
HAL Id: inria-00309525
https://hal.inria.fr/inria-00309525

Submitted on 6 Aug 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

GhostDB: Querying Visible and Hidden Data Without
Leaks

Nicolas Anciaux, Mehdi Benzine, Luc Bouganim, Philippe Pucheral, Dennis
Shasha

To cite this version:
Nicolas Anciaux, Mehdi Benzine, Luc Bouganim, Philippe Pucheral, Dennis Shasha. GhostDB: Query-
ing Visible and Hidden Data Without Leaks. 26th International ACM Conference on Management of
Data (ACM SIGMOD), Jan 2007, Beijing, China. �inria-00309525�

CORE Metadata, citation and similar papers at core.ac.uk

Provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/50237359?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00309525
https://hal.archives-ouvertes.fr

GhostDB: Querying Visible and Hidden Data Without Leaks

Nicolas Anciaux*, Mehdi Benzine*,**, Luc Bouganim*, Philippe Pucheral*,**, Dennis Shasha*,***

* INRIA Rocquencourt

Le Chesnay, France

<Fname.Lname>@inria.fr

** PRiSM Laboratory

University of Versailles, France

<Fname.Lname>@prism.uvsq.fr

*** Courant Institute of Mathematical Sciences

New York University, New York, USA

shasha@cs.nyu.edu

ABSTRACT

Imagine that you have been entrusted with private data, such as
corporate product information, sensitive government information,
or symptom and treatment information about hospital patients.
You may want to issue queries whose result will combine private
and public data, but private data must not be revealed. GhostDB is
an architecture and system to achieve this. You carry private data
in a smart USB key (a large Flash persistent store combined with
a tamper and snoop-resistant CPU and small RAM). When the
key is plugged in, you can issue queries that link private and
public data and be sure that the only information revealed to a
potential spy is which queries you pose. Queries linking public
and private data entail novel distributed processing techniques on
extremely unequal devices (standard computer and smart USB
key). This paper presents the basic framework to make this all
work intuitively and efficiently.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems – Query processing
H.2.7 [Database Management]: Database Administration –
Security, integrity, and protection
H.3.1 [Information Storage and Retrieval]: Content Analysis
and Indexing – Indexing methods
General Terms: Design, Security.
Keywords: Privacy, Secure device, Storage model.

1. INTRODUCTION
People give privacy up very easily, mostly assuming nothing can
be done [22]. Patients reveal personal data for benefits such as
emergency health care, only to find later that this same data ends
up in insurance databases or at companies such as ChoicePoint or
Intelius1. MySQL’s ‘Database in the Sky’ vision is the next step
toward spreading personal data in the public place. Directives and
laws related to the safeguard of personal information [8], [24]
slow the flow without stopping it. This 30 year old problem [20]
is partly technological – private data is replicated to barely
protected computers from which it finds its way through spyware

1 ChoicePoint: http://www.choicepoint.com

Intelius: http://www.intelius.com

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
SIGMOD’07, June 11–14, 2007, Beijing, China.
Copyright 2007 ACM 978-1-59593-686-8/07/0006...$5.00.

or simple email to the highest bidder. The main recent change in
this picture is that agencies and enterprises are now criminally
liable in case of private information leaks.

Traditional security procedures do not offer the expected armor
plating [5]. Recent research does promise additional guarantees
under specific assumptions regarding where the trust resides in
the system. Hippocratic databases ensure that personal data are
used in compliance with the purpose for which the donor gave his
consent [1] but require the database server to be trusted.
Encrypted databases require either trusting the [12], [18] or the
clients [6], [10] depending on the place decryption occurs.
Databases can be entirely hosted in secure hardware [3], [19], [26]
but this solution applies only to very small single-user databases.
Finally, an alternative solution can be anonymizing the data [15],
[23] at the price of lesser data accuracy and usability.

We propose a very different approach to protect sensitive data.
The basic idea is to remove all sensitive data from internet-
accessible places and allocate that data to trusted devices with
strong guarantees against spying. Let us consider the following
scenario. Bob is a traveling salesman and is entrusted with
sensitive corporate information about customers and technical
specifications. Sometimes he would like to look at his data at
customer sites, on a customer computer or on his spyware-prone
laptop. Bob may want to issue queries that combine public, say
company’s product catalog, and sensitive private information
about Bob’s customers and products’ specifications, but he wants
to be sure the sensitive data is not leaked, even if he doesn’t trust
the computing environment.

We propose the following mode of operation: Bob carries around
a smart USB key (a tamper-resistant token with a processor, a
small secured RAM and a large persistent store) containing the
private data. When the key is plugged in, Bob can issue SQL
queries that link private and public data. Query processing
algorithms on the key manage query execution on both the key
and the powerful personal computer to which the key is attached.
The algorithms ensure that private data never leaves Bob’s key,
though public data may enter the key.

In eventual deployment Bob needs a secure rendering platform.
This could be the key itself (some smart memory sticks already
hold a small LCD screen), possibly improved by technologies
such as fiber carbon [7]. This could also be an external palm-style
screen or tablet connected to the key or even the screen of the
terminal the key is plugged into if a secure channel can be
established with the video card (Digital Right Management
companies are investigating this solution). Another mode of
operation is sending the result to a remote secure application
through a secure socket connection. Whichever the choice, the net
effect is that Bob reveals to a potential spy only the queries he
poses and the visible data transmitted.

Whereas Bob works in an obviously untrusted environment, most
people who handle sensitive data do so as well. The availability of
spyware, the uncertain incentives of system administrators, and
the internet make data leaks from general purpose computers all
too likely. By controlling the computing environment and the
direction of information flow, GhostDB provides a mechanism to
ensure that those with a legitimate need to know private data are
the only ones who see it.

Unfortunately, the security of the smart USB key, and thus, the
security of the whole approach is obtained at the price of
hardware constraints (mainly a limited RAM). The privacy
preservation problem thus translates to a severe performance
problem that can be overcome only with the help of special
storage and query processing techniques.

The principal novelties described in this paper follow directly
from this challenge: (1) how to declare which data should be
visible and hidden simply and how to query it, (2) how to index
the data, and (3) which query processing strategies to use to link
public and private data hosted on extremely unequal devices
(standard computer and smart USB key). Our philosophy is to
make the user’s life as easy as possible (so (1) is very simple for
users, database application programmers and administrators)
while efficiently supporting SQL queries on arbitrarily large
databases. Efficiency considerations on the small RAM Secure
USB key will lead us to the design of generalized join indexes,
Bloom filters for approximate filtering, the postponement of
selections until after joins in certain cases, and algorithms that
reflect the differences in read/write performance in the Secure
USB key. Our experiments illustrate the benefits of our novel
techniques on both synthetic and real data.

The paper is organized as follows. Section 2 explains how visible
and hidden data are declared and queried, and giving the hardware
constraints of the Secure USB key, precise the problem addressed.
Section 3 introduces a new indexation model and shows how to
exploit it to execute selections and joins linking visible and
hidden data. Section 4 focuses on the execution of projections.
Section 5 illustrates the combination of all operators in a query
execution plan. Section 6 presents our experiments and section 7
concludes.

2. PROBLEM STATEMENT
2.1 Data Placement: Visible on Untrusted;

Hidden on Secure
To clarify roles, we call the powerful but insecure general purpose
storage and processing environment Untrusted, and the USB key
Secure. To reflect our intended uses of the data at hand, we call
the public data Visible and the sensitive Hidden. Hidden data are
assumed to be downloaded to Secure through a secure channel
(e.g., using secure socket layer or a USB key burned by the
database owner and periodically delivered to the authorized users
to carry updates).
Specifying which data is Visible and which is Hidden occurs at
the schema definition stage. All data is by default Visible. In the
create table statement, either entire tables or entire columns may
be declared Hidden (we have considered but rejected more
complex specifications, because ease of use is a primary goal for
us). For example, in a patient database, the patient primary key,

age and city may be Visible, but the patient's name and body mass
index are Hidden. This is expressed simply as follows:

CREATE TABLE Patients (id int, name char(200) HIDDEN,
 age int, city char(100), bodymassindex float HIDDEN)

The declaration of Hidden attributes in a table leads to a vertical
partitioning of this table between Untrusted and Secure with
primary keys replicated on both sides.

In practice, a large part of the database can be Visible without
compromising sensitive data. For example, a design guideline
could be to declare as Hidden the foreign key attributes of all
tables as well as attributes whose combination could be used to
identify individuals (i.e., quasi-identifiers) and let the rest of the
tables and attributes remain Visible. Following this guideline, one
can specify a database where most Hidden data consists of keys
linking Visible tuples. Then, Visible data, such as comments
about treatments, reveal nothing about individuals when their
relationship to identifiers and quasi-identifiers are hidden. The
primary technical problem addressed in this paper concerns query
processing, however, and so we reserve a full discussion of
database design considerations to future work.

Figure 1 illustrates the architecture and mode of operation of
GhostDB. Queries are issued on the personal computer and
transmitted as a whole to the Secure USB key. Depending on the
query, a portion of Visible data is then requested by the PC
(Visible data can be stored on the PC and/or on remote server(s))
and enters the Secure USB key. All executions involving Hidden
data or the combination of Hidden and Visible data occur on the
Secure USB key. Neither hidden data nor intermediate results
ever leave that device in the clear.

While this strategy induces the transmission of a potentially large
portion of Visible data, it guarantees that no Hidden data can be
inferred by observing the transferred Visible data. Indeed, that
portion is determined only by the user query (supposed to be
visible).

Queries will be expressed in SQL as usual. Queries involving
only Visible attributes are executed on Untrusted with no required
interaction with Secure. Queries linking Visible and Hidden data
entail communication from Untrusted to Secure. For example:

SELECT * FROM Patients WHERE age=50 and bodymassindex=23

would entail a query on Untrusted based on age that delivers a list
of IDs to Secure. Secure will intersect that list with the IDs
generated from the bodymassindex selection. The above query is
straightforward to process as are all mono-table selections.
However, it incurs transferring irrelevant Visible data to Secure.
This flow of irrelevant data cannot be reduced without
information leakage about Hidden data.

Figure 1: GhostDB architecture and mode of operation.

Hidden

Stable
storage

CPU
RAM

e.g., 64 KB

USB 2.0
Full Speed

e.g., 1 MB Secure chip

External
NAND Stable storage

(several GB)
BUS

Stable
storage

CPU
RAM

e.g., 64 KB

USB 2.0
Full Speed

e.g., 1 MB Secure chip

External
NAND Stable storage

(several GB)
BUS

2.2 Hardware constraints
Secure acquires its tamper resistance from a secure chip. Secure
chips appear today in a wide variety of form factors ranging from
smart cards to chips embedded in smart phones and various forms
of pluggable secure tokens [11]. Whatever the form factor, secure
chips share several hardware commonalities. They are typically
equipped with a 32 bit RISC processor (clocked at about 50
MHz), memory modules composed of ROM, static RAM (tens of
KB) and a small quantity of internal stable storage and security
modules. Security factors imply that the RAM must be small – the
smaller the silicon die, the most difficult it is to snoop or tamper
with processing. In this paper, we consider a form factor
combining a secure chip with a large external Flash memory
(Gigabyte sized) on a USB key having a USB2.0 full speed2
communication throughput [20]. Figure 2 illustrates this architecture.

2.3 Problem formulation
The hardware constraints of the secure USB key transform the
privacy preservation problem into a severe performance problem.
Because GhostDB works in a mono-user environment on the
secure USB key, simple queries (e.g., mono-table selections) and
updates are of little concern provided response time can be
limited to a few seconds, which is the case. The first technical
challenge is to support regular SQL queries (concentrating here
on Select-Project-Join queries) in order to render the performance
of GhostDB acceptable even for large databases. The second
technical challenge is to mix visible and hidden computations
efficiently. To handle these two problems, we consider three
design rules expressed below:

• Ensure that query processing techniques respect the fact that
little RAM is available. Indeed, the device has limited RAM
for security considerations. Swapping encrypted Hidden data
on Untrusted could be a solution but is more expensive
(encryption/decryption costs) than using the Flash memory.

• Minimize the impact of irrelevant Visible data on Secure
processing. As said above, irrelevant Visible data cannot be
filtered before reaching Secure without revealing Hidden
information. The transfer cost is not the primary concern
considering the communication throughput. However, these
data must be filtered out very quickly to avoid congesting the
Secure processing.

• Prefer reads to writes based on the Flash write/read cost ratio.
In Flash, writes are roughly between 3 to 12 times slower than
reads depending on the portion of the page to be read (full
page vs. single word). Despite this discrepancy, writes on
Flash are significantly more efficient than on disk (about
200µs per 2KB page).

2 The USB2.0 full speed reaches 12Mb/s. USB2.0 High speed (up
to 480 Mb/s) is envisioned for future platforms to cope with
applications like on-the-fly video decryption [20].

3. COMPUTING SELECTIONS AND JOINS
This section focuses on Select-Project-Join queries involving
exact match and/or range selections followed by equi-joins
between key and foreign key attributes over a traditional database
schema, organized as a tree (see Figure 3)3. We use the term Root
table to refer to the largest central table of a database and Node
table to refer to all non-root tables connected to the root table
through direct or transitive joins on keys. The Root table is
denoted by T0 and Node tables are denoted by Ti with i≠0, where
the subscript represents the position of the table in the schema, as
pictured in Figure 3. The notation vu (resp. hu) denotes the uth
Visible (resp. Hidden) attribute of a table. Finally, id refers to the
surrogate attribute of a table4 and fki refers to a foreign key
referencing table Ti. Using this notation, the queries of interest
can be expressed as:

Figure 2: Secure Computing Environment is a smart USB key.

General form:

T1

T0

T2

T11 T12

Tree-structured Schema

 SELECT {Ti.id}
 FROM {Ti}
 WHERE {Ti.fkj= Tj.id} and

{Ti.vu θ valuem} and
{Ti.hv θ valuen}

Example:
 SELECT D.id, P.id, M.id
 FROM Measurements M, Doctors D, Patients P
 WHERE M.pid = P.id and P.did = D.id
 // foreign keys are Hidden
 and D.specialty=’Psychiatrist’ // Visible
 and P.bodymassindex > 25 // Hidden

Figure 3: Database schema and generic
 select-join-project-on-key queries.

For the sake of exposition, we consider projections on IDs only
and delay the discussion concerning projections on non-key
attributes to Section 4.

3.1 The case for a fully indexed model
While selections can always be executed in linear time in the size
of a table, join performance is highly sensitive to the respective
size of its operands. The TPC-C and TPC-H benchmarks give
examples of database schemas and representative cardinalities.
Order-line in TPC-C and LineItem in TPC-H of respective
cardinalities SF×300K and SF×6M tuples (with SF a scale factor)
are joined with tables roughly ten times smaller. Hence, the
problem addressed in GhostDB is computing selections and joins
over node tables (hundreds of thousand of tuples) and an
arbitrarily large root table (millions of tuples) with a very small
quantity of RAM (typically 64KB).

3 Considering nested queries, non-equijoins or non-tree structured

database schemas is left for future works. Note that most
database schemas are tree-structured or can be easily adapted
(e.g., TPC-C, TPC-E, TPC-H benchmarks from the Transaction
Processing Performance Council, http://www.tpc.org/).

4 By convention, T.id refers to the surrogate attribute of a table T,
idT refers to the instances of this attribute and ID or IDs refers
to the term tuple identifier(s).

Join algorithms can be split in two classes depending on whether
they exploit a pre-computed access structure (e.g., join index,
bitmap index) or not. The main representatives of the latter class,
also named “last resort” algorithms [4], are nested block join,
sort-merge join, simple hash join, Grace hash join, hybrid hash
join. An extensive performance evaluation of these algorithms can
be found in [9]. This study bears particular relevance to our
context since it considers RAM sizes common a decade ago (i.e.,
several megabytes). That work shows that the performance of last
resort algorithms quickly deteriorates when the smallest join
argument exceeds the size of RAM. Except for the nested block
join (which requires many passes on at least one table and has a
quadratic time complexity), all algorithms produce intermediate
results, an unfavorable situation in Flash where writes are far
more costly than reads. Join indices [25] alleviate the problem.
However, consecutive joins (e.g, σ(T1) ►◄ T2 ►◄ T3) either
incur random accesses in the join index JIT2T3 or a sort of the
σ(T1) ►◄ T2 result on the IDs of T2, a costly operation when little
RAM is available and writes are expensive. Accessing the result
tuples of the right operand table incurs random accesses or a sort.
Jive join and Slam join have been proposed to optimize joins
through join indices [14]. Both algorithms make a single
sequential pass through each input table, in addition to one pass
through the join index and two passes through a temporary file,
whose size is half that of the join index. Both algorithms require
that the number of RAM pages is of the order of the square root of
the number of pages of the smaller table. In the case of a RAM
size of 32×2K pages, this would imply that the smallest table
could not exceed two megabytes. The size constraint thus
disqualifies these algorithms for us.
More radical solutions have been devised for the Data Warehouse
(DW) context. To deal with Star queries involving very large Fact
tables (hundreds of GB), DW systems usually index the Fact table
(i.e., root table for us) on all its foreign keys to precompute the
joins with all Dimension tables (i.e., node table for us); in
addition, all Dimension attributes participating in queries are
indexed [13], [17], [27]. This massive indexation scheme is well
adapted to the DW context where the performance of complex
queries is the main issue and the update cost is not a concern.
Query performance is also a central issue in GhostDB and the tiny
RAM at our disposal dictates a fully indexed model with the
requirement to support a combination of selections and joins on
both Visible and Hidden attributes. We present a new indexing
data structure first and then we show how to use it to combine
Untrusted and Secure computations.

3.2 Subtree Key Table and Climbing Index
The primary requirement of the GhostDB indexing model is to
precompute all select and join operations in a way which
minimizes RAM usage. This leads to the definition of a new index
structure pictured in Figure 4 for the database schema of Figure 3.
Multidimensional join indexes, as suggested in the DW context
for Star schemas [17], are less RAM demanding than binary join
indices [25] since combinations of joins are precomputed. To
support any form of foreign key-based join expression, we
introduce a data structure called the Subtree Key Table (SKT).
For the root table, each tuple of SKTT0 concatenates the IDs of
tuples from all descendant tables, thus precomputing the join with
all of them. Similarly SKTT1 is a multidimensional join index for
tables T1, T11 and T12.

Selection indexes could be implemented as traditional B+-Trees.
However, the processing of an expression of the form
σhjθvalueTi ►◄ T0 would incur: (1) a lookup in Ti.hj index to get
the IDs of Ti tuples satisfying the selection qualification then (2)
for each of these IDs, a lookup in the T0.fki index to get the IDs of
T0 tuples satisfying the join expression. The final result is the
union of all lists of IDs from T0 obtained in step (2). Depending
on the selectivity of the selection, the number of lists participating
in the union may be large, requiring multiple passes and
intermediate writes in a system with little RAM. An alternative
solution may be to use bitmaps in place of lists of IDs [17], [27].
This solution decreases the cost of union but applies only to
attributes on low cardinality domains, so lacks generality. Instead,
we propose an index that we call a climbing index. A climbing
index defined on an attribute contains, for each entry, one sublist
of IDs per ancestor table up to the root. For example, each entry
of any index on T12 contains a sublist of IDs for the table T12
itself, a sublist for the ID of T1 and a sublist for the ID of T0.
Hence, the cost of cascading index lookups (index traversal and
union of ID lists) is avoided. For the special case of root table
attributes, climbing indexes and traditional B+-Trees are identical.
Combined together, SKTs and climbing indexes allow selecting
tuples in any table, reaching any non-leaf node table (including
the root table) in a single step and projecting attributes from any
other table. This benefit in terms of performance and RAM usage
comes at an extra cost in terms of stable storage. However, this
extra cost is less than it may appear. First, the SKT columns
corresponding to foreign keys come for free since they do not
need to be stored in the associated table. For instance, SKTT1 is
nothing but the projection of T1 on all its foreign keys attributes
(referencing T11 and T12). Only the foreign keys of descendant
tables other than child tables incur an extra storage cost. Second,
assuming a consistent database with respect to referential
constraints, SKTT has the same cardinality as the associated table
T, so that keeping the SKTT sorted on the table identifiers of T
eliminates the need to store those identifiers (e.g., the IDs of T1,
pictured in grey in the figure, are not stored in STKT1). Hence, the
main extra storage cost is incurred by the multidimensional lists
of IDs in the climbing indexes. The full set of IDs of a non-leaf
node in the schema is replicated in the indexes of all its
descendants. As pictured in the figure, this cost is dominated by
the replication of the IDs of the root table.

Ta
bl

e
T 1

2

Ta
bl

e
T 1

1

idT0
idT1

idT11
idT12

idT2

Ta
bl

e
T 0

SKTT1

Ta
bl

e
T 1

idT1
idT11

idT12

idT1idT11

idT0
idT1
idT12

idT0

on T12.hi

Climbing
Index

on T11.hj

Climbing
Index

idT2

idT0

on T2.hk

Climbing
Index

idT0

on T1.id

Climbing
Index

idT0

on T0.hl

Climbing
Index

Ta
bl

e
T 2

SKTT0

Ta
bl

e
T 1

2

Ta
bl

e
T 1

1

idT0
idT1

idT11
idT12

idT2

Ta
bl

e
T 0

SKTT1

Ta
bl

e
T 1

idT1
idT11

idT12

idT1idT11

idT0
idT1
idT12

idT0

on T12.hi

Climbing
Index

idT1
idT12

idT0

on T12.hi

Climbing
Index

on T11.hj

Climbing
Index

on T11.hj

Climbing
Index

idT2

idT0

on T2.hk

Climbing
Index

idT2

idT0

idT2

idT0

on T2.hk

Climbing
Index

on T2.hk

Climbing
Index

idT0

on T1.id

Climbing
Index

idT0
idT0

on T1.id

Climbing
Index

on T1.id

Climbing
Index

idT0

on T0.hl

Climbing
Index

idT0

on T0.hl

Climbing
Index

on T0.hl

Climbing
Index

Ta
bl

e
T 2

SKTT0

Figure 4 : Subtree Key Table and Climbing Index.

3.3 Mixing Visible and Hidden computations
Because Untrusted is fast, we want Untrusted to do as much work
as possible. Under the assumption that foreign keys are Hidden5,
Untrusted is granted permission to: (1) compute Visible predicates
of a query Q (i.e., select expressed on Visible attributes),
(2) project the result of this computation on any Visible column,
and (3) send the result to Secure. There is no leak of Hidden data
simply because no information leaves Secure.

A naïve strategy that prevents information leak would be to ask
Secure to perform all the selections and joins on Hidden attributes
and to perform a final join with the result of the Visible selections
performed by Untrusted. One drawback to this strategy is that it
pushes the Visible selections after Hidden joins even if they are
selective. A second drawback is that the strategy requires doing
the final join with a last resort algorithm. The climbing property
of the climbing indexes along with the SKT provides a set of
opportunities to build a much better Query Execution Plan (QEP):
pushing selections before joins and performing all joins by index.

If, however, the selectivity of a Visible selection is rather low,
traversing the indexes may be a poor choice. An alternative is
pushing such selections after the Hidden joins by a filtering
mechanism. This alternative is effective if this filtering can be
done in a single pass over the result of the Hidden joins. To meet
this requirement, we use Bloom filters. The Bloom filter is a
space-efficient probabilistic data structure that is used to test
whether an element is a member of a set [2]. A bit vector is built
in RAM and independent hash functions are applied to each
element of the set. The false positive rate can be kept very low
(e.g., less than 3%) if the size of the bit vector is at least 8 times
the cardinality of the set and this amount increases smoothly
while the size of the bit vector decreases. This property makes
Bloom filters well suited to RAM-constrained environments as
discussed in more detail in section 3.4. When a Bloom filter is
used to filter out tuples produced by Hidden joins, false positives
must be discarded at projection time by an exact selection.

Query Execution Primitives
To help explain the variety of QEPs which can be produced by
combining climbing indexes, subtree key tables, and Bloom
filters, we introduce the following operators:

Vis(Q, T, π) → {<idT, vi_value, vj_value …>}↓: Secure gets from
Untrusted the list of IDs of Table T corresponding to tuples
satisfying all Visible predicates of query Q along with attribute
values for the attributes in π. Superscript ↓ indicates that the list
returned is sorted on the first attribute (idT).
CI(I, P, π) → {{idT}↓}: looks up in the climbing index I and, for
each entry satisfying predicate P, delivers the list of IDs
referencing the table selected by π. Predicate P is of the form
(attribute θ value) or (attribute ∈{value}).

Merge(∩ i{∪ j{idT}↓}) → {idT}↓: performs the unions and
intersections of a collection of sorted lists of IDs of the same table
T translating a logical expression over T expressed in conjunctive
normal form.

5 This assumption could be relaxed to allow Untrusted to perform
joins on Visible attributes, thus making the computation easier and
more efficient. We concentrate in this paper on the most difficult
situation.

SJoin({idT}, SKTT, π) → {< idT, idTi, idTj … >}↓: performs a key
semi-join between a list of IDs of a table T and SKTT table and
projects the result on the subset of SKTT attributes selected by π.
The result is sorted on idT.

BuildBF({idT}) → BF: builds a Bloom filter from a list of IDs.

ProbeBF(BF, {< idT, idTi, idTj … >}) → {< idT, idTi, idTj … >}:
filters tuples from an input set using a Bloom filter.

Let us first consider a simple query involving a selection on one
Visible and one Hidden attribute of the same node table, as well
as a join with the root table.

Q: SELECT T0.id FROM T0, T1
 WHERE T0.fk1=T1.id and T1.v1θvalue1 and T1.h1θvalue2

Let us denote by QEPSJ the part of a QEP dedicated to the
execution of selections and joins. The simplest QEPSJ for query Q
would be:

1. use the index on T1.h1 in order to get sorted lists of idT0
resulting from σh1θvalue2(T1),

2. get from Untrusted the list of idT1 result of σv1θvalue1(T1),
3. for each of these idT1, do a lookup on the T1.id index to get a

sorted list of idT0 and
4. compute the union of the idT0 lists from step 1 with all idT0

lists from step 3.

This plan executing selections first, it is called Pre-Filter QEPSJ.

Pre-Filter QEPSJ:
CI(T1.h1, θ value2, T0.id) → {Li}
CI(T1.id, ∈ Vis(Q, T1, T1.id), T0.id) → {Lj}

 Merge((∪iLi) ∩ (∪jLj)) → result

Pre-Filtering suffers from the same drawbacks as cascading
indexes. First, it incurs as many lookups on the T1.id index as
there are tuples resulting from the Visible selection. Second, these
repetitive lookups may produce a large number of ID lists which
need to be merged, a multi-pass/write-intensive process on a tiny
RAM. As mentioned earlier, if the selectivity of the Visible
selection is low, a post-filtering approach that pushes Visible
selections after joins may outperform pre-filtering. Post-Filtering
works as follows:

Post-Filter QEPSJ:
 BuildBF(Vis(Q, T1, T1.id))) → BF

CI(T1.h1, θ value2, T0.id) → {Li}
 SJoin(Merge(∪iLi), SKTT0, <T0.id, T1.id>) → F’
 ProbeBF(BF, F’) → result superset

As mentioned in Section 2.3, Visible data received by Secure may
include a potentially large portion of irrelevant data which cannot
be filtered without revealing Hidden information. An important
optimization of both Pre-Filtering and Post-Filtering is thus
obtained by filtering Visible as early as possible, intersecting
Visible data with the result of Hidden selections, possibly using
the climbing index. Reducing Visible data cardinality benefits
Pre-Filter plans by decreasing the number of accesses to the
climbing index, simplifying also the subsequent Merge phase. For
Post-Filter plans, it reduces the Bloom filter size resulting in less
RAM consumption and/or better filtering efficiency. We call the
resulting strategies Cross-filtering. Note that the redundant lookup
in T1.h1 which appears in Cross-Post-filter QEPSJ can be easily
avoided in practice.

Cross-Pre-filter QEPSJ:
CI(T1.h1, θ value2, T1.id) → {Li}
Merge((∪iLi)∩Vis(Q,T1,T1.id))→L
CI(T1.id, ∈ L, T0.id) → {Lj}
Merge(∪jLj) → result

Cross-Post-filter QEPSJ:
CI(T1.h1, θ value2, T1.id) → {Li}

 BuildBF(Merge((∪iLi)∩Vis(Q,T1,T1.id)))→BF
CI (T1.h1, θ value2, T0.id) → {Lj}

 SJoin(Merge(∪jLj), SKTT0, <T0.id, T1.id>) → F’
 ProbeBF(BF, F’) → result superset

Let us now consider more complex queries where selections apply
on Visible and Hidden attributes of different tables, followed by
joins, based on hidden foreign keys.

Q: SELECT T0.id
 FROM T0, T1, T12
 WHERE T0.fk1 = T1.id and T1.fk12=T12.id
 and T1.v1θvalue1 and T12.h2=value2 and T0.h3=value3

Depending on the selectivities, a pre-filtering or post-filtering
approach can be selected per predicate. In addition, the Cross-(Pre
or Post) filtering optimization can be exploited to combine the
selectivity of selections on intermediate tables of the join tree
(e.g., T1) with the selectivity of selections on Hidden attributes of
descendant tables (e.g., T12). This optimization is made possible
thanks to the climbing indexes which associate to each entry, one
sublist of IDs per ancestor table in the join tree. Selections on the
root table constitute a special and favorable case combining the
selectivities of selections applied to all nodes of the join tree and
delivering results sorted on idT0 (the ideal case for the Merge
operator). We show below a candidate QEPSJ where pre-filtering
is selected for (T12.h2=value2) and cross-post-filtering is selected
for (T1.v1θvalue1):

Mixed QEPSJ:
 BuildBF(Merge(CI(T12.h2,=value2,T1.id)∩Vis(Q,T1,T1.id)))→BF
 Merge(CI(T12.h2,=value2,T0.id)∩CI(T0.h3,=value3,T0.id)) → L
 SJoin(L, SKTT0, < T0.id, T1.id >) → F’
 ProbeBF(BF, F’) → result superset

3.4 RAM efficient implementation of basic
operators

Recall that a central requirement is to evaluate the QEP
introduced above with a very small RAM (as mentioned, a typical
value is 64KB, that is 32 buffers of 2KB, the I/O unit with the
Flash module). Here we discuss the performance of the operators
in terms of I/O, neglecting the CPU cost. Each operator has
different requirements in terms of RAM. Regarding Vis, a
specific buffer is dedicated to the communication channel in the
smart USB key so that the download from Untrusted to Secure
can be processed with no RAM consumption. All indexes in CI
are implemented by means of B+-Trees, so that CI requires at
most one buffer per B+-Tree level. SJoin implements a key semi-
join between a list of IDs and a SKT sorted on the same criteria.
SJoin requires only two buffers to sequentially scan the operands
and one buffer to write the result.

Bloom filters consume significant RAM. The accuracy of a
Bloom filter depends on the ratio m/n where m is the size of the

bit vector and n is the cardinality of the set. m=8n is considered a
good tradeoff between accuracy and space usage (false positive
rate = 0.024 with 4 hash functions) [2]. Hence, a Bloom filter
built over a list of IDs is four times smaller than the initial list,
making it a good candidate to participate in RAM bounded QEP6.
When the lists of IDs are not too large, the RAM can
accommodate several Bloom filters, which can then execute in
parallel on the same operand, a significant optimization. When the
cardinality of the ID list is larger than the RAM size in bytes (e.g.,
more than 64.000 elements), we decrease the ratio m/n
accordingly, entailing a smooth degradation of the Bloom filter
accuracy (e.g., false positive rate becomes 0.055 for m=6n).

The Merge operator is the most complex to implement in a
bounded RAM. Merge must compute expressions of the form
(L1 ∩ L2 …∩ Lk) where each Li is a list of IDs answering a
selection predicate on a single column. The number of selection
predicates in a query is usually low, and so is the number of Li.
However, an equality predicate on a Visible attribute of a node
table generates a list of IDs of that table; when these are sent to
Secure, the CI operator takes this list as input and delivers, for
each element of the list, one sublist of IDs of an ancestor table in
the schema (e.g., CI (T1.id, ∈ Vis(Q, T1, T1.id), idT0) → {Li}).
The evaluation of range predicates on Hidden attributes also
delivers a set of sublists of IDs. Hence, Li lists corresponding to
range predicates on Hidden attributes or to predicates on Visible
attributes are of the form (Li1 ∪ Li2 …∪ Lij) and the number of
sublists Lij can be arbitrarily high. Because each (sub)list is sorted
on the same criteria, the computation of the complete expression
of unions and intersections can be performed optimally by a
sequential scan of each (sub)list Lij provided the RAM is large
enough to accommodate one buffer per sublist plus one buffer for
writing the output. If this condition does not hold, one can consider
two fundamental alternatives (smarter algorithms can be devised):

1. Perform, before the Merge, a union of sublists of IDs to
reduce their total number to less than or equal to the number
of RAM buffers. This can be done by loading in RAM the
largest number of sublists Lij of the same list Li, sorting them
to form a single sublist and writing that list back in Flash.
The cost of this reduction phase being linear with the size of
the sublists, the smallest sublists of each list are the best
candidates for reduction.

2. Implement a Merge algorithm that requires fewer buffers
than the number of (sub)lists to be merged. A rough example
of such algorithm is splitting each buffer into subbuffers so
that one subbuffer can be allocated to the scan of each
sublist. The size of a subbuffer being smaller than a I/O unit,
this entails a higher cost for the scan.

The optimal alternative depends on the ratio between the number
of sublists to be merged, the number of RAM buffers, and on the
element distribution in the lists. Space limitations prevent us from
presenting an exhaustive analysis of the possibilities. Instead, we
discuss the first alternative and its basic tradeoff: the number of

6 Compressed Bloom filters have been proposed but the net effect

of this technique is to reduce the rate of false positives with the
same space occupancy rather than decreasing the bit vector size
[16]. This technique does not apply to our context because
RAM is required to decompress the Bloom filter.

sublists can be reduced to the number of RAM buffers or to fewer
in order to save RAM. The benefit of the latter super-reduction
strategy is to offer the opportunity to execute pipelined operators
in RAM. For instance, if the RAM could accommodate the
buffers required by the Merge and a (set of) Bloom filter(s), the
operators of the sequence Merge-SJoin-ProbeBF could be
pipelined without entailing the materialization in Flash of any
intermediate result, yielding a high performance benefit. This
observation about pipelining in RAM further motivates the use of
climbing indexes to reduce the number of sublists resulting from
the selections.

4. COMPUTING PROJECTIONS
Let us finally consider complete queries including projections on
both Visible and Hidden attributes. These attributes may or may
not participate in selection predicates. In the example below, vlist
and hlist denote respectively a list of Visible and Hidden attributes:

Q: SELECT T0.vlist, T0.hlist, T1.vlist, T1.hlist, T12.vlist, T12.hlist
 FROM T0, T1, T12
 WHERE T0.fk1 = T1.id and T1.fk12=T12.id and T1.v1θvalue1

and T12.h2θvalue2 and T0.h3θvalue3

The complexity of the projection operation comes from
distinctive features of our architecture:

1. The set of Visible attribute values sent by Untrusted may
contain many values that ultimately will not appear in the
result (see Section 2.3).

2. The projection operation must discard false positives
generated by a Post-Filtering strategy in the result of QEPSJ(Q).

3. The RAM is still a scarce resource.

To adapt to these features, the Project algorithm:

1. does the projection on a table-by-table basis to reduce RAM
consumption,

2. avoids accesses to irrelevant attribute values sent by Untrusted,
3. postpones the integration of all attribute values in the result

tuples until the end of processing, thereby saving RAM and
then iterates over the result of QEPSJ(Q) and

4. minimizes the cost of discarding false positives. We
concentrate below on the most difficult case where both
Visible and Hidden attributes from the same table are projected.

The Project algorithm is given in Figure 5 and works as follows:
Partitioning the QEPSJ(Q) result: The first step of the algorithm
(line 1) takes as input the result of QEPSJ(Q) evaluating the
Where statement of query Q and performs a SJoin to get the IDs
of all tables involved in the Select statement7. Because the Project
algorithm considers one table at a time, the result of SJoin is
vertically partitioned (one column per table ID, denoted by
QEPSJ(Q).Ti.id in the algorithm) to avoid repetitive reads of
unnecessary columns. All QEPSJ(Q).Ti.id columns are stored in
root table ID order (i.e., T0.id) and have all the same cardinality.
Approximate filtering of irrelevant values sent by Untrusted: For
each node table Ti, i≠0, having at least a Visible attribute to be
projected, a Bloom filter is built over QEPSJ(Q).Ti.id (line 3) and

7 If QEPSJ follows a Post-Filtering strategy this step is skipped

because a SJoin has already been performed with the Root table
to get all necessary IDs.

used (line 4) to filter out the irrelevant idTi sent by Untrusted at
selection time (i.e., corresponding to tuples satisfying the Visible
selection but disqualified by other predicates of the query). This
step produces σVHTi.id, the set of Ti IDs corresponding to tuples
satisfying all Visible and Hidden predicates of the Where
statement. Just as Bloom filters used in QEPSJ introduce false
positives for Visible selections, Bloom filters used in Project
introduce false positives with respect to the QEPSJ result.
Building tuples on a table basis: According to the Select
statement, Visible attribute values (sent by Untrusted) and/or
Hidden attribute values (taken directly in Ti

H, the Hidden image
of Ti) are combined by the MJoin operator (line 6) into complete
tuples <pos, Ti.vlist, Ti.hlist> where pos is the position of this
tuple with respect to QEPSJ(Q).Ti.id column. The MJoin (MJoin
stands for Merge, Multi-pass, Multi-join) operator works as
follows. Ti.vlist, Ti.hlist and σVHTi.id are all sorted on idTi and can
be joined by a sequential scan of each list and a simple merge.
The result of this merge is stored in RAM up to the RAM capacity
(minus two buffers). The two buffers are used to do a complete
scan over QEPSJ(Q).Ti.id and to join it on Ti IDs with the
elements present in RAM and write the result back in Flash. If
required, this process is repeated ║σVHTi.id║size(<Ti.id, Ti.vlist,
Ti.hlist>)/(RAM – 4KB) times. The factor ║σVHTi.id║
exemplifies the benefit of filtering irrelevant values sent by
Untrusted. MJoin automatically eliminates all false positives on
this table, except those introduced by a join with false positive
tuples from other tables.
Combining tuples from all tables: The last operation (line 7) joins
all the resulting lists of tuples from all node tables together and
potentially with Visible and Hidden attributes of the root table.
All the operands being naturally sorted on idT0 (or equivalently on
position), this operation is done by a sequential scan of each
operand and a simple merge. This join automatically eliminates
the false positives not discarded by MJoin.

(1) SJoin(QEPSJ(Q),SKTT0,<Ti.id/∃Ti.attribute∈Q.ProjectList >)
(2) For each Ti, i≠0 / ∃Ti.vj∈Q. ProjectList
(3) BuildBF(QEPSJ(Q).Ti.id) → BF
(4) ProbeBF(BF, Vis(Q, Ti, Ti.id)) → σVHTi.id
(5) For each Ti, i≠0/ ∃Ti. attribute ∈Q. ProjectList
(6) MJoin([Vis(Q, Ti , < Ti.id, Ti.vlist >), σVHTi.id],
 <Ti.id, [Ti

H.hlist]>, QEPSJ(Q).Ti.id)
 →{<pos,Ti.vlist,Ti.hlist>}↓
(7) Join({{<pos, Ti.vlist, Ti.hlist>}↓}, [Vis(Q, T0 ,
 < T0.id, T0.vlist >], < T0.id, [T0

H.hlist]>) → Final result

Figure 5: Project algorithm (QEPP)

5. GLOBAL QUERY EXECUTION PLAN
Figure 6 presents the global QEP for an abstract query involving
selections, joins and projections over Visible and Hidden
attributes. Circles represent operators and edges show the
composition of operators with annotations indicating the content
and ordering of their input and output operands. Superimposed
boxes mean that similar subtrees can be repeated in the QEP if
several predicates (on different attributes) appear in the query.
The gray area on the left symbolizes Untrusted. For clarity, the
figure shows a single table in Untrusted participating in selections
on Visible attributes following either a pre-filtering strategy
(bottom of the QEP) or a post-filtering strategy (middle of the

QEP). The subtrees drawn in dashed lines illustrate a potential
cross-filtering optimization for both strategies. The upper part of
the figure illustrates the projection process and highlights the
particular management of projection over Visible and Hidden
attributes of the root table.

Materialization steps are not represented because they depend on
the ratio between the size of the intermediate results and the RAM
allocated to the execution of each operator instance. The main
tradeoff in the RAM allocation decision is between the Merge and
the Build-Probe operators in the QEPSJ part of the plan, as
discussed in Section 3.4. Other operators in QEPSJ consume only
a couple of RAM buffers. In QEPP, the RAM allocation decision
is simpler. Unlike Build-Probe in QEPSJ where the size of the
Bloom filter can be calibrated according to the size of its Visible
operand (a set of Ti.id), Build-Probe in QEPP builds a Bloom filter
over QEPSJ(Q).Ti.id, a list of IDs containing a variable number of
duplicates (this number is linked to the distance between Ti and
the root table in the schema). Due to the difficulty of estimating
the number of duplicates, and since the project algorithm works
on a table-by-table basis, the Bloom filter is calibrated by default
to occupy the entire RAM. This is a poor choice if a better
calibration would allow a pipelining of Build-Probe and MJoin,
an improbable situation for the queries we are interested in.

6. EXPERIMENTS
This section presents experimental results obtained from both
synthetic and real data sets. We first describe the experimental
platform and the data sets. The next subsections study
respectively the storage overhead incurred by the proposed index,
the cost of selections and joins, the cost of projections, the impact
of communication throughput and finally the cost of complete QEPs.

6.1 Experimental platform
Our industrial partner Gemalto has announced the availability of
the first commercial smart USB keys by less than one year. These
devices will have hardware characteristics close to the one
presented in section 2.2, with 64KB of RAM and 256MB of
external Flash (with a rapid growth of the Flash capacity
forecast). Gemalto provided us with a software simulator for this
device. Our prototype has been developed in C on top of this
simulator. This simulator is not cycle-accurate so that
performance measures in absolute time are not significant.
However, this simulator is I/O accurate, meaning that it delivers
the exact number of pages read and written in Flash.
This includes the I/O performed by the Flash Translation Layer
which manages wear levering, garbage collection and translation
of logical addresses to physical (updates are not performed in
place in Flash). The simulator delivers also the exact number of
bytes transferred between the RAM and the Flash Data Register.
The time to read (resp. write) k bytes in Flash and load them in
RAM is composed of the time to load the page from the Flash to
the Data Register in the Flash module (25µs) and the time to
transfer the k bytes from the Data Register to the RAM (k×50ns).
This means that reading a page costs between 25µs and 125µs
depending on the portion actually loaded in RAM. Therefore, the
ratio between a read and a page write in Flash roughly vary from
2.5 to 12. Other parameters are presented in Table 1. The
performance of operators is measured in terms of milliseconds,
and in based on the cost of communication and I/O.

Cross-Pre-Filter (visible predicates)

SJoin

Merge

CI

SKTT0

Predicate
Ti.hi Index

Ti.hi

BuildProbe

MJoin

Join

Vis

Bloom

Ti
H

T0
H

{<idT0
, hlistT0

>}↓

Vis

{<pos, vlistTi
, hlistTi

>}↓

Vis

{<idT0
, vlistT0

>}↓

{<idTi
>}↓

{<idTi
>}↓

{<idTi
, hlistTi

>}↓

πidTi

πidTi

Vis

CI

CI

Merge

{<idTi
>}↓

Index
Ti.hi

Index
Ti.id

{<idTi
>}↓ {{<idTi

>}↓}

Predicate
Ti.hi

{<idTi>}↓ {{idT0
}↓}

πVlistTi

{<idTi
, vlistTi>}↓

{<idT0
>}↓

πvlistT0

{<idT0
, vlistT0

>}↓

Vis

Build ProbeBloom

CI

Merge

{{<idTi
>}↓}

Predicate
Ti.hi

{<idTi
>}↓

Index
Ti.hi

{<idTi
>}↓

{<idTi
>}↓

{<
id

T i
, v

lis
t T i

>}
↓

{<idT0
, idTi

, …>}↓

Projections

Cross-Post-Filter

Hidden predicates

{<idT0
, vlistT0

>}↓

{<idTi
>}↓

{{idT0
}↓}

{idT0
}↓

{<idT0
, idTi

, …>}↓

{<idTi
>}↓

UNTRUSTED SECURE

Cross-Pre-Filter (visible predicates)

SJoin

Merge

CI

SKTT0
SKTT0

Predicate
Ti.hi Index

Ti.hi

BuildProbe

MJoin

Join

Vis

Bloom

Ti
HTi
H

T0
HT0
H

{<idT0
, hlistT0

>}↓

Vis

{<pos, vlistTi
, hlistTi

>}↓

Vis

{<idT0
, vlistT0

>}↓

{<idTi
>}↓

{<idTi
>}↓

{<idTi
, hlistTi

>}↓

πidTi

πidTi

Vis

CI

CI

Merge

{<idTi
>}↓

Index
Ti.hi

Index
Ti.hi

Index
Ti.id

Index
Ti.id

{<idTi
>}↓ {{<idTi

>}↓}

Predicate
Ti.hi

{<idTi>}↓ {{idT0
}↓}

πVlistTi

{<idTi
, vlistTi>}↓

{<idT0
>}↓

πvlistT0

{<idT0
, vlistT0

>}↓

Vis

Build ProbeBloom

CI

Merge

{{<idTi
>}↓}

Predicate
Ti.hi

{<idTi
>}↓

Index
Ti.hi

{<idTi
>}↓

{<idTi
>}↓

{<
id

T i
, v

lis
t T i

>}
↓

{<idT0
, idTi

, …>}↓

Projections

Cross-Post-Filter

Hidden predicates

{<idT0
, vlistT0

>}↓

{<idTi
>}↓

{{idT0
}↓}

{idT0
}↓

{<idT0
, idTi

, …>}↓

{<idTi
>}↓

UNTRUSTED SECURE

Figure 6: Abstract Query Execution Plan for general select-
project-join queries on visible and hidden attributes.

Parameters Values
Communication throughput (MB/s) Varying
Size of an ID (bytes) 4
Size of a page in Flash (bytes) 2048
RAM size (bytes) 65536
Time to read a page in Flash (µs) 25
Time to write a page in Flash (µs) 200
Time to transfer a byte between Data Register and RAM (ns) 50

Table 1: Main performance parameters of USB keys.

6.2 Data sets
The real dataset contains sanitized medical data related to
diabetes. From this database schema, we select as hidden attribute
all the foreign keys as well as attributes that could identify an
individual (patients or doctors). The database schema is described
below. A superscript indicates the Hidden/Visible status of the
attribute; the size in bytes is indicated in brackets. As usual,
primary keys are underlined while foreign keys are in italics.
Doctors [4.5 Ktuples]: (idVH(4), specialtyV(20), descriptionV(60),

 first-nameH(20), nameH(20)).
Patients [14 Ktuples]: (idVH(4), doctor_idH(4), first-nameV(20), nameH(20),

SSNH(10), addressH(50), birthdateH(10), bodymassindexH(4),
ageV(2), sexeV(2), cityV(20), zipcodeV(6)).

Measurements [1.3 Mtuples]: (idVH(4), patient-idH(4), Drug-idH(4),
 time V(10), measurementV(10), commentV(100)).

Drugs [45 tuples]: (idVH(4), propertyV(60),commentH(100)).

In addition, we have built a synthetic data set to perform a
comprehensive performance analysis, varying selectivities of
selections on Visible and Hidden attributes (let us call them
Visible and Hidden selections for simplicity). The schema of the
synthetic data set is based on the schema introduced in Figure 3.
In this synthetic data set, data follows a uniform distribution.
Beside keys, each table has by default 5 Visible and 5 Hidden
attributes each one of size 10 bytes.

T0 [10 Mtuples]: (id, fk1, fk2, v1
V, v2

V, …, h1
H, h2

H, …)
T1 [1 Mtuples]: (id, fk11, fk12, v1

V, v2
V, …, h1

H, h2
H, …)

T2 [1 Mtuples]: (id, v1
V, v2

V, …, h1
H, h2

H, …)
T11 [100 Ktuples]: (id, v1

V, v2
V, …, h1

H, h2
H, …)

T12 [100 Ktuples]: (id, v1
V, v2

V, …, h1
H, h2

H, …)

6.3 Size of the index structures
Figure 7 shows the storage cost of the SKT plus CI indexes and
compares it to possible variants. The x-axis is the number of
indexed Hidden attributes per table (in addition to primary and
foreign keys), assuming for simplicity that all tables have the
same number of indexed attributes. DBSize is constant and
represents the total size of all Visible and Hidden raw data
populating the database without indexes. The other curves
represent the storage overhead incurred by the index on Hidden
data. FullIndex is the index structure presented in this paper
where each non-leaf node of the database schema holds a SKT
and each attribute is indexed by a climbing index referencing all
ancestor tables. BasicIndex reduces the size of this index structure
by considering only a single SKT (for the root table) as well as
climbing indexes referencing the root table directly. The small
difference between these two curves demonstrates that the extra
price to pay to benefit from a complete indexation structure is
low, the storage cost being dominated by SKTT0 and the lists of
idT0 in all climbing indexes. The advantage of FullIndex over
BasicIndex is to allow for a Cross (Pre or Post) filtering
optimization and the speeding up of all queries whether or not
they involve the Root table. StarIndex is in turn a reduction of the
BasicIndex where selection indexes are traditional (i.e., contain
lists of ID of the indexed table only) but include the SKT of the
Root table to precompute Star joins. StarIndex allows query
execution strategies similar to [17]. The large difference between
BasicIndex and StarIndex shows that climbing indexes incur a
significant overhead. The next section will show, however, that
these indexes yield a high performance improvement for executing
selections and joins. Finally, JoinIndex is a reduction of StarIndex

0

200

400

600

800

1000

1200

1400

0 1 2 3 4 5
Number of hidden attributes per table

Si
ze

 (M
B)

FullIndex BasicIndex
StarIndex JoinIndex
DBSize

Figure 7: Storage cost of different indexing scheme.

where the SKT of the Root table is dropped. Traditional indexes
apply on all attributes, including the keys and foreign keys,
allowing the execution of joins in a way similar to join indices
[25]. On our real data set, the storage cost of each indexation
structure is: FullIndex = 57MB, BasicIndex = 56MB, StarIndex =
36MB, JoinIndex = 26MB and DBSize = 169MB.

6.4 Cost of selections and joins
This section evaluates the respective merits of the Pre and Post
filtering strategies, taking advantage or not of the Cross
optimization. To this end, we measure Query Q, which performs a
Visible selection on T1, a Hidden selection on T12 and joins
between these two tables and the Root table. We vary the
selectivity of the Visible selection (denoted by sV) and fix the
selectivity of the Hidden selection (denoted by sH) to 10%
(sH = 0.1). In all figures, the x-axis representing sV is plotted
with a logarithmic scale.

Query Q: SELECT T0.id, T1.id, T12.id, T1.v1
 FROM T0, T1, T12
 WHERE T0.fk1 = T1.id and T1.fk12 = T12.id
 and T1.v1 θ value1 and T12.h2 θ value2

Figure 8 shows the benefit of the Cross filtering optimization,
comparing the strategies Pre-Filter with Cross-Pre-Filter and Post-
Filter with Cross-Post-Filter. The figure shows that the Cross
filtering optimization is beneficial whatever the selectivity of the
Visible selection. The benefit becomes larger as this selectivity
decreases. For sV=0.01 (resp. sV=0.5) Cross-Pre-filter
outperforms Pre-Filter by a factor of 1.8 (resp. 2.3). For sV=0.5,
Cross-Post-Filter also outperforms Post-Filter by a factor of 2. In
this setting, the RAM can accommodate the Merge and the
BuildBF-ProbeBF in parallel.

0

5

10

15

20

0,001 0,01 0,1 1
Selectivity of Visible selection sv (log.)

Ex
ec

ut
io

n
tim

e
(s

)

Pre-Filter
Post-Filter
Cross-Pre-Filter
Cross-Post-Filter

Figure 8: Filtering vs. Cross-Filtering Performance.

0

5

10

15

20

0,001 0,01 0,1 1
Selectivity of Visible selection sv (log.)

Ex
ec

ut
io

n
tim

e
(s

)

Post-Select
Post-Filter
Cross-Post-Select
Cross-Post-Filter

Figure 9: Cross-Pre vs. Cross-Post Filtering Performance.

Figure 10: Pre vs. Post-Filtering Performance.

Figure 9 compares the Cross-Pre-Filter and Cross-Post-Filter
strategies. As expected, Cross-Pre-Filter outperforms Cross-Post-
Filter when the selectivity of the Visible selection is high. Cross-
Pre-Filter becomes worse for values of sV greater than 0.1. The
reason is that for sV>0.1 all pages of SKTT0 are accessed by SJoin
losing the benefit of pre-filtering. However, the differential
between Cross-Pre-Filter and Cross-Post-Filter is never greater
than 25%. This could lead to the conclusion that Bloom filters do
not bring a significant benefit and, more generally, that
postponing selections after joins (whatever their selectivity) is not
very useful. This also shows that the Cross optimization is
extremely effective and that indexes on Flash are far more robust
than indexes on disk in low selectivity environments.

The Cross optimization can be exploited only in certain situations
(more than one selection on the same table or Hidden selections
on descendant tables combined with selections applied on
ancestor tables). Figure 10 compares the Pre-Filter and Post-Filter
strategies alone, i.e., when the Cross optimization does not apply.
In this situation, the Bloom filters are much more effective. Post-
Filter becomes better than Pre-Filter for values of sV higher than
0.05. For sV=0.1, Post-Filter is already 30% better than Pre-Filter.
Note that the curve Post-Filter stops at sV=0.5. The reason is that
for lower selectivities, the Bloom filter introduces more false
positives than it can eliminate in the result of QEPSJ, even if the
entire RAM is allocated to the BuildBF-ProbeBF operators. In
this case, Post-Filter is simply not executed and the selection is
postponed to projection time. For illustrative purpose, the curve
NoFilter shows the cost of postponing the selection to projection
time independently of its selectivity.

To precisely capture the benefit of Bloom filters, Figure 11
compares the Post-Filter and Cross-Post-Filter strategies with
Post-Select, a strategy which performs an exact selection on the
result of QEPSJ. Post-Select simply loads in RAM the IDs

0

5

10

15

20

0,001 0,01 0,1 1
Selectivity of Visible selection sv (log.)

Ex
ec

ut
io

n
tim

e
(s

)
Cross-Pre-Filter
Cross-Post-Filter

0

5

10

15

20

0,001 0,01 0,1 1
Selectivity of Visible selection sv (log.)

Ex
ec

ut
io

n
tim

e
(s

)

Pre-Filter
Post-Filter
NoFilter

Figure 11: Post-Filtering alternatives.

resulting from the Visible selection and filters out the result of
QEPSJ. Cross-Post-Select results from the Cross optimization
applied to Post-Select, as usual. The figure justifies why we did
not consider Post-Select as a relevant strategy in Section 3.3.

6.5 Cost of projections
Figure 12 and 13 compare the cost of three projection algorithms
on query Q augmented with a projection on Ti.h1. Project refers to
the algorithm presented in Section 4. Project-NoBF is the Project
algorithm without the Bloom optimization; irrelevant attribute
values sent by Untrusted are not eliminated thereby incurring a
higher number of iterations. Brute-Force is an algorithm loading
the result of QEPSJ in RAM and accessing randomly the vlist and
hlist stored in Flash. The figure shows that Project is 60% faster
than Brute-Force when sV=0.1 and the gap increases with sV.
Whereas Figure 12 considers a cross-pre-filtering execution,
Figure 13 considers a cross-post-filtering execution to take into
account the elimination of false positives introduced by the
Bloom filters. Both show the insignificant impact of false
positives and the effectiveness of Project algorithm.

0

5

10

15

20

0,001 0,01 0,1 1
Selectivity of Visible selection sv (log.)

Ex
ec

ut
io

n
tim

e
(s

) Project
Brute-Force
Project-NoBF

Figure 12: Projecting in Cross-Pre-Filtering execution.

0

5

10

15

20

0,001 0,01 0,1 1
Selectivity of Visible selection sv (log.)

Ex
ec

ut
io

n
tim

e
(s

) Project
Brute-Force
Project-NoBF

Figure 13: Projecting in Cross-Post-Filtering execution.

0

0,5

1

1,5

2

2,5

0 1 2 3 4 5 6 7 8 9 10
Throughput (MBps)

Ex
ec

ut
io

n
tim

e
(s

)
Project1
Project2
Project3

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

PRE1 POS1 PRE5 POST5 PRE20 POST20

Ex
ec

ut
io

n
tim

e
(s

)

Project
Store
Sjoin
Merge

Figure 14: Impact of the communication throughput.

6.6 Communication costs
Figure 14 shows how the communication throughput impacts the
global performance of a query. The x-axis represents the
throughput expressed in MBps ranging from 300KBps up to
10MBps. The query measured is the same as before, except that it
projects the result on one (Project1), two (Project2) or three
(Project3) Visible attributes of 10 bytes each. The query is
executed following a Cross-Pre-Filtering approach considering a
selectivity sV=0.01. The curves highlight the fact that, for this
query, a communication throughput lesser than 1.3MBps becomes
the main bottleneck.

6.7 Query cost decomposition
The histograms presented in Figure 15 show how the total
execution time (excluding the communication time) is
decomposed among the operators involved in the execution of the
query Q. Only the most time-consuming operators are visible in
the figure, namely, Merge, SJoin and Project. Store represents the
time to materialize the intermediate result produced by SJoin (in
low selectivity queries). PRE (resp. POST) 1, 5 and 20 denote a
Cross-Pre-Filtering strategy (resp. Cross-Post-Filtering strategy)
for a respective selectivity of the Visible selection of sV=0.01,
sV=0.05 and sV=0.2. PRE is shown better than POST for
sV=0.01, and sV=0.05 but becomes worse for sV=0.20. As
already mentioned, for sV>0.1 all pages of SKTTO are accessed
by SJoin losing the benefit of Pre-Filtering. Hence, the SJoin cost
is the same in PRE20 and POST20 while the Merge cost is much
higher in PRE20 than in POST20.
Figure 16 presents the same analysis on the real data set. Query Q
keeps the same structure, replacing table T0 by Measurements,
table T1 by Patients and table T12 by Doctors. The main difference
between the synthetic data set and the real one is the size of the
Root table (10M tuples in T0 compared to 1.3M tuples in
Measurements) and the ratio T0/T1 (T0/T1 = 10 compared to

Figure 15: Cost decomposition for query Q on the synthetic dataset.

Figure 16: Cost decomposition for query Q on the real dataset.

Measurements/Patients ≈ 92). The first observation is that the
execution time of the query is related to the size of the Root table
and is roughly 1/10 the times of the synthetic data set. The second
observation is that the cost of the SJoin operator is dominant in all
histograms. In fact, the relative cost of Project decreases because
the cardinalities of the node tables (Patients and Doctors) are
much smaller while the relative cost of SJoin increases due to the
ratio Measurements/Patients ≈ 92.

7. CONCLUSION
People talk about privacy, but give it up very easily, especially
when faced with complex security procedures that offer only
conditional guarantees. This implies that for people's sensitive
data to be protected, the cost to protect it must require little
physical effort and must perform well.
This paper proposes a system called GhostDB whereby people
carry hidden sensitive data on a smart USB key and they plug that
key into a personal computer when they need to link their hidden
data with visible public data, all with the assurance that no hidden
data will ever go out in the open. In terms of the administration
interface, the only change is the "hidden" annotation on certain
fields in the create table command. Users issue completely
standard SQL, so application logic is unchanged.
GhostDB entails technical challenges having to do with
distributed query processing on devices having vastly different
capabilities in terms of speed, RAM size, and communication
capability. We have presented a query processing framework
based on the unconventional tradeoffs present in this unusual
environment. The techniques show a significant improvement
over naïve methods and make the solution applicable even for
complex queries over large databases. In the course of this work,
we have introduced techniques like climbing indexes, Subtree
Key Tables and post-filtering by Bloom filters which may have
wider applicability (e.g., in the Data Warehouse domain). Our
future work concerns the definition of database design tools to
help select the hidden part of a database, the efficient
implementation of aggregate operators, the inclusion of a cost-
based optimizer, and the possibility of distributed design across a
variety of smart USB key platforms.

0
1

2
3
4

5
6
7

8
9

PRE1 POST1 PRE5 POST5 PRE20 POST20

Ex
ec

ut
io

n
tim

e
(s

)

Project
Store
Sjoin
Merge

Acknowledgments
We would like to thank Christophe Salperwyck for his help on
implementing GhostDB prototype.
Shasha's work has been partly supported by the U.S. National
Science Foundation under grants IIS-0414763, DBI-0445666,
N2010 IOB-0519985, N2010 DBI-0519984, DBI-0421604, and
MCB-0209754. This support is greatly appreciated.

8. REFERENCES
[1] Agrawal, R., Kiernan, J., Srikant, R., Xu, Y., Hippocratic

Databases. The International Conference on Very Large
Databases: Pages 143-154, 2002.

[2] Bloom, B., Space/time tradeoffs in hash coding with
allowable errors. Communications of the ACM, 13(7): Pages
422-426, July 1970.

[3] Bolchini, C., Salice, F., Schreiber, F., Tanca, L., Logical and
Physical Design Issues for Smart Card Databases. ACM
Transactions on Information Systems (TOIS): Pages 254-
285, 2003.

[4] Bratbergsengen, B., Hashing Methods and Relational
Algebra Operators. The International Conference on Very
Large Databases (VLDB), Pages 323-333, 1984.

[5] Computer Security Institute, CSI/FBI Computer Crime and
Security Survey, http://www.gocsi.com, 2006.

[6] Damiani, E., De Capitani Vimercati, S., Jajodia, S.,
Paraboschi, S., Samarati, P., Balancing Confidentiality and
Efficiency in Untrusted Relational DBMSs, ACM
Conference on Computer and Communications Security
(CCS): Pages 93-102, 2003.

[7] Desai, S., Netravali, A., Thompson, M., Carbon fibers as a
novel material for high-performance microelectromechanical
systems (MEMS), Journal of Micromechanics and
Microengineering , 16, 7, (2006)

[8] European Directive 95/46/EC, Protection of individuals with
regard the processing of personal data, Official Journal L
281, 1995.

[9] Haas, L.M., Carey, M.J., Livny, M., Shukla, A., SEEKing
the truth about ad hoc join costs, The VLDB Journal, volume
6, number 3, Pages 241-256, 1997.

[10] Hacigumus, H., Iyer, B., Li C., Mehrotra, S., Executing SQL
over Encrypted Data in the Database-Service-Provider
Model, ACM International Conference on Management of
Data (SIGMOD): Pages 216-227, 2002.

[11] Henderson, N. J., White, N. M., Hartel, P. H., iButton
Enrolment and Verification Requirments for the Pressure
Sequence Smart Card Biometric. The International
Conference on Research in Smart Cards: Pages 124-134,
2001.

[12] IBM corporation, IBM Data Encryption for IMS and DB2
Databases v. 1.1, http://www-306.ibm.com/software/data/
db2imstools/html/ibmdataencryp.html, 2003.

[13] Lane, P., Oracle9i Data Warehousing Guide, Release 1
(9.0.1). Oracle Corporation, 2001.

[14] Li, Z., Ross, K.A., Fast joins using join indices. The VLDB
Journal, Vol 8, n°1, Pages 1-24, April 1999.

[15] Machanavajjhala, A., Kifer, D., Gehrke, J.,
Venkitasubramaniam, M., L-Diversity: Privacy beyond K-
Anonymity. International Conference on Data Engineering
(ICDE), 2006.

[16] Mitzenmacher, M., Compressed Bloom Filters. ACM PODC:
Pages 144-150, 2001.

[17] O’Neil, P., Graefe, G., Multi-Table Joins Through
Bitmapped Join Indices. SIGMOD Record, Pages 8-11,
1995.

[18] Oracle Corporation. Oracle Database, Advanced Security
Administrator’s Guide, 10g Release 2 (10.2). Oracle
documentation B14268-02, 2005

[19] Pucheral, P., Bouganim, L., Valduriez, P., Bobineau, C.,
PicoDBMS: Scaling down Database Techniques for the
Smart card, Very Large Data Bases Journal 10(2-3): Pages
120-132, 2001.

[20] Praca, D., Next Generation Smart Card: New Features, New
Architecture and System Integration, deliverable of the
Inspired IST project, 2005.

[21] Privacy Protection Study Commission, Personal Privacy in
an Information Society, Chapter 15: The Citizen As
Participant in Research and Statistical Studies. Report
transmitted to President Jimmy Carter on July 12, 1977.

[22] Sullivan, B., Privacy under attack, but does anybody care?
MSNBC article, Oct. 17, 2006.

[23] Sweeney, L., k-anonymity: a model for protecting privacy.
International Journal on Uncertainty, Fuzziness and
Knowledge-based Systems, 10(5): Pages 557-570, 2002.

[24] The Privacy Act, 5 U.S.C. § 552a, 1974.
http://www.usdoj.gov/04foia/ privstat.htm.

[25] Valduriez, P., Join Indices, ACM TODS, Vol. 12, No. 2,
Pages 218-246, June 1987

[26] Vingralek, R., Gnatdb: A small-footprint, secure database
system, International Conference on Very Large Databases
(VLDB): Pages 884-893, 2002.

[27] Weininger, A., Efficient execution of joins in a star schema,
ACM SIGMOD international conference on Management of
data: Pages 542-545, 2002.

	1. INTRODUCTION
	2. PROBLEM STATEMENT
	2.1 Data Placement: Visible on Untrusted; Hidden on Secure
	2.2 Hardware constraints
	2.3 Problem formulation
	3. COMPUTING SELECTIONS AND JOINS
	3.1 The case for a fully indexed model
	3.2 Subtree Key Table and Climbing Index
	3.3 Mixing Visible and Hidden computations
	3.4 RAM efficient implementation of basic operators

	4. COMPUTING PROJECTIONS
	5. GLOBAL QUERY EXECUTION PLAN
	6. EXPERIMENTS
	6.1 Experimental platform
	6.2 Data sets
	6.3 Size of the index structures
	6.4 Cost of selections and joins
	6.5 Cost of projections
	6.6 Communication costs
	6.7 Query cost decomposition

	7. CONCLUSION
	8. REFERENCES

