
HAL Id: hal-00310149
https://hal.archives-ouvertes.fr/hal-00310149

Submitted on 8 Aug 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Building secure embedded kernels with the Think
architecture.

Christophe Rippert, Jean-Bernard Stefani

To cite this version:
Christophe Rippert, Jean-Bernard Stefani. Building secure embedded kernels with the Think ar-
chitecture.. Workshop on Engineering Context-aware Object-Oriented Systems and Environments, in
association with the 17th ACM OOPSLA conference, Nov 2002, Seattle, United States. �hal-00310149�

CORE Metadata, citation and similar papers at core.ac.uk

Provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/50236744?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr/hal-00310149
https://hal.archives-ouvertes.fr


Building secure embedded kernels with the Think architecture

Christophe Rippert, Jean-Bernard Stefani

SARDES project, LSR-IMAG laboratory, CNRS-INPG-INRIA-UJF

INRIA Rhône-Alpes, 655 av. de l’Europe, Montbonnot 38334 St Ismier Cedex, France

{Christophe.Rippert, Jean-Bernard.Stefani}@inria.fr

Abstract

We present in this paper the security features of
Think, an object-oriented architecture dedicated to
build customized operating system kernels. The
Think architecture is composed of an object-oriented
software framework including a trader, and a library
of system abstractions programmed as components.
We show how to use this architecture to build secure
and efficient kernels for embedded systems. Policy-
neutral security is achieved by providing elementary
tools that can be used by the system programmer
to build a system resistant to denial of service at-
tacks and incorporating data access control. An ex-
ample of such a secure system is given by detailing
how to ensure component isolation with a elementary
software-based memory isolation tool.

1 Introduction

Ubiquitous computing is based on highly-
heterogeneous platforms whose only common
point is often that they have very restricted capa-
bilities compared to standard workstations. Thus,
these embedded systems require even more than
other platforms a customized operating system with
drivers optimized for the underlying hardware and
no unnecessary system abstraction loaded in the
operating system kernel. On the other hand, writing
a system from scratch is a tedious and difficult task
that increases production costs and requires expert
programmers. The Think architecture is a solution
to this problem as it provides an object-oriented

framework and a complete library of operating
system abstractions for the programmer to use when
he builds his system. One of the main advantages of
the Think architecture is the flexibility it provides
to the system programmer, since all components are
optional and can be loaded and unloaded dynami-
cally. However, flexibility must not be ensured at the
expense of security and quality of service, especially
in embedded systems where resources are scare.

We present in this paper the work we have con-
ducted in the Think architecture to provide a secure
framework. We first present the Think architecture
and its framework. Then we describe the software-
based memory isolation mechanism we have imple-
mented, and present how it can be used to provide
component isolation. Finally we list some related
works before concluding.

2 The Think architecture

2.1 The software framework

The distributed systems architecture Think is a plat-
form for the development of distributed operating
systems kernels. The goal of the Think architecture
is to ease the development of efficient, flexible, and se-
cure operating systems. Think provides the system
programmer with interfaces that reify the underly-
ing hardware, and optional system abstractions pro-
posed as libraries. The development of a kernel with
Think is made easier by its object-oriented frame-
work, since in Think, all resources (both hardware
and software) are considered as objects. These ob-



jects export interfaces which define their behaviour
and make them accessible to other objects. Each in-
terface has a name in a given naming context, and
is linked to other interfaces by bindings. A binding
is essentially a communication channel between two
objects. These bindings can take many forms, as sim-
ple as the association between a variable name and its
value, or more complex like a binding over a network
between two objects on different machines. Bindings
are created by dedicated objects called binding fac-
tories, whose main function (i.e. creating bindings)
can be freely extended to enforce a chosen behaviour.
Finally, objects can be grouped in domains accord-
ing to a common property (e.g. security domains,
fault-domains, etc).

All those concepts are presented in the minimal
software framework detailed in Figure 1. Java is
used in Think as the interface description language.
The Top interface is the greatest element in the
Think type lattice, the common type from which
all interfaces derive. The Name interface is the com-
mon type for all names in Think. The method
getDefaultNC returns the current naming context
and the method toString provides a serialized form
of the name. The NamingContext interface is the
common type for all naming contexts in Think.
Its method toName deserializes a name known as a
String. The method export provides a name for a
given interface. As a side effect, it also creates a bind-
ing between the returned name and the given inter-
face. The BindingFactory interface is the common
type for all binding factories in Think. The method
bind creates a binding between the calling object and
the object which name is given to the method.

The Think framework also includes a simple
trader component. This trader exports two methods,
register and lookup, whose prototypes are given in
Figure 2. The register method permits to publish
the reference (i.e. an instance of Name in Think) to a
given service under a symbolic name which eases its
localisation and abstracts its implementation. For
example, a memory manager can be registered un-
der the symbolic name “mem_manager” which other
components will use to locate it. Moreover, the
Think architecture supports the registration of mul-
tiple services under the same symbolic name. For ex-

interface Top {

}

interface Name {

NamingContext getDefaultNC();

String toString();

}

interface NamingContext {

Name toName(String name);

Name export(Top itf);

}

interface BindingFactory {

Top bind(Name name);

}

Figure 1: The core software framework in Think.

ample, the symbolic name “mem_manager” can rep-
resent two different memory manager, one for flat
memory and one for paged memory. The lookup

method is used to find the reference to a service
known by its symbolic name. The second parame-
ter, hints, is used to specify which service is wanted
in case of multiple registration under the same sym-
bolic name. For example, in the previous exam-
ple of two memory managers, the programmer could
call lookup(‘‘mem_manager’’, ‘‘flat’’) to ob-
tain the Name of the flat memory manager.

interface Trader {

void register(Name name,

String symbName);

Name lookup(String symbName,

String hints);

}

Figure 2: The Trader component interface.

A more detailed presentation of Think framework
can be found in [1].



2.2 Think for embedded systems

The Think architecture is especially interesting for
embedded systems. These systems are usually com-
posed of very specific hardware with limited perfor-
mances compared to a standard workstation, there-
fore requiring the operating system to make optimal
use of the underlying hardware. Unnecessary ab-
stractions should not even be present in the kernel
so as not to waste any memory, and drivers should
be optimized for the specific hardware. This is ex-
actly the philosophy of the Think architecture which
provides a library of optional abstractions to be used
by the system programmer as suits him best. Since
each entity is a component, and no component is
mandatory, the programmer can compose his system
as needed, and replace any provided component by
his own, thus building a customized system optimized
for the target platform. Moreover, the intrinsic dy-
namicity of the Think architecture makes it ideal for
building context-aware systems. Since components
can be loaded and unloaded dynamically, the sys-
tem can evolve according to its environment, and the
trader component permits to hide the actual imple-
mentation of a service, thus making the evolution of
the system due to variations of its environment trans-
parent to the client. All these properties make the
Think architecture a valuable tool to build context-
aware operating systems for ubiquitous computing.

3 Protection in the Think ar-

chitecture

The Think architecture permits to build flexible and
adaptable systems. However, security is a critical is-
sue in a modern operating system and should not be
compromised by flexibility. We are working to pro-
vide in the Think architecture the tools necessary
for the system programmer to build a secure system
which offers protections of data and resistance to de-
nial of service (DoS) attacks. These tools must be
policy-neutral so as not to compromise the flexibility
of the system. We present here one of these elemen-
tary tools, a software-based memory isolation mech-
anism, and how it can be used to provide component

isolation in the Think framework.

3.1 A software-based memory isola-

tion mechanism

The software-based memory isolation mechanism im-
plemented in the Think architecture uses a modified
version of the software-based fault isolation algorithm
presented in [2]. The principle of the algorithm is to
parse the code of a process at creation time and to re-
place each memory access (i.e. load, store and branch
instructions) by a branch instruction which points to
generated code. This generated code simply checks
that the destination address of the memory access is
in a allowed zone before executing it. In case of an
unauthorized access, the code throws an exception.
We detail this algorithm with a simple example in
Figure 3. The original code of this example consists
of a simple memory access, loading into register r1 an
integer located at the address computed by adding 8
to the value of register r2. When the process is cre-
ated, this load instruction is replaced by a branch
to the generated code. To simplify the example, we
consider that there is only one memory area in which
the process is allowed to read, and that this area is
defined by its lower and upper addresses stored in
registers r15 and r16. So the generated code sim-
ply check that the destination address (computed in
register r14) is between the bounds in r15 and r16.

Original_code:

lwz 1,8(2) // r1 := [r2 + 8]

Modified_code:

ba Generated_Code // goto Generated_code

Generated_code:

add 14,2,8 // r14 := r2 + 8

tw 8,14,15 // if r14 < r15 then trap

tw 16,14,16 // if r14 > r16 then trap

lwz 1,8(2) // r1 := [r2 + 8]

ba Original_code + 4 // return

Figure 3: Code modification and generation by the
software-based isolation algorithm.



3.2 Component isolation using

software-based memory isola-

tion

The memory isolation algorithm presented above can
easily be used to provide efficient and flexible compo-
nent isolation in the Think architecture. Component
isolation is necessary to prevent the following misbe-
haviors:

• a component reading or modifying another com-
ponent’s private data;

• a component calling a method it is not allowed
to call (i.e. an internal method which the server
component has not exported in its interface);

• a component calling a method without using
the calling procedure imposed by the framework.
This could be the behaviour of a process trying
to short-circuit an accounting mechanism imple-
mented in a method to launch a denial-of-service
attack for example.

Software-based isolation as we have implemented
it in the Think architecture allows the definition of
memory areas with different permissions. For exam-
ple, an area into which a component can branch but
not read or write can be seen as an execution-only
area, just as some hardware isolation mechanisms
permit execute-only segments to be defined for ap-
plication code. However, in the case of hardware iso-
lation, permissions are usually globally fixed (i.e. if
a segment is tagged as read-only, then no process in
the system can write to that segment, be it a sys-
tem or an application process1). Our software-based
isolation mechanism, on the other hand, permits per-
missions to be defined on a per-process basis: since
permission checking is done by inserting code in the
process itself, the same memory area can be tagged
as read-only for one process and execution-only for
another one for example, thus achieving a complete
flexibility in the isolation of components.

1Some architectures (e.g. the Intel ia32 architecture) per-
mit privilege levels to be defined for processes of different
classes (e.g. kernel, system services, applications, ...), but this
usually remains very restricted (the Intel ia32 architecture de-
fines only 4 different privilege levels for example)

We present how to use the Think framework to iso-
late components by detailing a simple example. Con-
sidering two components, a client component and a
server component, we want to ensure that the client
component which wants to call the alloc method ex-
ported by the server component does it using the ad-
vocated way through the framework and not directly
by forging a pointer to the method entry point for ex-
ample. Moreover, if this alloc method is a front-end
to the real allocation method (that could be the case
for example if we want to keep track of the amount
of resource allocated to each process), we want to
prevent the client component from short-circuiting
this front-end by calling directly the underlying pro-
cedure.

Using the software-based isolation mechanism, we
define 3 memory areas with different permissions,
from the client component point of view:

• Zone 1 is the memory area containing the client
component itself, and is therefore accessible to it
in Read, Write, and eXecute modes.

• Zone 2 is the memory area containing the frame-
work well-known entities, such as the trader and
the local binding factory, and can be accessed by
the client component only in eXecute mode (i.e.
the component can call methods from these en-
tities but cannot either read or modify data or
code in this area).

• Zone 3 is the rest of the system memory, which is
not accessible at all from the client component.

In this isolation scheme, the client component can-
not call the alloc method on the server component
since the server is in a zone that the client cannot ac-
cess at all. Since we want to allow this call, we extend
the role of the local binding factory: when the client
requests the creation of a binding, the binding factory
generates a stub, which is responsible for forwarding
the call issued by the client and the corresponding
return from the server method. The address of the
stub is returned to the client which will use it instead
of the real alloc method address. Since the stub is
in an execution-only zone of memory from the client
point of view, the client component can call it but not



modify it, therefore forcing it to (indirectly) call the
alloc in the advocated way. The generated stub is
simply a method, the stubMethod, whose only effect
is to call the alloc method of the server component.

The figure 4 illustrates this example. The sequence
of actions necessary to call the alloc method is de-
tailled below:

Component
Client

Binding
Factory

Trader

Server

Component

registerlookup

bind

return

generate

call

Zone 1

Zone 3

Zone 2

RWX access X access

stubMethod

Figure 4: Software framework for component isola-
tion.

1. The server component registers itself in the
trader, thus exporting the alloc method
through its interface.

2. The client component uses the lookup method
of the trader to find the service provided by the
server component.

3. The client component requests the creation of a
binding between itself and the server component
to the local binding factory.

4. The binding factory, after checking that the
client component has the right to call the alloc

method, generates the stub which will forward
the call to the server component and the return
from it. The address of this stub is returned
to the client component as a result of the bind
method.

5. The client component calls the stubMethod

which then calls the alloc method of the server
component.

6. Once the alloc method is over, the execution
goes back to the stubMethod which ends and
returns to the client component.

Compared to inter-process communication over
hardware isolation, software-based memory isolation
has proven its efficiency (see [2] section 5). In our
architecture, we monitored the cost of an absolute
branch instruction with software-based memory iso-
lation and found that the increase of the execution
time was only of +16.67%. We compared this inter-
process call with an optimised LRPC [3] implemented
over hardware isolation in Think and found that the
LRPC is more than 25 times slower than our mecha-
nism.

4 Related work

Compared to the OSKit [4] framework and set of
libraries, Think provides a better flexibility since
all components are independent. The KaffeOS [5]
project proposes some techniques to preserve qual-
ity of service in a Java environment, using the type
safety properties of the language. Similarly, the SPIN
[6] extensible operating system uses the properties of
the Modula-3 language to permit the safe binding
of modules in the operating system. In Think, we
aim to remain independent of the component devel-
opment language. In the DTOS [7] project, policy-
neutral security is enforced by way of security servers,
which check that inter-component calls are allowed.
This requires a modification of the component source
code, whereas in Think, binding factories can make
security checks, and the binary code of the compo-
nent is modified by the software-based memory iso-
lation mechanism without needing any modification
of the component source code. The Scout/Escort [8]
project focuses on protection against denial of service
attacks by defining the I/O path abstraction. How-
ever, this does not take into account the resources
allocated in the operating system kernel, whereas in
Think, we aim toward a global view of the resources



which enable the system to associate each allocated
resource with the benefiting user. This point of view
is close to the resource containers abstraction [9], al-
though this work has been conducted in monolithic
kernels whereas in Think we advocate a more mod-
ular architecture. The exo-kernel [10] advocates the
same philosophy of a minimalist kernel, although it
does not propose an object framework for the com-
ponents as in Think.

5 Conclusion and future work

As we have seen in this paper, the Think architecture
can be used to build flexible and secure operating sys-
tems for specific architectures like embedded systems.
The software-based memory isolation mechanism pre-
sented here is one of the policy-neutral elementary
tools provided in the Think architecture. Coupled
with Think component-based framework and high-
level abstractions like a policy-aware security man-
ager, these tools make the Think architecture a valu-
able base for the system programmer to build a secure
and DoS attack resistant system. Some work remains
to be done in the specification and implementation
of the security manager, the component dedicated to
manage the security policy defined by the system pro-
grammer. This component must be able to use the
policy-neutral elementary tools to enforce the chosen
policy. An important part of this work is the defi-
nition of the language used to define security policy
and we believe that Domain Specific Languages [11]
might prove to be the appropriate tools for that pur-
pose. With that secure and flexible framework, the
Think architecture shall prove to be a fitting tool
for the building of customised kernels, thus bringing
a high level of security and flexibility in the ubiqui-
tous world.

References

[1] Jean-Philippe Fassino, Jean-Bernard Stefani, Ju-
lia Lawall and Gilles Muller. THINK: A Software
Framework for Component-based Operating System
Kernels. In Proceedings of the USENIX Annual
Technical Conference, 2002.

[2] Robert Wahbe, Steven Lucco, Thomas E. Anderson,
Susan L. Graham. Efficient Software-Based Fault
Isolation. In Proceedings of the ACM SIGOPS’1993.

[3] Brian N. Bershad, Thomas E. Anderson, Edward D.
Lazowska, Henry M. Levy. Lightweight Remote Pro-
cedure Call. In ACM Transactions on Computer Sys-
tems, Vol. 8, No. 1, February 1990, pages 37-55.

[4] Bryan Ford, Godmar Back, Greg Benson, Jay Lep-
reau, Albert Lin, Olin Shivers. The Flux OSKit: A
Substrate for Kernel and Language Research. In Pro-
ceedings of the 16th ACM Symposium on Operating
Systems Principles, 1997.

[5] Godmar Back, Wilson C. Hsieh, Jay Lepreau. Pro-
cesses in KaffeOS: Isolation, Resource Management,
and Sharing in Java. In Proceedings of the 4th
USENIX Symposium on Operating Systems Design
and Implementation, 2000.

[6] Przemyslaw Pardyak, Brian N. Bershad. Dynamic
Bindings for an Extensible System. In Proceedings of
the 2nd USENIX Symposium on Operating Systems
Design and Implementation, 1996.

[7] Duane Olawsky, Todd Fine, Edward Schneider, Ray
Spencer. Developing and Using a “Policy Neutral”
Access Control Policy. In Proceedings of the New
Security Paradigms Workshop, 1996.

[8] Olivier Spatscheck, Larry L. Peterson. Defending
Against Denial of Service Attacks in Scout. In Pro-
ceedings of the 3rd USENIX Symposium on Operat-
ing Systems Design and Implementation, 1999.

[9] Gaurav Banga, Peter Druschel, Jeffrey C. Mogul.
Resource Containers: A New Facility for Resource
Management in Server Systems. In Proceedings of
the 3rd USENIX Symposium on Operating Systems
Design and Implementation, 1999.

[10] Dawson R. Engler, M. Frans Kasshoek, James
O’Toole Jr. Exokernel: An Operating System Ar-
chitecture for Application-Level Resource Manage-
ment. In Proceedings of the 15th ACM Symposium
on Operating Systems Principles, 1995.

[11] A. van Deursen, P. Klint, and J. Visser. Domain-
Specific Languages – An Annotated Bibliography.
ACM SIGPLAN Notices, 2000.


