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Abstract

Confidentiality is maybe the most popular security property to be formally or
informally verified. Noninterference is a baseline security policy to formalize
confidentiality of secret information manipulated by a program. Many static
analyses have been developed for the verification of noninterference. In contrast
to those static analyses, this paper considers the run-time verification of the
respect of confidentiality by a single execution of a program. It proposes a dy-
namic noninterference analysis for sequential programs based on a combination
of dynamic and static analyses. The static analysis is used to analyze some un-
executed pieces of code in order to take into account all types of flows. The static
analysis is sensitive to the current program state. This sensitivity allows the
overall dynamic analysis to be more precise than previous work. The soundness
of the overall dynamic noninterference analysis with regard to confidentiality
breaches detection and correction is proved.



1 Introduction

Language-based security is an active field of research. The majority of work on
confidentiality in this field focuses on static analyses [13]. Recent years have
seen a resurgence of dynamic analyses aiming at enforcing confidentiality at
run time [5, 7, 14]. The first reason is that nowadays it is nearly impossible
for consumers to prevent the execution of “bad” code on their devices — for
example, in September 2007 Yahoo served 12 million times a flash ad installing a
Trojan horse [4] and cybercriminals introduced malicious scripts into webpages
of a US Consulate [8]. Moreover, there are two main potential advantages
of dynamic analyses over static analyses [7]. The first one is the increased
knowledge of the execution environment and behavior at run time, including
the knowledge of the precise control flow followed by the current execution.
This increased knowledge allows the dynamic analysis to be more precise than
a static analysis in some cases; as, for example, with the program on page 14.
The second advantage lies in the ability of sound information flow monitors
to run some “safe” executions of an “unsafe” program while still guarantying
the confidentiality of secret data. In order to take into account all indirect
flows (flows originating in control statements) dynamic analyses relies on static
analyses of some, but not all, unexecuted pieces of code.

This paper proposes to increase the precision of such dynamic information
flow analyses. This is done by taking advantage, at the static analysis level, of
the dynamic nature of the overall analysis. To do so, when statically analyzing
an unexecuted piece of code, the current program state is taken into account in
order to reduce the program space to analyze. The following piece of code is a
motivating example for this work. It corresponds to the body of the main loop
of an Instant Messaging (IM) program. This one has the appealing “movie-like”
feature of displaying messages characters by characters as they are typed.

1 ¢ := getCharFromKeyboard () ;

2> tmp := tmp + ((int) c);

s if C tmp > ((int) userSecretKey) ) {

4 tmp := O0;

5 if (to = "sexyPirate") {c := specialChar}
6 };

7 send(to, c)

This IM program is a malware developed by “sexyPirate”. When someone uses
this software to communicate with a user other than sexyPirate, everything goes
as expected and no secret is revealed. However, if a user communicates with
sexyPirate using this IM then information about the user’s secret key is leaked
to the pirate. When the integer value of the characters typed by the user since
the last time tmp has been reset to 0 reaches the integer value of the user’s
secret key, a special character (that sexyPirate is able to distinguish) appears
on the pirate’s screen. Therefore, by iterating the process, sexyPirate is able
to get an accurate approximation of the user’s secret key. Any sound static



analysis would reject this program; and therefore, all its executions. One of the
advantages of dynamic information flow analysis, if it is precise enough, is to
allow use of this program for communicating with users other than sexyPirate,
while still guarantying the confidentiality of the secret key in any case. However,
none of the previous work are precise enough. When statically analyzing lines 4
and 5, no knowledge about the value of the variable to is taken into account.
Therefore, the overall dynamic analysis will always consider that the value of
¢ may be modified; which implies a flow from userSecretKey to c. With such
dynamic analyses, line 7 must then be corrected in order to prevent any potential
leakage of the value of the secret key to the outside world. In the work proposed
in this paper, the static analysis used for lines 4 and 5 takes into account the
run time value of the variable to. This allows the overall dynamic analysis
proposed to detect that there is no flow from userSecretKey to ¢ whenever to
is different from sexyPirate. Therefore, it allows use of this IM program for
communicating with any user different from sexyPirate; while still preserving
the confidentiality of the user’s secret key even when trying to use this program
to communicate with sexyPirate.

The next section defines various notions used in this paper and introduces the
principles of the dynamic analysis proposed in this paper. Section 3 formalizes
the dynamic information flow analysis. The main properties of this analysis are
exposed in Sect. 4 before concluding in Sect. 6.

2 Definitions and Principles

The current section starts by introducing some terminology. It then gives some
formal definitions which are used to formalize the execution property that the
dynamic analysis has to verify. Subsequently, it introduces succinctly the prin-
ciples of the dynamic analysis.

A direct flow is a flow from the right side of an assignment to the left side.
Executing “z := y” creates a direct flow from y to x. An explicit indirect flow
is a flow from the test of a conditional to the left side of an assignment in the
branch executed. Executing “if ¢ then z := y else skip end” when cis true
creates an explicit indirect flow from y to x. An implicit indirect flow is a flow
from the test of a conditional to the left side of an assignment in the branch
which is not executed. Executing “if ¢ then z := y else skip end” when c is
false creates an implicit indirect flow from y to x.

At any execution step, a variable or expression is said to carry variety [2,
Sect.1] if its values is not completely constrained by the public inputs of the
program. In other words, a variable or expression carries variety if its value is
influenced by the private inputs; therefore, if it may have a different value at
this given execution step if the values of the private inputs were different.

A “safe” execution is a noninterfering execution. In this article, as
commonly done, noninterference is defined as the absence of strong dependencies
between the secret inputs of an execution and the final values of some variables



which are considered to be publicly observable at the end of the execution.
For every execution of a given program P, two sets of variable identifiers are
defined. The set of variables corresponding to the secret inputs of the program is
designated by S(P). The set of variables whose final value are publicly observable
at the end of the execution is designated by O(P). No requirements are put on
S(P) and O(P) other than requiring them to be subsets of X (the domain of
variables). A variable x is even allowed to belong to both sets. In such a case, in
order to be noninterfering, the program P would be required to, at least, reset
the value of x. In the following definitions, we consider that a program state
may contain more than just a value store. This is the reason why a distinction
is done between program states (X) and value stores (o).

Definition 2.1 (V-Equivalent States).
Let V' be a set of variables. Two program states X1, respectively Xa, containing
the value stores o1, respectively o9, are V-equivalent with regards to a set of

variables V', written X4 Y Xo, if and only if the value of any variable belonging
to V is the same in o1 and oy:

X1¥X2 <~ V(EGV!O’l(CC):JQ(.’E)

Definition 2.1 states a formal relation among program states. This relation
defines equivalence classes of program states with regard to a given set of vari-
ables. If two program states are V-equivalent, it means that it is impossible
to distinguish them solely by looking at the value of the variables belonging to
the set V. This relation is used to define the confidentiality property which is
verified by the dynamic analysis presented in this paper.

Definition 2.2 (Noninterfering Execution).

Let ||s denote a big-step semantics. Let S(P) be the complement of S(P) in
the set X. For all programs P, program states X1 and X|, an execution with
the semantics s of the program P in the initial state X, and yielding the final
state X1 is noninterfering, written ni(P, s, X1), if and only if, for every program
states Xo and X} such that the execution with the semantics s of the program
P in the initial state Xo yields the final state X} :

D x, = x, Y x;

X1

Definition 2.2 states that an execution is safe — i.e. it has the desired
confidentiality property — if any other execution started with the same public
(non-secret) values yields a final program state which is O(P)-equivalent to the
final program state of the execution analyzed. It means that, by looking only
at the final values of the variables observable at the end of the execution, it is
impossible to distinguish this execution from any other execution whose initial
program state differs only in the values of the secret inputs. Therefore, for such
an execution, it is impossible to deduce information about the secret inputs of
the program by looking solely at the values of the publicly observable outputs.



The dynamic analysis is based on a flow and state sensitive static
analysis. During the execution, every variable is associated a tag which re-
flects the fact that the variable may or may not carry variety — i.e. may or
may not be influenced by the secret inputs of the program. A tag store in the
program state keeps track of those associations. The dynamic analysis treats
directly the direct and explicit indirect flows. For implicit indirect flows, a static
analysis is run on the unexecuted branch of every conditional whose test carries
variety.

The static analysis is context sensitive. An unexecuted branch P is analyzed
in the context of the program state at the time the test of the conditional, to
which P belongs, has been evaluated. The static analysis is then aware of the
exact value of the variables which do not carry variety. During the analysis, the
context (value store and tag store used for the analysis) is modified to reflect loss
of knowledge (in fact, only the tag store is modified). The static analysis does
not compute the values of variables. Therefore, when analyzing an assignment
to a variable x, the context of the static analysis is modified to reflect the
fact that the static analysis does not anymore have knowledge of the precise
value of the variable x. When analyzing a conditional whose test value can be
computed in the current context (using only the values of the variables whose
tag is L), only the branch designated by the test is analyzed. As the value of
any variable which does not carry variety depends only on the public inputs,
branches which are not designated by the test value would never be executed by
any execution started with the same public inputs as the monitored execution.
Implicit indirect flows and explicit indirect flows must be treated with the same
precision in order to prevent the creation of a new covert channel [6]. This
particular point is discussed in Sect. 4. As the static analysis detects implicit
indirect flows more accurately than context insensitive analyses, explicit indirect
flows can also be treated more accurately.

The next section formalizes the mechanisms presented above. It presents a
monitoring semantics incorporating a dynamic noninterference analysis.

3 The Monitoring Semantics

The dynamic information flow analysis and the monitoring semantics are defined
together in Fig. 2. Information flows are tracked using tags. At any execution
step, every variable has a tag which reflects whether this variable may carry
variety or not. The static analysis used for the analysis of some unexecuted
branches is characterized in Fig. 3.

The language studied is an imperative language for sequential programs.
Tts syntax is given in Fig. 1. In this grammar, (ident) stands for a variable
identifier. (expr) is an expression of values and variable identifiers. Expressions
in this language are deterministic — their evaluation in a given program state
always results in the same value — and are free of side effects — their evaluation
has no influence on the program state.

A program expressed with this language is either a skip statement (skip)



(prog) == skip
| (ident) := (expr)
| (prog) ; (prog)
| if {expr) then (prog) else (prog) end
|  while (expr) do (prog) done

Figure 1: Grammar of the language

which has no effect, an assignment of the value of an expression to a variable,
a sequence of programs ({prog) ; (prog)), a conditional executing one program
— out of two — depending on the value of a given expression (if statements),
or a loop executing repetitively a given program as long as a given expression
is true (while statements).

3.1 A Semantics Making Use of Static Analysis Results

Let X be the domain of variable identifiers, D be the semantics domain of values,
and T be the domain of tags. In the remainder of this article, T is equal to
{T,L}. Those tags form a lattice such that L T T. T is the tag associated to
variables that may carry variety — i.e. whose value may be influenced by the
secret inputs.

The monitoring semantics described in Fig. 2 is presented as standard infer-
ence rules for sequents written in the format:

Gt P dum ¢

This reads as follows: in the monitoring execution state {, with a program
counter tag equal to tP¢, program P yields the monitoring execution state ¢’.
The program counter tag (tP¢) is a tag which reflects the security level of the
information carried by the control flow. A monitoring execution state ( is a pair
(o, p) composed of a value store o and a tag store p. A value store (X — D)
maps variable identifiers to values. A tag store (X — T') maps variable identifiers
to tags. The definitions of value store and tag store are extended to expressions.
o(e) is the value of the expression e in a program state whose value store is o.
Similarly, p(e) is the tag of the expression e in a program state whose tag store is
p. p(e) is formally defined as follows, with F'V(e) being the set of free variables
appearing in the expression e:



The semantics rules make use of static analyses results. In Fig. 2,
application of a static information flow analysis to the piece of code P in the
context ¢ is written: [¢ - P]*¢. The analysis of a program P in a monitoring
execution state ¢ must return a subset of X. This set, usually written X, is an
over-approximation of the set of variables which are potentially defined in an
execution of P in the context (. This static information flow analysis can be
any such analysis that satisfies a set of formal constraints which are stated in
Sect. 3.2.

The monitoring semantics rules are straightforward. As can be ex-
pected, the execution of a skip statement with the semantics given in Fig. 2
yields a final state equal to the initial state. The monitored execution of the
assignment of the value of the expression e to the variable x yields a monitored
execution state (o, p’). The final value store (¢') is equal to the initial value
store (o) except for the variable . The final value store maps the variable x
to the value of the expression e evaluated with the initial value store (o(e)).
Similarly, the final tag store (p’) is equal to the initial tag store (p) except for
the variable x. The tag of x after the execution of the assignment is the least
upper bound of the program counter tag (tP¢) and the tag of the expression
computed using the initial tag store (p(e)). p(e) corresponds to the level of the
information flowing into x through direct flows. tP¢ corresponds to the level of
the information flowing into x through explicit indirect flows.

The monitored execution of a conditional whose test expression does not
carry variety (p(e) = L) follows the same scheme as with a standard semantics.
For a conditional whose test expression e carries variety, the branch (P") desig-
nated by the value of e (v) is executed and the other one (P™") is analyzed. The
final value store is the one returned by the execution of P¥. The final tag store
(p') is the least upper bound of the tag store returned by the execution of PV
and a new tag store (p°) generated from the result of the analysis of P7% (X).
By definition, p U p’ is equal to Az.p(z) U p’(z). The new tag store (p°) reflects
the implicit indirect flows between the value of the test of the conditional and
the variables (X) which may be defined in an execution of P7. In p°, the tag
of a variable x is equal to the initial tag of the test expression of the conditional
(p(e)) if and only if = belongs to X; otherwise, its tag is L.

3.2 The Static Analysis Used

Fig. 3 defines some constraints characterizing a set of static analyses which
can be used by the dynamic noninterference analysis. The result X of a static
analysis of a given program (P) in a given context ({) is acceptable for the
dynamic analysis only if the result satisfies those rules. This is written in the
format: X |= (¢ F P). In the definitions of those rules, {{S*2¢, Sfalsel! returns
either the set S*“¢, the set S™!%¢ or the union of both depending on the tag t
and the boolean v. Its formal definition follows.

Strue U Sfalse iff t=T
true falsent __



¢, t*¢ F skip Jm ¢

(@, ), P F 2i=¢ Im (oo = o()], ple— ple) U P

Gt P Y (M P g ¢
P F P75 P g C

ple)=L1L  ale)=v (o, p), tP°UL = P" Jrp ¢
), tP¢  if e then P™™° else P¥™*¢ end | (’

B
>

ple)=T ole) =wv (o, p), tP°UT E P Ym0 (0%, p¥)
[0, pEP™[fo =%  p°= (X x{THUE x{L})
(o, p), tP°° I if e then P¥"e else P end | (09, p° U p°)

ple) =1 o(e) = false
(o, p), t*° F while e do P' done |, (o, p)

ple) =1 o(e) = true
(o, p), tP°U L F P'; while e do P! done {n ¢’
(o, p), t*° - while e do P' done | (’

ple)=T o(e) = true
(o, p), tP°UT F P'; while e do P! done | (0, p°)
(o, p), t’° - while e do P' done | (o, pLip°)

ple)=T o(e) = false
(o, p) - P'; while e dolD1 done]*s = X
PP =X x{THUEx{L})
(o, p), t’° - while e do P' done | (o, pLIp°)

Figure 2: Rules of the monitoring semantics

4 Properties of the Monitoring Semantics

Section 3 formally defines the dynamic information flow analysis proposed in
this article. In the current section, this dynamic noninterference analysis is
proved to be sound with regard to the enforcement of the notion of noninterfer-
ing execution given in Definition 2.2. This means that, any monitor enforcing



0 ( (o, p)+skip)
{e} E((o, prai=e)

XE((o, prpt; Pt

iff there exist X" and X* such that:
X" = ((o, p) FPM) o
let p) = pU ((XBx T)U(Xh x 1)) in X* = ((0,p') F PY)
¥=xhuxt

X = ( (0, p) Fif e then P*™™° else P**° end )

iff there exist X*® and X3¢ such that:
ftrue ): ((0.7 p> l_ Ptrue)
xfalse ': ((0.7 p) }_ Pfalse)

X = {[xtrue’ xfalse]}g((z))

X |= ( (o, p) - while e do P' done )

iff there exists X! such that:i
let p) = pU ((X'x T)U (X! x 1)) in X' = ((o, p') F PY)
X = {200

Figure 3: Constraints on the static analysis results

noninterference using this dynamic analysis would be able to ensure that: for
any two monitored executions of a given program P started with the same public
inputs (variables which do not belong to S(P)), the final values of observable
outputs (variables which belong to O(P)) are the same for both executions.

Theorem 4.1 proves that the dynamic analysis is sound with regard to in-
formation flow detection. Any variable, whose tag at the end of the execution
is 1, has the same final value for any executions started with the same public
inputs.

Theorem 4.1 (Detection Soundness).
For all programs P, monitoring execution states (o1, p1), (1, pi), (o2, p2) and
(ch, ph) such that:

L (017 01)7 1L FP ‘UM (O—iv pll) )
hd (027 02)7 L =P ‘U’M (Ué7 p/Q) )



e Vo ¢ S(P). o1(x) = oa(x),
o Vx eS(P). p1(z)=T

the following holds:

Vo, (pi(z) =1) = (01(z) = 05(x))

Proof summary. The detailed formal proof can be found in the appendices
(Lemma A.6). This proof goes by induction on the derivation tree of “ (o1, p1), L F
P Jm (0f, py) 7 and by cases on the last evaluation rule used. The proof aims
at showing that the invariant which relates the fact, for every variable, of hav-
ing a | tag and not carrying variety — i.e. not being influenced by the secret
inputs — is preserved during the execution.

The invariant preservation is obvious for skip statements. If the tag of a
variable x after an assignment of e to x is L, then it means, first, that the
control flow does not carry variety (¢ = L) and therefore that the assignment
will always be executed with similar public inputs. It also means that the tag
of every variable appearing in e is L, therefore the expression does not carry
variety and the invariant property is preserved by the execution of assignments.
For sequence statements, if the invariant is preserved by the first and second
statements then it is preserved by the sequential execution of both statements.

For branching statements (if statements), things get a little bit more com-
plex. If the tag of the condition of the branching statement is L, then the con-
dition does not carry variety and any execution started with the same public
inputs evaluates the same branch as the execution monitored. As, by induction,
the execution of the branch preserves the invariant, the invariant is also pre-
served by the execution of a branching statement whose condition’s tag is L. If
the condition’s tag is T, then all the executions started with the same public
inputs do not evaluate the same branch. However, as the tag of the control
flow (¢P°) is updated to T for the evaluation of the designated branch, all the
variables assigned to in the branch have a tag of T after the execution of the
branching statement (follows from the rule for assignments and is detailed in
Lemma A.5 in the appendices). Additionally, any variable which may have been
assigned to by the execution of the other branch are in the set returned by the
static analysis (follows from the rules in Fig. 3 and is detailed in Lemma A.1
in the appendices), therefore, at the end of the evaluation of the branching
statement, their tag is also T. Hence, the invariant relating | and not carrying
variety is preserved by the execution of a branching statement whose condition
carries variety.

For loops (while statements), the proof goes by cases, first, on the tag of
the condition and then on its value. If the condition of the loop does not carry
variety (its tag is L) then, if its value is false the loop is equivalent to a skip
and the invariant is preserved. If the condition does not carry variety (its tag
is L) and is true, the proof of preservation of the invariant follows by induction
from the sub-derivation tree corresponding to the evaluation of the body of the
loop at least once. If the condition carries variety (its tag is T), then all the
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executions started with the same public inputs do not execute the body of the
loop the same number of times. However, for the same reasons as the case for
branching statements (tP° = T and the static analysis of the body of the loop
returns all the variables which may be assigned by an evaluation of the loop),
the tag of all the variables whose value may be modified by the loop is T after
the evaluation of the loop. Therefore, the invariant property is also preserved
by loops whose condition carries variety. O

Variables whose final tags are not L may have different final values for two
executions started with the same public inputs. Therefore, a monitor enforcing
noninterference must reset to a default value any variable belonging to O(P)
whose final tag is not L. However, as shown by Le Guernic and Jensen [6],
if the correction of “bad” information flows is done without enough care, the
correction mechanism itself can become a new covert channel carrying secret
information. Theorem 4.2 proves that the final tag of a variable does not depend
on the secret inputs of the program. Therefore, any variable belonging to O(P)
whose final tag is not L can safely be reset to a default value without creating
a new covert channel.

Theorem 4.2 (Correction Soundness).
For all programs P, monitoring execution states (o1, p1), (o1, pi), (o2, p2) and
(o, ph) such that:

L FPlm (o1, ),
o (02, p2), L F P Unm (d% ph),
Vo ¢ S(P). o1(z) = 0a(),

Ve € S(P). p1(x) =T

L4 (01, f1

)
)

® p1= P2
the following holds: p = ph.

Proof summary. The detailed formal proof can be found in the appendices
(Lemma A.8). This proof goes by induction on the derivation tree of “ (o1, p1), L +
P Um (0f, py)” and by cases on the last evaluation rule used. In order to be
able to use induction, Lemma A.8 proves a generalization of the theorem stated
above with two differences in its statement. The first one concerns the tag of
the program counter (tP°) which is not constrained to be L, but must be the
same for the two executions compared. The second difference is the substitu-
tion of the 2 hypotheses concerning S(P) by a single hypothesis stating that the
variables containing data which is considered non secret (p;(z) = L) must have
the same value in both executions (o1(x) = oa(x)).

The case for skip is direct. For assignments, the only tag modified is the
one of the variable assigned. It is set to p(e) U tP°. As the two tag stores are
initially equal, p;(e) is equal to pa(e). As explained above, the proof is for a
generalization of the theorem where tP°! is equal to tP°2. Therefore, both tag
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stores (p] and p}) are equal after the execution of the assignment. For the
sequential execution of S ; S, the inductive hypothesis implies that both tag
stores are equal before the execution of S5 and the generalization of Theorem 4.1
(Lemma A.6) implies that the hypothesis p;(x) = L = p1(e) = pa2(e) also holds
before the execution of Sy. Therefore the inductive hypothesis can be applied
and implies that both tag stores are equal after the execution of the sequential
statement.

For if statements, if the tag of the condition is | then the condition eval-
uates to the same value for both executions. Therefore, the same branch is
executed and the inductive hypothesis implies that both tag stores are equal at
the end of the execution of the branching statement. If the tag of the condition
is T but both executions evaluate the same branch, then for similar reasons both
tag stores are equal at the end of the execution of the branching statement. If
two different branches are executed then the tag of the program counter is T.
Therefore, as exposed in the proof of Theorem 4.1 and detailed in Lemma A.5,
the tag of every assigned variable is T (as long as the execution of the branch
is not over new tags are always T). Additionally, during the execution of this
branch, for every branching statement whose condition’s tag is T the unexe-
cuted branch is analyzed and the tag of every variable which may have been
assigned to by an execution of this branch is set to T. Fig. 3 constrains the anal-
ysis to make the same choices with regard to which subbranches to ignore and
which ones to analyze. Therefore, the set of variables returned by the analysis
of the unexecuted branch is exactly the set of variables whose tag would have
been set to T by an execution of this branch (this particular point is detailed in
Lemma A.3). Therefore, whatever branch is executed or analyzed, the same set
of variables have their tag set to T. Hence, the final tag stores are equal after
the execution of the if statement.

For while statements, if the condition evaluates to the same value for both
executions then the inductive hypothesis implies that the tag stores at the end
of both executions are equal. If the condition evaluates to two different values
then it means that its tag is T. Therefore the final tag store is the least upper
bound of the initial tag store (equal for both executions) and a new tag store
p¢. This new tag store is either the tag store returned by the execution of the
while statement (executing the body at least once) with program counter tag
(tP€) equal to T or the analysis of the same statement. As exposed in the case of
if statements (and detailed in Lemma A.3), in both cases the tags of the exact
same set of variables are set to T and they are the only tag modified. Hence,
the final tag stores are equal after the execution of the while statement. O

5 Related Work

The vast majority of research on noninterference concerns static analyses and
involves type systems [11, 13]. Some “real size” languages together with secu-
rity type system have been developed (for example, JFlow/JIF [10] and Flow-
Caml [12]).

12



Dynamic information flow analyses [1, 3, 17, 18] are not as popular as static
analyses for information flow, but there has been interesting research. For exam-
ple, RIFLE [15] is a complete run-time information flow security system based
on an architectural framework and a binary translator. Masri et al. [9] present
a dynamic information flow analysis for structured or unstructured languages.
Venkatakrishnan et al. [16] propose a program transformation for a simple de-
terministic procedural language that ensures a sound detection of information
flows. However, none of those three later works prove that the correction mech-
anisms of “bad” flows proposed do not create a new covert channel that can
reveal secret information — see, e.g., [6]. In fact, those correction mechanisms
do create a new covert channel. Theorem 4.2 proves that a correction mech-
anism of “bad” flows can be based on the dynamic analysis proposed in this
paper as the results of the dynamic analysis are the same for every executions
started with the same public inputs. More recently, Shroff, Smith, and Thober
[14] proposed a dynamic information flow analysis which tracks direct flows and
collects indirect flows dynamically. The information collected about indirect
flows is transferred from one execution to another using a cache mechanism.
After an undetermined number of executions, the analysis will know about all
indirect flows in the program and thus will then be sound with regard to the
detection of all information flows. This information about indirect flows can be
precomputed using a static analysis at the cost of a decrease of precision. Using
this approach they are able to handle a language including alias and method
calls.

Contrary to common assumption, none of the related works on dynamic in-
formation flow analysis known to the author take enough context information
into account to detect that the program on page 2 is noninterfering when using
it to communicate with users other than sexyPirate. For example, the transfor-
mation of Venkatakrishnan et al. [16] updates the security label of ¢ with the
security label of the condition on line 3 before executing line 7. Therefore, at
line 7, c is always considered as secret even if the user is not communicating
with sexyPirate. When executing the assignment of line 5, the program counter
of Shroff et al.’s work [14] contains a reference to the program point of line 3
and therefore is added to the set of source of implicit flows to ¢. Consequently,
any complete implicit dependency cache contains a reference to the implicit flow
from line 3 to line 7. As the test of line 3 is always executed, Shroff et al.’s work
always considers line 7 as displaying secret information. The dynamic analy-
sis proposed in this paper is able to detect the noninterfering behavior of the
program on page 2 when communicating with someone other than sexyPirate.

6 Conclusion
This article addresses the problem of information flow verification and correc-
tion at run time in order to enforce the confidentiality of secret data. The

confidentiality property to monitor is expressed using the property of nonin-
terference between secret inputs of the execution and its public outputs. The
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language taken into consideration is a sequential language with assignments
and conditionals (including loops). The main difference between the monitor-
ing mechanism proposed in this article and the ones of related works lies in the
static analysis used to detect implicit indirect flows. The static information flow
analyses used by the dynamic analysis proposed in this article are sensitive to
the current program state. This allows to increase the precision of the overall
dynamic information flow analysis for the detection of implicit and explicit in-
direct flows. In Sect. 4, the proposed noninterference monitor is proved to be
sound both with regard to the detection of information flows and with regard
to their correction when necessary.

Benefits of monitoring compared to static analyses. Monitoring an ex-
ecution has a cost. So, what are the main benefits of noninterference monitoring
compared to static analyses? The first concerns the possibility that a monitor-
ing mechanism can be used to change the security policy for each execution. In
the majority of cases, running a static analysis before every execution would be
more costly than using a monitor. The second reason is that noninterference is a
rather strong property. Many programs are rejected by static analyses of nonin-
terference. In such cases it is still possible to use a monitoring mechanism with
the possibility that some executions will be altered by the monitoring mech-
anism. However behavior alteration is an intrinsic feature of any monitoring
mechanism. Monitoring noninterference ensures confidentiality while still al-
lowing testing with regard to other specifications using unmonitored executions
as perfect oracle — at least as perfect as the original program.

There are two main reasons why it is interesting to use a noninterference
monitor on a program rejected by a static analysis. The first one is that a
monitoring mechanism may be more precise than static analyses because during
execution the monitoring mechanism gets some accurate information about the
“path behavior” of the program. As an example, let us consider the following
program where h is the only secret input and / the only other input (a public
one).

1 if ( testl1(/) ) then tmp := h else skip end;
2 if ( test2(/l) ) then x := tmp else skip end;
3 output x

Without information on testl and test2 (and often, even with), a static analysis
would conclude that this program is unsafe because the secret input information
could be carried to x through tmp and then to the output. However, if testl and
test2 are such that no value of [ makes both predicates true, then any execution
of the program is perfectly safe. In that case, the monitoring mechanism would
allow any execution of this program. The reason is that, / being a public input,
only executions following the same path as the current execution are taken care
of by the monitoring mechanism. So, for such configurations where the branch-
ing conditions are not influenced by the secret inputs, a monitoring mechanism
is at least as precise as any static analysis — and often more precise.
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The second reason lies in the granularity of the noninterference property.
Static analyses have to take into consideration all possible executions of the
program analyzed. This implies that if a single execution is unsafe then the
program (thus all its executions) is rejected. Whereas, even if some execu-
tions of a program are unsafe, a monitor still allows this program to be used.
The unsafe executions, which are not useful, are altered to enforce confiden-
tiality while the safe executions are still usable. For example, the program on
page 2 being interfering, any static noninterfering analysis rejects this program.
Therefore, users would be advised not to use this program at all. However,
using a noninterference monitor, it is possible to safely use this program. When
communicating with any user other than sexyPirate, monitored executions of
this program have their normal behavior. When communicating with sexyPi-
rate, monitored executions are safely detected as potentially interfering and can
therefore be corrected to prevent any secret leakage. Of course, when attempt-
ing to communicate with sexyPirate, executions of this program are altered and
it is therefore not possible to communicate with sexyPirate. However, this is
the desired behavior of a noninterference monitor when confidentiality is more
important than the service provided by the program.
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A Appendix: Proofs

A.1 Static Analysis Properties

Lemma A.1 (Correctness of the static analysis for information flow detection).

For all monitoring execution states (o, p), (o4, pi) and (0o, po), program
counter tags tP°, programs P, and analysis results X such that:

1. Vz: (p(z) = 1) = oi(z) = o(x),
2. (Uia pz)7 tpe F p ‘UM (007 Po) )
the following holds:

[(o, )PP =% = Vo¢X o,(z) = o4(z)

Proof. This lemma is obvious once we are convinced that the result of the static
analysis contains all the variables whose value may be modified by any execution
of the analyzed program in the context of the analysis (i.e. for any initial state
where the value of the variables whose tag is L in p have the same value has
the one in o). Going by induction on the structure of the analyzed program,
it is obvious for skip statements and assignments. When analyzing the second
part of a sequence “P; ; Py”, the tags of the variables which may have been
modified by the execution of P; are set to T to reflect the fact that the analysis
does not know anymore the exact value of those variables at the beginning of P,.
Therefore, it is easy to prove by induction that the property holds for sequences.
The result of the analysis of an if-statement is the result of the analysis of the
branch designated by the condition if and only if the tag of this condition is
1 (i.e. any initial state compatible with the context of execution evaluates the
condition to the same value as the analysis); otherwise, it is the union of the
analysis of both branches. Once again, a simple induction on the structure of
the analyzed program proves the desired property for if-statements. For while-
statements, the result of the analysis is empty if and only if the analysis is able
to determine that, any execution started in an initial state compatible with the
context of the analysis do not execute the body of the loop. Otherwise, the
result of the analysis of the while-statement relies on fix point computation.
It corresponds to the result of the analysis of the body of the loop considering
that the value of any variable whose value may be modified by an execution of
the body of the loop is unknown at the beginning of the analysis (Thus taking
into account any number of execution of the body of the loop). Therefore, an
induction on the structure of the while-statements using the properties of fix
points allow to prove the property for while-statements. O

Lemma A.2 (Static analysis is deterministic with regard to public data).
For all monitoring execution states (o, p) and (o', p'), and programs P such
that:

1. p=/p,
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2.Vz: (px) C L) = o(z) =0d'(z),

the following holds:
[(o, p) PP = [(o', p') F P

Proof. As the constraints stated in Fig. 3 use only the precise value of variables
whose tag is 1 and never reset a tag to L for included constraints, this lemma
is direct for any deterministic analysis satisfying the constraints of Fig. 3. [

Lemma A.3 (Correctness of the static analysis for information flow correction).

For all monitoring execution states (o, p) and (o', p'), programs P, and analysis
results X such that:

1. (o, p), TE P Inm (¢, p),
2. [(o, p) F PP = X,

the following holds:

Po= o U ((Ex{TH U @Ex{L}))

Proof. This lemma is proved by induction on the structure of P. It is obvious
for skip statements and assignments. For a sequence “P; ; P5”, the induction
on P; give that the tag store used for the evaluation of P5 is the same as the one
used for the analysis of Po. And lemmas A.1 and A.2 give that the value store
used for the evaluation of P, is equivalent to the initial value store from the
point of view of the analysis. Therefore, two simple inductions prove the lemma
for sequences. For if-statements, if the tag of the condition is | then the tag
store after evaluation is the tag store after evaluation of the branch designated
by the condition and the result of the analysis is the result of the analysis of the
branch designated by the condition. Therefore, a simple induction proves the
lemma whenever the tag of the condition is L. If the tag of the condition is T
then the tag store after evaluation is the least upper bound of the tag store after
the evaluation of the branch designated by the condition and a tag store equal
to (X, x{T}) U (X, x {L}) with X, the result of the analysis of the unexecuted
branch. The result of the analysis is the union of the result of the analysis of
both branches. Therefore, a simple induction on the branch executed proves
the lemma whenever the tag of the condition is T. The evaluation of a while-
statement always ends up evaluating this while-statement with the condition
being false (at the end of the execution of the while-statement). Therefore, at
the end of the evaluation, the tag of all the variables appearing in the result of
the analysis of the while-statement are set to T. For the same reasons as with
sequences (lemmas A.1 and A.2) with the addition of the fix point property,
the value stores and tag stores at the beginning of the evaluation and at the
end of the evaluation of the loop are equivalent from the point of view of the
analysis. The analysis of the while-statement returns the same result as the
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static analysis run by the evaluation and the lemma holds for every variable
appearing in the result of the static analysis. All the other variables can not
be assigned to by the evaluation of the while-statement (cause of lemma A.1
which can be extracted from it by observing that the analysis does not compare
the value assigned to a variable from its value before the analysis). Therefore,
at the end of the evaluation , they have the same tag than at the beginning and
the lemma also holds for those variables. O

A.2 Detection Soundness

Lemma A.4 (Public expressions are stable).

For all tag stores p, value stores o1 and o2, and expression e such that for all
variable = the following holds (p(x) = L) = o1(x) = o2(x), if ple) = L then
0'1(6) = 02(6).

Proof. The proof is straightforward. It follows directly from the facts that
expression evaluation is deterministic, the tag of an expression is the least upper
bound of the tags of its free variables and that public (L) variables have the
same value in o1 and os. O

Lemma A.5 (Tag of assigned variables contains ¢P¢).
For all value stores o;, tag stores p;, and statement S such that:

hd (aiapi)a e = S ‘U’M (007p0)

it is true that:

o« Vot L py(n) = (00(x) = 0ilx) A pi(a) C pole))

Proof. The proof goes by induction on the derivation tree of “ (o;, p;), tP¢ +
S Um (00,p0) 7. Assume the lemma holds for any sub-derivation tree, if the
last rule used is:

(Epq —IF) ) then we can conclude that :

(1) Sis “if e then Siye €lse Syase end” and “ (0, p;), tP°UL F Sy dag
(00,00) " is a sub-derivation tree of “ (o, p;), tP° F S Um (00, po)

2

It follows directly from the definition of the rule (Exq — IF ).

(o) Y : 17 £ () = () = 0u(w) A pi(2) E pofa).
This is obtained by a simple induction because tP¢ LI | = tP°.

(Epq — IFT) then we can conclude that :

(1) Sis “if e then S; else S; end” and there exist S, and p, such that:

o “(o4,pi), tP°UT F S, Um (00,p0) 7 is a sub-derivation tree
of « (Ui7pi)a e = S ll./\/l (0'07/)0) 7
o Vi py(z) E po()
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It follows directly from the definition of the rule (Exs — IFT).

(2) Yz : 1P UT & py(z) = 00(z) = 0i(x) A pi(x) C pu(2).
It follows directly from the inductive hypothesis and the local con-
clusion (1).

(¢) Va1 1P I po(x) = 00(x) = 04(x) A pi(@) T polz).
As tP¢ IZ po(z) implies tP¢ U T C p,(x) (from the local conclusion
(1)), the above result follows directly from the local conclusions (1)
and (2).

(Ep — WHILE ;) then we can conclude that :

(1) S is “while e do S; done” and o, = 0; A p; = po.
It follows directly from the definition of the rule (Exq — WHILEgyip ).

(®) Va : 1P & po(x) = 00(x) = 0i(x) A pi(x) E po().
It follows directly from the local conclusion (1).

(Epm — WHILE,, e, ) then we can conclude that :

(1) Sis “while e do S; done” and there exist S’, t, and p’ such that:

o “(o4pi), UL F S Unm (00,p0) 7 is a sub-derivation tree
of “ (Uivpi)7 LA ‘U’M (0'07Po) K
It follows directly from the definition of the rule (Exy — WHILE¢, e, ).
(o) Va1 1P I po(x) = 00(x) = 04(x) A pi(x) T polz).
It follows directly from the inductive hypothesis and the local con-
clusion (1).

(Epm — WHILE,, 4o, ) then we can conclude that :

(1) Sis “while e do S; done” and there exist S and p’ such that:
o “(o4,pi), *P°UT F 8 Um (00,p") 7 is a sub-derivation tree
of * (Uiapi)7 2 ‘U’M (Uovpo) 7
o Va: p/(x) E po(x)
Tt follows directly from the definition of the rule (Exy — WHILE ¢ ye )-
(2) Vo 09U T Z /(x) = 0u(x) = 03(x) A pi(a) C p/(a).
It follows directly from the inductive hypothesis and the local con-
clusion (1).
(0) ¥ : % Z po(2) = 00() = 05(2) A pi2) € pole).
As tP¢ IZ po(z) and p/(z) C po(x) imply tP¢ U, IZ p'(x), the above
result follows from the local conclusions (1) and (2).

(Epf — WHILEg, o) then we can conclude that :
(1) S is “while e do Sy done”, o, = 0; and Vz : p;(z) C po(x).
Tt follows directly from the definition of the rule (Eyy — WHILEgjse+ ).
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(®) Vo : P I po(x) = 0o(x) = 0i(x) A pi(x) E po().
It follows directly from the local conclusion (1).

(Epm — SEQUENCE) then we can conclude that :

(1) Sis “Sy; S2” and there exist o1 and p; such that:

e “(o4pi), tP B S1 dm (01,p1) 7 is a sub-derivation tree of ¢
(0i,pi), 17 E S Ym (00,00) 7
o “(o1,p1), tP¢ F Sy Uam (00,p0) 7 is a sub-derivation tree of “
(Uiapi)a e =S dm ((707/)0) 7
It follows directly from the definition of the rule (Ey; — SEQUENCE).
(2) Yz : tP° L p1(z) = o1(z) = 0i(z) A pi(x) C p1(z) and Vo : tP¢ Z
po() = 0,(@) = 01 () A pa () C pole).
It follows directly from the inductive hypothesis and the local con-
clusion (1).

(8) Vo : 9 € pol() = 00(x) = 0s(2) A pi(2) C pole).
From the local conclusion (1), if tP° [Z p,(x) then p1(z) T po(z).
Hence, tP° [Z p1(z). Then, combining the results of the local conclu-

sion (2), “oo(x) = 01(x) = 0u(x) A pi(2) E p1(z) E po()”
(Epq — ASSIGN) then we can conclude that :

(1) Sis “id := €” and there exist v., and t. such that o, = o;[id — v,]
and p, = p;[id — t, L tP°].
It follows directly from the definition of the rule (Exq — ASSIGN).

(o) Va1 1P L po(x) = 0o(2) = 0i(2) A pi() E po().
From (1), if z = id then t*° C p,(x). Otherwise, z # id and o,(x) =

oi(x) A pi(x) = po(w)
(Epq — SKIP) then we can conclude that :

(1) Sis “skip” and o, = 0; A p; = po-
It follows directly from the definition of the rule (Ex — SKIP).

(®) Vo : P I po(a) = 0o(x) = 0i(x) A pi(x) E po().
It follows directly from the local conclusion (1).

Lemma A.6 (Correctness for information flow detection with semantics { q).

For all:
e variable x,

e value stores o;, 0o, 0, and o),
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e tag stores p;, po, P;, and pl,

e tags tP¢ and t”c/,

e and statement S
such that:
x1 VY (pily) = L) = oily) = oi(y),
*2 (0, p1), t7° =S Y (00,p0)
x3 (01, 0), 17 S Y (o0, 0))
x4 polx) =L
it us true that:

e o,(x) =0l (x).

Proof. The proof goes by induction on the derivation tree of “ (oy, p;), tP¢ F
S Um (00,p0) 7. Assume the lemma holds for any sub-derivation tree, if the
last rule used is:

(E —IF ) then we can conclude that :

(1) Sis “if e then S;, . else Sfqise €nd” and there exists v € {true, false}
such that:
e g;(e) =v and p;(e) = L
o “(o4pi), tP°UL F S, Um (00,p0) 7 is a sub-derivation tree
of “ (4,pi), t*° = S dm (00,00) 7
Tt follows directly from the definition of the rule (E — IF ).
(2) There exist a value v/, a tag t’, and a tag store p’ such that:
e gl(e) =0 and pi(e) =t
o “(ofp), Ut Su U (90.0) 7
It follows from the global hypothesis 5, the local conclusion (1), and
the definitions of the rules applying to “if e then S, else Syq1s. end”
(E—1F.) and (E — IF7)).
3) v="0'.
This result comes from lemma A.4, the global hypothesis x; and local
conclusions (1) and (2).

(0) oo(x) = 0g ().
The conclusion is obtained by applying the inductive hypothesis on
“(oi,pi), UL F S, bam (06,p0) 7 (sub-derivation tree of “
(0, pi), 17 S Yaq (00,p0) 7) and (0, p}), t°¢ Ut + Sy Yag
(ol,p") 7 (because v = v').

(E —IF7) then we can conclude that :
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(1) Sis “if e then Siy . else Sfqisc end” and there exist v € {true, false},
two tag store p, and p., and an analysis result X such that:

“Aog,pi), P°UT F Sy Y (00,p0) 7 is a sub-derivation tree
of “ (gi,pi), t*¢ = S dm (00,p0) "

loi; pi b S-u]fe = X

pu@) Epole)

pe= (X x{THU (X x{L})

pe() E polx)

It follows directly from the definition of the rule (E —IF ).

(2) There exist a value v’ € {true, false}, a tag store p,,, and a tag ¢,
such that:

“ (ol ph), tpe’ Ut = Sy b (0h,00,) "

It follows from the global hypothesis x5, the local conclusion (1), and
the definitions of the rules applying to “if e then S, else Syq5. end”
((E—1F,) and (E — IF1)).

Case 1:

(a)

(o)

Case 2:
(a)

(b)

(c)

(o)

v="1

po(z) = L.

It follows from the local conclusion (1) and the global hypothesis
*q.

0o(x) = og().

The conclusion is obtained by applying the inductive hypothesis
on “ (o4,pi), *P°UT F Sy dam (06,p0) 7 (sub-derivation tree
of “ (d5,pi), t° = S Y (00,p0) ”) and “ (o7, p}), t°° U
t, = Sy dm (0),p,,) 7. It is possible to apply the inductive
hypothesis because of the local conclusion (a) and the fact that,
by the case hypothesis, v = v’).

v # v’ (which implies that v/ = —w)

00(2) = 73(2) A pi(2) C pol).

From the global hypothesis x4, po(z) = L. Hence, from lemma A.5
applied to “ (o4,0:), tP°UT F Sy Jm (00,p00) 7y 00(x) =
oi(x) A pi(x) E po(x).

o,(x) = oj(x).

From the local conclusion (1), the global hypothesis %4, and
the definition of p, in the local conclusion (1), 2 ¢ X. Hence,
from the local conclusion (1) and the lemma A.1 applied to ¢
(0},00), t* Ut b Sy b (0h,0) 7, ol(x) = o)(=).

oi(r) = oj(x).

From the local conclusion (a) and the global hypothesis x4, we
get that p;(z) = L. Hence, from the global hypothesis x;, we
get that oy (x) = of(x).

0o(x) = 0().

It follows directly from the local conclusions (a), (b), and (c).
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(E — WHILEy;,) then we can conclude that :

(1) S is “while e do S; done” and:
e g;(e) = false and p;(e) = L
e 0, =0, and p; = p,
It follows directly from the definition of the rule (E —IF ).
(2) There exist a value v' and a tag t’ such that:
e oi(e) =0 and pi(e) =t
It follows from the global hypothesis x5, the local conclusion (1),

and the definitions of the rules applying to “while e do S; done”

((E — WHILEyip), (E — WHILErue, ), (E — WHILE e, ) and
(E — WHILEg e, ).

3) o, =0
From lemma A.4, the global hypothesis x; and the local conclusions
(1) and (2), we get v' = false. Hence, from the global hypothesis
x5, the local conclusion (1), and the definitions of the rules applying
to “while e do S; done” whenever e is false ((E — WHILEg;p)
and (E — WHILE¢g,se ), 0 = o).

(4) oi(z) = oj(x).
From the local conclusion (1) and the global hypothesis x4, we get
that p;(z) = L. Hence, from the global hypothesis %1, we get that
oi(z) = oj(x).

(o) 0o(z) = 04(x).
It follows directly from the local conclusions (1), (3), and (4).

(E — WHILE,,e, ) then we can conclude that :

(1) Sis “while e do S; done” and:
e gi(e) = true and p;(e) = L

e “(oi,pi), tP°UL + S ; while e do S; done s (00,p0) 7
is a sub-derivation tree of “ (o, p;), t*° F S dm (06,00) "

Tt follows directly from the definition of the rule (E — WHILE¢,.ye , ).
(2) There exist a value v' and a tag t, such that:
e oj(e) =0 and pl(e) =t,
It follows from the global hypothesis x5, the local conclusion (1),

and the definitions of the rules applying to “while e do S; done”

((E — WHILEyip), (E — WHILErue, ), (E — WHILE¢yye, ) and
(E — WHILEgjse, ).

(3) v/ =true.
It follows directly from the local conclusions (1) and (2), lemma A.4
and global hypothesis x;.

(4) There exists a tag store pj such that:
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“(al,p}), t* UL, + S ; while e do Sy done Jn (d),p})”

It follows from the global hypothesis x5, the local conclusions (1), (2)
and (3), and the definitions of the rules applying to “while e do S; done”
whenever e is true ((E — WHILE,ye, ) and (E — WHILE  ye- ))-

(0) 0o() = 05 ().
By applying the inductive hypothesis on the derivations “ (o;, p;), tP°U
L F S, ; while e do S; done |y (04,0,) 7 and “ (o, p}), t*¢ LU
t. + Sy ; while e do Sy done | (o,p;) 7, it is possible to
deduce that o,(z) = o) (z).

(E — WHILE,yc) then we can conclude that :

(1) S is “while e do S; done” and there exist a tag t. and a tag store
p1 such that:

o;(e) = true and p;(e) =T
“(o4,pi), P°UT F Sy ; while e do S; done | (00,p1) 7

is a sub-derivation tree of “ (o;,p;), t*?¢ F S I (00, p0) 7
1 E po

It follows directly from the definition of the rule (E — WHILE;,ye ).

(2) pila) = L.
It follows from the local conclusion (1) and the global hypothesis *4.

(3) There exist a value v" and a tag t, such that:

oi(e) =" and pj(e) =t

It follows from the global hypothesis 5, the local conclusion (1),
and the definitions of the rules applying to “while e do S; done”
((E — WHILEip), (E — WHILE,ye, ), (E — WHILE ;e ) and
(E — WHILEg,se+ ).

Case 1:

(a)

(e)

Case 2:

v/ = true
There exists a tag store p; such that:

o “(al,p)), tP°Ut, + Sy ; whileedo S; done o (0, p))
It follows from the global hypothesis %5, the local conclusions (1)
and (3), the case hypothesis, and the definitions of the rules ap-
plying to “while e do S; done” whenever e is true ((E — WHILEye, )
and (E — WHILE, e )).
o(x) = 0g().
By applying the inductive hypothesis on the derivations “ (o, pz/-), tPeLy
T + S1; whileedo S; done | (04, 1) 7 and “ (o}, pl), tP L
t. F S1; while e do S done | (0),p;) 7, it is possible to
deduce, using the local conclusion (2), that o,(z) = o/ ().

v = false
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(a) oo(x) = oi(z).
It follows directly from the local conclusions (1), the fact that
“PUIT IZ py(x)” (from the local conclusion (2)), and the lemma A.5
applied to “ (o, p;), tP°UT + S;; while e do S; done |z
(007 pl) 7.

(b) o (x) = o!(x).
From the global hypothesis %5, the local conclusions (1) and (3),
the case hypothesis, and the definitions of the rules applying to
“while e do S; done” whenever e is false ((E — WHILE;p,)
and (E — WHILEgse ), o) = o).

(c) oi(z) = oj().

From the local conclusion (2) and lemma A.5 applied to “ (o3, p;), tP°U

T F Sy ; whileedo S; done | (0,,p1) 7, pi(z) = L. Hence,
from the global hypothesis %1, we get that o;(z) = o} ().

(#) 0o(2) = 05 ().

It follows directly from the local conclusions (a), (b), and (c).

(E — WHILE¢,)se, ) then we can conclude that :

(1) S is “while e do S; done” and there exist two tag stores p; and p.

such that:

o;(e) = false and p;(e) =T

[os; ps - Sy ; while e do S; done]fs = %

° 0, =0;

pe= (X x{THU X x {L})

pe() E po(x) and pi(x) E po()

Tt follows directly from the definition of the rule (E — WHILE¢,ye).

(2) There exist a value v’ € {true, false} and a tag t, such that:

e oj(e) =0 and pl(e) =t,

It follows from the global hypothesis x5, the local conclusion (1),
and the definitions of the rules applying to “while e do S; done”
((E — WHILEyip), (E — WHILE,,e) and (E — WHILE a6, ).

(3) gi(z) = oi(x).

From the local conclusion (1) (p;(z) C po(z)) and the global hypoth-
esis %4, p;(z) = L. Hence, from the global hypothesis x1, we get that
oi(z) = ol(z).

Case 1: v/ = false

(a) o, = 0.
From the global hypothesis %5, the local conclusions (1) and
(2), the case hypothesis, and the definitions of the rules apply-
ing to “while e do S; done” whenever e evaluates to false
((E — WHILEy;p) and (E — WHILE¢,ee )), 0} = o).
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() 0o(7) = 0g().
It follows directly from the local conclusions (1) (o, = 0;), (3),
and (a).

Case 2: v/ = true

(a) (o),p)), t° Ut + S;; while e do S; done | (d),p))
It follows from the global hypothesis x5, the local conclusions
(1) and (2), the case hypothesis, and the definition of the rule
applying to “while e do S; done” whenever e evaluates to true.

(b) z & X.
From the local conclusion (1) (pe(x) T po(z)) and the global
hypothesis x4, we get that p.(x) = L. Hence, from the definition
of p. given in the local conclusion (1), x ¢ X.

(c) o,(x) = oj().
From the local conclusion (b), the lemma A.1 applied to the
analysis from the local conclusion (1) and the derivation from
the local conclusion (a), ol (z) = ol(z).
(o) 0o(2) = o().
It follows directly from the local conclusions (1), (3), and (c).
(E — SEQUENCE) then we can conclude that :

(1) Sis “Sy; S3” and there exist o1 and p; such that:

e “(o4,pi), tP¢ F S1 Jm (01,p1) 7 is a sub-derivation tree of “
(Uiapi)7 e = S UM (anpo) 7
e “(o1,p1), tP¢ F Sy Iam (00, p0) 7 is a sub-derivation tree of “
(Uiapi)a P = S U ((707/)0) 7
It follows directly from the definition of the rule (Ex — SEQUENCE).

(2) There exist o] and p} such that:
o (U£7p2)7 e’ St (o1,01) 7
o (ol ph), 7 Sy b (00,05) 7
It follows directly from the global hypothesis %5, the local conclu-
sion (1), and the definition of the only rule applying to “S; ; So”
((Epm — SEQUENCE)).
(3) Vy: (p(y) = L) = o1(y) = o1 (y).
This result is obtained by applying the inductive hypothesis on “
(04, i), tP° F S1 Y (01,p1)7 (sub-derivation tree of “ (ay, p;), tP°¢ +
S Um (00sp0) ) and “ (o}, L), t°¢ F S1 Um (of,p)) 7 for any
variable y such that p;(y) = L.
(0) 0o() = 0, ().
The conclusion is obtained by applying the inductive hypothesis on
“(o1,p1), t?° F Sy Um  (06,p0) 7 (sub-derivation tree of

(Uivpi)7 tPe = S ‘UM (anpo) ”) and “ (0'/1a,0/1)7 tpc, F 52 “UM
(o, pl) 7 using the local conclusion (3).
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(E — ASSIGN) then we can conclude that :
(1) Sis “id:=¢€".
Case 1: z #id
(@) oo(z) = 0i(z) and po(x) = pi(2).

It follows directly from the case hypothesis and the definition of
the rule (E — ASSIGN).

(b) o,(z) = oi(x).
It follows directly from the global hypothesis x5, the local con-

clusion (1), the definition of the only rule applying to “id := €”
((E — ASSIGN)), and the case hypothesis.
() oo(x) = og().
As po(x) = L, from the global hypothesis %4, the local conclusion
(a) implies p;(x) = L. Then, from the global hypothesis %,
o;(x) = ol(x). Hence, from the local conclusions (a) and (b),
0o(7) = 0, ().
Case 2: z =1id
(a) There exist v and t, such that:
e 0,(e) =v and p;(e) = t,
e o,(x)=v
o t. C po()
It follows directly from the case hypothesis and the definition of
the rule (E — ASSIGN).
(b) There exist v" and ¢, such that:
e ol(e) = ¢’ and pl(e) = £,
o gl(x)=17
It follows directly from the global hypothesis x5, the local con-
clusion (1), the definition of the only rule applying to “id := €”
((E — ASSIGN)), and the case hypothesis.
(c) v="1'.
This result comes from lemma A.4 applied to the local conclu-
sions (a) and (b). It is possible to apply it because of the global
hypothesis x; and the fact that, from the global hypothesis *4
and the local conclusion (a), t. = L.

(o) o0lx) = ol (a).

It follows directly from the local conclusions (a), (b), and (c).
(E — SKIP) then we can conclude that :
(1) Sis “skip”, o, = 0; and p, = p;.
It follows directly from the definition of the rule (E — SKIP).
(2) o, = oj.
It follows directly from the global hypothesis %5, the local conclu-

sion (1), and the definition of the only rule applying to “skip”
((E — SKIP)).
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(o) 0o(x) = 0p().
From the local conclusion (1) and the global hypothesis *4, p;(z) = L.
Then, from the global hypothesis x1, ;(x) = o.(z). Hence, from the
local conclusions (1) and (2), o,(x) = ol ().

O

A.3 Correction Soundness

Lemma A.7 (Expression tag is deterministic).
For all expressions e and tag stores p and p', if p = p' then p(e) = p'(e).

Proof. The proof is straightforward. It follows directly from the facts that the
evaluation of an expression’s tag is deterministic. It is the least upper bound of
the tags of its free variables. O

Lemma A.8 (Correctness for information flow correction with semantics { oq).

For all:
e variable x,

o value stores o;, 0o, 0, and o)),

ir
e tag stores p;, pPo, p;, and pf,,
e tags tP° and t”c/,
e and statement S
such that:
*1 Yy (pi(y) = L) = 0iy) = oi(y),
*2 Pi = P,
Ky 96 = 1P
xg (03, pi), t7¢ = 8 Ym (00, 00)
x5 (0],0), 1"+ S Uaa (o), )
it is true that:
o po(@) = pi(a).

Proof. The proof goes by induction on the derivation tree of “ (o;, p;), tP¢ +
S Um (00,p0) 7. Assume the lemma holds for any sub-derivation tree, if the
last rule used is:

(E—1IF)) then we can conclude that :
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(1) Sis “if e then Sy €lse Syqise end” and there exists v € {true, false}
such that:
e 0,(e) =v and p;(e) = L
o “(o4,pi), tP°UL F S, Um (00,p0) 7 is a sub-derivation tree
of « (Uiapi)v e = S ll./\/l (0'07/)0) 7
It follows directly from the definition of the rule (E — IF ).
(2) There exist a value v' and a tag t’ such that:
e gl(e) =0 and pi(e) =t/
It follows from the global hypothesis x5, the local conclusion (1), and
the definitions of the rules applying to “if e then S;; . else S¢q5c end”
(E—1F,) and (E — IF1)).
3) =Landv="1'".
It follows directly from the local conclusion (1) and (2), lemmas A.7
and A.4 and the global hypotheses *; and *s.

(4) “(ol,p}), tP UL F Sy Iag (07,p)) 7 Tt follows from the global hy-
pothesis %5, the local conclusions (1), (2), and (3), and the definition
of the rule applying to “if e then Sy, else Sfqsc end” whenever
the tag of e is L ((E —IF))).

(®) po(x) = pp().
The conclusion is obtained by applying the inductive hypothesis on
“(oi,pi), UL F S, b (06,p0) 7 (sub-derivation tree of “
(04, pi), P B S U (00,p0)7) and “ (o, p5), P UL F S, U
CAY RS
(E —IFT) then we can conclude that :
(1) Sis “if e then Siyc else Syqise end” and there exist v € {true, false},
two tag stores p, and p., and an analysis result X such that:
e o,(e)=vand pi(e) =T

o “(o4,pi), tP°UT F S, Um (00,pp) 7 is a sub-derivation tree
of “ (o3, pi), t*° F S Y (00, p0) "

o [(0i,pi) F St = %
o pe= X x{THUEx{L})
® po=pullpe

It follows directly from the definition of the rule (E — IFT).

(2) There exist a value v’ € {true, false} and a tag t, such that:

e ogl(e) =0 and p(e) =t

It follows from the global hypothesis x5, the local conclusion (1), and

the definitions of the rules applying to “if e then S;,,. else S¢q5c end”
(E—1F.) and (E — IF1)).
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3) t.=T.
It follows directly from the local conclusions (1) and (2), the lemma A.7
and the global hypothesis xo.

(4) There exists an analysis result X’ and two tag stores p, and p, such
that:
o “(al,ph), P UL, F Sy Yaa (0, 0L)7
o [(0},pf) F S—w]to = X
o p= (X' x{THU X x {L})
* P, =Py Upe
It follows from the global hypothesis x5, the local conclusions (1), (2),
and (3), and the definition of the rule applying to “if e then Sy, else Syqi5. end”
whenever the tag of e is T ((E — IF1)).
Case 1: v =1’
(a) pe(x) = pe().
It follows from the definitions of p. and p, (given in the local
conclusions (1) and (2)), the case hypothesis, the global hypoth-
esis xo, and the lemma A.2.
(b) pu() = o (2).
This result is obtained by applying the inductive hypothesis on
“(oipi), P°UT F Sy I (06,p0) 7 (sub-derivation tree of
“ (Uivpi)’ e =8 dm (007p0) 77) and “ (Ug,Pg), tPe I_It/e H
Syt b (o), p.,) 7 using the result of the local conclusion (3)
and the case hypothesis.
(®) po(z) = pj,(x).
It follows directly from the definitions of p, and p!, (given in the
local conclusions (1) and (4)) and the local conclusions (a) and
(b).
Case 2: v # v’ (which implies that v/ = —w)
(@) pv=piUp,.
It follows from the definitions of p, and p, (given in the local
conclusions (1) and (4)), the case hypothesis, and the hypothe-
ses A.2 and A.3.
(b) Py = pi U pe.
It follows from the definitions of p!, and p. (given in the local
conclusions (1) and (4)), the case hypothesis, the local conclusion
(3) and the hypotheses A.2 and A.3.
() polx) = po ().
It follows directly from the definitions of p, and p!, (given in the
local conclusions (1) and (4)), the global hypothesis xo and the
local conclusions (a) and (b).

(E — WHILEy;,) then we can conclude that :
(1) S is “while e do S; done” and:
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e g;(e) = false and p;(e) = L
® Pi = pPo
Tt follows directly from the definition of the rule (E — IF ).
(2) There exist a value v’ and a tag t’ such that:
e oi(e) =0 and pi(e) =1t
It follows from the global hypothesis x5, the local conclusion (1),
and the definitions of the rules applying to “while e do S; done”
((E— WHILEyip), (E — WHILE e, ), (E— WHILE ;e ) and
(E — WHILE¢, )50 ).
(8) v/ =falseand ¢ = L.
It follows directly from the local conclusions (1) and (2), lemmas A.4
and A.7, and the global hypotheses x; and xs.
(4) ol = pi-
It follows from the global hypothesis x5, the local conclusion (1),

and the definitions of the rules applying to “while e do S; done”
whenever e evaluates to false and its tag is L ((E — WHILEgy;p)).

(5) pi(x) = pi(z).

It follows directly from the global hypothesis ;.

() po(@) = pj ().

It follows directly from the local conclusions (1), (4), and (5).
(E — WHILE,ye, ) then we can conclude that :

(1) S is “while e do S; done” and:
e 0;(e) =true and p;(e) = L
e “(04,pi), tP°UL F Sy ; while e do S; done {rq (05,00) "
is a sub-derivation tree of “ (g;,p;), t*?¢ F S I (00, 00) 7
Tt follows directly from the definition of the rule (E — WHILE¢,. e, ).
(2) There exist a value v’ and a tag t, such that:
e gl(e) =0 and p(e) =t
It follows from the global hypothesis x5, the local conclusion (1),
and the definitions of the rules applying to “while e do S; done”
((E— WHILEuip), (E — WHILE,ye, ), (E— WHILE;e, ) and
(E — WHILEgse . ))-
(3) t. =1 and v = true.
It follows directly from the local conclusions (1) and (2), lemmas A.7
and A.4, and the global hypotheses x; and xs.
(4) “ (o, p), t*“ UL F S ; while e do S; done | (o), p,) .
It follows from the global hypothesis x5, the local conclusions (1), (2),

and (3), and the definition of the rule applying to “while e do S; done”
whenever e evaluates to true and its tag is L (E — WHILE¢yyue, ))-
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() polx) = po()-
The conclusion is obtained by applying the inductive hypothesis on
“(o4,pi), tP°U L F Sy ; while e do Sy done | (05, p0) 7
(sub-derivation tree of “ (o;,pi), t*° F S Im (00,p0) ) and ¢
(o), p}), t° UL F S); while e do S; done |r (d),p,) 7.

(E — WHILE¢,yc,) then we can conclude that :

(1) S is “while e do S; done” and:
e gi(e) = true and p;(e) =T
e “(o4,pi), tP°UT F Sy ; while e do S; done {n (0o,p1) 7
is a sub-derivation tree of “ (g;,p;), t*?¢ F S Jam (00, p0) 7
® po=pip
It follows directly from the definition of the rule (E — WHILE,ye ).
(2) There exist a value v’ and a tag t, such that:
o ol(e) =o' and pi(e) = 1,
It follows from the global hypothesis 5, the local conclusion (1),
and the definitions of the rules applying to “while e do S; done”
((E — WHILE.yp), (E — WHILE¢;ue, ), (E — WHILEye, ) and
(E — WHILE ajso, ).
3)t,=T.
It follows directly from the local conclusions (1) and (2), lemma A.7,
and the global hypothesis 5.
Case 1: v/ = true
(a) There exists a tag store p; such that:
o “(al,p), t*UT F Sy ; whileedo S; done o (o), p))
o p, = p;Up
It follows from the global hypothesis x5, the local conclusions
(1), (2), and (3), the case hypothesis, and the definitions of the

rules applying to “while e do S; done” whenever e evaluates
to true and its tag is T ((E — WHILE¢, e, )).

(b) pi = pj-
This is obtained by applying the inductive hypothesis on “ (o;, p;), tP°U
T F S;; while e do S; done | (05,p1) 7 (sub-derivation
tree of “ (04, pi), t*° F S Y (00,p0) 7) and “ (o}, pl), tP¢ U
T F S1; while e do Sy done | (0,p]) 7.

(®) po= Pl
It follows directly from the local conclusions (1), (a), and (b),
and the global hypothesis xo.

Case 2: v = false

(a) There exists an analysis result X’ and a tag store p. such that:
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e [(0},pl) F S ; while e do S; done]? = X’

o po=X x{THU @ x{L})

* = piUpL
It follows from the global hypothesis x5, the local conclusions
(1), (2), and (3), the case hypothesis, and the definition of the

rule applying to “while e do S; done” whenever e evaluates to
false and its tag is T ((E — WHILE¢ajse-))-

(b) o1 = p;Up..
It follows from the definitions of p; and p!, (given in the local
conclusions (1) and (a)), and the hypotheses A.2 and A.3.

(o) po = ply
It follows directly from the global hypothesis x2 and the local
conclusions (1), (a), and (b).

(E — WHILE¢,)se.) then we can conclude that :

(1) Sis “while e do S; done” and there exists a tag store p, such that:

o;(e) = false and p;(e) =T
[(oi,pi) - S1 ; while e do S; done]*s = X
pe=(Xx{THUX x {L})
® po = pipe
Tt follows directly from the definition of the rule (E — WHILEga)5¢- ).

(2) There exist a value v’ € {true,false} and a tag t, such that:
o ol(e) =’ and i(e) =1,

It follows from the global hypothesis x5, the local conclusion (1),
and the definitions of the rules applying to “while e do S; done”
((E— WHILEgy;p), (E — WHILE e, ), (E — WHILE e, ) and
(E — WHILEg,)50- ).

(3) ¢, =T.

It follows directly from the local conclusions (1) and (2), lemma A.7,

and the global hypothesis xo.
Case 1: v/ = false

(a) there exists a tag stores p, such that:
o [(0},p}) F S ; while e do S; done]? = X'
o =X x{THUX x{L})
® p,=p;Up,
It follows from the global hypothesis x5, the local conclusions
(1), (2), and (3), the case hypothesis, and the definitions of the

rule applying to “while e do S; done” whenever e evaluates to
false and its tag is T ((E — WHILEgse- ))-
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(b) pe = p.
It follows from the definitions of p., and p, (given in the lo-
cal conclusions (1) and (a)), the global hypothesis %o, and the
lemma A.2.

(®) po = P
It follows directly from the definitions of p, and p!, (given in the
local conclusions (1) and (a)), the local conclusions (b), and the
global hypothesis *s.

Case 2: v/ = true

(a) There exists a tag store p] such that:
o “(al,p), t’UT F Sy ; whileedo S; done o (0, p))

e p, =p;Up
It follows from the global hypothesis %5, the local conclusions
(1), (2), and (3), the case hypothesis, and the definitions of the

rules applying to “while e do S; done” whenever e evaluates
to true and its tag is T ((E — WHILE¢ ye ))-

(b) p; = pi U pe.
It follows from the definitions of p; and p. (given in the local
conclusions (1) and (a)), and the lemmas A.2 and A.3.

(®) po = po-
It follows directly from the local conclusions (1), (a), and (b),
and the global hypothesis xo

(E — SEQUENCE) then we can conclude that :

(1) Sis “Sy; S3” and there exist o1 and p; such that:
o “(o4pi), tP¢ + S1 Jm (01,p1) 7 is a sub-derivation tree of “
(0'1',,01‘), e =S Jm (UOvPO) 7
e “(01,p), tP¢ F S yam (00,p0) 7 is a sub-derivation tree of “
(Uiapi)7 e = S UM (anpo) 7
It follows directly from the definition of the rule (Ex — SEQUENCE).
(2) There exist of and p} such that:
o “(0f,p), 7 F Sy U (of,p0) 7
o (Uivp/l)a tpC/ F 52 “M (Ug,p;) 7
It follows directly from the global hypothesis %5, the local conclu-

sion (1), and the definition of the only rule applying to “S; ; Ss”
((Exp — SEQUENCE)).

(3) Vy: (pi(y) E L) = 01(y) = o1 (y).
This result is obtained by applying lemma A.6 on “ (o4, p;), tP° F

Sl ‘U’M (017p1) ” and “ (O'Zap{i)a tpCl F Sl ‘U’M (Ullapg_) " for any
variable y such that p1(y) C L.
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(4) p1=pi-
This result is obtained by applying the inductive hypothesis on
(oi,pi), tP¢ + S1 ym (01,p1)7 (sub-derivation tree of “ (o4, p;), tP°
S I (00,p0) ") and (o}, i), " + 81 Uy (o7,p;) ” for any
variable.

(®) polx) = py().
The conclusion is obtained by applying the inductive hypothesis on
“(o1,p1), t?° F Sa Um  (00,p0) 7 (sub-derivation tree of

(Ui7pi)u tPe S ll./\/l (anpo) ”) and “ (Ullapll)v tpC/ F 52 ‘U’M
(o, p)) ” using the local conclusions (3) and (4).

(E — ASSIGN) then we can conclude that :

(1) Sis “id:=¢€".
Case 1: z #id
(a) po(x) = pi(x).
It follows directly from the case hypothesis and the definition of
the rule (E — ASSIGN).

(b) p,(x) = pi(x).
It follows directly from the global hypothesis x5, the local con-
clusion (1), the definition of the only rule applying to “id := ¢e”
((E — ASSIGN)), and the case hypothesis.

(®) po(x) = po(x).
From the global hypothesis x2, p;(z) = pi(z). Hence, from the
local conclusions (a) and (b), p,(x) = pl(x).
Case 2: z =1id
(a) There exist v and t, such that:
* oi(e) = v and p;i(e) =t.
o po(x) =t. LtPC
It follows directly from the case hypothesis and the definition of
the rule (E — ASSIGN).
(b) There exist v" and ¢, such that:
e olfe) = ¢’ and pl(e) = £,
o o) = LU
It follows directly from the global hypothesis x5, the local con-

clusion (1), the definition of the only rule applying to “id := €”
((E — ASSIGN)), and the case hypothesis.
(c) te =t..
This result comes from lemma A.7 and the global hypothesis xo.
(®) polx) = py(). ,
From the global hypothesis x3, tP¢ = tP°. Then, the above result
follows directly from the local conclusions (a), (b), and (c).

[13

(E — SKIP) then we can conclude that :
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(1) Sis “skip” and p, = p;.
It follows directly from the definition of the rule (E — SKIP).
(2) po = pi-
It follows directly from the global hypothesis %5, the local conclu-

sion (1), and the definition of the only rule applying to “skip”
((E — SKIP)).

(®) po(x) = ().
From the global hypothesis x2, p;(z) = p;(x). Hence, from the local
conclusions (1) and (2), po(x) = pl(x).

O
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