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Abstract This paper considers the problem of change-point detection for

noisy data. Estimation of signal frequency content relies on differential

algebra and non-commutative algebra together with operational calculus.

We adapt this approach to the study of changes that may be observed in

EEG signal dynamics during epileptic seizure and in ECG signal during

the occurrence of a QRS complex. The correlation with frequency change

is what this idea is based on. The interest of our estimator is firstly

illustrated according to several academic examples. Then, the method is

applied on real physiological signals to detect abrupt frequency changes.

Keywords. Abrupt change, differential algebra, non-commutative algebra,
operational calculus, EEG, epileptic seizure, ECG, QRS complex.

1 Introduction

For some years, the techniques of automatic, control, estimation together with
diagnosis have always been applied more frequently in biology as well in medi-
cine. In these fields, it is either a question of facilitating the decision-making
of the specialist by highlighting particular phenomena or by assuring a control
constantly.
In this paper, we are interested in the problem relying on automatic detection
of changes that occur in physiological signals such as the epileptic seizure in
EEG signal and the occurrence of QRS complex in ECG signal. In the analysis
of epileptic seizures, it has long been noted that the frequency content often
changes during seizures. ’In the most fundamental terms, electrographic seizure
activity is manifested by a sequential change in frequency and amplitude that is
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distinct from non-seizure activity and in most instances it is also distinct from
artifacts’(Gabor et al. [16]). The two main aspects to consider are the following:
- the frequency aspect,
- sequential change1.
Nowadays, the major part of the proposed solutions is inherent to representations
and time-frequency studies of signal [1, 26, 27, 29]. The independent components
analysis is also a recent method applied to the epileptic EEG [17, 18].
In the electrocardiogram (ECG), the most relevant tasks are the detection and
the characterization of the QRS complex. As a result much information about
the current state of the heart can be obtained. QRS detection is difficult not only
because of the physiological variability of the QRS complexes but also due to the
various types of noise that can be presented in ECG signal. Many QRS detection
schemata are described in the literature [30] and are still being proposed [31].
Many practical problems arising from signal processing can be modeled with
the aid of parametric models in which the parameters are subject to abrupt
changes at unknown time instances. By abrupt changes, we mean changes in
characteristics that occur very fast with respect to the sampling period, if not
instantaneously. The detection of abrupt changes refers to tools that help us
decide whether such change occurred in characteristics of considered object [2].
The detection of abrupt changes in a signal is also the subject of an abundant
literature [2, 4, 5, 7, 23]2.
In addition, identifying a signal frequency in continuous time is a very hard chal-
lenge using classical linear analysis. That is why we choose to use a new tool
that is based on differential algebra, non commutative algebra and Mikusiński
operational calculus [24, 25]. Our algebraic approach for the abrupt frequency
estimation changes had never been used in the analysis of the physiological sig-
nals. As a contribution, we suggest to improve the detection of abrupt changes in
physiological signals by following-up the changes which reflect their appearance.
The Work presented in this article aims at epileptic seizure detection in EEG
and QRS complexes detection in ECG thanks to an estimation in continuous
time of the signal frequency. Thus, a change-point or abrupt variation of the es-
timated frequency will translate a seizure occurrence in EEG or a QRS complex
occurrence in ECG.
This paper is organized as follows: the algebraic setting for linear identifiability
is tackled in the next section. In section 3, the method is tested on academic
signals built from scenarios which is elaborated with an expert describing an
abrupt frequency changes. Then, the method is validated on real physiological
signals recorded. A brief conclusion evokes some future perspectives.

1 These sequential changes are generally abrupt. They will be considered as change-
points.

2 These lists are not exhaustive otherwise the reader will be able to find other refer-
ences there.
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2 An algebraic setting for linear identifiability

In this section we recall the recent results obtained in estimation. For further
details, the reader would be referred to the following articles [9, 10, 11, 12, 13,
15, 21, 22, 20].

2.1 Differential algebra

A differential ring3, or more precisely, an ordinary differential ring, R is a com-
mutative ring which is equipped with a single derivation, written here d

ds
, i.e., a

map R → R such that, ∀ a, b ∈ R,

–
d
ds

(a + b) = da
ds

+ db
ds

,
–

d
ds

(ab) = da
ds

b + a db
ds

.

A differential field, or more precisely, an ordinary differential field, is a differ-
ential ring which is a field4. A constant c ∈ R is such that d

ds
(c) = 0. A differential

ring (resp. field) of constants is a differential ring (resp. field) whose elements
are constants. A differential field extension L/R is given by two differential fields
R, L, such that:

– R ⊆ L,

– the restriction to R of the derivation of L is the restriction of R.

Note that R〈S〉, S ⊂ L, the differential subfield of L generated by R and S. As-
sume that L/R finitely generated, i.e., L = R〈S〉, where S is finite. An element
ξ ∈ L is said to be differentially algebraic over R if, and only if, ξ satisfies an
algebraic differential equation P (ξ, . . . , ξ(n)) = 0, where P is polynomial over R
in n + 1 indeterminate. The extension L/R is said to be differentially algebraic
if, and only if, any element of L is differentially algebraic over R. The following
result plays an important role: the extension L/R is differentially algebraic if,
and only if, its transcendence degree is finite [22].
An element of L which is not differentially algebraic over R is said to be dif-
ferentially transcendental. A differentially transcendental extension L/R is an
extension which is not differentially algebraic. A set {ξι ∈ L | ι ∈ I} is said to be
differentially algebraically independent over R if, and only if, no trivial relation

exists over R: Q(ξ
(νι)
ι ) = 0, where Q is a polynomial over R, imply: Q ≡ 0. An

independent set which is maximal with respect to inclusion is called a differen-
tial transcendence basis. The cardinalities, i.e., the numbers of elements, to such
bases are equal. This cardinality is the differential transcendence degree of the
extension L/R. Note that this degree is 0 if, and only if, L/R is differentially
algebraic.

3 See [6, 19] for more details
4 see [6, 19] for more details. All fields are assumed to be of characteristic 0.
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2.2 Linear identifiability

Let k0 be a given ground field, which is assumed to be a differential field of
constants. Let k be a finite algebraic extension of k0(θ) where θ = (θ1, · · · , θr)
is a finite set of unknown parameters. Thus, the transcendence degree of the
extension k/k0 is ≤ r. Moreover, we give to k a canonical structure of the
differential field of constants. Let K/k(s) be a finitely generated differentially
algebraic extension. A signal x is an element ok K.

Remark 1. The Mikusiński M, generated by Mikusiński’s operators [24, 25, 28]
is a differential field with respect to the derivation d

ds
which corresponds to mul-

tiplication by −t. Its subfield of constants is C.

The set of linear differential operators of the form
∑

fini aα
dα

dsα , aα ∈ k0(s), is a

commutative ring, principal left and right; it is written k0(s)[
d
ds

]. A differential
operator is said to be proper (resp. strictly proper) if, and only if, the coefficients
are proper (resp. strictly proper) rational functions (we remind that rational
functions are said to be (strictly) proper if, and only if, the degree of numerator
is (strictly) less than the degree of denominator). It is said to be polynomial in
1
s

if, and only if, aα ∈ k0[
1
s
].

The parameters θ are said to be linearly identifiable5 with respect to x ∈ K
if, and only if,

P







θ1

...
θr






= Q (1)

where the entries of the r × r square matrix P , and the r × 1 vector Q, belong
to spank0(s)[

d

ds
](1, x), and det(P) 6= 0.

2.3 Linear estimators

Let N/k0(s) be a differential field extension such that K and N are linearly
disjoint over k0(s). A noise n, or a perturbation, is an element of N . It is said to
be structured if, and only if, it is annihilated by π ∈ k0(s)[

d
ds

], π 6∈ k0(s): πn =
0, π 6= 0. If not, the noise is said to be unstructured. A signal with an additive
noise is a sum x+w, where x ∈ K and w ∈ N a noise. Let y = (y1, . . . , yκ), where
yı = xı + wı be a finite set of such noisy signal depending upon the parameters
θ. If the parameters θ are linearly identifiable, then (1) becomes

P







θ1

...
θr






= Q + Q′ (2)

where the matrices P and Q are obtained from (1) by substituting y to x. The
entries of the (r×1)-vector Q′ belong to spank′(s)[ d

ds
](w), where k′ is the quotient

field of k ⊗ko
k1, and w = (w1, . . . , wκ).

5 This definition is borrowed from [9, 10, 11, 12].
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Remark 2. In practice we will assume that an unstructured perturbation corre-
sponds to a rapidly oscillating time-function, i.e., a high frequency signal, which
may be attenuated by a low pass filter.

Assume that the components of w are structured. Multiplying both sides of (2)
by △ ∈ k0(s)[

d
ds

], leads to the following estimator:

△P







θ1

...
θr






= △Q (3)

This result derives from the fact that k0(s)[
d
ds

] is the left ideal annihilator’s
entries of Q′. Equation (3), which is independent of the noises, is called a linear
estimator of unknown parameters if, and only if, det(∆P ) 6= 0. The estimator
is said to be proper (resp. strictly proper) if, and only if, the entries of △P and
△Q are (resp. strictly) proper differential operators. Multiplying both sides of
(3) by a suitable proper element of k0(s) yields the

Proposition 1. Any linear estimator may be replaced by a proper (resp. strictly
proper) one.

2.4 Simple example of estimation

In order to explain the used approach, let us start with an example with a first
order linear input-output system :

ẏ(t) = ay(t) + n(t) (4)

for t ≥ 0, where a is an unknown parameter to estimate and n(t) a noise cor-
ruption. This noise may be decomposed as : n(t) = n0(t) + γ, i.e., the sum of
a constant γ representing its mean (average) value and zero-mean term n0(t).
Translated into the operational domain, this differential equation reads as:

sy(s) = ay(s) + y(0) +
γ

s
+ n0(s) (5)

where, due to the output noise, the initial condition y(0) is not necessarily well
known [8]. The constant γ is considered as undesired perturbation, like the initial
condition y(0). Note that these perturbations are easily annihilated by multiply-
ing both sides of (5) by s and after 2 derivations with respect to s. This amounts
to applying the linear differential operator:

Π =
d2

ds2
s = s

d2

ds2
+ 2

d

ds
(6)

to both sides of (5). The resulting equation, given by :

[

s
d2y

ds2
+ 2

dy

ds

]

a = s2 d2y

ds2
+ 4s

dy

ds
+ 2y (7)
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Figure1: First order system with online identification

shows that the constant γ and the initial condition y(0) will have no effect on
the estimation result.

Remark 3. Recall that : multiplication by s in operational domain, in turn, cor-
responds to derivation in time domain.

Implementing the linear estimator (7) in its present form is therefore not con-
venient : derivation amplifies the high frequency components and consequently,
the noise contribution. A simple solution is obtained by making the estimator
(strictly) proper. So, it satisfies to multiply both sides of (7) by sν , where ν is an
integer greater than or equal to the highest power of s in (7). Here, the operators
deduced from (7) are strictly proper for ν ≥ 3. Thus, we obtain the following
estimator:

[

s−2 d2y

ds2
+ 2s−3 dy

ds

]

a = s−1 d2y

ds2
+ 4s−2 dy

ds
+ 2s−3y (8)

To obtain numerical estimate of the parameter a, it needs to express equation
(8) in time domain, using the classical rules of operational calculus. Recall that:

– the derivation dα

dsα with respect to s, α ≥ 0, translates into the multiplication
by (−1)αtα,

– 1
sα is replaced by the αth iterated time integration

∫ t

0

∫ tα−1

0

· · ·

∫ t1

0

x(τ)dτdt1 · · · dtα−1

– which, thanks to Cauchy rule, equals

1

(α − 1)!

∫ t

0

(t − τ)α−1x(τ)dτ

– the unstructured noises are viewed as highly fluctuating phenomena. They
are attenuated by the iterated time integrals, which are simple examples of
low pass filters6.

6 In [14], the reader will find all the theoretical justifications.
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Finally, the estimation of the parameter a is given, as time-function by the
explicit formula:

ae(t) =

∫ t

0

[

τ2 − 4(t − τ)τ + (t − τ)2
]

y(τ)dτ

∫ t

0

[

(t − τ)τ2 − (t − τ)2τ)
]

y(τ)dτ

(9)

In Both figures 1-(b) and (d), the evaluation of the estimator is shown. The
abscissa axis is graduated in number of samples and the initial condition y(0) =
0.2. In the free-noise case (n0(t) = 0), the estimation is practically perfect. It
remains very good in the noisy case. The purpose of this paper is not to compare
these results to those using classical techniques (the interested reader can always
be referred to the publications previously mentioned) nevertheless, we insist, as
well, on the poverty of the excitation signal.

3 Application to physiological signals

In order to fit our approach to physiological signals, we choose to represent these
signals according to a very simple model:

y(t) = sin(ϕ0 + ϕ1t) + n(t) (10)

where ϕ1 is the angular frequency of the signal (proportional to the frequency)
and ϕ0 the phase, n(t) an unstructured perturbation. The use of such a model is
justified because it doesn’t represent the signal only during a very short lapse of
time. The variation of the frequency content is translated by the variation of ϕ1.
Therefore, we are interested in estimating it quickly and online. The algebraic
techniques are all indicated. Keeping the continuous-time nature of the signal we
readily observe that the noise-free signal x(t) = y(t)−n(t) satisfies the following
linear differential equation with constant coefficient:

ẍ(t) + ϕ2
1 x(t) = 0 (11)

In translating this equation to operational domain, we obtain :

s2x(s) − sx(0) − ẋ(0) + ϕ2
1x(s) = 0 (12)

or also in calculating initial condition

(s2 + ϕ2
1) x(s) = ϕ1 cos ϕ0 + s sin ϕ0 (13)

the parameter ϕ2
1 is then linearly identifiable7 and its estimation is now de-

scribed.

7 Let’s note that to estimate ϕ2

1 rather than ϕ1 is enough to translate the frequency
change-point.



8

Taking derivative, twice, with respect to s permits to ignore structured pertur-
bations, here are the initial conditions

2x + 4s
dx

ds
+ (s2 + ϕ2

1)
d2x

ds2
= 0 (14)

After that, we multiply both sides by s−2 to avoid derivations with respect to
time (positive power of s)

2s−3x + 4s−2 dx

ds
+ (s−1 + s−3ϕ2

1)
d2x

ds2
= 0 (15)

The well-known rule of operational calculus yields to the following on-line es-
timator of ϕ2

1, i.e., a time-domain representation with no derivative but only
integrations with respect to time:

ϕ2
1e(t) = −2

∫ t

t−T

((T − τ)2 − 4(T − τ)τ + τ2)x(τ)dτ

∫ t

t−T

(T − τ)2τ2x(τ)dτ

(16)

Let us note that the multiple integrals are transformed in simple integrals with
the help of Cauchy formula. Besides, T indicates the size of sliding estimation
window.

3.1 Academic example

We focus our attention on two types of test signals corrupted by a gaussian
white noise. The noise level, measured by the signal to noise ratio in dB, i.e,

SNR = 10 lg10

(∑
|y(ti)|

2

∑
|n(ti)|2

)

, corresponds to SNR = 25dB. The size of the signals

is L = 10000 samples. The first is a sinusoid signal which frequency is a con-
stant function of time. The value of the angular frequency is ϕ1 = 12Πrad.s−1.
The second signal is distinguished from the first one from the introduction of
an abrupt change in its frequency. The signal’s angular frequency is defined in
[0, Tf ]8 as follows:

ϕ1(t) =

{

6Π si Tf
3 < t < 2Tf

3
24Π otherwise

These signals are shown in figure 2.
For convenient implementation of our estimator, we introduce a sliding window
in which we suppose that the model (10) describes the signal well. For each
estimation window, we get the numerical estimation of ϕ2

1. Their variations on
the whole length of the signal are depicted in figure 3 with T = 500 samples. In
all subsequent numerical simulations the integrals are computed via the classical
trapezoidal rule. Besides, the numeric estimations of the angular frequencies are

8 Tf is the length of the signal
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Figure2: Academic signals

initialized to zero at t = 0. To avoid zero-crossing of the denominator in the
equation (16), a threshold is fixed at 10−4. The performance of our estimator
is based on a compromise during the choice of estimation window. Indeed, the
more the window is important the better the free noise is but more signal model
is questionable.
Figure 3 depicts angular frequency evolution of the two academic signals ac-
cording to the time. We note that the estimator (16) has excellent capacities to
estimate and pursue the frequency evolution even in the presence of noise. It
also appears that the noise characteristics do not have a significant effect on the
estimation.
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Figure3: estimated frequency of the two academic signals

3.2 EEG signals

In this section, we depict the result of using our method on EEG recording for
which the clinical signs of an epileptic activity have been observed. The sampling
rate is of 64 Hz. Figure 4-(a) shows one of the recordings (the measured voltage is
function of the number of samples). The data contains a total of 1 minute with
pre-seizure, the seizure and some of post-seizure activity. Based on the visual
inspection of experimented neurologist, the seizure which translates an anomaly
in the EEG signal and substitutes from the normal activity, occurs from the 5th
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seconde and lasts 35 seconds.
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Figure4: EEG data

Here, the frequency estimation is used to analyze EEG signal with epileptic
seizure. The aim is to find the relationship between frequency content variation
of EEG signals and the pre-seizure, seizure and post seizure to detect a brain
disorder such as an epilepsy. Figure 4-(b) shows the frequency variation of the
EEG portion by using the estimator (16). To remove peaks which result from
the zero-crossing of the estimator’s denominator, the threshold is fixed at 10−4.
Based on the hypothesis that signal’s angular frequency is weak out of the critical
phase, any abrupt deviation translates a seizure. In order to limit the noise effect
again, we make an average of the estimated frequency value in each point in short
durations segments. In figure 4-(b), the curve in solid line shows the average
variations of the estimated frequency. It is also possible to filter the previous
estimation with a filter of cut-off frequency wc = 0.01Hz (dotted line figure
4-(b)). However, this latter smooths the frank variations.
In the set of the obtained curves, the estimator ensures the frequency changes
detection translating the seizure appearance in EEG signal. Indeed, the three
different stages : pre-seizure, seizure and post-seizure, could be observed by using
the curves. While supervising this estimation, it is possible to localize the seizure
onset and offset. Besides, this detection coincides with the expert interpretations.

3.3 ECG signals

ECG signals that we use were excerpted from the MIT-BIH Arrhythmia Data-
base [32]. In order to depict the contribution of our approach, we choose two
examples of ECG portions which cause a problem in the QRS complex detection
by their forms and by the noise dominance. The first example is illustrated by
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the record 200. The choice of this record is based on the fact that it presents
a very particular morphology which is difficult to extract the QRS complex by
the existing methods. We can notice that in figure 5-(a) this recording presents
on the one hand, a QRS complex reversed and an S wave completely flooded in
the T wave, on the other hand, the amplitude of the T wave is superior to that
of the QRS complex which makes the QRS complex detection difficult. But, the
results obtained by the proposed estimator as shown in figure 5-(b) show that
we can detect the occurrence of QRS complex in the ECG signal. The study of
this signal through the draw of the frequency variation offers us the possibil-
ity of indicating the locations of a particular frequency in time. For example,
the peaks in the curve of frequency coincide with those corresponding with the
occurrence of a QRS complex in the original cardiac signal. The second exam-
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Figure5: ECG data with particular morphology

ple is illustrated by the noise-contaminated recording 118 (figure 6-(b)). The
signal-to-noise ratio of this recording is SNR = 24dB. This clinical additive
noise was extracted from the MIT-BIH Noise Stress Database [33]. The noise
recordings from the latter base were made using physically active volunteers and
standard ECG recorders, leads, and electrodes in positions where the subjects’
ECG were not visible. Three noise records were generated by selecting inter-
vals that contained predominantly baseline wander, muscle (EMG) artifact, and
electrode motion artifact. Electrode motion artifact is generally considered the
most troublesome which cannot be removed easily by simple filters, as noise of
other types can do. We choose to display the result obtained for the noisy signal
(figure 6-(c)). The estimator (16) is able to detect correctly the location of the
assumed QRS candidates even in the presence of noise. It seems that the noise
has no effect on the estimation result. We based all judgments of correctness
upon the annotations in the database. Each annotation in the locations and the
morphology of a beat was determined by arbitration between two cardiologists.
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These latters had to be in agreement to obtain the computer-readable reference
annotations for each beatt included in the database.
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Figure6: Noisy ECG data

4 Conclusion

Our work tackles the problem of the physiological signals analysis, markers of
abrupt changes such as an epileptic activity in EEG and QRS complex occur-
rence in ECG, with new mathematical tool of estimation. This tool is based on
a combination of differential algebra and operational calculus. We suggest an
estimator of the "instantaneous" 9 angular frequency with the help of a simple
local model ensuring a physiological signal representation during a short lapse
of time. By applying this method to the EEG recordings of patients recovering
from an epileptic activity, we are able to detect the seizure. Our approach shows
also satisfactory results in ECG signal by detecting QRS complex occurrence
in a severe context. This opens a promising research field in biomedical for this
new estimation theory. Among several possible applications, we will consider the
problem of the ECG modeling.
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