
HAL Id: inria-00309525
https://hal.inria.fr/inria-00309525

Submitted on 6 Aug 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

GhostDB: Querying Visible and Hidden Data Without
Leaks

Nicolas Anciaux, Mehdi Benzine, Luc Bouganim, Philippe Pucheral, Dennis
Shasha

To cite this version:
Nicolas Anciaux, Mehdi Benzine, Luc Bouganim, Philippe Pucheral, Dennis Shasha. GhostDB: Query-
ing Visible and Hidden Data Without Leaks. 26th International ACM Conference on Management of
Data (ACM SIGMOD), Jan 2007, Beijing, China. �inria-00309525�

CORE Metadata, citation and similar papers at core.ac.uk

Provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/50237359?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00309525
https://hal.archives-ouvertes.fr


GhostDB: Querying Visible and Hidden Data Without Leaks
 

Nicolas Anciaux*, Mehdi Benzine*,**, Luc Bouganim*, Philippe Pucheral*,**, Dennis Shasha*,*** 

* INRIA Rocquencourt 

Le Chesnay, France 

<Fname.Lname>@inria.fr 

** PRiSM Laboratory 

University of Versailles, France 

<Fname.Lname>@prism.uvsq.fr 

*** Courant Institute of Mathematical Sciences 

New York University, New York, USA  

shasha@cs.nyu.edu 
 

ABSTRACT 

Imagine that you have been entrusted with private data, such as 
corporate product information, sensitive government information, 
or symptom and treatment information about hospital patients. 
You may want to issue queries whose result will combine private 
and public data, but private data must not be revealed. GhostDB is 
an architecture and system to achieve this. You carry private data 
in a smart USB key (a large Flash persistent store combined with 
a tamper and snoop-resistant CPU and small RAM). When the 
key is plugged in, you can issue queries that link private and 
public data and be sure that the only information revealed to a 
potential spy is which queries you pose. Queries linking public 
and private data entail novel distributed processing techniques on 
extremely unequal devices (standard computer and smart USB 
key). This paper presents the basic framework to make this all 
work intuitively and efficiently. 

Categories and Subject Descriptors 
H.2.4 [Database Management]: Systems – Query processing 
H.2.7 [Database Management]: Database Administration – 
Security, integrity, and protection  
H.3.1 [Information Storage and Retrieval]: Content Analysis 
and Indexing – Indexing methods  
General Terms: Design, Security. 
Keywords: Privacy, Secure device, Storage model. 

1. INTRODUCTION 
People give privacy up very easily, mostly assuming nothing can 
be done [22]. Patients reveal personal data for benefits such as 
emergency health care, only to find later that this same data ends 
up in insurance databases or at companies such as ChoicePoint or 
Intelius1. MySQL’s ‘Database in the Sky’ vision is the next step 
toward spreading personal data in the public place. Directives and 
laws related to the safeguard of personal information [8], [24]  
slow the flow without stopping it. This 30 year old problem [20] 
is partly technological – private data is replicated to barely 
protected computers from which it finds its way through spyware 
                                                                 
1 ChoicePoint: http://www.choicepoint.com 

Intelius: http://www.intelius.com 
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or simple email to the highest bidder. The main recent change in 
this picture is that agencies and enterprises are now criminally 
liable in case of private information leaks. 

Traditional security procedures do not offer the expected armor 
plating [5]. Recent research does promise additional guarantees 
under specific assumptions regarding where the trust resides in 
the system. Hippocratic databases ensure that personal data are 
used in compliance with the purpose for which the donor gave his 
consent [1] but require the database server to be trusted. 
Encrypted databases require either trusting the [12], [18] or the 
clients [6], [10] depending on the place decryption occurs. 
Databases can be entirely hosted in secure hardware [3], [19], [26] 
but this solution applies only to very small single-user databases. 
Finally, an alternative solution can be anonymizing the data [15], 
[23] at the price of lesser data accuracy and usability. 

We propose a very different approach to protect sensitive data. 
The basic idea is to remove all sensitive data from internet-
accessible places and allocate that data to trusted devices with 
strong guarantees against spying. Let us consider the following 
scenario. Bob is a traveling salesman and is entrusted with 
sensitive corporate information about customers and technical 
specifications. Sometimes he would like to look at his data at 
customer sites, on a customer computer or on his spyware-prone 
laptop. Bob may want to issue queries that combine public, say 
company’s product catalog, and sensitive private information 
about Bob’s customers and products’ specifications, but he wants 
to be sure the sensitive data is not leaked, even if he doesn’t trust 
the computing environment.  

We propose the following mode of operation: Bob carries around 
a smart USB key (a tamper-resistant token with a processor, a 
small secured RAM and a large persistent store) containing the 
private data. When the key is plugged in, Bob can issue SQL 
queries that link private and public data. Query processing 
algorithms on the key manage query execution on both the key 
and the powerful personal computer to which the key is attached. 
The algorithms ensure that private data never leaves Bob’s key, 
though public data may enter the key.  

In eventual deployment Bob needs a secure rendering platform. 
This could be the key itself (some smart memory sticks already 
hold a small LCD screen), possibly improved by technologies 
such as fiber carbon [7]. This could also be an external palm-style 
screen or tablet connected to the key or even the screen of the 
terminal the key is plugged into if a secure channel can be 
established with the video card (Digital Right Management 
companies are investigating this solution). Another mode of 
operation is sending the result to a remote secure application 
through a secure socket connection. Whichever the choice, the net 
effect is that Bob reveals to a potential spy only the queries he 
poses and the visible data transmitted. 



Whereas Bob works in an obviously untrusted environment, most 
people who handle sensitive data do so as well. The availability of 
spyware, the uncertain incentives of system administrators, and 
the internet make data leaks from general purpose computers all 
too likely. By controlling the computing environment and the 
direction of information flow, GhostDB provides a mechanism to 
ensure that those with a legitimate need to know private data are 
the only ones who see it.  

Unfortunately, the security of the smart USB key, and thus, the 
security of the whole approach is obtained at the price of 
hardware constraints (mainly a limited RAM). The privacy 
preservation problem thus translates to a severe performance 
problem that can be overcome only with the help of special 
storage and query processing techniques. 

The principal novelties described in this paper follow directly 
from this challenge: (1) how to declare which data should be 
visible and hidden simply and how to query it, (2) how to index 
the data, and (3) which query processing strategies to use to link 
public and private data hosted on extremely unequal devices 
(standard computer and smart USB key). Our philosophy is to 
make the user’s life as easy as possible (so (1) is very simple for 
users, database application programmers and administrators) 
while efficiently supporting SQL queries on arbitrarily large 
databases. Efficiency considerations on the small RAM Secure 
USB key will lead us to the design of generalized join indexes, 
Bloom filters for approximate filtering, the postponement of 
selections until after joins in certain cases, and algorithms that 
reflect the differences in read/write performance in the Secure 
USB key. Our experiments illustrate the benefits of our novel 
techniques on both synthetic and real data. 

The paper is organized as follows. Section 2 explains how visible 
and hidden data are declared and queried, and giving the hardware 
constraints of the Secure USB key, precise the problem addressed. 
Section 3 introduces a new indexation model and shows how to 
exploit it to execute selections and joins linking visible and 
hidden data. Section 4 focuses on the execution of projections. 
Section 5 illustrates the combination of all operators in a query 
execution plan. Section 6 presents our experiments and section 7 
concludes. 

2. PROBLEM STATEMENT 
2.1 Data Placement: Visible on Untrusted; 

Hidden on Secure 
To clarify roles, we call the powerful but insecure general purpose 
storage and processing environment Untrusted, and the USB key 
Secure. To reflect our intended uses of the data at hand, we call 
the public data Visible and the sensitive Hidden. Hidden data are 
assumed to be downloaded to Secure through a secure channel 
(e.g., using secure socket layer or a USB key burned by the 
database owner and periodically delivered to the authorized users 
to carry updates).  
Specifying which data is Visible and which is Hidden occurs at 
the schema definition stage. All data is by default Visible. In the 
create table statement, either entire tables or entire columns may 
be declared Hidden (we have considered but rejected more 
complex specifications, because ease of use is a primary goal for 
us). For example, in a patient database, the patient primary key, 

age and city may be Visible, but the patient's name and body mass 
index are Hidden. This is expressed simply as follows: 

CREATE TABLE Patients (id int, name char(200) HIDDEN,      
  age int, city char(100), bodymassindex float HIDDEN) 

The declaration of Hidden attributes in a table leads to a vertical 
partitioning of this table between Untrusted and Secure with 
primary keys replicated on both sides.  

In practice, a large part of the database can be Visible without 
compromising sensitive data. For example, a design guideline 
could be to declare as Hidden the foreign key attributes of all 
tables as well as attributes whose combination could be used to 
identify individuals (i.e., quasi-identifiers) and let the rest of the 
tables and attributes remain Visible. Following this guideline, one 
can specify a database where most Hidden data consists of keys 
linking Visible tuples. Then, Visible data, such as comments 
about treatments, reveal nothing about individuals when their 
relationship to identifiers and quasi-identifiers are hidden. The 
primary technical problem addressed in this paper concerns query 
processing, however, and so we reserve a full discussion of 
database design considerations to future work.  

Figure 1 illustrates the architecture and mode of operation of 
GhostDB. Queries are issued on the personal computer and 
transmitted as a whole to the Secure USB key. Depending on the 
query, a portion of Visible data is then requested by the PC 
(Visible data can be stored on the PC and/or on remote server(s)) 
and enters the Secure USB key. All executions involving Hidden 
data or the combination of Hidden and Visible data occur on the 
Secure USB key. Neither hidden data nor intermediate results 
ever leave that device in the clear. 

While this strategy induces the transmission of a potentially large 
portion of Visible data, it guarantees that no Hidden data can be 
inferred by observing the transferred Visible data. Indeed, that 
portion is determined only by the user query (supposed to be 
visible).  

Queries will be expressed in SQL as usual. Queries involving 
only Visible attributes are executed on Untrusted with no required 
interaction with Secure. Queries linking Visible and Hidden data 
entail communication from Untrusted to Secure. For example: 

SELECT * FROM Patients WHERE age=50 and bodymassindex=23 

would entail a query on Untrusted based on age that delivers a list 
of IDs to Secure. Secure will intersect that list with the IDs 
generated from the bodymassindex selection. The above query is 
straightforward to process as are all mono-table selections. 
However, it incurs transferring irrelevant Visible data to Secure. 
This flow of irrelevant data cannot be reduced without 
information leakage about Hidden data. 

 

 
 
 

 

 
 

 
Figure 1: GhostDB architecture and mode of operation. 
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2.2 Hardware constraints 
Secure acquires its tamper resistance from a secure chip. Secure 
chips appear today in a wide variety of form factors ranging from 
smart cards to chips embedded in smart phones and various forms 
of pluggable secure tokens [11]. Whatever the form factor, secure 
chips share several hardware commonalities. They are typically 
equipped with a 32 bit RISC processor (clocked at about 50 
MHz), memory modules composed of ROM, static RAM (tens of 
KB) and a small quantity of internal stable storage and security 
modules. Security factors imply that the RAM must be small – the 
smaller the silicon die, the most difficult it is to snoop or tamper 
with processing. In this paper, we consider a form factor 
combining a secure chip with a large external Flash memory 
(Gigabyte sized) on a USB key having a USB2.0 full speed2 
communication throughput [20]. Figure 2 illustrates this architecture. 

2.3 Problem formulation 
The hardware constraints of the secure USB key transform the 
privacy preservation problem into a severe performance problem. 
Because GhostDB works in a mono-user environment on the 
secure USB key, simple queries (e.g., mono-table selections) and 
updates are of little concern provided response time can be 
limited to a few seconds, which is the case. The first technical 
challenge is to support regular SQL queries (concentrating here 
on Select-Project-Join queries) in order to render the performance 
of GhostDB acceptable even for large databases. The second 
technical challenge is to mix visible and hidden computations 
efficiently. To handle these two problems, we consider three 
design rules expressed below: 

• Ensure that query processing techniques respect the fact that 
little RAM is available. Indeed, the device has limited RAM 
for security considerations. Swapping encrypted Hidden data 
on Untrusted could be a solution but is more expensive 
(encryption/decryption costs) than using the Flash memory. 

• Minimize the impact of irrelevant Visible data on Secure 
processing. As said above, irrelevant Visible data cannot be 
filtered before reaching Secure without revealing Hidden 
information. The transfer cost is not the primary concern 
considering the communication throughput. However, these 
data must be filtered out very quickly to avoid congesting the 
Secure processing.  

• Prefer reads to writes based on the Flash write/read cost ratio. 
In Flash, writes are roughly between 3 to 12 times slower than 
reads depending on the portion of the page to be read (full 
page vs. single word). Despite this discrepancy, writes on 
Flash are significantly more efficient than on disk (about 
200µs per 2KB page). 

                                                                 

                                                                

2 The USB2.0 full speed reaches 12Mb/s. USB2.0 High speed (up 
to 480 Mb/s) is envisioned for future platforms to cope with 
applications like on-the-fly video decryption [20].  

3. COMPUTING SELECTIONS AND JOINS  
This section focuses on Select-Project-Join queries involving 
exact match and/or range selections followed by equi-joins 
between key and foreign key attributes over a traditional database 
schema, organized as a tree (see Figure 3)3. We use the term Root 
table to refer to the largest central table of a database and Node 
table to refer to all non-root tables connected to the root table 
through direct or transitive joins on keys. The Root table is 
denoted by T0 and Node tables are denoted by Ti with i≠0, where 
the subscript represents the position of the table in the schema, as 
pictured in Figure 3. The notation vu (resp. hu) denotes the uth 
Visible (resp. Hidden) attribute of a table. Finally, id refers to the 
surrogate attribute of a table4 and fki refers to a foreign key 
referencing table Ti. Using this notation, the queries of interest 
can be expressed as: 

Figure 2: Secure Computing Environment is a smart USB key.

General form:  

T1

T0

T2

T11 T12

Tree-structured Schema

 SELECT  {Ti.id} 
 FROM  {Ti} 
 WHERE  {Ti.fkj= Tj.id} and 

{Ti.vu θ valuem} and 
{Ti.hv θ valuen}  

 
Example: 
 SELECT D.id, P.id, M.id 
 FROM  Measurements M, Doctors D, Patients P 
 WHERE  M.pid = P.id and P.did = D.id  
  // foreign keys are Hidden 
  and D.specialty=’Psychiatrist’  // Visible 
  and P.bodymassindex > 25 // Hidden 

Figure 3: Database schema and generic 
 select-join-project-on-key queries. 

For the sake of exposition, we consider projections on IDs only 
and delay the discussion concerning projections on non-key 
attributes to Section 4.  

3.1 The case for a fully indexed model 
While selections can always be executed in linear time in the size 
of a table, join performance is highly sensitive to the respective 
size of its operands. The TPC-C and TPC-H benchmarks give 
examples of database schemas and representative cardinalities. 
Order-line in TPC-C and LineItem in TPC-H of respective 
cardinalities SF×300K and SF×6M tuples (with SF a scale factor) 
are joined with tables roughly ten times smaller. Hence, the 
problem addressed in GhostDB is computing selections and joins 
over node tables (hundreds of thousand of tuples) and an 
arbitrarily large root table (millions of tuples) with a very small 
quantity of RAM (typically 64KB).  

 
3 Considering nested queries, non-equijoins or non-tree structured 

database schemas is left for future works. Note that most 
database schemas are tree-structured or can be easily adapted 
(e.g., TPC-C, TPC-E, TPC-H benchmarks from the Transaction 
Processing Performance Council, http://www.tpc.org/). 

4 By convention, T.id refers to the surrogate attribute of a table T, 
idT refers to the instances of this attribute and ID or IDs refers 
to the term tuple identifier(s). 



Join algorithms can be split in two classes depending on whether 
they exploit a pre-computed access structure (e.g., join index, 
bitmap index) or not. The main representatives of the latter class, 
also named “last resort” algorithms [4], are nested block join, 
sort-merge join, simple hash join, Grace hash join, hybrid hash 
join. An extensive performance evaluation of these algorithms can 
be found in [9]. This study bears particular relevance to our 
context since it considers RAM sizes common a decade ago (i.e., 
several megabytes). That work shows that the performance of last 
resort algorithms quickly deteriorates when the smallest join 
argument exceeds the size of RAM. Except for the nested block 
join (which requires many passes on at least one table and has a 
quadratic time complexity), all algorithms produce intermediate 
results, an unfavorable situation in Flash where writes are far 
more costly than reads. Join indices [25] alleviate the problem. 
However, consecutive joins (e.g, σ(T1) ►◄  T2  ►◄  T3) either 
incur random accesses in the join index JIT2T3 or a sort of the 
σ(T1) ►◄  T2 result on the IDs of T2, a costly operation when little 
RAM is available and writes are expensive. Accessing the result 
tuples of the right operand table incurs random accesses or a sort. 
Jive join and Slam join have been proposed to optimize joins 
through join indices [14]. Both algorithms make a single 
sequential pass through each input table, in addition to one pass 
through the join index and two passes through a temporary file, 
whose size is half that of the join index. Both algorithms require 
that the number of RAM pages is of the order of the square root of 
the number of pages of the smaller table. In the case of a RAM 
size of 32×2K pages, this would imply that the smallest table 
could not exceed two megabytes. The size constraint thus 
disqualifies these algorithms for us. 
More radical solutions have been devised for the Data Warehouse 
(DW) context. To deal with Star queries involving very large Fact 
tables (hundreds of GB), DW systems usually index the Fact table 
(i.e., root table for us) on all its foreign keys to precompute the 
joins with all Dimension tables (i.e., node table for us); in 
addition, all Dimension attributes participating in queries are 
indexed [13], [17], [27]. This massive indexation scheme is well 
adapted to the DW context where the performance of complex 
queries is the main issue and the update cost is not a concern. 
Query performance is also a central issue in GhostDB and the tiny 
RAM at our disposal dictates a fully indexed model with the 
requirement to support a combination of selections and joins on 
both Visible and Hidden attributes. We present a new indexing 
data structure first and then we show how to use it to combine 
Untrusted and Secure computations. 

3.2 Subtree Key Table and Climbing Index 
The primary requirement of the GhostDB indexing model is to 
precompute all select and join operations in a way which 
minimizes RAM usage. This leads to the definition of a new index 
structure pictured in Figure 4 for the database schema of Figure 3.  
Multidimensional join indexes, as suggested in the DW context 
for Star schemas [17], are less RAM demanding than binary join 
indices [25] since combinations of joins are precomputed. To 
support any form of foreign key-based join expression, we 
introduce a data structure called the Subtree Key Table (SKT). 
For the root table, each tuple of SKTT0 concatenates the IDs of 
tuples from all descendant tables, thus precomputing the join with 
all of them. Similarly SKTT1 is a multidimensional join index for 
tables T1, T11 and T12.  

Selection indexes could be implemented as traditional B+-Trees. 
However, the processing of an expression of the form  
σhjθvalueTi  ►◄  T0 would incur: (1) a lookup in Ti.hj index to get 
the IDs of Ti tuples satisfying the selection qualification then (2) 
for each of these IDs, a lookup in the T0.fki index to get the IDs of 
T0 tuples satisfying the join expression. The final result is the 
union of all lists of IDs from T0 obtained in step (2). Depending 
on the selectivity of the selection, the number of lists participating 
in the union may be large, requiring multiple passes and 
intermediate writes in a system with little RAM. An alternative 
solution may be to use bitmaps in place of lists of IDs [17], [27]. 
This solution decreases the cost of union but applies only to 
attributes on low cardinality domains, so lacks generality. Instead, 
we propose an index that we call a climbing index. A climbing 
index defined on an attribute contains, for each entry, one sublist 
of IDs per ancestor table up to the root. For example, each entry 
of any index on T12 contains a sublist of IDs for the table T12 
itself, a sublist for the ID of T1 and a sublist for the ID of T0. 
Hence, the cost of cascading index lookups (index traversal and 
union of ID lists) is avoided. For the special case of root table 
attributes, climbing indexes and traditional B+-Trees are identical.  
Combined together, SKTs and climbing indexes allow selecting 
tuples in any table, reaching any non-leaf node table (including 
the root table) in a single step and projecting attributes from any 
other table. This benefit in terms of performance and RAM usage 
comes at an extra cost in terms of stable storage. However, this 
extra cost is less than it may appear. First, the SKT columns 
corresponding to foreign keys come for free since they do not 
need to be stored in the associated table. For instance, SKTT1 is 
nothing but the projection of T1 on all its foreign keys attributes 
(referencing T11 and T12). Only the foreign keys of descendant 
tables other than child tables incur an extra storage cost. Second, 
assuming a consistent database with respect to referential 
constraints, SKTT has the same cardinality as the associated table 
T, so that keeping the SKTT sorted on the table identifiers of T 
eliminates the need to store those identifiers (e.g., the IDs of T1, 
pictured in grey in the figure, are not stored in STKT1). Hence, the 
main extra storage cost is incurred by the multidimensional lists 
of IDs in the climbing indexes. The full set of IDs of a non-leaf 
node in the schema is replicated in the indexes of all its 
descendants. As pictured in the figure, this cost is dominated by 
the replication of the IDs of the root table.  
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Figure 4 : Subtree Key Table and Climbing Index. 



3.3 Mixing Visible and Hidden computations 
Because Untrusted is fast, we want Untrusted to do as much work 
as possible. Under the assumption that foreign keys are Hidden5, 
Untrusted is granted permission to: (1) compute Visible predicates 
of a query Q (i.e., select expressed on Visible attributes), 
(2) project the result of this computation on any Visible column, 
and (3) send the result to Secure. There is no leak of Hidden data 
simply because no information leaves Secure.  

A naïve strategy that prevents information leak would be to ask 
Secure to perform all the selections and joins on Hidden attributes 
and to perform a final join with the result of the Visible selections 
performed by Untrusted. One drawback to this strategy is that it 
pushes the Visible selections after Hidden joins even if they are 
selective. A second drawback is that the strategy requires doing 
the final join with a last resort algorithm. The climbing property 
of the climbing indexes along with the SKT provides a set of 
opportunities to build a much better Query Execution Plan (QEP): 
pushing selections before joins and performing all joins by index. 

If, however, the selectivity of a Visible selection is rather low, 
traversing the indexes may be a poor choice. An alternative is 
pushing such selections after the Hidden joins by a filtering 
mechanism. This alternative is effective if this filtering can be 
done in a single pass over the result of the Hidden joins. To meet 
this requirement, we use Bloom filters. The Bloom filter is a 
space-efficient probabilistic data structure that is used to test 
whether an element is a member of a set [2]. A bit vector is built 
in RAM and independent hash functions are applied to each 
element of the set. The false positive rate can be kept very low 
(e.g., less than 3%) if the size of the bit vector is at least 8 times 
the cardinality of the set and this amount increases smoothly 
while the size of the bit vector decreases. This property makes 
Bloom filters well suited to RAM-constrained environments as 
discussed in more detail in section 3.4. When a Bloom filter is 
used to filter out tuples produced by Hidden joins, false positives 
must be discarded at projection time by an exact selection. 

Query Execution Primitives 
To help explain the variety of QEPs which can be produced by 
combining climbing indexes, subtree key tables, and Bloom 
filters, we introduce the following operators:  

Vis(Q, T, π) → {<idT, vi_value, vj_value …>}↓: Secure gets from 
Untrusted the list of IDs of Table T corresponding to tuples 
satisfying all Visible predicates of query Q along with attribute 
values for the attributes in π. Superscript ↓ indicates that the list 
returned is sorted on the first attribute (idT). 
CI(I, P, π) → {{idT}↓}: looks up in the climbing index I and, for 
each entry satisfying predicate P, delivers the list of IDs 
referencing the table selected by π. Predicate P is of the form 
(attribute θ value) or (attribute ∈{value}).  

Merge(∩ i{∪ j{idT}↓}) → {idT}↓: performs the unions and 
intersections of a collection of sorted lists of IDs of the same table 
T translating a logical expression over T expressed in conjunctive 
normal form. 
                                                                 
5 This assumption could be relaxed to allow Untrusted to perform 
joins on Visible attributes, thus making the computation easier and 
more efficient. We concentrate in this paper on the most difficult 
situation.  

SJoin({idT}, SKTT, π) → {< idT, idTi, idTj … >}↓: performs a key 
semi-join between a list of IDs of a table T and SKTT table and 
projects the result on the subset of SKTT attributes selected by π. 
The result is sorted on idT. 

BuildBF({idT}) → BF: builds a Bloom filter from a list of IDs. 

ProbeBF(BF, {< idT, idTi, idTj … >}) → {< idT, idTi, idTj … >}: 
filters tuples from an input set using a Bloom filter.  

Let us first consider a simple query involving a selection on one 
Visible and one Hidden attribute of the same node table, as well 
as a join with the root table.  

Q:  SELECT  T0.id FROM   T0, T1 
 WHERE T0.fk1=T1.id and T1.v1θvalue1 and T1.h1θvalue2 

Let us denote by QEPSJ the part of a QEP dedicated to the 
execution of selections and joins. The simplest QEPSJ for query Q 
would be:  

1. use the index on T1.h1 in order to get sorted lists of idT0 
resulting from σh1θvalue2(T1),  

2. get from Untrusted the list of idT1 result of σv1θvalue1(T1),  
3. for each of these idT1, do a lookup on the T1.id index to get a 

sorted list of idT0 and  
4. compute the union of the idT0 lists from step 1 with all idT0 

lists from step 3.  

This plan executing selections first, it is called Pre-Filter QEPSJ. 

Pre-Filter QEPSJ:  
CI(T1.h1, θ value2, T0.id) → {Li} 
CI(T1.id, ∈ Vis(Q, T1, T1.id), T0.id) → {Lj} 

 Merge((∪iLi) ∩ (∪jLj)) → result 

Pre-Filtering suffers from the same drawbacks as cascading 
indexes. First, it incurs as many lookups on the T1.id index as 
there are tuples resulting from the Visible selection. Second, these 
repetitive lookups may produce a large number of ID lists which 
need to be merged, a multi-pass/write-intensive process on a tiny 
RAM. As mentioned earlier, if the selectivity of the Visible 
selection is low, a post-filtering approach that pushes Visible 
selections after joins may outperform pre-filtering. Post-Filtering 
works as follows: 

Post-Filter QEPSJ: 
 BuildBF(Vis(Q, T1, T1.id))) → BF 

CI(T1.h1, θ value2, T0.id) → {Li} 
 SJoin(Merge(∪iLi), SKTT0, <T0.id, T1.id>) → F’ 
 ProbeBF(BF, F’) → result superset 

As mentioned in Section 2.3, Visible data received by Secure may 
include a potentially large portion of irrelevant data which cannot 
be filtered without revealing Hidden information. An important 
optimization of both Pre-Filtering and Post-Filtering is thus 
obtained by filtering Visible as early as possible, intersecting 
Visible data with the result of Hidden selections, possibly using 
the climbing index. Reducing Visible data cardinality benefits 
Pre-Filter plans by decreasing the number of accesses to the 
climbing index, simplifying also the subsequent Merge phase. For 
Post-Filter plans, it reduces the Bloom filter size resulting in less 
RAM consumption and/or better filtering efficiency. We call the 
resulting strategies Cross-filtering. Note that the redundant lookup 
in T1.h1 which appears in Cross-Post-filter QEPSJ can be easily 
avoided in practice. 



Cross-Pre-filter QEPSJ:  
CI(T1.h1, θ value2, T1.id) → {Li} 
Merge((∪iLi)∩Vis(Q,T1,T1.id))→L 
CI(T1.id, ∈ L, T0.id) → {Lj} 
Merge(∪jLj) → result 

Cross-Post-filter QEPSJ:  
CI(T1.h1, θ value2, T1.id) → {Li} 

 BuildBF(Merge((∪iLi)∩Vis(Q,T1,T1.id)))→BF 
CI (T1.h1, θ value2, T0.id) → {Lj} 

 SJoin(Merge(∪jLj), SKTT0, <T0.id, T1.id>) → F’ 
 ProbeBF(BF, F’) → result superset 

Let us now consider more complex queries where selections apply 
on Visible and Hidden attributes of different tables, followed by 
joins, based on hidden foreign keys. 

Q:  SELECT  T0.id  
 FROM  T0, T1, T12 
 WHERE  T0.fk1 = T1.id and T1.fk12=T12.id 
   and T1.v1θvalue1 and T12.h2=value2 and T0.h3=value3 

Depending on the selectivities, a pre-filtering or post-filtering 
approach can be selected per predicate. In addition, the Cross-(Pre 
or Post) filtering optimization can be exploited to combine the 
selectivity of selections on intermediate tables of the join tree 
(e.g., T1) with the selectivity of selections on Hidden attributes of 
descendant tables (e.g., T12). This optimization is made possible 
thanks to the climbing indexes which associate to each entry, one 
sublist of IDs per ancestor table in the join tree. Selections on the 
root table constitute a special and favorable case combining the 
selectivities of selections applied to all nodes of the join tree and 
delivering results sorted on idT0 (the ideal case for the Merge 
operator). We show below a candidate QEPSJ where pre-filtering 
is selected for (T12.h2=value2) and cross-post-filtering is selected 
for (T1.v1θvalue1): 

Mixed QEPSJ:  
 BuildBF(Merge(CI(T12.h2,=value2,T1.id)∩Vis(Q,T1,T1.id)))→BF 
 Merge(CI(T12.h2,=value2,T0.id)∩CI(T0.h3,=value3,T0.id)) → L 
 SJoin(L, SKTT0, < T0.id, T1.id >) → F’ 
 ProbeBF(BF, F’) → result superset 

3.4 RAM efficient implementation of basic 
operators 

Recall that a central requirement is to evaluate the QEP 
introduced above with a very small RAM (as mentioned, a typical 
value is 64KB, that is 32 buffers of 2KB, the I/O unit with the 
Flash module). Here we discuss the performance of the operators 
in terms of I/O, neglecting the CPU cost. Each operator has 
different requirements in terms of RAM. Regarding Vis, a 
specific buffer is dedicated to the communication channel in the 
smart USB key so that the download from Untrusted to Secure 
can be processed with no RAM consumption. All indexes in CI 
are implemented by means of B+-Trees, so that CI requires at 
most one buffer per B+-Tree level. SJoin implements a key semi-
join between a list of IDs and a SKT sorted on the same criteria. 
SJoin requires only two buffers to sequentially scan the operands 
and one buffer to write the result.  

Bloom filters consume significant RAM. The accuracy of a 
Bloom filter depends on the ratio m/n where m is the size of the 

bit vector and n is the cardinality of the set. m=8n is considered a 
good tradeoff between accuracy and space usage (false positive 
rate = 0.024 with 4 hash functions) [2]. Hence, a Bloom filter 
built over a list of IDs is four times smaller than the initial list, 
making it a good candidate to participate in RAM bounded QEP6. 
When the lists of IDs are not too large, the RAM can 
accommodate several Bloom filters, which can then execute in 
parallel on the same operand, a significant optimization. When the 
cardinality of the ID list is larger than the RAM size in bytes (e.g., 
more than 64.000 elements), we decrease the ratio m/n 
accordingly, entailing a smooth degradation of the Bloom filter 
accuracy (e.g., false positive rate becomes 0.055 for m=6n).  

The Merge operator is the most complex to implement in a 
bounded RAM. Merge must compute expressions of the form  
(L1 ∩ L2 …∩ Lk) where each Li is a list of IDs answering a 
selection predicate on a single column. The number of selection 
predicates in a query is usually low, and so is the number of Li. 
However, an equality predicate on a Visible attribute of a node 
table generates a list of IDs of that table; when these are sent to 
Secure, the CI operator takes this list as input and delivers, for 
each element of the list, one sublist of IDs of an ancestor table in 
the schema (e.g., CI (T1.id, ∈ Vis(Q, T1, T1.id), idT0) → {Li}). 
The evaluation of range predicates on Hidden attributes also 
delivers a set of sublists of IDs. Hence, Li lists corresponding to 
range predicates on Hidden attributes or to predicates on Visible 
attributes are of the form (Li1 ∪ Li2 …∪ Lij) and the number of 
sublists Lij can be arbitrarily high. Because each (sub)list is sorted 
on the same criteria, the computation of the complete expression 
of unions and intersections can be performed optimally by a 
sequential scan of each (sub)list Lij provided the RAM is large 
enough to accommodate one buffer per sublist plus one buffer for 
writing the output. If this condition does not hold, one can consider 
two fundamental alternatives (smarter algorithms can be devised): 

1. Perform, before the Merge, a union of sublists of IDs to 
reduce their total number to less than or equal to the number 
of RAM buffers. This can be done by loading in RAM the 
largest number of sublists Lij of the same list Li, sorting them 
to form a single sublist and writing that list back in Flash. 
The cost of this reduction phase being linear with the size of 
the sublists, the smallest sublists of each list are the best 
candidates for reduction. 

2. Implement a Merge algorithm that requires fewer buffers 
than the number of (sub)lists to be merged. A rough example 
of such algorithm is splitting each buffer into subbuffers so 
that one subbuffer can be allocated to the scan of each 
sublist. The size of a subbuffer being smaller than a I/O unit, 
this entails a higher cost for the scan.  

The optimal alternative depends on the ratio between the number 
of sublists to be merged, the number of RAM buffers, and on the 
element distribution in the lists. Space limitations prevent us from 
presenting an exhaustive analysis of the possibilities. Instead, we 
discuss the first alternative and its basic tradeoff: the number of 

                                                                 
6 Compressed Bloom filters have been proposed but the net effect 

of this technique is to reduce the rate of false positives with the 
same space occupancy rather than decreasing the bit vector size 
[16]. This technique does not apply to our context because 
RAM is required to decompress the Bloom filter. 



sublists can be reduced to the number of RAM buffers or to fewer 
in order to save RAM. The benefit of the latter super-reduction 
strategy is to offer the opportunity to execute pipelined operators 
in RAM. For instance, if the RAM could accommodate the 
buffers required by the Merge and a (set of) Bloom filter(s), the 
operators of the sequence Merge-SJoin-ProbeBF could be 
pipelined without entailing the materialization in Flash of any 
intermediate result, yielding a high performance benefit. This 
observation about pipelining in RAM further motivates the use of 
climbing indexes to reduce the number of sublists resulting from 
the selections. 

4. COMPUTING PROJECTIONS 
Let us finally consider complete queries including projections on 
both Visible and Hidden attributes. These attributes may or may 
not participate in selection predicates. In the example below, vlist 
and hlist denote respectively a list of Visible and Hidden attributes: 

Q:  SELECT  T0.vlist, T0.hlist, T1.vlist, T1.hlist, T12.vlist, T12.hlist 
 FROM  T0, T1, T12 
 WHERE  T0.fk1 = T1.id and T1.fk12=T12.id and T1.v1θvalue1 

and T12.h2θvalue2 and T0.h3θvalue3 

The complexity of the projection operation comes from 
distinctive features of our architecture: 

1. The set of Visible attribute values sent by Untrusted may 
contain many values that ultimately will not appear in the 
result (see Section 2.3).  

2. The projection operation must discard false positives 
generated by a Post-Filtering strategy in the result of QEPSJ(Q). 

3. The RAM is still a scarce resource. 

To adapt to these features, the Project algorithm:  

1. does the projection on a table-by-table basis to reduce RAM 
consumption,  

2. avoids accesses to irrelevant attribute values sent by Untrusted,  
3. postpones the integration of all attribute values in the result 

tuples until the end of processing, thereby saving RAM and 
then iterates over the result of QEPSJ(Q) and  

4. minimizes the cost of discarding false positives. We 
concentrate below on the most difficult case where both 
Visible and Hidden attributes from the same table are projected.  

The Project algorithm is given in Figure 5 and works as follows:  
Partitioning the QEPSJ(Q) result: The first step of the algorithm 
(line 1) takes as input the result of QEPSJ(Q) evaluating the 
Where statement of query Q and performs a SJoin to get the IDs 
of all tables involved in the Select statement7. Because the Project 
algorithm considers one table at a time, the result of SJoin is 
vertically partitioned (one column per table ID, denoted by 
QEPSJ(Q).Ti.id in the algorithm) to avoid repetitive reads of 
unnecessary columns. All QEPSJ(Q).Ti.id columns are stored in 
root table ID order (i.e., T0.id) and have all the same cardinality.  
Approximate filtering of irrelevant values sent by Untrusted: For 
each node table Ti, i≠0, having at least a Visible attribute to be 
projected, a Bloom filter is built over QEPSJ(Q).Ti.id (line 3) and 

                                                                 
7 If QEPSJ follows a Post-Filtering strategy this step is skipped 

because a SJoin has already been performed with the Root table 
to get all necessary IDs. 

used (line 4) to filter out the irrelevant idTi sent by Untrusted at 
selection time (i.e., corresponding to tuples satisfying the Visible 
selection but disqualified by other predicates of the query). This 
step produces σVHTi.id, the set of Ti IDs corresponding to tuples 
satisfying all Visible and Hidden predicates of the Where 
statement. Just as Bloom filters used in QEPSJ introduce false 
positives for Visible selections, Bloom filters used in Project 
introduce false positives with respect to the QEPSJ result.  
Building tuples on a table basis: According to the Select 
statement, Visible attribute values (sent by Untrusted) and/or 
Hidden attribute values (taken directly in Ti

H, the Hidden image 
of Ti) are combined by the MJoin operator (line 6) into complete 
tuples <pos, Ti.vlist, Ti.hlist> where pos is the position of this 
tuple with respect to QEPSJ(Q).Ti.id column. The MJoin (MJoin 
stands for Merge, Multi-pass, Multi-join) operator works as 
follows. Ti.vlist, Ti.hlist and σVHTi.id are all sorted on idTi and can 
be joined by a sequential scan of each list and a simple merge. 
The result of this merge is stored in RAM up to the RAM capacity 
(minus two buffers). The two buffers are used to do a complete 
scan over QEPSJ(Q).Ti.id and to join it on Ti IDs with the 
elements present in RAM and write the result back in Flash. If 
required, this process is repeated ║σVHTi.id║size(<Ti.id, Ti.vlist, 
Ti.hlist>)/(RAM – 4KB) times. The factor ║σVHTi.id║ 
exemplifies the benefit of filtering irrelevant values sent by 
Untrusted. MJoin automatically eliminates all false positives on 
this table, except those introduced by a join with false positive 
tuples from other tables. 
Combining tuples from all tables: The last operation (line 7) joins 
all the resulting lists of tuples from all node tables together and 
potentially with Visible and Hidden attributes of the root table. 
All the operands being naturally sorted on idT0 (or equivalently on 
position), this operation is done by a sequential scan of each 
operand and a simple merge. This join automatically eliminates 
the false positives not discarded by MJoin. 

(1) SJoin(QEPSJ(Q),SKTT0,<Ti.id/∃Ti.attribute∈Q.ProjectList >) 
(2) For each Ti, i≠0 / ∃Ti.vj∈Q. ProjectList 
(3)  BuildBF(QEPSJ(Q).Ti.id) → BF 
(4)  ProbeBF(BF, Vis(Q, Ti, Ti.id)) → σVHTi.id 
(5) For each Ti, i≠0/ ∃Ti. attribute ∈Q. ProjectList 
(6)  MJoin([Vis(Q, Ti , < Ti.id, Ti.vlist >), σVHTi.id], 
  <Ti.id, [Ti

H.hlist]>, QEPSJ(Q).Ti.id) 
     →{<pos,Ti.vlist,Ti.hlist>}↓ 
(7) Join({{<pos, Ti.vlist, Ti.hlist>}↓}, [Vis(Q, T0 ,  
  < T0.id, T0.vlist >], < T0.id, [T0

H.hlist]>) → Final result 

Figure 5: Project algorithm (QEPP) 

5. GLOBAL QUERY EXECUTION PLAN 
Figure 6 presents the global QEP for an abstract query involving 
selections, joins and projections over Visible and Hidden 
attributes. Circles represent operators and edges show the 
composition of operators with annotations indicating the content 
and ordering of their input and output operands. Superimposed 
boxes mean that similar subtrees can be repeated in the QEP if 
several predicates (on different attributes) appear in the query. 
The gray area on the left symbolizes Untrusted. For clarity, the 
figure shows a single table in Untrusted participating in selections 
on Visible attributes following either a pre-filtering strategy 
(bottom of the QEP) or a post-filtering strategy (middle of the 



QEP). The subtrees drawn in dashed lines illustrate a potential 
cross-filtering optimization for both strategies. The upper part of 
the figure illustrates the projection process and highlights the 
particular management of projection over Visible and Hidden 
attributes of the root table.  

Materialization steps are not represented because they depend on 
the ratio between the size of the intermediate results and the RAM 
allocated to the execution of each operator instance. The main 
tradeoff in the RAM allocation decision is between the Merge and 
the Build-Probe operators in the QEPSJ part of the plan, as 
discussed in Section 3.4. Other operators in QEPSJ consume only 
a couple of RAM buffers. In QEPP, the RAM allocation decision 
is simpler. Unlike Build-Probe in QEPSJ where the size of the 
Bloom filter can be calibrated according to the size of its Visible 
operand (a set of Ti.id), Build-Probe in QEPP builds a Bloom filter 
over QEPSJ(Q).Ti.id, a list of IDs containing a variable number of 
duplicates (this number is linked to the distance between Ti and 
the root table in the schema). Due to the difficulty of estimating 
the number of duplicates, and since the project algorithm works 
on a table-by-table basis, the Bloom filter is calibrated by default 
to occupy the entire RAM. This is a poor choice if a better 
calibration would allow a pipelining of Build-Probe and MJoin, 
an improbable situation for the queries we are interested in. 

6. EXPERIMENTS 
This section presents experimental results obtained from both 
synthetic and real data sets. We first describe the experimental 
platform and the data sets. The next subsections study 
respectively the storage overhead incurred by the proposed index, 
the cost of selections and joins, the cost of projections, the impact 
of communication throughput and finally the cost of complete QEPs.  

6.1 Experimental platform 
Our industrial partner Gemalto has announced the availability of 
the first commercial smart USB keys by less than one year. These 
devices will have hardware characteristics close to the one 
presented in section 2.2, with 64KB of RAM and 256MB of 
external Flash (with a rapid growth of the Flash capacity 
forecast). Gemalto provided us with a software simulator for this 
device. Our prototype has been developed in C on top of this 
simulator. This simulator is not cycle-accurate so that 
performance measures in absolute time are not significant. 
However, this simulator is I/O accurate, meaning that it delivers 
the exact number of pages read and written in Flash. 
This includes the I/O performed by the Flash Translation Layer 
which manages wear levering, garbage collection and translation 
of logical addresses to physical (updates are not performed in 
place in Flash). The simulator delivers also the exact number of 
bytes transferred between the RAM and the Flash Data Register. 
The time to read (resp. write) k bytes in Flash and load them in 
RAM is composed of the time to load the page from the Flash to 
the Data Register in the Flash module (25µs) and the time to 
transfer the k bytes from the Data Register to the RAM (k×50ns). 
This means that reading a page costs between 25µs and 125µs 
depending on the portion actually loaded in RAM. Therefore, the 
ratio between a read and a page write in Flash roughly vary from 
2.5 to 12. Other parameters are presented in Table 1. The 
performance of operators is measured in terms of milliseconds, 
and in based on the cost of communication and I/O. 
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Figure 6: Abstract Query Execution Plan for general select-
project-join queries on visible and hidden attributes. 

Parameters Values 
Communication throughput (MB/s) Varying
Size of an ID (bytes) 4
Size of a page in Flash (bytes) 2048
RAM size (bytes) 65536
Time to read a page in Flash (µs) 25
Time to write a page in Flash (µs) 200
Time to transfer a byte between Data Register and RAM (ns) 50

Table 1: Main performance parameters of USB keys. 



6.2 Data sets 
The real dataset contains sanitized medical data related to 
diabetes. From this database schema, we select as hidden attribute 
all the foreign keys as well as attributes that could identify an 
individual (patients or doctors). The database schema is described 
below. A superscript indicates the Hidden/Visible status of the 
attribute; the size in bytes is indicated in brackets. As usual, 
primary keys are underlined while foreign keys are in italics.  
Doctors [4.5 Ktuples]: (idVH(4), specialtyV(20), descriptionV(60),  

   first-nameH(20), nameH(20)). 
Patients [14 Ktuples]: (idVH(4), doctor_idH(4), first-nameV(20), nameH(20), 

SSNH(10), addressH(50), birthdateH(10), bodymassindexH(4), 
ageV(2), sexeV(2), cityV(20), zipcodeV(6)). 

Measurements [1.3 Mtuples]: (idVH(4), patient-idH(4), Drug-idH(4), 
       time V(10), measurementV(10), commentV(100)). 

Drugs [45 tuples]:   (idVH(4), propertyV(60),commentH(100)). 

In addition, we have built a synthetic data set to perform a 
comprehensive performance analysis, varying selectivities of 
selections on Visible and Hidden attributes (let us call them 
Visible and Hidden selections for simplicity). The schema of the 
synthetic data set is based on the schema introduced in Figure 3. 
In this synthetic data set, data follows a uniform distribution. 
Beside keys, each table has by default 5 Visible and 5 Hidden 
attributes each one of size 10 bytes.  

T0 [10 Mtuples]:  (id, fk1, fk2, v1
V, v2

V, …, h1
H, h2

H, …) 
T1 [1 Mtuples]:  (id, fk11, fk12, v1

V, v2
V, …, h1

H, h2
H, …) 

T2 [1 Mtuples]:  (id, v1
V, v2

V, …, h1
H, h2

H, …)  
T11 [100 Ktuples]:  (id, v1

V, v2
V, …, h1

H, h2
H, …)  

T12 [100 Ktuples]:  (id, v1
V, v2

V, …, h1
H, h2

H, …)  

6.3 Size of the index structures 
Figure 7 shows the storage cost of the SKT plus CI indexes and 
compares it to possible variants. The x-axis is the number of 
indexed Hidden attributes per table (in addition to primary and 
foreign keys), assuming for simplicity that all tables have the 
same number of indexed attributes. DBSize is constant and 
represents the total size of all Visible and Hidden raw data 
populating the database without indexes. The other curves 
represent the storage overhead incurred by the index on Hidden 
data. FullIndex is the index structure presented in this paper 
where each non-leaf node of the database schema holds a SKT 
and each attribute is indexed by a climbing index referencing all 
ancestor tables. BasicIndex reduces the size of this index structure 
by considering only a single SKT (for the root table) as well as 
climbing indexes referencing the root table directly. The small 
difference between these two curves demonstrates that the extra 
price to pay to benefit from a complete indexation structure is 
low, the storage cost being dominated by SKTT0 and the lists of 
idT0 in all climbing indexes. The advantage of FullIndex over 
BasicIndex is to allow for a Cross (Pre or Post) filtering 
optimization and the speeding up of all queries whether or not 
they involve the Root table. StarIndex is in turn a reduction of the 
BasicIndex where selection indexes are traditional (i.e., contain 
lists of ID of the indexed table only) but include the SKT of the 
Root table to precompute Star joins. StarIndex allows query 
execution strategies similar to [17]. The large difference between 
BasicIndex and StarIndex shows that climbing indexes incur a 
significant overhead. The next section will show, however, that 
these indexes yield a high performance improvement for executing 
selections and joins. Finally, JoinIndex is a reduction of StarIndex 
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Figure 7: Storage cost of different indexing scheme. 
 

where the SKT of the Root table is dropped. Traditional indexes 
apply on all attributes, including the keys and foreign keys, 
allowing the execution of joins in a way similar to join indices 
[25]. On our real data set, the storage cost of each indexation 
structure is: FullIndex = 57MB, BasicIndex = 56MB, StarIndex = 
36MB, JoinIndex = 26MB and DBSize = 169MB. 

6.4 Cost of selections and joins 
This section evaluates the respective merits of the Pre and Post 
filtering strategies, taking advantage or not of the Cross 
optimization. To this end, we measure Query Q, which performs a 
Visible selection on T1, a Hidden selection on T12 and joins 
between these two tables and the Root table. We vary the 
selectivity of the Visible selection (denoted by sV) and fix the 
selectivity of the Hidden selection (denoted by sH) to 10% 
(sH = 0.1). In all figures, the x-axis representing sV is plotted 
with a logarithmic scale.  

Query Q:  SELECT  T0.id, T1.id, T12.id, T1.v1 
 FROM T0, T1, T12 
 WHERE  T0.fk1 = T1.id and T1.fk12 = T12.id 
   and T1.v1 θ value1 and T12.h2 θ value2 

Figure 8 shows the benefit of the Cross filtering optimization, 
comparing the strategies Pre-Filter with Cross-Pre-Filter and Post-
Filter with Cross-Post-Filter. The figure shows that the Cross 
filtering optimization is beneficial whatever the selectivity of the 
Visible selection. The benefit becomes larger as this selectivity 
decreases. For sV=0.01 (resp. sV=0.5) Cross-Pre-filter 
outperforms Pre-Filter by a factor of 1.8 (resp. 2.3). For sV=0.5, 
Cross-Post-Filter also outperforms Post-Filter by a factor of 2. In 
this setting, the RAM can accommodate the Merge and the 
BuildBF-ProbeBF in parallel. 
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Figure 8: Filtering vs. Cross-Filtering Performance. 
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Figure 9: Cross-Pre vs. Cross-Post Filtering Performance. 
 
 
 
 
 
 
 
 
 
 

Figure 10: Pre vs. Post-Filtering Performance. 

Figure 9 compares the Cross-Pre-Filter and Cross-Post-Filter 
strategies. As expected, Cross-Pre-Filter outperforms Cross-Post-
Filter when the selectivity of the Visible selection is high. Cross-
Pre-Filter becomes worse for values of sV greater than 0.1. The 
reason is that for sV>0.1 all pages of SKTT0 are accessed by SJoin 
losing the benefit of pre-filtering. However, the differential 
between Cross-Pre-Filter and Cross-Post-Filter is never greater 
than 25%. This could lead to the conclusion that Bloom filters do 
not bring a significant benefit and, more generally, that 
postponing selections after joins (whatever their selectivity) is not 
very useful. This also shows that the Cross optimization is 
extremely effective and that indexes on Flash are far more robust 
than indexes on disk in low selectivity environments. 

The Cross optimization can be exploited only in certain situations 
(more than one selection on the same table or Hidden selections 
on descendant tables combined with selections applied on 
ancestor tables). Figure 10 compares the Pre-Filter and Post-Filter 
strategies alone, i.e., when the Cross optimization does not apply. 
In this situation, the Bloom filters are much more effective. Post-
Filter becomes better than Pre-Filter for values of sV higher than 
0.05. For sV=0.1, Post-Filter is already 30% better than Pre-Filter. 
Note that the curve Post-Filter stops at sV=0.5. The reason is that 
for lower selectivities, the Bloom filter introduces more false 
positives than it can eliminate in the result of QEPSJ, even if the 
entire RAM is allocated to the BuildBF-ProbeBF operators. In 
this case, Post-Filter is simply not executed and the selection is 
postponed to projection time. For illustrative purpose, the curve 
NoFilter shows the cost of postponing the selection to projection 
time independently of its selectivity. 

To precisely capture the benefit of Bloom filters, Figure 11 
compares the Post-Filter and Cross-Post-Filter strategies with 
Post-Select, a strategy which performs an exact selection on the 
result of QEPSJ. Post-Select simply loads in RAM the IDs 
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Figure 11: Post-Filtering alternatives. 

resulting from the Visible selection and filters out the result of 
QEPSJ. Cross-Post-Select results from the Cross optimization 
applied to Post-Select, as usual. The figure justifies why we did 
not consider Post-Select as a relevant strategy in Section 3.3.  

6.5 Cost of projections 
Figure 12 and 13 compare the cost of three projection algorithms 
on query Q augmented with a projection on Ti.h1. Project refers to 
the algorithm presented in Section 4. Project-NoBF is the Project 
algorithm without the Bloom optimization; irrelevant attribute 
values sent by Untrusted are not eliminated thereby incurring a 
higher number of iterations. Brute-Force is an algorithm loading 
the result of QEPSJ in RAM and accessing randomly the vlist and 
hlist stored in Flash. The figure shows that Project is 60% faster 
than Brute-Force when sV=0.1 and the gap increases with sV. 
Whereas Figure 12 considers a cross-pre-filtering execution, 
Figure 13 considers a cross-post-filtering execution to take into 
account the elimination of false positives introduced by the 
Bloom filters. Both show the insignificant impact of false 
positives and the effectiveness of Project algorithm. 
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Figure 12: Projecting in Cross-Pre-Filtering execution. 
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Figure 13: Projecting in Cross-Post-Filtering execution. 
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Figure 14: Impact of the communication throughput. 

6.6 Communication costs 
Figure 14 shows how the communication throughput impacts the 
global performance of a query. The x-axis represents the 
throughput expressed in MBps ranging from 300KBps up to 
10MBps. The query measured is the same as before, except that it 
projects the result on one (Project1), two (Project2) or three 
(Project3) Visible attributes of 10 bytes each. The query is 
executed following a Cross-Pre-Filtering approach considering a 
selectivity sV=0.01. The curves highlight the fact that, for this 
query, a communication throughput lesser than 1.3MBps becomes 
the main bottleneck.  

6.7 Query cost decomposition 
The histograms presented in Figure 15 show how the total 
execution time (excluding the communication time) is 
decomposed among the operators involved in the execution of the 
query Q. Only the most time-consuming operators are visible in 
the figure, namely, Merge, SJoin and Project. Store represents the 
time to materialize the intermediate result produced by SJoin (in 
low selectivity queries). PRE (resp. POST) 1, 5 and 20 denote a 
Cross-Pre-Filtering strategy (resp. Cross-Post-Filtering strategy) 
for a respective selectivity of the Visible selection of sV=0.01, 
sV=0.05 and sV=0.2. PRE is shown better than POST for 
sV=0.01, and sV=0.05 but becomes worse for sV=0.20. As 
already mentioned, for sV>0.1 all pages of SKTTO are accessed 
by SJoin losing the benefit of  Pre-Filtering. Hence, the SJoin cost 
is the same in PRE20 and POST20 while the Merge cost is much 
higher in PRE20 than in POST20.  
Figure 16 presents the same analysis on the real data set. Query Q 
keeps the same structure, replacing table T0 by Measurements, 
table T1 by Patients and table T12 by Doctors. The main difference 
between the synthetic data set and the real one is the size of the 
Root table (10M tuples in T0 compared to 1.3M tuples in 
Measurements) and the ratio T0/T1 (T0/T1 = 10 compared to 
 

 
 
 
 
 

Figure 15: Cost decomposition for query Q on the synthetic dataset. 

 
 
 
 
 

 
 
 
 

Figure 16: Cost decomposition for query Q on the real dataset. 

Measurements/Patients ≈ 92). The first observation is that the 
execution time of the query is related to the size of the Root table 
and is roughly 1/10 the times of the synthetic data set. The second 
observation is that the cost of the SJoin operator is dominant in all 
histograms. In fact, the relative cost of Project decreases because 
the cardinalities of the node tables (Patients and Doctors) are 
much smaller while the relative cost of SJoin increases due to the 
ratio Measurements/Patients ≈ 92. 

7. CONCLUSION 
People talk about privacy, but give it up very easily, especially 
when faced with complex security procedures that offer only 
conditional guarantees. This implies that for people's sensitive 
data to be protected, the cost to protect it must require little 
physical effort and must perform well. 
This paper proposes a system called GhostDB whereby people 
carry hidden sensitive data on a smart USB key and they plug that 
key into a personal computer when they need to link their hidden 
data with visible public data, all with the assurance that no hidden 
data will ever go out in the open. In terms of the administration 
interface, the only change is the "hidden" annotation on certain 
fields in the create table command. Users issue completely 
standard SQL, so application logic is unchanged. 
GhostDB entails technical challenges having to do with 
distributed query processing on devices having vastly different 
capabilities in terms of speed, RAM size, and communication 
capability. We have presented a query processing framework 
based on the unconventional tradeoffs present in this unusual 
environment. The techniques show a significant improvement 
over naïve methods and make the solution applicable even for 
complex queries over large databases. In the course of this work, 
we have introduced techniques like climbing indexes, Subtree 
Key Tables and post-filtering by Bloom filters which may have 
wider applicability (e.g., in the Data Warehouse domain). Our 
future work concerns the definition of database design tools to 
help select the hidden part of a database, the efficient 
implementation of aggregate operators, the inclusion of a cost-
based optimizer, and the possibility of distributed design across a 
variety of smart USB key platforms. 
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