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Abstract

Computing WCET in a resource-constrained device such
as a smart card in a safe manner raises some difficulties. In-
deed, most of the classical algorithms for computing WCET
do not address resource-limitation or security issues. In this
article, we propose to distribute the computation process
between the off-card part running on a powerful worksta-
tion and the on-card part specific to the hardware included
in the smart card. We also guarantee the safety of our com-
putation process by inserting assertions in the generated
code and preventing information leaks from the card to the
outside.

1 Introduction

Smart card operating systems have to face very hard con-
straints in terms of available memory space and computing
power. Nonetheless, the specifications of most smart card
platforms impose strict deadlines for communications be-
tween the card and the terminal to which it is connected.
This advocates the real time paradigm to guarantee re-
sponse times and thus introduces the need for computa-
tion of WCET on these very constrained devices. Besides,
smart card operating systems have very strict security re-
quirements which must be taken into account by all parts
of the operating system, including the WCET computation
algorithm. Unfortunately, most of the classical algorithms
for computing WCET do not address resource-limitation or
security issues. We propose in this paper a novel scheme for
safely computing WCET on a very constrained device such
as a smart card.

∗This work is partially supported by grants from the CPER Nord-Pas-
de-Calais TACT LOMC C21, the FP6 Integrated Project INSPIRED, the
French Ministry of Education and Research (ACI Sécurit́e Informatique
SPOPS), and Gemplus Research Labs.

We first present the CAMILLE operating system for smart
cards, and then describe the main issues when computing
WCET on very constrained devices. We then detail the ar-
chitecture we propose to compute WCET in the CAMILLE

operating system and illustrate it on an example of a simple
embedded algorithm. We conclude by presenting the future
work we plan to conduct.

2 The CAMILLE architecture

CAMILLE [1] is an extensible operating system designed
for resource-limited devices, such as smart cards for in-
stance. It is based on the exokernel architecture [2] and ad-
vocates the same principle of not imposing any abstractions
in the kernel, which is only in charge of demultiplexing re-
sources. CAMILLE provides secure access to the various
hardware and software resources manipulated by the system
(e.g. the processor, memory pages, native code blocks, etc)
and enables applications to directly manage those resources
in a flexible way.

System components and applications can be written in a
variety of languages (including Java, C, etc). The source
code is translated in a dedicated intermediate language
called FAÇADE [3] by appropriate tools. Using an inter-
mediate language enhances the portability of the various
components is a way similar to Java bytecode. To guar-
antee the efficiency of the system and the applications, the
FAÇADE code is translated into native code using an em-
bedded compiler. This compiler converts FAÇADE pro-
grams when they are loaded in the device, and performs
machine-dependent optimizations to exploit fully the un-
derlying hardware. FAÇADE is an object-oriented lan-
guage including only five instructions:jump, jumpif,
jumplist, return, andinvoke which can be easily
type-checked due to its simplicity.

Thus, CAMILLE architecture is divided in two parts. The
off-card part is in charge on compiling the application or
system components into FAÇADE and compute the proof



of their type-correctness which is included in the generated
binary [4]. The on-card part loads this binary, checks the
proof, and then translate the FAÇADE program into native
code using the embedded compiler. Thus, CAMILLE takes
advantage of the computing power and memory space avail-
able on the workstation on which runs the off-card part to
perform costly operations. The WCET computation scheme
we propose is based on a similar distribution between off-
card and on-card parts, as detailed below.

3 Distributing the WCET Computation pro-
cess

WCET can be computed either statically or dynamically.
However, the WCET computed by a dynamic analysis can
be less than the real execution time of the code [5], which
is not compatible with hard real time constraint. Thus, we
focus on a static analysis which is more suitable in our con-
text. Since static analysis usually result in a pessimistic
estimate [6, 7], one of our goal shall be to reduce the de-
gree of pessimism as much as possible. Classical techniques
for computing WCET include the tree-based [6], the path-
based and the Implicit Path Enumeration Technique [8] al-
gorithms.

At the source code level, the tree-based method uses a
combination of an abstract syntax tree with a timing schema
approach [9]. It works on the source code of the program
to extract both its logical structure and the annotations in-
troduced by the programmer. In CAMILLE , the on-card part
of the system does not have access to the source code of a
dynamically loaded extension, but only to FAÇADE binary
code and its proof. As FAÇADE is a low-level language
close to assembly, no high-level instructions likeloop or
if-then-else are included in the FAÇADE instruction
set. Thus, FAÇADE code does not include any way to guess
the high-level structure of the program, which means that
the tree-based technique cannot be used in our context.

The IPET algorithm generates a set of constraints from
the Control Flow Graph of the program. The WCET esti-
mate is then generated by maximizing the sum of the prod-
ucts of the execution counts and execution times of the ba-
sic blocks forming the CFG. Constraint solving or Integer
Linear Programming can be used to solve this maximiza-
tion problem. Obviously, a simplex algorithm for instance
is much to costly in terms of memory and CPU resources
to be executed on a smart card. Since the costs of the basic
blocks are unknown off-card, the whole algorithm must be
executed in the smart card, which is not realistic for com-
plex programs.

The path-based technique can be assimilated to the clas-
sical problem of finding the longest path in a graph, which
can be solved for instance by a Dijkstra algorithm [10].
The path-based analysis searches the most costly path in the

CFG. Considering the memory space necessary to compute
WCET for complex programs with many possible paths,
and the heavy computations it implies, it is not possible to
use this technique as is in a smart card. Thus, we propose
to distribute the computation of the WCET between the off-
card and the on-card parts of CAMILLE , so that the most
costly operations are done off-card. The path search algo-
rithm cannot be applied off-card as it requires the knowl-
edge of the cost of each path to select the most costly one.
Indeed, only the card knows about the worst case timing be-
havior because it depends closely on the target architecture.
Moreover, the off-card part cannot quantify the execution
time of each FAÇADE instruction which are handled differ-
ently by the on-card backend according to the compilation
context (i.e. optimizations). Exporting relevant information
from the card would make it possible to compute WCET
in the off-card part. In fact, exporting a profile contain-
ing the exact code generated by the embedded compiler and
the cycle number corresponding to each native instruction
would allow the computation to be finalized off-card. Un-
fortunately, carrying out such sensitive information from a
secure area as the smart card to the outside is reproved by
smart card manufacturers in order to prevent both technol-
ogy leaks and potential timing attacks [11] against the cryp-
tographic protocols implemented in the card for instance.

In the next section, we show how we propose to dis-
tribute the WCET computation process by simplifying the
CFG outside of the card before sending it to the on-card part
of the system.

4 Implementation in CAMILLE

The WCET computational process has to be split up into
two phases. In a first step, in the off-card part of CAMILLE ,
a weighted control-flow graph must be figured out as shown
in Figure 1. Each node in the graph represents a basic block
(i.e. a sequential piece of code without any jumps or labels:
labels start a block, and jumps end a block). Iterations are
represented by edges labelled with the upper bound of the
loop.

Then, a parser flattens the control-flow graph obtained
into a tree. This eases the computation of the WCET by the
on-card part of the system, since searching the most costly
path is less resource-demanding in a tree than in a cyclic
graph. Conditional statements are represented by separate
branches in the tree. Loops are replaced by a tag on the
node representing the execution count of the block. In the
case of nested loops, the inner loop is tagged by the product
of its execution count and the outer loop one, as illustrated
in Figure 1, whereBB4 will be executedn4 × n5 times.

Once the tagged-tree is built, it is sent to the card within
the binary containing the FAÇADE code and the proof. The
embedded compiler is responsible for searching the most
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Figure 1. Tranformation of the CFG to tagged-
tree.

costly branch in the tagged-tree. As it decodes the FAÇADE

instructions one by one, the embedded compiler has to
translate the basic blocks of FAÇADE code into native ones.

Once the translation phase is finished, each basic block is
assigned an execution time which corresponds to the sum of
the number of cycles that will be consumed by each instruc-
tion. Then, the tagged-tree is used to compute the WCET
of the program by starting with the root node and summing
up the execution times of each basic block belonging to the
same branch. The formula used to compute the WCET of
the right branch is therefore:

WCET (Right branch) = WCET (BB1)+

n4 × n5 ×WCET (BB4) +

n4 ×WCET (BB5) + WCET (BB6)

The WCET of the respective branches are then compared
and the global WCET value is sorted out. If the deadline of
the program can be met, the code can be executed, other-
wise an error message is sent to the off-card part.

To compute theni used in the formula presented above,
we use annotations inserted in the source code either by the
programmer or by code analysis tools. Figure 2 illustrates
the CAMILLE compilation scheme of an annotated C code.
The off-card part should be extended with a static flow
analysis tool capable of translating the assertions inserted
by the programmer in the C code to FAÇADE annotations.
Figure 2 shows an example of such a programmer-inserted
annotation, represented by the C comment// MAXITER
128 which declares that the following multiplication loop
will iterate 128 times. This C comment is simply translated
by the static flow analysis tool into the FAÇADE annotation
.AttributeLine WCET MAXITER %128;.

While decoding FAÇADE instructions, if it reaches an
annotation, the embedded compiler needs to verify it. For
instance, if the off-card part claims that a loop will not it-
erate more than 128 times, the embedded compiler has to
explicitly insert code to exit the loop when the loop has it-
erated 128 times.
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Figure 2. An example of annotation transla-
tion.

The assertioncmp r0, #128; bge err compares the
registerr0 which stores the value of variableM with the de-
clared number of iterations (128). Ifr0 is greater than 128,
the program exits the loop and branches to an error label.

5 Conclusion and future work

We presented in this paper the scheme we propose to
safely compute WCET in a resource-constrained operating
system. By distributing the computation between the off-
card part running on a powerful workstation and the on-card
part specific to the hardware included in the smart card, we
are able to circumvent the very strict memory and CPU lim-
itation of the device. We guarantee the safety of our scheme
by inserting assertions in the generated code to validate the
annotations sent by the off-card part, and by preventing in-
formation leaks from the card to the outside. Finally, we
show that our scheme can be easily implemented in a se-
cure smart card operating system as CAMILLE . We are now
working on an extended architecture which would permit
to safely export hardware information outside of the card.
This would allow using the IPET technique to compute the
WCET off-card without risking to comprise the security of
the embedded system.
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