE DISCOUNT:
CONDITION-BASED SIMULTANEITY YIELDS LIMITED GAIN

Y. MOSES M. RAYNAL

INSTITUT DE RECHERCHE EN INFORMATIQUE ET SYSTÈMES ALÉATOIRES

Campus de Beaulieu – 35042 Rennes Cedex – France
Tél. : (33) 02 99 84 71 00 – Fax : (33) 02 99 84 71 71

http://www.irisa.fr

No Double Discount:
Condition-based Simultaneity Yields Limited Gain

Y. Moses* M. Raynal**

Systèmes communicants
Projet ASAP

Publication interne n ˚ 1898 — Juillet 2008 — 20 pages

Abstract: Assuming each process proposes a value, the consensus problem requires the non-faulty processes
to agree on the same value that has to be a proposed value. Solutions to the consensus problem in synchronous
systems are based on the round-based model, namely, the progress of the processes is according to synchronous
rounds. Simultaneous consensus requires that the non-faulty processes decide not only on the same value, but decide
during the very same round. It has been shown by Dwork and Moses that, in a synchronous system prone to t process
crashes, the earliest round at which a common decision can be simultaneously obtained is (t + 1) −D where D is a
non-negative integer determined by the actual failure pattern F .

The condition-based approach to solve consensus assumes that the input vector belongs to a set C (a set of input
vectors satisfying a property called legality). Interestingly, the conditions for synchronous consensus define a hierarchy
of sets of conditions S0

t ⊂ · · · ⊂ S
d
t ⊂ · · · ⊂ S

t
t (where the set St

t contains the condition made up of all possible
input vectors). It has been shown that d + 1 is a tight lower bound on the minimal number of rounds for synchronous
condition-based consensus.

This paper considers the synchronous condition-based consensus problem with simultaneous decision. It first
presents a simple algorithm that directs the processes to decide simultaneously at the end of the round RSt,d,F =
min((t + 1) −D, d + 1) (i.e., RSt,d,F = (t + 1)−max(D, δ) with δ = t − d). The paper then shows that RSt,d,F

is a lower bound for the condition-based simultaneous consensus problem. It thus follows that the algorithm designed
is optimal in each and every run, and not just in the worst case: For every choice of failure pattern by the adversary
(and every input configuration), the algorithm reaches simultaneous as fast as any correct algorithm could do under
the same conditions.

This shows that, contrary to what could be hoped, when considering condition-based consensus with simultaneous
decision, we can benefit from the best of both actual worlds (either the failure world when RSt,d,F = (t + 1)−D, or
the condition world when RSt,d,F = d + 1), but we cannot benefit from the sum of savings offered by both. Only one
discount applies.

Key-words: Agreement problem, Condition-based agreement, Consensus, Distributed algorithm, Early deci-
sion, Lower bound, Modularity, Process crash failure, Round-based computation model, Simultaneity, Synchronous
message-passing system.

(Résumé : tsvp)

* Department of Electrical Engineering, Technion, Haifa, 32000 Israel moses@ee.technion.ac.il
** IRISA, Université de Rennes 1, Campus de Beaulieu, 35042 Rennes Cedex, France raynal@irisa.fr

Proceedings of the 22nd International Symposium on Distributed Computing (DISC’2008).

Centre National de la Recherche Scientifique Institut National de Recherche en Informatique
(UMR 6074) Université de Rennes 1 – Insa de Rennes et en Automatique – unité de recherche de Rennes

Utiliser les conditions pour une décision simultanée donne peu de gain

Résumé : Ce rapport montre qu’utiliser les conditions pour une décision simultanée ne donne qu’un gain limité.

Mots clés : Système synchrone, algorithme distribué, condition, consensus, crash de processus, décision simultaée,
modèle de calcul fondé sur les rondes, système synchrone.

Condition-based Simultaneity Yields Limited Gain 3

1 Introduction
The consensus problem Fault-tolerant systems often require a means by which processes or processors can arrive
at an exact mutual agreement of some kind [17]. If the processes defining a computation have never to agree, that
computation is actually made up of a set of independent computations, and consequently is not an inherently distributed
computation. The agreement requirement is captured by the consensus problem that is one of the most important
problems of fault-tolerant distributed computing. It actually occurs every time entities (usually called agents, processes
-the word we use in the following-, nodes, sensors, etc.) have to agree. The consensus problem is surprisingly simple
to state: each process is assumed to propose a value, and all the processes that are not faulty have to agree/decide
(termination), on the same value (agreement), that has to be one of the proposed values (validity). The failure model
considered in this paper is the process crash model.

While consensus is impossible to solve in pure asynchronous systems despite even a single process crash [5] (“pure
asynchronous systems” means systems in which there is no upper bound on process speed and message transfer delay),
it can be solved in synchronous systems (i.e., systems where there are such upper bounds) whatever the number n of
processes and the number t of process crashes (t < n).

An important measure for a consensus algorithm is the time it takes for the non-faulty processes to decide. As a
computation in a synchronous system can be abstracted as a sequence of rounds, the time complexity of a synchronous
consensus algorithm is measured as the minimal number of rounds (Rt) a process has to execute before deciding, in
the worst case scenario. It has been shown (see, e.g., in [4, 11]) that Rt = t + 1. Moreover, that bound is tight: there
exist algorithms (e.g., see [1, 9, 18]) where no process ever executes more than Rt rounds (these algorithms are thus
optimal with respect to that bound).

Early decision While t + 1 rounds are needed in the worst case scenario, the major part of the executions have
few failures or are even failure-free. So, an important issue is to be able to design early deciding algorithms, i.e.,
algorithms that direct the processes to decide “as early as possible” in good scenarios. Let f , 0 ≤ f ≤ t, be the
number of actual process crashes in an execution. It has been shown that the lower bound on the number of rounds is
then Rt,f = min(f + 2, t + 1) (e.g., [2, 11, 19]). As before, this bound is tight: algorithms in which no process ever
executes more than Rt,f exist (e.g., see [2, 7, 18]).

The condition-based approach and the hierarchy of synchronous conditions The condition-based approach has
been initially introduced to circumvent the impossibility of solving consensus in an asynchronous system prone to
crash failures [14]. It consists in restricting the set of input vectors that can be proposed (such a set is called a
condition) in such a way that consensus becomes solvable in crash-prone asynchronous systems every time the input
vector belongs to the condition. A main result associated with this approach is the following [14] : a condition C
allows to solve consensus in an asynchronous system prone to up to x process crashes iff it is x-legal (a condition is
x-legal if each of its input vectors contains more than x times the value decided from that vector, and the Hamming
distance of two vectors from which different values can be decided is greater than x). As we can see, there is a strong
connection between the condition-based approach and error-correcting codes [6].

The condition-based approach has then been extended from computability in asynchronous systems to efficiency
in synchronous systems. More precisely, let us consider a synchronous system where up to t processes can crash, and
let Sd

t be the set containing all the (t− d)-legal conditions (the parameter d is called the degree of the condition, and
the quantity (t − d) measures the difficulty of the condition). The following hierarchy has been established in [15]:
S0

t ⊂ S
1
t ⊂ · · · ⊂ S

d
t ⊂ · · · ⊂ S

t
t .

Considering a condition C ∈ Sd
t and an input vector I ∈ C, it is shown in [15] that synchronous consensus can be

solved in two rounds when d = 0, and in d + 1 rounds when 1 ≤ d ≤ t. It is also shown that d + 1 is a tight lower
bound, when the input vector belong to C (with C ∈ Sd

t and C /∈ Sd−1
t). It is worthwhile looking at the “extreme” sets

S0
t and St

t . On one side, St
t includes the condition that contains all the possible input vectors. On the other side, the

family of conditions S0
t , that is the largest set of conditions that allow to solve the consensus problem in asynchronous

systems prone to up to t crashes, is also the family of conditions that allows to solve the consensus problem optimally
in a synchronous system prone to t crashes.

Simultaneous decision Consensus agreement is a data agreement property, namely the processes have to agree on
the same value. According to the actual failure pattern, and the way this pattern is perceived by the processes, it is
possible for several processes to decide at distinct rounds. The only guarantee lies in the fact that this round can be
bounded (by Rt or Rt,f if we consider an early-deciding algorithm, or d+1 if we consider a condition-based algorithm

PI n ˚ 1898

4 Y. Moses & M. Raynal

instantiated with a condition C ∈ Sd
t and assume the input vector always belongs to C). This uncertainty on the set of

round numbers at which the processes decide, can be a serious drawback for the real-time oriented applications where
agreement is required, not only on the decided value, but also on the time the decision is taken. More precisely, these
applications require that the processes decide on the same value (data agreement), during the very same round (time
agreement). This property is also called simultaneous decision.

All the “classical” consensus algorithms where all the processes that do not crash decide systematically at the end
of the round Rt = t + 1 ensure simultaneous decision. It is shown in [2, 12] that the earliest round number at the end
of which a common decision can be simultaneously taken is RSt,F = (t + 1)−D where D is a non-negative integer
whose value depends on the actual failure pattern F .1 More precisely, let C[r] be the set of the processes that are seen
as crashed by (at least) one of the processes that survive (i.e., do not crash before the end of) round r. For any r, let
dr = max(0, |C[r]| − r). We have D = maxr≥0(dr). So, when considering the bound (t + 1) −D, D represents
the number of rounds that could be saved with respect to the worst case t + 1 bound, while guaranteeing simultaneous
agreement. Algorithms that solve simultaneous consensus optimally are described in [3, 12]. It is interesting to notice
that the greatest values of D are obtained when many processes crash early. If at most one process crashes at each
round, we obtain D = 0 and the earliest round for simultaneous decision is then t + 1. At first glance, this can appear
counter-intuitive. Actually it is not, it is only the consequence of the fact that crashes are stable while “not to be
crashed” is not a stable property, and simultaneous decision requires a common knowledge that can be based only on
stable facts.

Content of the paper The paper investigates the simultaneous decision in the context of the condition-based ap-
proach. It addresses the following question: “Assuming a condition C ∈ Sd

t , an input vector I ∈ C, a failure pattern
F , which is the earliest round at which a simultaneous decision can be obtained?”

Let δ = t − d (i.e., C is δ-legal). The paper shows that RSt,d,F = (t + 1) − max(D, δ) (or equivalently,
min(t + 1−D, d + 1)) is a tight lower bound. To show it, the paper first presents a simple condition-based algorithm
where the processes simultaneously decide at the end of the round RSt,d,F . It then addresses the more difficult side,
namely it shows that there is no condition-based algorithm for simultaneous agreement that, given a run with the
failure pattern F , directs the processes to simultaneously decide at round r with r < RSt,d,F . Hence, the paper shows
that there is no “double discount”, one coming from the condition the input vector belongs to, the other one coming
from the best gain (in terms of the number of rounds) due to early crashes. The best that can be done is only to benefit
from the best world that occurs in the actual run, namely, (t + 1) − D or (t + 1) − δ. The benefits of both worlds
cannot be “added” to provide a bound smaller than the smallest of them.

Roughly speaking, our algorithm is obtained by running a condition-based algorithm that is based on [14], that
runs for t + 1 − δ rounds in parallel with a simultaneous consensus algorithm based on [3, 12], that in turn decides
in t + 1 −D rounds, where D depends on the failure pattern. If D ≥ δ then the latter algorithm halts first, and the
decision value that it produces is adopted. Otherwise, consensus is reached in t + 1 − δ rounds, using the decision
value produced by the first (condition-based) algorithm. Because decisions are simultaneous, the algorithms can be
seamlessly combined in this way. The main technical contribution of the paper is in the lower bound proof, showing
that this scheme cannot be improved on. It yields optimally fast agreement in all runs.

2 Computation model, conditions and problem specification
2.1 Computation model
Round-based synchronous system The system model consists of a finite set of processes, namely, Π = {p1, . . . , pn},
that communicate and synchronize by sending and receiving messages through channels. (Sometimes we also use p
and q to denote processes.) Every pair of processes is connected by a bi-directional reliable channel (which means that
there is no creation, alteration, loss or duplication of message).

The system is round-based synchronous. This means that each execution consists of a sequence of rounds. Those
are identified by the successive integers 1, 2, etc. For the processes, the current round number appears as a global
variable r that they can read, and whose progress is managed by the underlying system. A round is made up of three
consecutive phases:

• A send phase in which each process sends the same message to all the processes (including itself).
1Let us recall that the actual number of failures f (0 ≤ f ≤ t) is only a digest of the failure pattern. It does not state at which rounds the failures

do occur, and which are the processes that received the round r message from a process that crashed during round r.

Irisa

Condition-based Simultaneity Yields Limited Gain 5

• A receive phase in which each process receives messages.
The fundamental property of the synchronous model lies in the fact that a message sent by a process pi to a
process pj at round r, is received by pj at the very same round r.

• A computation phase during which each process processes the messages it received during that round and
executes local computation.

Process failure model A process is faulty during an execution if its behavior deviates from that prescribed by its
algorithm, otherwise it is correct. We consider here the crash failure model, namely, a faulty process stops its execution
prematurely. After it has crashed, a process does nothing. If a process crashes in the middle of a sending phase, only
a subset of the messages it was supposed to send might actually be received.

As already indicated, the model parameter t (1 ≤ t < n) denotes an upper bound on the number of processes
that can crash in a run. A failure pattern F is a list of at most t triples 〈q, kq , Bq〉. A triple 〈q, kq , Bq〉 states that the
process q crashes while executing the round kq (hence, it sends no messages after round kq), while the set Bq denotes
the set of processes that do not receive the message sent by q during the round kq.

2.2 The simultaneous consensus problem
The problem has been informally stated in the introduction: every process pi proposes a value vi (called its initial
value) and the processes have to decide, during the very same round, on the same value that has to be one of the
proposed values. This can be stated as a set of four properties that any algorithm solving the problem has to satisfy.

• Decision. Every correct process decides.

• Validity. A decided value is a proposed value.

• Data agreement. No two processes decide different values.

• Simultaneous decision (or Time agreement). No two processes decide at distinct rounds.

2.3 The condition-based approach
Notation Let V be the set containing all the values that can be proposed, with |V| ≥ 2. An input configuration is an
assignment I : Π → V of an initial value vi ∈ V to each process pi. An input vector is a size n vector corresponding
to an input configuration. A condition is a set of input vectors.

Let ⊥ denote a default value such that ⊥ /∈ V and ∀a ∈ V , ⊥ < a. We usually denote by I an input vector (all
its entries are in V), and with J a vector that may have some entries equal to ⊥. Such a vector J is called a view.
The number of occurrences of a value a ∈ V ∪ {⊥} in the vector J is denoted #a(J). Given two vectors I1 and I2,
dist(I1, I2) denotes their Hamming distance.

Legality Not all the conditions allow to solve consensus in an asynchronous distributed system prone to process
crashes (due to the FLP impossibility result [5]). So, to solve consensus in such a system, a condition C has to meet
constraints. Those can be expressed with the legality notion defined as follows:

Definition 1 [6, 14] A condition C is x-legal if there exists a function H : C 7→ V with the following properties: (1)
∀I ∈ C: #H(I)(I) > x, and (2) ∀I1, I2 ∈ C: H(I1) 6= H(I2)⇒ dist(I1, I2) > x.

This means that the value extracted from I by H() appears “often enough” in I (more than x times), and two
vectors from which different values are extracted by H() are “far enough apart” from the Hamming distance point of
view. A main result of [14] is the characterization of the largest set of conditions that allow to solve consensus in an
asynchronous system:

Theorem 1 [14] If C is x-legal then consensus can be solved under C in an asynchronous system prone to up to
x process crashes. Conversely, there exists an (x − 1)-legal condition C ′ for which consensus is unsolvable in the
presence of x process crashes.

Intuitively, a condition selects a proposed value to become the decided value, namely, the value decided from an
input vector I is H(I). A general method to define conditions is described in [16]. As an example, let us consider
the condition Mx defined as follows from the function max() (where max(I) returns the greatest value in I): I ∈
Mx ⇔ #max(I)(I) > x. It is shown in [14] that Mx is x-legal, and consequently consensus can be solved despite up
to x process crashes when the input vectors are such that each of them has at least x + 1 entries equal to its greatest
entry.
PI n ˚ 1898

6 Y. Moses & M. Raynal

Lemma 1 [15] Let C be an x-legal condition. If I1, I2 ∈ C, #⊥(J) ≤ x, J ≤ I1 and J ≤ I2, we have H(I1) =
H(I2).

Because of this lemma, H() can be extended to vectors J with at most x entries equal to ⊥ by choosing an arbitrary
I ∈ C with J ≤ I .

Definition 2 Let C be an x-legal condition, I a vector in C, and J any vector such that J ≤ I and #⊥(J) ≤ x. The
definition of H() is extended to such vectors J as follows: H(J) = H(I).

Theorem 2 [14] Let C be an x-legal condition. It is also (x − 1)-legal. Moreover, there exist conditions that are
(x− 1)-legal but not x-legal.

The synchronous hierarchy of classes of conditions Let us consider a synchronous system prone to up to t process
crashes, and let Sd

t be the set of all the (t− d)-legal conditions. Let us observe that d = t defines the class of 0-legal
conditions which is the largest one and includes every condition (and in particular the “trivial” condition that contains
all the possible input vectors). Due to Theorem 2 the classes (Sd

t)0≤d≤t define the following hierarchy [14]:

S0
t ⊂ · · · ⊂ S

d
t ⊂ S

d+1
t ⊂ · · · ⊂ St

t .

As we shall see, this hierarchy of conditions allows solving synchronous consensus with protocols that take more and
more rounds, as we go from d = 0 to d = t. And d = 0 is the borderline case where consensus can be solved in an
asynchronous system with t failures, and can be solved optimally in a synchronous system.

2.4 The simultaneous condition-based consensus problem
Let us assume that the input vectors always belong to a condition C ∈ Sd

t . Let δ = t− d (i.e., C is δ-legal). In order
to eliminate the trivial solution where the processes always decide at round d + 1 (= t + 1 − δ), the simultaneous
condition-based consensus problem is defined by the four properties stated in Section 2.2, plus the following early-
deciding property:

• Early decision. No process decides after the round RSt,d,F = (t + 1) − max(D, δ) (where D is the value
derived from failure pattern F as described in the introduction).

3 An optimal condition-based simultaneous consensus algorithm
This section presents a simple condition-based simultaneous consensus algorithm in which the processes decide at the
end of the round RSt,d,F = (t + 1)−min(D, δ). It will be shown in Section 4 that RSt,d,F is the smallest number of
rounds for simultaneous condition-based consensus.

The proposed algorithm is built modularly. It combines two base algorithms. One is a condition-based algorithm
that, when instantiated with a δ-legal condition C (i.e., C ∈ Sd

t , with δ = t − d, 1 ≤ d ≤ t, and the input vector I
belongs to C) directs the processes to decide simultaneously at the end of round d + 1 = t + 1 − δ. The second is a
simultaneous (non-condition-based) consensus algorithm that directs the processes to decide at the end of the round
t+1−D. These base algorithms are first presented. Their combination in which the processes simultaneously decide
at the end of the round round RSt,d,F = (t + 1)−min(D, δ) is then described.

3.1 A condition-based simultaneous consensus algorithm
3.1.1 Preliminary definitions
As the system model requires each process to send a message to all the processes at each round, process failures can
be easily detected, and this detection is done as soon as possible.

Failure discovery The failure of a process q is discovered (for the first time) in round r if r is the first round such
that there is a process p that (1) does not receive a round r message from q, and (2) survives (i.e., completes without
crashing) round r.

Irisa

Condition-based Simultaneity Yields Limited Gain 7

Clean rounds A round r is clean if no process is discovered faulty for the first time in that round [3]. This means
that a process that crashes during a clean round r has sent its round r message to all the processes that proceed to the
round r + 1.

The following property is an immediate consequence of the previous definitions. (In a precise sense, a clean round
can be used to ensure that the knowledge of the various processes is identical. Once this happens the processes are in
agreement about initial values. They then need to discover this and coordinate their decisions.)

Property 1 If round r is clean, then all the processes that proceed to round r + 1 received, during the round r,
messages from the same set of processes (including at least all of them).

Observe that a clean round is not necessarily a failure-free round. It is possible for a process p to crash in a clean
round r in such a way that no process surviving round r notices its crash in round r (p crashes after sending its round r
messages at least to all processes that survive round r and before the end of the round). Similarly, a failure-free round
is not necessarily clean. For example, a failure-free round r + 1 that follows a clean round r during which a crash
occurred is not clean.

3.1.2 A simple (non-optimal) condition-based algorithm
The first algorithm we present directs the processes to decide at the end of the round (t + 1)− δ. It is an adaptation of
an algorithm described in [15] that does not satisfy the simultaneous decision property2. The algorithm is described in
Figure 1. Each process pi uses three local variables.
• Vi is an array whose aim is to contain pi’s local view of the input vector. Initialized to [⊥, . . . ,⊥], it contains at

most t entries equal to ⊥ at the end of the first round (line 105).
• v condi (initialized to ⊥) is destined to contain the value H(I) that the condition C associates with the input

vector I (line 106). As the condition C is δ-legal,H(I) can be computed fromH(Vi) only when the local view
Vi of pi has at most δ entries equal to ⊥ (see Lemma 1 and Definition 2).

• v nocondi (initialized to ⊥) is destined to contain the value to be decided when no value can be decided from
the condition because there are too many failures during the first round (more than δ processes crash). When
this occurs, a process will decide the greatest proposed value it has ever seen.

The behavior of a process pi is simple. During the first round (lines 102- 108), pi determines its local view Vi of
the input vector I , computes v condi if it sees not too many failures (i.e., at most δ crashes), and computes v nocondi

in case the condition is useless because there are more than δ crashes. Then, from the second round until round
t + 1 − δ = d + 1, the processes use the flood set strategy to exchange their current values v condi and v nocondi,
and keep the greatest ones of each. At the end of the round t + 1− δ, a process pi decides the value in v condi if that
value is not ⊥; otherwise, it decides the value in v nocondi (that is then different from⊥ as we will see in the proof).

Theorem 3 The algorithm described in Figure 1 solves the condition-based consensus problem. Moreover, the pro-
cesses decide at the end of the round (t + 1)− δ.

The proof appears in Appendix A.

3.2 An optimal algorithm for simultaneous consensus

The second base algorithm solves optimally the simultaneous consensus problem, i.e., the processes decide at the end
of the round (t + 1) − D (where the non-negative integer D - defined in the Introduction- depends on the failure
pattern). This algorithm is from [12]. We describe it for self-containment of the paper.

3.2.1 The horizon notion
Given a process pi and a round r ≥ 1, let x be the number of process crashes that (1) occurred between the round 1
and the round r − 1 (included) and (2) are known by pi by the end of r.

The horizon notion was introduced in [10]. A horizon value is associated with each round r, more precisely, the
value hi(r) = r + t− x is the horizon of pi at round r. We have hi(1) = t + 1. If three crashes occurred by the end
of the first round and are reported to pi during the second round, we have hi(2) = t− 1.

2The algorithm described in [15] works be the input vector in the condition or not. When the input vector I belongs to the condition C, a process
decides in two rounds if f ≤ t − d, and in at most d + 1 rounds when f > t − d. When the input vector is not in the condition a process decides
in at most t + 1 rounds.

PI n ˚ 1898

8 Y. Moses & M. Raynal

operation propose(vi):
(101) Vi ← [⊥, . . . ,⊥]; v condi ← ⊥; v nocondi ← ⊥;
(102) when r = 1
(103) begin round
(104) send (vi) to all;
(105) for each vj received do Vi[j]← vj end for;
(106) if (#⊥(Vi) ≤ δ) then v condi←H(Vi) end if;
(107) v nocondi ← max(all the vj received during r)
(108) end round;
(109) when r = 2, 3, . . . do
(110) begin round
(111) send (v condi, v nocondi) to all;
(112) v condi ← max(all the v condj received during r);
(113) v nocondi ← max(all the v tmfj received during r);
(114) if

�
r = (t + 1) − δ � then

(115) if (v condi 6= ⊥) then return (v condi) else return (v nocondi) end if
(116) end if
(117) end round

Figure 1: A synchronous condition-based simultaneous consensus algorithm (code for pi)

As we will see, the horizon notion is a key notion to determine the smallest round at the end of which the same
value can be simultaneously decided. The following simple theorem (that will be exploited in the presentation of the
algorithm) explains why this notion is crucial.

Theorem 4 [10] Let x be defined as indicated above, and pi a process that survives round r. There is a clean round
y such that r ≤ y ≤ hi(r) = r + t− x.

Proof Let us first observe that, as at least x processes have been discovered as faulty between the round 0 and the
round r − 1 (included), at most t − x processes can be discovered as faulty between the round r (included) and the
round r + t− x (included). But there are t− x + 1 rounds from r to r + t− x, from which we conclude that at least
one of these rounds is clean. 2Theorem 4

3.2.2 The algorithm
Local variables Each process pi manages the following local variables. Some variables are presented as belonging
to an array. This is only for notational convenience, as such array variables can be implemented as simple variables.

• esti contains, at the end of r, pi’s current estimate of the decision value. Its initial value is vi, the value proposed
by pi.

• fi[r] denotes the set of processes from which pi has not received a message during the round r. (So, this variable
is the best current estimate that pi can have of the processes that have crashed.)
Let fi[r] = Π \ fi[r] (i.e., the set of processes from which pi has received a round r message).

• f ′
i [r − 1] is a value computed by pi during the round r, but that refers to crashes that occurred up to the round

r − 1 (included), hence the notation. It is the value
⋃

pj∈fi[r] fj [r − 1], which means that f ′
i [r − 1] is the set of

processes that were known as crashed at the end of the round r − 1 by at least one of the processes from which
pi has received a round r message. This value is computed by pi during the round r. As a process pi receives
its own messages, we have fi[r − 1] ⊆ f ′

i [r − 1].

• bhi[r] represents the best (smallest) horizon value known by pi at round r. It is pi’s best estimate of the smallest
round for a simultaneous decision. Initially, bhi[0] = hi(0) = t + 1.

Process behavior Each process pi not crashed at the beginning of r sends to all the processes a message containing
its current estimate of the decision value (esti), and the set fi[r − 1] of processes it currently knows as faulty. After it
has received the round r messages, pi computes the new value of esti and the value of bhi[r]. The new value of esti is
the smallest of the estimates values it has seen so far. As far as the value of bhi[r] is concerned, we have the following.

• The computation of bhi[r] has to take into account hi(r). This is required to benefit from Theorem 4 that
states that there is a clean round y such that r ≤ y ≤ hi(r). When this clean round will be executed, any two
processes pi and pj that execute it will have esti = estj , and (as they will receive messages from the same set

Irisa

Condition-based Simultaneity Yields Limited Gain 9

of processes, see Property 1) will be such that f ′
i [r−1] = f ′

j [r−1]. It follows that, we will have hi(y) = hj(y),
thereby creating correct “seeds” for determining the smallest round for a simultaneous decision. This allows the
processes to determine rounds at which they can simultaneously decide.

• As we are looking for the first round where a simultaneous decision is possible, bhi[r] has to be set to min
(
hi(0), hi(1), . . . , hi(r)

)
,

i.e., bhi[r] = min
(
bhi[r − 1], hi(r)

)
.

Finally, according to the previous discussion, the algorithm directs a process pi to decide at the end of the first round
r that is equal to the best horizon currently known by pi, i.e., when r = bhi[r].

The resulting algorithm is presented in Figure 2, where hi(r) (see line 208) is expressed as a function of r − 1 to
emphasize the fact that it could be computed at the end of the round r − 1 by an external omniscient observer. The
local boolean variable decidedi is used only to prove the optimality of the combined algorithm (see Section 4). Its
suppression does not alter the algorithm.

algorithm PROPOSE(vi):
(201) esti ← vi; bhi[0]← t + 1; fi[0]← ∅; decidedi ← false; % initialization %
(202) when r = 1, 2, . . . do % r: round number %
(203) begin round
(204) send (esti, fi[r − 1]) to all; % including pi itself %
(205) let f ′

i
[r − 1] = the union of the fj [r − 1] sets received during r;

(206) let fi[r] = the set of processes from which pi has not received a message during r;
(207) esti ← min(all the estj received during r);
(208) let hi(r) = (r − 1) + (t + 1− |f ′

i [r − 1]|);
(209) bhi[r]← min

�
bhi[r − 1], hi(r) � ;

(210) if r = bhi[r] then decidedi ← true; return (esti) end if
(211) end round

Figure 2: Optimal simultaneous consensus despite up to t crash failures (code for pi)

3.3 Proof of the algorithm

Definition 3 Given an execution, let F be the failure pattern that occurs in that execution.

• S[r] = S[r, F] is the set of processes that survive (i.e., complete) round r according to F .

• C[r] = C[r, F] =
⋃

pi∈S[r] fi[r], i.e., the set of the processes that are known to have crashed by at least one of
the processes that survives round r. Observe that f ′

i [r] ⊆ C[r], for any pi ∈ S[r].

• dr = |C[r]| − r, for every round r. Based on the values dr, we define D = maxr≥0(dr). (In the introduction,
D has been called the waste inherent in F , i.e., the number of rounds the adversary has lost in his quest to delay
decision for as long as possible.)

Let us observe that, as no process can be discovered faulty before the first round, we have C[0] = 0. More generally,
we assume C[r] = 0 for all r ≤ 0 (the fictitious rounds −1 and 0 will be used in section 4 for ease of exposition).
Notice also that D ≥ 0, since C[0] = 0 and D ≥ d0 = C[0]− 0 = 0.

The following optimality results are shown in [3]: the smallest number of rounds RSt,F that any simultaneous
decision consensus algorithm can achieve is RSt,F = (t + 1) − D when t < n − 1, and RSt,F = t − D when
t = n− 1. The following theorem is proved in [12]. For completeness, this proof is given in appendix B.

Theorem 5 Let t < n. The algorithm described in Figure 2 solves the consensus problem with simultaneous decision.
In a run with failure pattern F , decision is reached in round t + 1−D, where D = D(F) is the waste inherent in F .

3.4 An optimal condition-based simultaneous consensus algorithm
As previously announced, an optimal condition-based simultaneous consensus algorithm can be obtained from the two
base algorithms described in Figures 1 and 2. Their combination consists in executing both algorithms in parallel as
follows:

PI n ˚ 1898

10 Y. Moses & M. Raynal

1. The r-th round, 1 ≤ r ≤ t + 1 − δ, of the combined algorithm is a simple merge of the r-th round of both
algorithms. This means that the message sent by pi at round r now piggybacks v condi, v nocondi, esti and
fi[r − 1].3

2. The lines 114-116 of the algorithm in Figure 1, and the line 210 of the algorithm in Figure 2 are replaced by the
following lines:

if (r = bhi[r]) ∨ (r = t + 1− δ) then
if (r = bhi[r]) then decidedi ← true; return (esti)

else if (v condi 6= ⊥) then return (v condi)
else return (v nocondi) end if

end if

The following theorem is an immediate consequence of the combination of Theorem 3 and Theorem 5. More
precisely, if the algorithm described in Figure 2 terminates first (case r = bhi[r] < t + 1− δ), or both terminate at the
same round (case r = bhi[r] = t + 1 − δ), that algorithm imposes the common early decision round, namely bhi[r].
Otherwise, the condition-based algorithm imposes t + 1− δ as the common early decision round.

Theorem 6 Let t < n. The algorithm obtained by the combined execution (as described in the previous items) of the
algorithms described in Figures 1 and 2 solves the condition-based simultaneous consensus problem. In a run with
failure pattern F , decision is reached in round t + 1−max(D, δ).

4 On the optimality of the algorithm: t + 1−min(D, δ) is a lower bound
This section proves that the algorithm described in Section 3.4 is optimal: In a synchronous system prone to up to t
process crashes (with t < n − 1), there is no deterministic algorithm that can ever solve the simultaneous condition-
based consensus problem in fewer than (t + 1) − max(D, δ) rounds. The proof relies on notions introduced in [3,
10, 12]. We are unable to present the definitions and the proof in the main text due to page limitation. A complete
treatment is provided in Appendix C. In this section we sketch the main ideas of the proof, with precise definitions
and proofs in the Appendix.

Consider a condition C = {0n, 1n} containing only two extreme initial configurations: All zeros and all ones.
Clearly, consensus can be solved for C with no rounds of communication. Observe that C is x-legal for 1 ≤ x ≤ n.
Thus, the property of being x-legal is useful mainly for establishing upper bounds on consensus as demonstrated in
Theorems 1 and 3. For the purpose of proving a matching lower bound, we define a condition C to be x-coverable
if, roughly speaking, for every v ∈ V and I ∈ C, an input configuration that does not contain v is reachable from I
by a finite sequence of steps among elements of C where a step is allowed between configurations whose Hamming
distance is at most x.

The lower bound is based on the well-known connection between simultaneous agreement and common knowledge
[3, 13]. This connection implies that it is possible to simultaneously decide on a value v ∈ V only once it becomes
common knowledge that one of the initial values of I is v. This has a nice graph-theoretic interpretation: For a fixed
protocol and a round r ≥ 0 we can define a graph G(r) whose nodes correspond to runs of the protocol. This graph
has the property that the existence of an initial value of I is common knowledge in round r of a run σ if and only if
every run in σ’s connected component in G(r) contains at least one initial value of I . Let D be the waste inherent
in a failure pattern F . The analysis of common knowledge in crash failures shows that common knowledge of initial
values is attained at the end of round t+1−D [3, 10]. However, before round t+1−D, it is not common knowledge
that even one failure has occurred. The crux of the proof involves proving the following claim.

Claim Suppose that the condition C is x-coverable and that t+1−D ≤ t+1−x. Moreover, let σ and σ ′ be two runs
with input configurations I, I ′, respectively, where the waste in each of the runs does not exceed D. If the Hamming
distance dist(I, I ′) ≤ x then σ and σ′ are in the same connected component of G(r) for all rounds r < t + 1−D.

Using this claim and the definition of x-coverable, it is then shown that no initial value becomes common knowl-
edge (and thus simultaneous decision is impossible) before round RSt,d,F = (t + 1) − max(D, δ). This yields
matching upper and lower bounds for each and every run.

3A close look at the base algorithms shows that their variables v nocondi and esti play the same role. Consequently, only of them has to be
kept in the combined algorithm.

Irisa

Condition-based Simultaneity Yields Limited Gain 11

5 Conclusion
This paper focused on simultaneous decision in the condition-based consensus setting. It has presented two results.
The first is a condition-based consensus algorithm in which processes decide simultaneously at the end of the round
RSt,d,F = (t + 1) − max(D, δ) where D ≥ 0 is a value that depends on the actual failure pattern, and δ = t − d
depends on the position of the condition C (the algorithm is instantiated with) in the hierarchy of synchronous legal
conditions, namely C ∈ Sd

t , where the hierarchy is S0
t ⊂ · · · ⊂ S

d
t ⊂ · · · ⊂ S

t
t (the set St

t containing the condition
made up of all possible input vectors).

The second result is a proof that RSt,d,F is a lower bound on the number of rounds of the simultaneous condition-
based consensus problem. This bound shows that we can benefit from the best world provided by the actual run (failure
world when RSt,d,F = (t + 1) −D or condition world when RSt,d,F = (t + 1)− δ), but not from an “addition” of
both. There is no double discount for simultaneous condition-based consensus.

References
[1] Attiya H. and Welch J., Distributed Computing: Fundamentals, Simulations and Advanced Topics (2nd Edition), Wiley

Interscience, 414 pages, 2004.

[2] Dolev D., Reischuk R. and Strong R., Early Stopping in Byzantine Agreement. Journal of the ACM, 37(4):720-741, April
1990.

[3] Dwork C. and Moses Y., Knowledge and Common Knowledge in a Byzantine Environment: Crash Failures. Information and
Computation, 88(2):156-186, 1990.

[4] Fischer M.J. and Lynch N., A Lower Bound for the Time to Assure Interactive Consistency. Information Processing Letters,
71:183-186, 1982.

[5] Fischer M.J., Lynch N. and Paterson M.S., Impossibility of Distributed Consensus with One Faulty Process. Journal of the
ACM, 32(2):374-382, 1985.

[6] Friedman R., Mostéfaoui A., S. Rajsbaum S. and Raynal M., Asynchronous Agreement and its Relation with Error-Correcting
Codes. IEEE Transactions on Computers, 56(7):865-876, 2007.

[7] Garg V.K., Elements of Distributed Computing, Wiley, 423 pages, 2002.

[8] Halpern J.Y. and Moses Y., Knowledge and Common Knowledge in a Distributed Environment. Journal of the ACM,
37(3):549-587, 1990.

[9] Lynch N.A., Distributed Algorithms. Morgan Kaufmann Pub., San Francisco (CA), 872 pages, 1996.

[10] Mizrahi T. and Moses Y., Continuous Consensus via Common Knowledge. Distributed Computing, 20(5):305-321, 2008.

[11] Moses Y. and Rajsbaum S., A Layered Analysis of Consensus. SIAM J. of Computing, 31(4):989-1021, 2002.

[12] Moses Y. and Raynal M., Revisiting Simultaneous Consensus with Crash Failures. Tech Report 1885, 17 pages, IRISA,
Université de Rennes 1, France, 2008. http://hal.inria.fr/inria-00260643/en/

[13] Y. Moses and Tuttle, M. R., Programming Simultaneous Actions Using Common Knowledge. Algorithmica, 3:121-169, 1988.

[14] Mostéfaoui A., Rajsbaum S. and Raynal M., Conditions on Input Vectors for Consensus Solvability in Asynchronous Dis-
tributed Systems. Journal of the ACM, 50(6):922-954, 2003.

[15] Mostéfaoui A., Rajsbaum S. and Raynal M., Synchronous Condition-Based Consensus. Distributed Computing, 18(5):325-
343, 2006.

[16] Mostefaoui A., Rajsbaum S., Raynal M. and Roy M., Condition-based Consensus Solvability: a Hierarchy of Conditions and
Efficient Protocols. Distributed Computing, 17:1-20, 2004.

[17] Pease L., Shostak R. and Lamport L., Reaching Agreement in Presence of Faults. Journal of the ACM, 27(2):228-234, 1980.

[18] Raynal M., Consensus in Synchronous Systems: a Concise Guided Tour. Proc. 9th IEEE Pacific Rim Int’l Symposium on
Dependable Computing (PRDC’02), IEEE Computer Press, pp. 221-228, 2002.

[19] Wang X., Teo Y.M. and Cao J., A Bivalency Proof of the Lower bound for Uniform Consensus. Information Processing
Letters, 96:167-174, 2005.

PI n ˚ 1898

12 Y. Moses & M. Raynal

A Proof of Theorem 3

Theorem 3 The algorithm described in Figure 1 solves the condition-based consensus problem. Moreover, the pro-
cesses decide at the end of the round (t + 1)− δ.

Proof Let C be the δ-legal condition the algorithm is instantiated with, and I ∈ C the actual input vector.
Validity. Let us observe that every process pi that terminates the first round is such that v nocondi 6= ⊥ and v nocondi

contains a proposed value. Moreover, if v condi 6= ⊥, we have v condi = H(I) that (due to Lemma 1 and Definition
2) is a value belonging to I . Then, due to the exchanges of values during the next rounds, v nocondi always contains
a proposed value, and the same is true for v condi if v condi 6= ⊥. It follows that the value decided by a process at
line 114 is a proposed value.

Decision and simultaneous decision. The fact that the processes that decide (this set of processes trivially includes
all the correct processes), decide during the round (t + 1)− δ follows directly from line 114.

Data agreement. We consider two cases.

• Each process pi that executes the first round is such that #⊥(Vi) ≤ δ. In that case, each process computes
v condi = H(Vi) (line 106). It follows from Lemma 1 and Definition 2 that we have H(Vi) = H(I) = v for
any process pi, from which we conclude that v condi = v for any process pi that terminates the first round.
Consequently, no process that executes line 115 decides a value different from v.

• One process pi that executes the first round is such that #⊥(Vi) > δ. This means that at least δ + 1 = t− d + 1
processes crashed during the first round. This means that at most d − 1 processes can crash between the end
of the first round and the end of round r = (t + 1) − δ = d + 1, i.e. during a period of d rounds. It follows
that there is a clean round r′ such that 2 ≤ r′ ≤ (t + 1) − δ = d + 1. Due to Property 1, all the processes
that execute round r′ receive the same set of messages. Consequently, at the end of r′, all these processes have
the same value v′ (v′ can possibly be ⊥) in their local variable v condi, and the same value v′′ (with v′′ 6= ⊥)
in their local variable v nocondi, from which follows that, in that case, no two processes can decide different
values.

2Theorem 3

B Proof of Theorem 5

This appendix proves the (non-condition-based) simultaneous consensus algorithm described in Figure 2 (Section 3.2)
is correct.

Lemma 2 Validity property. A decided value is a proposed value.

Proof The proof is an immediate consequence of the initialization of the esti local variables (line 201), the reliability
of the channels, and the min() operation used at line 207. 2Lemma 2

Lemma 3 Let pi be a correct process. ∀r ≥ 0 we have hi(r) ≥ r.

Proof Since the processes in the set f ′
i [r− 1] are processes that have crashed by the end of the round r− 1, it follows

that t− |f ′
i [r − 1]| ≥ 0. Consequently, hi(r) = r + t− |f ′

i [r − 1]| ≥ r. 2Lemma 3

Notation: Considering an arbitrary execution, let pi be a process that is correct in that execution.

• Let BHi = minr≥0 hi(r). BHi is the smallest value ever attained by the function hi(r), i.e., the smallest
horizon value determined by pi.

• Let Li = max({r | hi(r) = BHi}). Li is the last round whose horizon value is BHi .

It follows from these definitions that if L′ > Li then hi(L
′) > hi(Li).

Irisa

Condition-based Simultaneity Yields Limited Gain 13

Lemma 4 Let t < n. The round Li is a clean round (i.e., no process is discovered faulty for the first time in that
round).

Proof Assume, by way of contradiction, that Li is not clean (recall that pi is a correct process). This means there is a
process pz that is seen faulty for the first time in round Li by some process py. Notice that pz /∈ f ′

i [Li − 1] since pz

was not discovered faulty in the previous rounds. There are two cases.

• Case 1: pi receives a message from py in round Li + 1.
(This case includes the case where pi and py are the same process). As py does not receive a message from
pz during Li, and a crash is stable, we have pz ∈ fy[Li]. Moreover, due to the case assumption, and the fact
that the round Li + 1 message from py to pi carries fy[Li], it follows that f ′

i [Li] contains f ′
i [Li − 1] ∪ {pz}.

Consequently, |f ′
i [Li]| > |f

′
i [Li − 1]|. It follows that hi(Li + 1) ≤ hi(Li), contradicting the definition of Li.

• Case 2: pi does not receive a message from py in round Li + 1.
In that case, both pz and py are seen faulty for the first time by pi during the round Li + 1. So, fi[Li + 1]
contains f ′

i [Li − 1]∪ {py, pz}. Since f ′
i [Li + 1] (computed by pi during the round Li + 2) contains fi[Li + 1],

we have |f ′
i [Li + 1]| ≥ |f ′

i [Li − 1]|+ 2. Thus, we have

hi(Li + 2) = (Li + 2) + t− |f ′
i [Li + 1]|,

≤ (Li + 2) + t− (|f ′
i [Li − 1]|+ 2),

= Li + t− |f ′
i [Li − 1]|,

= hi(Li),

which again contradicts the definition of Li.
2Lemma 4

Lemma 5 Let t < n. Every correct process decides. Moreover, all processes that decide do so in the same round and
decide on the same value.

Proof
Decision property. Let us consider a correct process pi. Notice that, due to the initialization and line 209 we have
∀r : bhi[r] ≤ t + 1, from which we conclude BHi ≤ t + 1. So, to prove that pi decides we have to show that pi

does not miss the test r = BHi at line 210. This could happen if the first round ` such that bhi[` − 1] > BHi and
bhi[`] = BHi is such that ` > BHi . We prove that this cannot happen.

Let us observe that, due to Lemma 3, we have hi(`) ≥ `. It then follows from bhi[` − 1] > BHi , hi(`) ≥ `,
bhi[`] = BHi , and line 209, that BHi = bhi[`] = min(bhi[` − 1], hi(`)) = hi(`) ≥ `, i.e., BHi ≥ `, which
establishes the result. It follows that pi decides no later than round t + 1.

Simultaneous decision for the correct processes. We first show that no two correct processes pi and pj decide
at distinct rounds. Due to the algorithm, if pi and pj decide, they decide at round BHi and BHj , respectively. We
show that BHi = BHj . Due to Lemma 4, the round Li is clean. Hence, during the round Li, pj receives the same
messages that pi receives (Property 1). Thus f ′

i [Li − 1] = f ′
j [Li − 1] and consequently, hi(Li) = hj(Li). Since

bhj [Li] ≤ hj(Li) by line 09, it follows that bhj [Li] ≤ bhi[Li] = BHi , and thus BHj ≤ BHi . By symmetry the same
reasoning yields BHi ≤ BHj , from which it follows that BHi = BHj . This proves that no two correct processes
decide at distinct rounds.4

Simultaneous decision for the faulty processes. BH being the round at which the correct processes decide, let us
now consider the case of a faulty process pj . As pj behaves as a correct process until it crashes, and as the correct
processes decide in the same round BH , it follows that no faulty process decides before BH , and if pj executes line
210 of round BH , it does decide as if it was a correct process.

4In [3, 8] it is shown that before performing such a simultaneous action the processes must attain common knowledge that they are doing so. In
particular, they must have common knowledge that the decided value v is one of the initial values in the run.

PI n ˚ 1898

14 Y. Moses & M. Raynal

Data agreement property. The fact that no two processes decide different values comes from the existence of the
clean round Li that appears before a process decision. During that round, all the processes that are alive at the end of
this round have received the same set of estimate values (Property 1), and selected the smallest of them. It follows that,
from the end of that round, there is a single estimate value in the system, which proves the data agreement property.

2Lemma 5

Theorem 5 Let t < n. The algorithm described in Figure 2 solves the consensus problem with simultaneous decision.
In a run with failure pattern F , decision is reached in round t + 1−D where D = D(F) is the waste inherent in F .

Proof The proof of the validity, decision, simultaneous decision and data agreement properties follow from the
Lemmas 2 and 5. We now show that the decision is obtained in round t + 1−D. Let us consider an arbitrary run of
the algorithm. It follows from Lemma 5 that BHi = BHj for any pair of processes pi and pj that decide. Let BH
denote this round. The proof of the claim amounts to showing that BH ≤ t + 1−D and BH ≥ t + 1−D.

Let pi be a process that decides and R the last round such that |C[R]| − R = D (i.e., |C[R + x]| − (R + x) <
D = |C[R]| − R, for any x > 0). Let us observe that, due to the lines 208-210 of the algorithm, BH is attained at
the round numbers that make the function hi() minimal. Moreover, it follows from the definition of D and R that
|C[R + 1]| ≤ |C[R]|. Since C[R] ⊆ C[R + 1], it follows that C[R] = C[R + 1], i.e., no new process failure is
discovered in round R + 1, so the round R + 1 is clean and we have |f ′

i [R]| = |C[R]|. Due to line 208 of the round
R + 1, we have hi(R + 1) = R + t + 1− |f ′

i [R]| = (t + 1)− (|f ′
i [R]| −R) = t + 1−D, from which we conclude

BH ≤ t + 1−D.
For the other direction, let us recall that, due to Lemma 4, the round Li > 0 is clean. It follows that f ′

i [Li − 1] =
C[Li − 1], since any pi hears in round Li from all processes that survived round Li − 1. Therefore, BH = t + 1−
(|f ′

i [Li − 1]| − (Li − 1)) = t + 1− (|C[Li − 1]| − (Li − 1)) = t + 1− d(Li−1) ≥ t + 1−D, which completes the
proof of the theorem. 2Theorem 5

C On the optimality of the algorithm: t + 1−min(D, δ) is a lower bound

This part is an essential part of the paper: it proves that the algorithm described in Section 3.4 (called PROPOSE in
the following) is optimal, namely, in a synchronous system prone to up to t process crashes (with t < n − 1), there
is no deterministic algorithm that can ever solve the simultaneous condition-based consensus problem in fewer than
(t + 1)−max(D, δ) rounds. The proof relies on notions introduced in [3, 10, 12]. It also uses notations introduced in
Section 3.3.

The problem of simultaneous consensus is closely related to the knowledge-theoretic notion of similarity among
runs at a given time. This notion is captured by the following definitions. For later use, these definitions are made with
respect to an arbitrary round-based synchronous deterministic algorithm P (they consequently apply in particular to
the PROPOSE algorithm).

C.1 Preliminary definitions and lemmas

For ease of exposition, the runs of an arbitrary deterministic algorithm P are denoted by σ, σ ′, etc. S[r, σ] denotes the
set of processes that survive round r of σ, while ls(p, r, σ) denotes the local state of p at the end of r in the run σ (i.e.,
its set of local variables and their current values).

Definition 4 Given a deterministic algorithm P , a process p, and a round r, the runs σ and σ ′ of P are indistinguish-
able to p after round r (denoted σ

r
∼p σ′) if both (i) p ∈ S[r, σ] ∩ S[r, σ′] (i.e., p has survived round r in both runs),

and (ii) ls(p, r, σ) = ls(p, r, σ′).

Definition 5 The runs σ and σ′ are connected at the end of round r, denoted σ
r
≈ σ′, if there is a sequence of runs

and processes such that σ = σ0
r
∼p0

σ1
r
∼p1
· · ·

r
∼pk−1

σk = σ′.

In other words, an undirected graph G(P, r) (in short G(r)) can be associated with each round r of a protocol P .
This graph is called P ’s similarity graph for round r. Its vertices are the runs of P and there is an edge connecting

Irisa

Condition-based Simultaneity Yields Limited Gain 15

σ and σ′ if there is a process q such that σ
r
∼q σ′. It is easy to see that σ

r
≈ σ′ holds if σ and σ′ belong to the

same connected component in G(r). Because G(r) is undirected, being connected (
r
≈) is an equivalence relation.5

Moreover, observe that if we can show that some property A is maintained under
r
∼q for all q ∈ Π, then whenever σ

has property A and σ
r
≈ σ′, we are guaranteed that σ′ has property A as well.

Lemma 6 Let σ and σ′ be runs of a deterministic algorithm P that solves simultaneous consensus. If some process

decides on value v in round r of σ and σ
r
≈ σ, then the processes in S[r, σ′] decide the same value v in the same round

r of σ′.

Proof It suffices to show the claim for any two runs σ, σ′ such that σ
r
∼q σ′ for some q ∈ S[r, σ] ∩ S[r, σ′]. In this

case, q decides v in round r of σ. Because P is deterministic and q has the same local state at the end of round r of σ
and σ′, q decides v at the end of round r in σ′. Finally, as P solves simultaneous consensus (lemma assumption) it
follows that all processes in S[r, σ′] decide v in round r (and no other process decides a different value in a different
round). 2Lemma 6

An immediate consequence of Lemma 6 is captured by the following corollary.

Corollary 1 Let P be a deterministic algorithm that solves simultaneous consensus. If σ ′ is a run of P such that

(1) no initial value in σ′ is v, and (2) σ
r
≈ σ′, then no process can decide v in round r of σ.

Proof Since n > t, the set S[r, σ′] is nonempty. By Lemma 6, if some process q decides v in round r of σ, the
processes in S[r, σ′] decide v in round r of σ′. But this contradicts the Validity property of the simultaneous consensus
algorithm P , since the decision value v is not one of the initial values in σ ′. 2Corollary 1

C.2 A full-information algorithm

For the purpose of proving optimality, we make use of a full-information algorithm, denoted FIP and described in
Figure 3.

The algorithm In the first round, each process sends its initial value vi to all processes (including to itself). The
algorithm then constructs an array Inpi[1..n] containing the incoming message from each of the processes (itself
included). If pi does not receive a message from pj then it sets Inpi[j] to the default value ⊥. In each of the later
rounds, every process pi first sends Inpi to all others, and then uses the incoming messages of the current round to
construct an updated array Inpi in the same way as in the first round. The local state of the process at the end of
round r is identified simply with the contents of its array Inpi.

This algorithm is introduced in order to establish, for each failure pattern F , times at which simultaneous consensus
cannot be attained by any algorithm whatsoever. Optimality will then be established by showing that the PROPOSE

algorithm decides as soon as possible, for each and every possible failure pattern (and initial configuration).

algorithm FIP:
(01) for j ∈ {1, . . . , n} \ {i} do Inpi[j]← ⊥ end for; Inpi[i]← vi;
(02) when r = 1, 2, . . . do
(03) begin round
(04) send Inpi to all; % including to pi itself %
(05) for j ∈ {1, . . . , n} do
(06) Inpi[j]← message received from pj during r if any, otherwise ⊥
(07) end for
(08) end round

Figure 3: The full-information algorithm FIP (code for pi)

5In the knowledge terminology, process q knows a fact A at the end of round r in σ if it is true of all runs σ′ satisfying σ′ r
∼q σ; it is common

knowledge there if A holds at all runs σ′
r
≈ σ. Thus, the set of runs connected to σ determines what is common knowledge in σ at the end of

round r.

PI n ˚ 1898

16 Y. Moses & M. Raynal

Observe that a deterministic algorithm P , an initial configuration I (set of initial values), and a failure pattern F
determine a run σ = P (I, F) of P .

Definition 6 A run σ of P corresponds to a run ρ of an algorithm P ′ if, for some initial configuration I and failure
pattern F , it is the case that σ = P (I, F) and ρ = P ′(I, F).

The next lemma captures, in a precise sense, the fact that the connected components of the similarity graph for FIP

refine those of any other deterministic algorithm.6 This lemma is from [12]. For completeness, its proof is given in
appendix D.

Lemma 7 Let P be a deterministic algorithm for simultaneous consensus. Let us assume that the runs σ and σ ′ of P

correspond to the runs ρ and ρ′ of FIP, respectively. Then (i) if ρ
r
∼q ρ′ then σ

r
∼q σ′, and (ii) if ρ

r
≈ ρ′ then σ

r
≈ σ′.

On failure patterns and full-information algorithms Observe that in both the FIP and PROPOSE algorithms, a cor-
rect process is required to send a message to each process in every round. As a result, in runs of both FIP and PROPOSE,
a process p knows by the end of round r that q has crashed if the failure pattern F is such that q has crashed before it
sent its round r message to p.

The set fi[r] of the processes that r has not heard from in round r can be directly computed from the local state
in FIP as {pj | Inpi[j] = ⊥}. Since pi sends Inpi to all other processes, the set f ′

i [r− 1] of processes that pi knows at r
to have been discovered as crashed by round r − 1 is thus easily computed from the messages it receives in round r.
Since for corresponding runs of FIP and PROPOSE these sets coincide (in fact, their values depend only on the failure
pattern), we find it convenient to talk about the values of fi[r, F], f ′

i [r, F], C[r, F], D[F], etc. for runs of FIP as well.
Since the Validity property states that it is illegal to decide v in a run that does not contain v as one of its initial

values, Corollary 1 implies that it is impossible to decide on v as long as there is a connected run that does not contain v
as one of its initial values. In light of this, we can now show that the algorithm FIP reaches a decision as soon as it
possibly can.

C.3 Premature rounds

It has been shown in Theorem 5 that the algorithm PROPOSE decides on a value in round BH = t+1−D. Let BH (ρ)
denote the value of the round number BH of the the run ρ = PROPOSE(I, F). Recall that the value of BH is solely a
function of ρ’s failure pattern F (and not of the initial configuration).

Definition 7 A round ` is premature7 in F if ` < t + 1−D = BH (ρ) for every run ρ = PROPOSE(I, F).

As hi(r + 1) = r + (t + 1 − |f ′
i [r]|), and hi(r + 1) ≥ BH (ρ), this means that, for every r such that r + 1 ≤ `,

the property r + t + 1− |C[r, F]| > ` holds. Notice that the failure pattern F that occurs during the run ρ determines
whether or not ` is premature: In all runs of PROPOSE with the same F the sets fi[r, F] and C[r, F] are the same for
every i and r, and so are D and BH .

Lemma 8 Let t < n − 1, ` ≥ 0, ρ = FIP(I, F) and ρ′ = FIP(I, F ′). If ρ
`
≈ ρ′ then ` is premature in F iff ` is

premature in F ′.

Proof Let ρ = FIP(I, F) and ρ′ = FIP(I ′, F ′). As in the proof of item (ii) of Lemma 7, it suffices to show that,

for all q, if ρ
`
∼q ρ′ then ` is premature in F iff ` is premature in F ′. Thus, let us assume that ρ

`
∼q ρ′. Let

σ = PROPOSE(I, F) and σ′ = PROPOSE(I ′, F ′) be the runs of PROPOSE corresponding to the runs ρ = FIP(I, F)
and ρ′ = FIP(I ′, F ′), respectively.

By item (ii) of Lemma 7, it follows that σ
`
∼q σ′. Round ` is premature in F iff BH (σ) > `, which by Theorem 5

implies that q does not decide in σ by the end of round `. Thus, since the if test on line 114* of PROPOSE fails,

decidedq = false continues to hold in σ. The fact that σ
`
∼q σ′ implies that decidedq = false holds at the end of the

6In the sequel, we interpret
r
∼ and

r
≈ among runs of an algorithm P in terms of the similarity graph G(r, P) defined on the runs of P . Thus, the

interpretation of
r
∼ and

r
≈ in statements such as that of Lemma 7 is always with respect to the algorithm generating the related runs.

7This is short for premature for simultaneous consensus, a term that will be justified by the technical analysis in this section.

Irisa

Condition-based Simultaneity Yields Limited Gain 17

round ` of σ′ as well. It follows that BH (σ′) > `, and consequently ` is premature at F ′, as desired. The ‘only-if’
direction of the lemma is obtained by a symmetric argument. 2Lemma 8

Definition 8 A process is silent in a round r of a run ρ if it has crashed before sending its round r messages.

Definition 9 Given a failure pattern F , a process q and a round r, let Fq,r be the failure pattern that satisfies the
following four conditions: (i) Fq,r coincides with F for the first r − 1 rounds, (ii) in round r exactly the failures
detected in C[r, F] occur in Fq,r, (iii) process q is silent from round r + 1 on, and (iv) no process other than q fails
after round r.

Let us remark that if the first k rounds of both F and F ′ are the same, then Fq,k = F ′
q,k . Since the rounds r ≤ 0

of all failure patterns are the same, we have that Fq,0 = F ′
q,0 for all F and F ′.8 Indeed, Fq,0 is the failure pattern

in which process q is silent and sends no messages whatsoever, while no other process crashes. In runs with such a
pattern, the execution cannot depend on q’s initial value.

Lemma 9 If ` is premature in F and k < `, then no more than t processes crash in Fq,k .

Proof Let H [r, F] = r + t + 1 − |C[r, F]|. Let us observe that the number of processes that crash in Fq,k is
at most |C[k, F]| + 1. It suffices to show that |C[k, F]| < t. As ` is premature and k < `, we have H [k, F] =
k + t + 1− |C[k, F]| > `. Since k < ` we have that ` ≥ k + 1. We thus obtain that t + k + 1− |C[k, F]| > k + 1,
which implies that t− |C[k, F]| > 0, and t ≥ |C[k, F]|+ 1, as desired. 2Lemma 9

Definition 10 Given a run ρ = FIP(I, F), let ρq,k be the run ρq,k = FIP(I, Fq,k).

Let us notice that, due to Lemma 9, if ρ is a run of FIP in which at most t processes fail, then so is ρq,k.

The following lemma is from [12]. Its states an equivalence on classes of runs that is used to prove optimality (see
Lemma 11 in the next section).

Lemma 10 Let t < n − 1 and fix ` > 0. Moreover, let ρ = FIP(I, F) and let q ∈ Π. If ` is premature in F , then

ρ
`
≈ ρq,k for all k satisfying 0 ≤ k ≤ `− 1.

Proof Let ` > 0. We prove the lemma for all runs ρ, by induction on s = ` − k. For the base case, assume
that s = 1, and so k = ` − 1. Choose q ∈ Π, and let p ∈ S[`, ρ]. Since ` is premature in ρ, we have hp(`) =
(`− 1) + t + 1− |fp[`− 1, F]| > `, i.e., |fp[`− 1, F]| ≤ t− 1 ≤ n− 3. Let p′ ∈ S[`, ρ] \ {p} (such a process p′ is
guaranteed to exist since by assumption t ≤ n− 2).

Let ρ′ be the run that is identical to ρ up to and including round `−1, where in round ` process p receives the same
messages as in ρ, but process p′ (who is non-faulty in ρ′ too) receives messages from all processes in Π \ fp[`− 1, F].
Finally, no process other than those in fp[` − 1, F] fails in ρ′. There are exactly |fp[` − 1, F]| < t failures in ρ′ and

p ∈ S[`, ρ′] has the same local state at the end of round ` in both ρ and ρ′. Hence, we have ρ
`
∼p ρ′.

If q is silent in round ` in ρ′ then we are done. Otherwise, let ρ′′ be a run that is the same as ρ′ except that q crashes
in round ` by not sending a round ` message to p. At most |fp[`− 1, F]|+ 1 ≤ t− 1 + 1 = t processes fail in ρ′′, and

p′ has the same state in ρ′ as in ρ′′. Hence, ρ′ `
∼p′ ρ′′. Finally, observe that ρq,`−1 is identical to ρ′′ except that q is

silent in round `. Process p does not distinguish ρ′′ from ρq,`−1 since in both it receives the same messages in round `.

Thus, ρ′′ `
∼p ρq,`−1, and by definition of

`
≈ we have that ρ

`
≈ ρq,`−1, completing the base case.

Induction step. Let s = `− k > 1 and assume that the claim holds for round s− 1 (i.e., round k + 1) in all runs in
which ` is premature. We prove the claim for round k. Let ρ be a run in which ` is premature, and choose an arbitrary
process q ∈ Π. We will use the inductive assumption to find a connected run ρ′ that coincides with ρ for the first k

8The proof of some lemmas that follow uses the fictitious round r = 0. This motivates the definition C[−1, F] = C[r, F] = 0 introduced in
connection with Definition 3. This allows us to define failure patterns and associated runs in which “we crash” a priori a given process q, without
being bothered by the processes that crash in the first round of F before they send their round 1 messages.

PI n ˚ 1898

18 Y. Moses & M. Raynal

rounds where no process crashes in round k + 1. We then use the inductive assumption again to show that ρ′
`
≈ ρq,k,

and obtain by transitivity that ρ
`
≈ ρq,k, as desired.

Let ρ′ be a run that coincides with ρ for the first k rounds where no process crashes in round k + 1, and process pn

is silent from round k + 2 on. We show that ρ
`
≈ ρ′. Define ρ1, . . . , ρn where n = |Π| to be runs such that in ρj the

first k rounds are identical to ρ, process pj is silent from round k + 2 on, no process other than (possibly) pj fails in
rounds k + 2, . . . , `, and no new failure in round k + 1 is seen by processes p1, . . . , pj . Denoting ρ = ρ0, we prove

by induction on j that ρ
`
≈ ρj . The case j = 0 is immediate, since ρ0 = ρ. Let j > 0 and assume inductively that

ρ
`
≈ ρj−1. Since ` is premature in F = F (ρ), it follows from Lemma 8 that ` is premature in ρj−1. By the inductive

assumption for k + 1 we have that ρj−1 `
≈ ρ̂, where ρ̂ = (ρj−1)pj ,k+1. In particular, Lemma 9 implies that there are

at most t failures in ρ̂. Observe that (i) pj is silent from round k + 2 in ρ̂, (ii) every process other than pj has the same
local state at the end of round k in both ρ̂ and ρj , (iii) the same messages are sent in both runs from round k + 2 on,

and (iv) since no more processes fail in ρj than do in ρ̂, there are at most t failures in ρj . It thus follows that ρ̂
`
≈ ρj .

Moreover, since ρ
`
≈ ρj−1 `

≈ ρ̂
`
≈ ρj , we have by transitivity of

`
≈ that ρ

`
≈ ρj , completing the inductive step. We

conclude that ρ
`
≈ ρn = ρ′, as claimed. Notice that since ρ

`
≈ ρ′ and ` is premature in ρ it follows that ` is also

premature in ρ′.
Our goal now is to “silence” process q from round k + 1 on. Let ρ′′ = FIP(I, F ′′) where F ′′ agrees with the

pattern F ′ of ρ′ on everything, except that in F ′′ process q is silent from round k + 2 on. Thus, in ρ′′ the first k rounds
are identical to ρ, no process fails in round k+1, and processes pn and q are silent from round k+2 on. We first claim
that at most t processes fail in F ′′. Since ` is premature in ρ′ we have that t + 1−D(F ′) > ` and hence t −D ≥ `.
Let h be the number of process failures up to round k, inclusive, in ρ′ (and hence also in ρ′′). Since no failures are
detected in round k + 1 of ρ′ we have that dk = h − k. As D ≥ dk we have that t − (h − k) ≥ `. It follows that
t− h ≥ `− k = s ≥ 2. We conclude that t ≥ h + 2. The claim now follows since, by definition, F ′′ contains at most
h + 2 failures, and we have just shown that h + 2 ≤ t.

The values of d1, . . . , dk, dk+1 (defined in Definition 3) are the same in ρ′ and in ρ′′. Since no failure is detected
in round k + 1 of either, we have that dk+1 = dk − 1. In ρ′′ we have that dk+2 = dk and dk′ < dk+2 for all rounds
k′ > k+2. It follows that D(F ′′) = D(F ′). Since ` is premature in ρ′ we have that t+1−D(F ′′) = t+1−D(F ′) > `,

and ` is premature in ρ′′ as well. Observe that ρ′ = ρ′′pn,k+1. By the inductive hypothesis for k+1 we have that ρ′
`
≈ ρ′′.

Let ρ̄ = FIP(I, F̄), where F̄ differs from F ′′ only in that pn does not receive a message from q in round k + 1. Let

p ∈ S[`, F ′′] = S[`, F̄]. Since pn is silenced from round k + 2 ≤ ` in ρ′′ and in F̄ , we have that ρ′′ `
∼p ρ̄ and thus

ρ
`
≈ ρ′′

`
≈ ρ̄. Now define runs σ1, . . . , σn−1, σn where σj coincides with ρ on the first k rounds, no process other

than q fails in round k+1, in round k+1 processes pj , . . . , pn do not receive a message from q, (p1, . . . , pj−1 receive
round k +1 messages from q iff they do so in ρ), and process pj is silent from round k +2 on. Notice that ρ̄ = σn. An

inductive proof identical to the one for ρ1, . . . , ρn above (this time moving down from σn to σ1) shows that ρ
`
≈ σ1.

In σ1 process q is silenced from round k + 1 on, since no process receives a message from it in this round. Moreover,

it is easy to check that σ1
q,k = ρq,k. Since ` is premature inσ1 we obtain that ρ

`
≈ σ1 `

≈ σ1
q,k = ρq,k, and we are done.

2Lemma 10

C.4 Optimality of the proposed algorithm

Definition 11 C being a legal condition, let the x-graph over C be the graphGx = (C, Ex) where Ex = {(I, I ′) : dist(I, I ′) ≤
x.

Definition 12 The condition C is x-coverable if for every vector I ∈ C there are at least two values v, w ∈ V such
that there are paths in Gx from I to both the input vector Iv = (v, v, · · · , v) and the input vector Iw = (w, . . . , w).

Lemma 11 Let t < n−1 and let ρ = FIP(I, F). Let C be a legal condition such that I, I ′ ∈ C, where I is connected
in Gx(C) to I ′. If ` is a premature round in F and ` ≤ t + 1 − x, then there is a run ρ′ = FIP(I ′, F ′), such that

ρ
`
≈ ρ′.

Irisa

Condition-based Simultaneity Yields Limited Gain 19

Proof Denote by s the distance between I and I ′ in Gx(C, Ex). Notice that 0 ≤ s <∞ (because by assumption I is
connected to I ′ in Gx(C, Ex), and so there is a finite path connecting I to I ′). We prove the claim by induction on s.
The base case is s = 0, for which the claim trivially holds for the choice ρ′ = ρ since we have then I = I ′, F = F ′,

and because t < n guarantees that ρ
`
≈ ρ for all runs.

For the inductive step, let s > 0 and assume that the claim holds for all runs with shortest Gx(C, Ex) distance
s − 1 to I ′. Since the distance between I and I ′ is s > 0, there is an initial vector Î whose distance from I in

Gx(C, Ex) is 1 and whose distance from I ′ is s− 1. We first claim that ρ
`
≈ ρ̂ for a run of the form ρ̂ = FIP(Î , F̂). Let

T = {q1, . . . , qx} be a set of processes such that process p’s initial value is the same in I and in Î for all p ∈ Π \ T .
Denote by ρ1 the run ρ1 = FIP(I, Fq1,0), which has initial vector I and in which q1 crashes in round 0, , and no other
process fails.

Since, by assumption, ` is premature in ρ = ρ0, we have by Lemma 10 that ρ
`
≈ FIP(I, Fq1 ,0) = ρ1. Let F x be the

failure pattern, and ρx the associated run, in which the x processes in T are silent from the start, and no other process
fails. It is easy to check that D(ρx) = x− 1 since dr(ρ

x ≤ x− 1 for all rounds r ≥ 0. Thus, t + 1−D = t + 2− x
in ρx. Since, by assumption, ` ≤ t + 1− x, we have that ` is premature in ρx. Notice that F x

q1,0 = Fq1 ,0. Thus, using

again Lemma 10, we have that ρx ≈ FIP(I, Fq1,0) = ρ1. By symmetry and transitivity of
`
≈ it follows that ρ

`
≈ ρx.

Define ρ̂ = FIP(Î , F x). By assumption, Î ∈ C, and so ρ̂ is a run of FIP under condition C. Since t < n we have
that F x contains at least one correct process, which we denote w.l.o.g by p. Because ρx and ρ̂ differ only in the initial

values of processes in T that are silent throughout F x, and since p ∈ S[ρx, `] ∩ S[ρ̂, `], we have that ρx `
∼p ρ̂. It

follows that ρx `
≈ ρ̂. Since ρ

`
≈ ρx we have by transitivity of

`
≈ that ρ

`
≈ ρ̂.

Finally, since the distance between Î and I ′ in Gx is s − 1, we have by the inductive hypothesis that ρ̂
`
≈ ρ′ for

some run ρ′ of the form ρ′ = FIP(I ′, F ′). As we have shown, ρ
`
≈ ρ̂, and it follows by transitivity of

`
≈ that ρ

`
≈ ρ′,

which completes the inductive step. This completes the inductive step for s, and the lemma follows. 2Lemma 11

The next corollary follows directly from Lemma 11.

Corollary 2 Let t < n − 1 and let C be a legal x-coverable condition. Let ρ = FIP(I, F), where I ∈ C, ` is
premature in F , and ` ≤ t + 1 − x. Assume that I is connected in Gx to both the input vector Iv = (v, . . . , v) and

the input vector vector Iw = (w, . . . , w). Then, ρv `
≈ ρ

`
≈ ρw, where ρv and ρw are runs of FIP with input vectors Iv

and Iw, respectively.

Finally, the next theorem follows from the previous corollary.

Theorem 7 Let P be a deterministic algorithm solving simultaneous condition-based consensus for condition C.
Assume that C is x-coverable. Then, in no run of P can decision be reached before round RSt,d,F = min(t + 1 −
D, t + 1− x).

D Proof of Lemma 7

Lemma 7 Let P be a deterministic algorithm for simultaneous consensus. Let us assume that the runs σ and σ ′ of P

correspond to the runs ρ and ρ′ of FIP, respectively. Then (i) if ρ
r
∼q ρ′ then σ

r
∼q σ′, and (ii) if ρ

r
≈ ρ′ then σ

r
≈ σ′.

Proof Let us consider the runs σ and σ′ of P and the corresponding runs ρ and ρ′ of FIP. Since
r
≈ is the transitive

closure of the relations {
r
∼p}p∈Π, claim (ii) follows from (i). Consequently, it suffices to prove claim (i). Let us

observe that, due to the definition of “corresponds to”, the fact that σ corresponds to ρ implies that S[r, σ] = S[r, ρ]

for all rounds r. The proof that ρ
r
∼q ρ′ ⇒ σ

r
∼q σ′, is by induction on r.

Base case. For the base case, let us consider the initial configuration that corresponds to the fictitious round r = 0.
Since the initial state of each process (under P as well as under FIP) is fully determined by its initial value, the fact

that ρ
0
∼q ρ′ implies that q has the same initial state in both. Since σ corresponds to ρ and σ ′ corresponds to ρ′, it

PI n ˚ 1898

20 Y. Moses & M. Raynal

follows that q has the same initial value in σ and σ′, and so σ
0
∼q σ′.

Induction case: r > 0. Let us assume that item (i) holds for every process at round r − 1 (induction assumption).
Moreover, let us assume that ρ

r
∼q ρ′. As before, σ and σ′ correspond to ρ and ρ′, respectively. We need to show that

σ
r
∼q σ′.

Since q survives round r in both the runs ρ and ρ′, and as this depends only on their failure patterns F and F ′,
which are also the failure patterns in σ and σ′, respectively, we have q ∈ S[r, σ] ∩ S[r, σ′]. Let us recall that the local
state of a process q at the end of a round r of a run σ of a deterministic algorithm such as P (namely, the local state
ls(q, r, σ)) is a function of its local state in round r − 1 (ls(q, r − 1, σ)) and the messages that it receives in round r.
We have to show that the local states ls(q, r, σ) and ls(q, r, σ′) are the same.

Since ρ
r
∼q ρ′, it follows that the arrays Inpq are the same in both the runs ρ and ρ′ at the end of round r. So,

Inpq [q] in both runs have the same value at the end of r; let X be that value.
The fact that q survives round r in both ρ and ρ′means, in particular, that it receives its own round r message

sent at line 04 of FIP in both ρ and ρ′. The value of this message in ρ is ls(q, r − 1, ρ) which is the value of
Inpq [q] at the end of r, i.e., ls(q, r − 1, ρ) = X . A similar reasoning shows that ls(q, r − 1, ρ′) = X . It follows

from ls(q, r − 1, ρ) = ls(q, r − 1, ρ′) = X that ρ
r−1
∼ q ρ′ and by the inductive hypothesis we obtain σ

r−1
∼ q σ′.

Consequently, q has the same local state at the end of round r−1 in both σ and σ ′, i.e., ls(q, r−1, σ) = ls(q, r−1, σ′).
It remains to show that q receives exactly the same messages during round r in both σ and σ ′. Suppose that q

receives message µ from process q̂ in round r of σ. It follows from the failure pattern F that the message sent by q̂ to
q during round r is received by q. Since ρ corresponds to σ and in FIP process q̂ sends messages to all processes in
every round, we have that q receives a message from q̂ in round r of ρ as well. As above (case of the message that, at
each round, a process sends to itself), this message in ρ contains ls(q̂, r − 1, ρ) (the local state of q̂ at round r − 1 of

the run ρ). From ρ
r
∼q ρ′ we have that q receives the same message from q̂ in ρ′. As a result, we have that ρ

r−1
∼ �q ρ′,

and by the inductive assumption for r− 1 and q̂ we obtain that σ
r−1
∼ �q σ′. Since the message µ is determined by P as

a function of the local state of q̂ at r − 1 in σ, we have that the same message µ is also sent by q̂ to q in round r of σ ′.
As the round r message sent by q̂ to q in ρ′ is received by q, and σ′ corresponds to ρ′, we obtain that q receives µ from
q̂ in σ′ as well. It follows that every message received by q in round r of σ is received by it in the same round of σ ′. By
symmetry, the messages received in σ′ are also received in σ. Finally, since q has the same local state in round r − 1
of σ and σ′ (namely, ls(q, r − 1, σ) = ls(q, r − 1, σ′)), and receives the same messages in round r of both σ and σ′,
we obtain that σ

r
∼q σ′, which concludes the proof of the lemma. 2Lemma 7

Irisa

