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ABSTRACT

In this paper, we tackle the problem of matching of objects

in video in the context of the rough indexing paradigm. In

this context, the video data are of very low resolution and

segmentation is consequently inaccurate. The region features

(texture, color, shape) are not strongly relevant due to the res-

olution. The structure of the objects must be considered in

order to improve the robustness of the matching of regions.

Indeed, the problem of object matching can be expressed in

terms of directed acyclic graph (DAG) matching. Here, we

propose a method based on a heuristic in order to approach

object matching. The results are compared with those of a

method based on relaxation matching.

Keywords: video object retrieval, rough indexing paradigm,

error-tolerant graph matching, heuristic.

1. INTRODUCTION

This paper addresses the problem of object retrieval in video,

and more precisely, matching of a moving object extracted

from prototype video frame with objects extracted from other

frames in a video stream. Typical applications of our method

are the retrieval of objects in video-shot collections or group-

ing of the shots that contain the same protagonist into video

scenes. In video, the shape, the size and the structure of ob-

jects change mainly due to camera motion, object motion and

occlusion phenomena. Thus, the structure of the same object

at different times in a video may present significant differ-

ences.

Furthermore, our work is placed in the context of the rough

indexing paradigm [5, 16, 17]. The data considered in this

approach come from partially decoded MPEG compressed

streams. Here, we only consider the first coefficient of the

discrete cosinus (DC) transform of video frames. The DC-

images are composed of color pixels which represent the mean

values of 8 × 8 squared blocks in the original video frames.

In this way, the colorimetric and geometrical information are

strongly smoothed.

An image partition is classically represented by a region

adjacency graph (RAG). The RAG modelling allows to ex-

press the matching of segmented objects in terms of graph

matching. In our context, the segmentation of the same object

may strongly differ with time in video due to its motion, oc-

clusions and down sampling discretization. The correspond-

ing RAGs may be strongly different as well. Consequently,

an exact graph matching is not efficient [6].

Several techniques for error-tolerant graph matching are

frequently used in Content-Based Image Retrieval (CBIR) and

are more adequate for video context. Some of them [19, 21]

only consider intrinsic metrics (adjacency relations between

vertices). Other methods consider a similarity measure be-

tween the regions of objects based on region characteristics

[14, 20]. These last methods use sophisticated visual de-

scriptors (color, texture, geometry) on regions, as for instance

MPEG7 descriptors or color histogram of regions. In our con-

text of rough data, these are not relevant. Therefore, these

methods produce matching errors because of the loss of the

global object’s topology information.

Another kind of graph matching methods uses relaxation

techniques [11, 15]. Based on a similarity measure com-

puted between pairs of regions, processes of relaxation im-

plicitly evaluate neighbourhood likeliness to adjust the simi-

larity measure between pairs of regions. In this way, the re-

gions of an object are recognizable even if small local motions

of the object or segmentation errors have deformed them. In

the rough indexing paradigm, we have proposed a relaxation

matching method [5]. The results of this method will be com-

pared with those provided by the method presented here.

In the problem of object matching in video, natural ob-

jects are often articulated and even if region characteristics

vary with time, the structure of a region neighborhood would

remain stable. In this paper, we propose a matching method

that takes into account the topology of objects. The matching

is based on object structure parts that are quasi-similar in the

sense of their RAGs. We also consider the mean color of the

regions and their relative area in order to drive the matching

process.

An overview of the method is presented in figure 1. The

first step consists in building a directed acyclic graph (DAG)

associated to each segmented object. Starting from a parti-

tion of an object into 4-connected regions, we compute the

induced region adjacency graph (RAG). The vertices of the

RAG represent the regions belonging to the object and the

edges encode the neighborhood relations. Then, we transform
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Fig. 1. The overall scheme of the method

this RAG into a DAG by orienting its edges. Considering that

a region having an important area is more significant, the root

of the DAG is associated with the region having the highest

area. The edges are oriented from a region to its neighbor

regions with a smaller relative area. After this step, each seg-

mented object is associated with one DAG. The second step

(see matching process in figure 1) is devoted to the search of a

maximal quasi-similar sub-DAG between the DAGs. Intrinsic

metrics are computed for each vertex of the DAG which allow

us to define a distance between the vertices. After what, we

label the vertices of the DAG, such that two vertices with a

distance less than a given threshold have the same label. The

last step consists in propagating the labels of vertices accord-

ing to their color similarity and the labelling of children ver-

tices. Then, the vertices belonging to similar sub-DAGs have

the same label. At the end, in order to decide if the objects

match to each other, we use a similarity measure of objects

based on the relative area of the sets of regions associated to

the nodes of the similar sub-DAGs.

The paper is organized as follows. In section 2, we briefly

introduce segmentation of objects in the rough indexing paradigm

and describe how DAGs are built from RAGs. In section 3, we

introduce the intrinsic metrics associated with DAG vertices.

Section 4 describes the finding of similar sub-DAGs. The ob-

ject matching algorithm is described in section 5. Results on

natural video are presented in section 6 and a conclusion is

given in section 7.

2. SEGMENTATION AND RAG-BUILDING OF

OBJECTS FROM “ROUGH” VIDEO

In this paper, the objects that we consider are obtained as fol-

lows: first, a zone of interest that corresponds to forground

objects is extracted from the DC-frame by the computation

of the binary motion mask [16]. The pixels that have a local

Fig. 2. Original video frames with corresponding segmented

objects

motion different from the global camera motion belong to the

motion mask. Note that the zone of interest is not necessary a

connected component. Then, we partition this zone of interest

by applying a segmentation process developped in [16].

The pixels of DC-images considered here are the mean

color of 8 × 8 squared blocks in original video frames. In

DC-images the details of initial images are smoothed by this

down-sampling. The segmentation process used in this work

is based on a region growing algorithm performed with a mod-

ified watershed [16] and is applied only on the region of in-

terest (binary motion mask).

The segmentation process produces a partition P of the

zone of interest into a set {r1, · · · , rn} of 4-adjacent regions

that represents a segmented object. Each region is homo-

geneous according to a colorimetric homogeneity criterion

which expresses the difference of color vectors of pixels in

a region and the mean color vector of a region compared to a

region adaptive threshold [16]. In figure 2, two video frames

at different times are shown. The same object (an old man)

appears in both frames and the results of the foreground ob-

ject extraction (binary mask) and its segmentation (partition

into regions) are displayed under the original corresponding

frames. One can see that many differences exist due to scale

deformation, local motions (e.g. the man’s arm), partial oc-

clusion and additional background pixels.

In a classical way, we associate a RAG G(GV , GE) (where

GV is the set of vertices and GE are the edges of the RAG),

to a partition P = {r1, · · · , rn}. Each region ri ∈ P is con-

sidered as a vertex si of GV . We denote by R(s) the region

r that is represented by the vertex s in the RAG. By exten-

sion, if S is a set of vertices, R(S) corresponds to the union

of the regions associated to each vertex of S. There exists an

edge e = (si, sj) between two vertices if the corresponding
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Fig. 3. Region adjacency graphs corresponding to segmented

objects displayed in figure 2

regions R(si) and R(sj) are 4-adjacent. Due to the previous

remark, the RAG associated to an object may have more than

one connected component. The corresponding RAGs of ob-

jects of the figure 2 are displayed1 in figure 3. Here, each

vertex of a RAG is represented by a squared box centered

at a region’s center of gravity. The boxes are filled in with

the mean color of corresponding regions in image plane. The

edges depict regions’ adjacency.

The segmentation process may produce some noisy re-

gions due to the motion mask or to the down-sampling. These

regions have small area and are less relevant than regions with

a high area. A consistent way for the matching should con-

sider the biggest regions first because they represent more sig-

nificant parts of the objects. Because the RAG does not cap-

ture the area of the regions, we chose to transform the RAG

G(GV , GE) associated to a partition P into a DAG denoted

by D(DV , DE) by ordering the neighbor relations from re-

gions with a high area to smaller regions. Since the area of

the regions is close linked to the number of its neighbors,

the hierarchy that we obtain with this orientation is consistent

with regard to the importance of the regions in the objects.

Experiments have shown that considering other orders does

not improve the matching. Thus, we have DV = GV and

DE = GE where the edges of GE are directed EDGED. In

a first step, each connected component of the RAG is asso-

ciated with a connected component of the DAG. Let s be a

vertex of D(DV , DE), we denote by A(s) the relative area

of its corresponding region R(s). We define A(s) as follows:

A(s) = |R(s)|
|P| , where |R(s)| (resp. |P| corresponds to the

number of pixels of R(s) (resp. P). The inner vertices of the

DAGs are the regions that have higher area than all of their

neighbors. Let e(s, s′) be an edge of G(DV , DE), the cor-

responding directed edge e(s, s′) in D(DV , DE) is oriented

from s to s′ iff A(s) > A(s′).
In order to have only one connected DAG for each ob-

ject, we add a dummy vertex sroot as the root of the DAG

1The RAGs are drawn with the graph visualization framework Tulip [1].

Fig. 4. Direct acyclic graphs built from the RAGs displayed

in figure 3

D(DV , DE). We add an edge from the dummy vertex to each

vertex of DV with a null inner degree. In this way, the chil-

dren vertices of sroot are the regions with high relative area,

the leaves of this DAG are regions with the smallest areas.

Note that frequently, the nearer from the root the vertex is,

the higher its arity is, due to the high area of the associated

regions. Now, there exists a path from the dummy vertex to

all of the vertices of the DAG.

In figure 4 we show the DAGs built from the RAGs dis-

played in figure 3. The object associated to the left DAG is

made of two connected component. Thus, the dummy vertex

is connected to the vertices corresponding to the highest re-

gion of each component (two edges). The third edge links the

dummy vertex to a big region that has only smaller regions as

neighbors (null inner degree).

3. METRICS ASSOCIATED TO VERTICES

In this section, we describe several extrinsic and intrinsic met-

rics that will be helpful in order to predict quasi-similar parts

between DAGs. We associate with each vertex s a metric vec-

tor which is based on the structural aspects. We compute the

three following intrinsic metrics:

• the degree of the vertex denoted by δ(s),

• the number of vertices of the sub-DAG with root s de-

noted by µ(s),
• the so-called Strahler number of a vertex denoted by

σ(s).

We briefly explain this last metric. The Strahler number

has first been introduced on binary trees in some works about

the morphological structure of rivers [13, 18]. A generaliza-

tion on planar trees has been set up [3] using a nice inter-

pretation by Ershov [8]. He proved that the Strahler num-

ber of the root of the binary tree incremented by one is ex-

actly the minimal number of registers needed to compute an

arithmetical expression whose syntactical structure (parenthe-

ses) is encoded by the tree. Following this interpretation, for
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Fig. 5. Computed metrics on a DAG.

each internal vertex s having k + 1 children whose roots are

{si}0≤i≤k such that if i ≤ j then σ(si) ≥ σ(sj), the Strahler

number σ(s) is given by :

σ(s) =











1 if s has no child

max
0≤i≤k

(σ(si) + i) if s has k + 1 children si

The degree δ(s) measures the local ramification of the

vertex, and by this way if the region R(s) is adjacent to many

regions, the degree will be high. The number of vertices µ(s)
captures the number of regions which are not directly adjacent

to R(s) but can be reached from R(s) using a sequence of ad-

jacent regions, with respect to the orientation of the DAG. A

high Strahler number σ(s) means that the DAG reached from

s is highly ramified. Thus in a certain sense, how the regions

reachable from R(s) are parcelled out.

Note that δ, σ and µ are not in the same interval. Thus,

we normalize the values in [0, . . . , 1] as following. Let ν be a

metric, the normalized value ν̃(s) of a vertex s is given by:

ν̃(s) =
ν(s) − νmin

νmax − νmin

where νmin = min
s∈DV

ν(n) and νmax = max
s∈DV

ν(s).

Due to the structure of a DAG which is “tree-like”, these

definitions are also valid on DAG.

The figure 5 shows an example of the valuation of each

metrics on a DAG. A same color on vertices represents a same

value.

Note that all the parameters used in this paper are invariant

to usual transformations of object such as rotation, translation

and scaling. Consequently, the heuristic that is based on these

is robust to such transformations.

Moreover, the intrinsic parameters described above do not

fully capture the complexity of the objects. Indeed, the larger

the region is, the more relevant these metrics are. Since our

goal is to recognize quasi-similar object extracted from im-

ages, extrinsic parameters such as the color or the surface of

the regions will be helpful information to improve the recog-

nition based on structural data. In the section 4.2, we describe

how extrinsic parameters are used to guide the recognition

process.

4. FINDING SIMILAR SUB-DAG

At the Infovis’03 Conference contest [9] on pairwise compar-

ison of trees, an assigned task was to find similar sub-trees

that have moved:

• the sub-trees are not in the same place in the hierarchy,
• slight changes occur between the two sub-trees

We call them quasi-similar sub-trees. Due to the property of

DAGs (no cycle), finding “similar sub-trees in a tree” is not

far away than finding “similar sub-DAGs in a DAG”. More-

over finding “similar sub-DAGs in a DAG” or ”similar DAGs

in several DAGs” are one and the same task. In the last case,

one just needs to build a DAG with a dummy vertex (its root),

which has sub-DAGs that are the DAGs to be compared. In

the case of trees, works have already been done based on ver-

tices’ degree by Zemlyachenko [21] and then by Dinitz et

al. [7]. However, these algorithms only detect isomorphism

and do not provide a measure of similarity for sub-trees. More

recently, Gupta et al. [12] gave a nice algorithm for determin-

ing the largest tree embeddable in two trees but the complex-

ity of their algorithm is O(n2) (where n is the whole number

of vertices of the two trees). In order to give a response to

the Infovis’03 task, we have designed a heuristic [2] that can

suggest, by labelling, similar parts in a tree (similar sub-trees

have a same label).

Here, we adapt this heuristic in order to capture objects

in the video content. In the following, we will denote by

D(DV , DE) and D′(D′
V , D′

E) the two DAGs to be compared.

The algorithm assigns labels to vertices of the two DAGs so

that if vertices of two subsets S included in DV and S′ in-

cluded in D′
V are identically labelled, then the associated re-

gions R(S) and R(S′) correspond to the same part of the

same object.

The algorithm is in three steps :

• Compute normalized intrinsic metrics for each DAG

(see section 3),
• Roughly classify the vertices i.e. if two vertices in D

and D′ have close intrinsic metric values, label them by

a same integer (section 4.1),
• Compute the final labelling λ by a propagation process

(section 4.2).

4.1. Classification of the vertices by structural similarity

computation

Let s and s′ be respectively in DV and D′
V then, we label

them by the same integer if

(δ̃(s) − δ̃(s′))2 + (σ̃(s) − σ̃(s′))2 + (µ̃(s) − µ̃(s′))2 ≤ ǫ.
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Fig. 6. Vertices classification by structural similarity. The

label values of the vertices are mapped on a color palette. A

same value corresponds to a same label.

where ǫ is a given threshold that defines how tolerant the clas-

sification is according to the structural metrics. Note that a

null value for ǫ induces an isomorphic sub-DAGs searching.

Experiments have shown that the value ǫ = 1
n

, where n is

the whole number of the vertices of DV and D′
V , provides

good results. A vertex v of DV is not compared with all of

the vertices of D′
V to find its label. In our method, we use

a cover tree data structure in order to improve the computa-

tional complexity. The insertion of a new element v in this

cover tree (that corresponds to the finding of its label) is in

O(nlog(n)). We refer the reader to [4] for more details about

this data structure.

Let l(s) be the label of a vertex s. By the classification

process, we get l(s) in [1, .., lmax]. The value 1 is associ-

ated to the DAGs’ sink nodes and the value lmax is associ-

ated to the vertices with the highest Strahler value. Note that

l depends on the visit order of the vertices. Because Strahler

numbers express the reachability of vertices from a vertex, we

have chosen to visit the vertices in the reverse order of their

Strahler numbers that is first the vertex which has the highest

associated value.

Let S be a set of vertices. In the following, we will denote

by FS(n) the vertices familiy of S labelled by a same value

n. We have

FS(n) = {s ∈ S, l(s) = n}.

In order to simplify the notations, we will denote in the fol-

lowing by F(n) the vertices family FDV ∪D′

V
(n).

The figure 6 shows the result of the vertices classification

by structural metrics similarity. A same color is used for a

same label value.

4.2. Matching process by propagation

In this last step, we identify patterns by incorporating chil-

dren of parent vertices into the family of these parents if the

children are almost similar.

After the classification step described in the previous sec-

tion, if for two vertices s and s′ taken from two different

Fig. 7. Matching of vertices by label propagation on the

DAGs of the figure 6. A same color on vertices means a same

label.

DAGs, the intrinsic parameters computed for s and s′ are

close, they have the same label l. We then infer that the as-

sociated regions R(s) and R(s′) represent the same part of

a same object. We propose here to compare the composition

of the descent of s and s′ in order to identify a quasi-similar

pattern. Let C(s) (resp. C(s′)) be the set of children of s

(resp. s′). If the labels of C(s) and C(s′) are almost identi-

cal, we extend the label value of the parents to their children:

a quasi-similar part has been identified.

We do not only rely on the topology. We propose to con-

sider an extrinsic parameter (the mean color of the regions)

in order to reinforce the first supposition given by structural

similarity of the vertices. The mean color of a region R(s)
associated to a vertex s is defined in the RGB space by:

(R̄R(s), ḠR(s), B̄R(s))
T

where R̄R(s), ḠR(s) and B̄R(s) correspond to the red, the

green and the blue component values of the mean color of

the region R(s).
The closer the regions are in terms of color (euclidean

distance), the more tolerant the propagation process is. This

means that we adjust the tolerance to the differences there

exist between the labels of C(s) and C(s′) by the color simi-

larity ρcol(s, s
′) defined as follows:

ρcol(s, s
′) = 1 −

√

∑

C∈{R,G,B}

(C̄R(s) − C̄R(s′))2

More formally, let us build a new labelling λ on the ver-

tices. At the initial step, λ is set to l. Let s and s′ be in a same

family F(n). Let τ be a real, τ ≥ 1. Then, if, for each integer

n′ which labels a vertex of C(s) ∪ C(s′)

|card(FC(s)(n
′)) − card(FC(s′)(n

′))| ≤ τ ∗ ρcol(s, s
′)

then for each v ∈ FC(s) ∪ FC(s′) we fix λ(v) = n.

Here, the parameter τ fixes the structural tolerance be-

tween the children for the pattern retrieval. It defines the no-

tion of quasi-similarity of the descent in the structural point

of view.
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(a)

1.00 0.99 0.97 0.97 0.97 0.96

(b)

1.00 0.92 0.89 0.84 0.84 0.82

Fig. 8. Our heuristic 5 best retrievals.

(a)

1.00 0.81 0.80 0.80 0.74 0.74

(b)

1.00 0.74 0.70 0.52 0.50 0.48

Fig. 9. Method based on relaxation 5 best retrievals.

This process is done in a top-down traversal on sub-DAGs

and stops as soon as s or s′ is a well and all vertices have

been visited. There is no backtrack that is, as soon as the

label has been propagated to children, they are included in the

pattern and their label will not change anymore. Of course,

the visit order influences the computation. Choosing the best

pair of vertices would increase drastically the complexity of

the algorithm. Thus, in each DAG, the vertices are visited in

a decreasing order according to the relative area A of their

associated regions (see section 2 for the definition of A).

The dummy vertices are not used in the classification pro-

cess described in the previous section. Thus we label them by

λmax + 1. In this way, the propagation process begins with

the two dummy vertices which represent the two objects to

be compared. When all of the vertices of a family of label

n have been visited (and recursively the children in the case

of matching), the process continues by considering unmarked

vertices of the next family (label n− 1) until all vertices have

been visited for matching.

Note that the retrieval is not based on the matching of the

dummy vertices of the DAGs. The process aims to recognize

patterns (sub-DAGs) into the DAGs. When two similar par-

ents propagate their label to their children, both parents and

children are marked as matched vertices.

The figure 7 illustrates the result of the propagation pro-

cess applied on the DAGs displayed on figure 6. Colors rep-

resent the different families of nodes (the color of the parents

has been propagated to the children). The red colored parts

of the DAGs corresponds to the quasi-similar pattern that has

been identified between the two sample DAGs of figure 6.

5. SIMILARITY MEASURE OF OBJECTS

The similarity measure we use in this paper corresponds to

a size evaluation of the part of objects that have been identi-

fied as quasi-similar. Let D and D′ be two DAGs that repre-

sent objects to be compared. Let S and S′ be the vertices of

D and D′ respectively corresponding to the marked vertices

(vertices identified as belonging to similar pattern). Remind

that a vertex is marked when, during the label propagation

process, it is considered in a label propagation (as a parent if

it propagates his label to children or as a child if it takes the

label of its parent).

The similarity measure θ(D, D′) between the objects rep-

resented by the DAGs D and D′ is defined as follows:

θ(D, D′) =
1

2
(
∑

s∈S

A(s) +
∑

s′∈S′

A(s′))

We recall that A(s) (introduced in section 2) corresponds

to the relative area of the region R(s) associated to the vertex

s according to the whole area of the object partition.

The similarity measure θ evaluates the area of objects that

has been matched. This means that we first compute the

whole relative area of matched regions for each set S and S′.
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The object similarity measure then corresponds to the mean

of these two values.

This measure is used to order the objects contained in the

video database by similarity with a query object request.

6. RESULTS

We have tested our method for objects retrieval in sequences

at DC-resolution taken from CERIMES c©MPEG2 compressed

documentaries. The segmented objects are extracted from

DC-frames of size 76 × 92 pixels and at the temporal res-

olution of two frames per second.

The sequences are taken from CERIMES c© documentary

videos Aquaculture en méditerranée, De l’arbre à l’ou- vrage,

Le chancre and Hiragasy and contain about 5,000 frames from

which objects have been extracted. For the experiments, 100

objects corresponding to people have systematically been cho-

sen randomly from the video objects database.

We have evaluated the performance of our method in the

context of query by example. Retrieval systems often present

query by example results in terms of k best matches [10, 20].

A match is correct if the object represents the query. Two ex-

amples of object retrieval are shown in figure 8. The scores

under frames correspond to the object similarity measure θ

as defined in section 5. The example (a) illustrates the abil-

ity of our method to retrieve the same object under different

conditions: the similarity measures are good even if the same

old man appears in two different shots. Note that the scores

obtained for the objects taken from the same shot than the

query are less than the best match which is extracted from an-

other scene. This is due to the quality of the motion mask

that defines the region of interest. The zone of interest is

automatically computed by a motion analysis [16] and does

not exactly correspond to the foreground object contained in

the frame (static parts of objects may be not detected by the

motion detection and small background regions that was oc-

cluded in the previous frames are often included into the mo-

tion mask). In this way, the recognition method will not be

able to correctly recognize objects because of the inaccuracy

of the motion mask. In the example (b), the four best re-

sponses are relevant. The fifth does not represent the same

object. However, the structures of the two considered objects

(standing men with dark trousers and bright squirt) are very

close to each other. The topology of the objects are similar

enough not to be disturbed by the color tolerance coefficient

used in this article.

The interest of considering local neighborhoods for region

matching process has been shown in our previous work that

uses relaxation techniques [5]. In the paper, starting from an

initial similarity measure between pairs of vertices, we itera-

tively update by increasing or decreasing the similarity value

according to the likeness of their neighborhoods.

In [5], the strategy consists in the use of the local structure

of the objects to refine a similarity measure based on regions
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Fig. 10. Object retrieval precision for different values of k.

features. The heuristic defined here proposes to reverse the

problem. It begins by capturing a structure similarity and it

drives the propagation process using the regions visual fea-

tures.

We have compared the method based on relaxation tech-

niques [5] with the approach proposed in this paper. The

precision figures for different values of the number of best

matches k for both methods are plotted in figure 10. Preci-

sion is computed as being the ratio between the number of

correct matches and k.

Both approaches provide comparable results. The heuris-

tic is more precise for the three first responses whereas the

relaxation offers a better precision for more than 8 responses.

In [5], the whole topology of objects is not taken into account

and two large regions that are close enough to be matched, can

imply a high object similarity. These problems are avoided in

the heuristic approach because both of global topology of the

object, local neighborhood and color features of the regions

are used to identify common patterns between the two objects

we compare.

The heuristic is not altered by usual deformations such as

rotation, translation and scaling because the structure of ob-

jects is invariant to these. It is also robust to image alteration

(contrast and luminosity variation, blur, noise) because the

only color similarity parameter is altered by these changes.

7. CONCLUSION

In this paper, we have presented a new approach to the prob-

lem of object matching recognition in video in the context of

the rough indexing paradigm. In this context, classical meth-

ods mainly based on region features are inefficient because

image data are scarce due to the down-sampling. This lack

of information requires to consider the structure of the object

as the most relevant information. Therefore, we use intrinsic

parameters in order to compare the structure of the DAGs as-

sociated with segmented objects. The vertices with a same la-

bel in the classification process have a quasi-similar structure.

The prolongation of the labelling function is driven by color
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similarity between regions associated to vertices. In this way,

the visual similarity between regions allows us to be more

tolerant to structural differences.

This approach offers good results in the rough indexing

paradigm. The domain of application of this methods may be:

retrieval of video shots that contain a given object, semantic

inventory of video shots into video chapters or scenes.

Now, we plan to investigate our method for image in full

resolution. The scheme of algorithm will stay the same for

the structural labelling, concerning the prolongation we have

to define the visual feature vector that will be more complete

than the one used for rough data. Moreover, we have to tune

the threshold τ to adapt the heuristic to a such resolution.
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