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Abstract

Topographic maps are a common support for geograph-
ical information because they have the particularity to por-
tray the relief through a set of contour lines. This to-
pographic feature can be very useful in many context but
the automatic extraction of this information is not an easy
task, especially because the map contains many other lay-
ers which overlay the contours. In this paper we propose
an automatic approach to reconstruct gaps in contour lines.
Our novel parameterless reconstruction scheme is based on
the extrapolation of the gradient orientation field from the
available pieces of thinned contours. A weight is then af-
fected to each pair of end-points according the force needed
by its potential reconstructed curve to cross the field. The
computation of the optimal global solution is obtained by
solving a perfect matching problem. We finally use the ori-
entation flow to fill the gaps with a smooth curve that re-
spects the tangents at the en-points.

1 Introduction

With the evolution of data acquisition, storage tech-
niques and the growth of planet-wide networks accessible
through a large amount of different devices, Geographical
Information Systems (GIS)-based applications are more and
more used.

While modern topographic maps (also known as con-
tour maps, ie. maps describing the topology of a part of the
earth) are issued from GIS, large libraries of paper maps (of
recent or older ages) are still available and provide a low-
cost alternative to expensive and incomplete remote sens-
ing databases. Thus, the digital acquisition of these maps
becomes necessary for example to analyze and use the rep-
resented terrains with today’s tools.

The most interesting data contained on topographic maps
are obviously the contours lines, which are imaginary lines
that join points of equal elevation on the surface above or
below a reference surface such as the mean sea level. How-

Figure 1. Sample of the topographic map of
lake Winnibigoshish, Minnesota.

ever, traditional topographic maps show much more than a
contour map layer: it can portray rivers, roads, buildings,
forest areas, etc. An issue for an automatic extraction of
contours is that these other symbols overlay the contours
layer. Thanks to the specific contour lines colors, the extrac-
tion of the contour lines layer is made easy. This process,
unfortunately, produces gaps in the contours lines. While
previous work in the area provide local and non optimal so-
lutions, we introduce a novel global approach to fill these
gaps based on the orientation field generated from the avail-
able pieces of thinned contours. Our technique tends to
imitate the good continuation law of Gestalt which charac-
terizes human vision perception. This principle states that
graphic elements that suggest a continued visual line will
tend to be grouped together in our mind. In our approach
we will also consider the principle that a topographical con-
tour line is expected to be almost parallel to its adjacent
contours.

This paper is organized as follows: In a first part we an-
alyze previous approaches that have been proposed for the
general problem of contour lines vectorization from topo-
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graphic maps. In section 3 we present the 3 steps of our
reconstruction technique. Finally, we quickly present our
results before to conclude.

2 Related work

Automated recognition of topographic map has been go-
ing on for many years resulting in a huge amount of publi-
cations. Early reports about the vectorization of line draw-
ings already introduced the main necessary steps of any au-
tomatic procedure: i) digitalization of the original paper
document; ii) filtering; iii) thresholding; iv) thinning and
pruning the binary image; v) raster to vector conversion.
These steps can be found in [14] for the automatic vector-
ization of clean contour and drainage/ridge sheets, in [11]
for an early attempt to extract elevation contour lines on to-
pographical maps. In this paper, we focus on task v) and
especially on the problem of gap filling. Therefore, in this
section we point out only references to this specific problem
in the raster to vector procedure.

The image based approach. The most common ap-
proach for the raster to vector conversion are strictly based
on perceptual principles. Indeed, to decide for closing or
grouping two different segments/pixels, the main two crite-
ria used are proximity and continuity.

In [8], a raster to vector technique is presented to pro-
cess paper-based maps. The problem of gap reconstruction
is solved by assuming that there is only one possible con-
tinuation from an end-point. The natural continuation can
be found along the current direction of the line. The gap is
crossed by searching from the point at the end of the line
within a sector around the current direction. This approach
was recently used in [3]. In [2], the 5 steps mentioned
earlier are used to reconstruct contour lines from color to-
pographical maps using a techniques based on mathemati-
cal morphology. A combination of Euclidean distances be-
tween extremities and differences between their tangential
directions is used to join the disconnected lines in a very
locally fashion. This latest approach is also used in [12]
coupled to a A* search algorithm.

Albeit attractive because of their simplicity, all the exist-
ing closing algorithm based on perception criteria fail (see
figure 2).

The geometric based approach. The curve reconstruc-
tion problem can be analyzed as an instance of the more
general problem: given a finite sample V of an unknown
curve λ, the task is to construct a graph G = (V,E) in such
a way that two points in V are connected by an edge of G
iff. the points are adjacent on λ. The graph G is called
a polygonal reconstruction of λ. The curve reconstruction

Figure 2. Problem of image based recon-
struction.

problem has received a lot of attention in the graphics and
the computational geometry community and a great amount
of work has been written. The first algorithms for curve re-
construction imposed a uniform sampling condition, as they
basically demanded that the distance between any two ad-
jacent samples must be less than a given constant. This is
not satisfactory as it may require a dense sampling in areas
where a sparse sampling is sufficient.

[1] introduced the concept of the local feature size (dis-
tance of a point to the medial axis of his curve). Using this
concept they define a non-uniform sampling condition that
allows for sampling of variable density. Then they give an
algorithm that, from a sample set of a collection of smooth
closed curves, which satisfies this sampling condition, com-
putes the correct reconstruction. This algorithm works by
computing the Delaunay Triangulation of the point set and
then filtering it to obtain the reconstruction. [5] extended
this work to handle a collection of open and closed smooth
curves also using Delaunay filtering. [6] gaves an algorithm
that allegedly handles well corners and endpoints. The algo-
rithm has no guarantee and, in fact, it is not difficult to find
counterexamples where it fails. Recently, in [15], authors
propose to vectorize the contour lines using a Delaunay tri-
angulation where the Delaunay edges are filtered using both
local and global rules. However, the global approach they
used is not optimal while it use a greedy algorithm and the
connecting rules are strictly geometric.

The gradient vector flow approach. As say, our method
is based on the gradient orientation field generated by the
input contour lines. However, orientation field has already
been studied in image analysis. For example, [4] present
how an orientation interpolation operator can be used to re-
cover geometrical information in images. Another applica-
tion to snakes is given in [10].

3 Contours reconstruction

Overview In this paper, we don’t address the specific
problem of contour lines extraction from color or grayscale
maps. We assume that this step as already been performed.
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The presented technique requires a binary map made of
spaghetti contours.

The basic idea of our technique is to reconstruct the
global gradient orientation field of the available contours
lines and to use it in a globally way to find the natural pairs
of end-points which should be reconnected. Once match-
ing has been obtained we also use the orientation field to
ensures a smooth reconstruction.

The workflow of our algorithm can be summarized as
follows: i) gradient orientation field generation from con-
tour line normals; ii) matching end-points; iii) fill the gap
between each pair of end-points.

3.1 Orientation field generation

The first step of our algorithm consists in a orientation
field generation over the full map starting from the gradients
computed over the input contour lines. Actually, it is very
important to understand that we are not interested in vector
direction, we only rely on vector orientation. The field F is
a m× n array (size of the input image) of real angle values
between ]− π, π[.

This field is the key of our method therefore we put spe-
cial attention for this task. The orientation field computa-
tion is achieved by: i) computing the orientation of normal
vectors on each pixel of the given contour lines; ii) interpo-
lating the orientation values on background pixels.

3.1.1 Computation of contours’ normal

It is not that obvious to compute normal vectors for each
pixel on a discrete curve. Some very specific methods for
2D tangent estimation are studied in the field of discrete
geometry (most efficient techniques are compared in [13]),
however after some tests, the computed tangent were not
smooth enough for our needs. We rather made the choice
to interpolate each contour line with a B-spline and then,
evaluate the normal vector accurately. As said before, we
are only interested in the vector orientation but not in the
vector direction.

Figure 3. Orientation of normals on B-spline
interpolating a contour.

Figure 4. Streamlines of the reconstructed
orientation field for 2 cases of study.

The B-spline interpolation of contours can be seen as a
raster to vector operation. Because contours in the image
are previously thinned to a 8-connected component, this op-
eration is an easy task. We evaluate the B-spline derivative
along the contour line using the de Boor’s algorithm and
calculate the normal vectors (see figure 3). The angle of the
normal vectors are stored in the field F as orientation.

3.1.2 Field interpolation

Once each normal orientation is known on the input con-
tour lines, we can proceed to a field interpolation. Our goal
is to estimate the orientation of the normals at every point of
the image. Such an interpolation is traditionally solved by
solving a partial differential equation (PDE). For example,
an AMLE interpolation operator is presented in [4]. How-
ever, we rather propose a faster implementation based on a
front propagation of known values. The function Θ is a key
function which computes the mean orientation of a point p
using a 3× 3 window in the 8-neighborhood N(p) of p:

Θ(p) =

∑
q∈N(p) Λ(F (q), F (p))

|N(p)|
(1)

The function Λ ensures the consistency of the orientation
operations between two angles α and beta in F :

Λ(α, β) =


α ifd1 = min(d1, d2, d3)
α + π ifd2 = min(d1, d2, d3)
α− π ifd3 = min(d1, d2, d3)

(2)

with d1 = |β−α|, d2 = |β−α−π| and d3 = |β−α+π|.
Figure 4 shows the stream lines of the orientation fields

obtained for 2 simple sets of contours (circular and linear).

3.2 Connecting end-points

To fill gaps in contour lines we always have to match
two end-points. Similar problems are well known in graph
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theory as the Matching problem. In this part, we determine
pairs of contour extremities which should be connected to-
gether. This is done in two steps: i) computing the energy
needed to go from one end-point to the other through the
orientation field; ii) solving the perfect matching problem.

3.2.1 Matching’s weight estimation

For each pair of end-points, we associate a weight given by
an energy function. This function must be defined in such
way that: i) the energy is zero if the end-points directly meet
together by following the flux line, ii) the energy is maximal
proportionally to the path length if the path to join them is
everywhere normal to the gradient orientation field. The
weight function is calculated as follows:

ω(e1, e2) =
1∑

t=0

∣∣∣−−−→p− q ·
−−→
F (p)

∣∣∣ . (3)

The matrix W is constructed by calculating function ω for
each pair of end-points. Figure 5 illustrates the reconstruc-
tion scheme: in black are the original contour lines C1 and
C2, in light gray the contour lines issued from the end-
points of e1 and e2, and, in blue are the pixels of the curve
reconstructed using the algorithm described in 3.3.

3.2.2 Perfect matching

Once the matrix W has been computed, we proceed to the
global matching of the end-points. Let G(V,E) be a graph
and w : E → R the cost function, for example the function
3. A perfect matching of G is a subset M ⊂ E such that
every vertex of G is incident to exactly one edge of M . The
weight w(M ) of a matching M is the sum of the weights
of its edges. The problem is to find a perfect matching of
maximum weight. This problem can be solved in polyno-
mial time by the algorithm of Edmonds [7]. We solve the
matching using the implementation in O(N3) based on the
Gabow’s work [9].

3.3 Smooth gap reconstruction

Once the matching obtained, we have to fill the gap be-
tween these end-points. Several methods exist: the simplest
one is of course to draw a line segment, but it is obvious that,
in most cases, it gives a bad looking result and even it can
cause topological errors (see figure 6). A better result can be
obtained by drawing a Bezier curve or even better a Hermite
interpolation. However, we just have tangents’ orientation
at the end-points, therefore, we had to find a suitable inter-
polation process that fills the gaps obtaining a smooth curve
with tangents

−→
t1 and

−→
t2 at the end-points (see figure 5).

For each contour line end-point, we store the contour
lines (in this case, the points obtained by integration of the

Figure 5. Reconstructed contour between a
pair of end-points.

gradient of the gradient field) that is the points which nat-
urally continue the contour line in the reconstructed field
(gray curves in figure 5).

As said, the basic idea is to linearly interpolate the flow
field based contours issued from each pair of end-point e1

and e2. The points are stored in 2 queues Qe1 and Qe2

of respective size S(Qe1) and S(Qe2). The coordinates of
such points are parameterized as follows:

p(t) =
(

xpe1 (t) ∗ (1− t) + xpe2 (t) ∗ t

ype1 (t) ∗ (1− t) + ype2 (t) ∗ t

)
(4)

where t takes its value in the interval [0, 1], pe1(t) =
Qe1 [S(Qe1)∗ t/d], pe2(t) = Qe2 [S(Qe2)− (S(Q2)∗ t/d)].
Qe1 [x] denotes the xth point in the queue Qe1 and d is the
Euclidean distance between the two end-points.

4 Results

Figure 8 depicts the reconstructed contours obtained
with our method. The reconstructed field is shown in fig-
ure 7. The size of the map is 1278 × 903 pixels. On a

Figure 6. Problem of image based recon-
struction.
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Figure 7. Streamlines of the reconstructed
orientation field from the input contours.

Figure 8. The reconstructed contour map.

Core 2 Duo at 1.86GHz, the total computing time is about
23 seconds: 22s for orientation field interpolation and less
than 1s for the matching and reconstruction steps. We can
see that 100% of the gaps were correctly restored and the
reconstructed parts are smooth and look natural. We have
performed our technique on several other maps with com-
parable excellent results. In the worst case, there were one
or two errors.

5 Conclusion

We have presented an elegant, parameterless and effi-
cient technique to reconstruct broken contour lines. Our
method is based on the gradient orientation field of input
contours. The global aspect of the reconstruction is based
on both the orientation field and the perfect matching per-
formed on all potentially matching end-points. The ob-

tained results on different maps are very satisfying in both
term of error rate and look.

Our method has been applied to reconstruct topographi-
cal contour lines but it could be applied in many other appli-
cations in document analysis and computer vision domains.
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