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all strictly Schur rational function of degree n can be written as the 2n-th conver-
gent of the Schur algorithm if the interpolation points are correctly chosen. This
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Algorithme de Schur multipoint, fonctions
rationnelles orthogonales, propriétés
asymptotiques et approximation rationnelle Schur

Résumé : Dans [20] les relations entre 'algorithme de Schur, les fractions conti-
nues de Wall et les polynomes orthogonaux sont revisitées et utilisées pour établir
certaines propriétés de convergence de la suite de Schur d’une fonction Schur. Dans
ce rapport, certains résultats de Krushchev sont généralisés a I’algorithme de Schur
multipoints, c¢’est-a-dire lorsque les points d’interpolation ne sont plus pris en 0 mais
en n’importe quel point du disque unité ouvert. Pour cela, on fait appel aux fonctions
rationnelles orthogonales et a une récente généralisation du théoreme de Géronimus.
On considere ensuite le probleme de 'approximation rationnelle Schur d’une fonc-
tion Schur. Ce probleme revét une importance particuliere dans le domaine de la
synthese et de l'identification de sytemes passifs. On prouve que toute fonction
rationnelle Schur de degré n peut étre obtenue comme le 2n-ieme convergent d’un
algorithme de Schur dont les points d’interpolation sont convenablement choisis.
Cela nous permet de construire un paramétrage des fonctions rationnelles stricte-
ment Schur fondé sur I'algorithme de Schur multipoints. Des exemples numériques
sont traités par une procédure d’optimisation de la norme L? et les résultats validés
par comparaison avec l’approximation rationnelle L? non-contrainte.

Mots-clés : algorithme de Schur multipoint, fonctions rationnelles orthogonales,
fonctions de Schur, fraction continue de Wall, propriétés asymptotiques, approxima-
tion rationnelle



Schur rational approximation 3

1 Introduction

In this work, we are interested in approximating a Schur function f by a rational
function which is also Schur. A Schur function is an analytic function whose modulus
is bounded by 1 in the unit disk. This problem of approximation is very important
for the synthesis and identification of passive systems. The main idea is to use
a generalized multipoint Schur algorithm, that is a Schur algorithm where all the
reference points are not taken in 0 but are taken at points (c;);>1 anywhere in the
unit disk. Such an algorithm leads to a sequence of Schur rational functions that
we are studying all along this paper.

In the first section, we introduce the generalized Schur algorithm, and rewrite it as
a continued fraction. We then give some basic properties of the convergents of this
continued fraction. In particular, the convergents of even order are Schur rational
functions which interpolate f at the points (o).

In the next section, we introduce the orthogonal rational functions on the unit circle
and give all the basic results needed on this topic. Our main reference is the book
[6].

The third section makes a connection between the Schur algorithm and the orthog-
onal rational functions. This is a generalization of the Geronimus theorem ([13],
[21]) which states that the Schur parameters are equal to the Geronimus parame-
ters of the orthogonal polynomials of the measure associated to f by the Herglotz
transform.

The first three sections are in fact all the necessary background to study asymptotic
properties of the convergents of even order. These properties are given in the fourth
section, and are mainly a generalization of the work of Khrushchev ([20]) who studied
the L2-convergence in the case of the classical algorithm. The difficulty here comes
from the fact that we let the points go the circle.

In addition, we obtained a “Szegé condition” and a result of convergence for the
Schur functions which seems to be asymptotically very close to a BMO convergence.
Finally, in the fifth section, we give some practical ways to approximate a Schur func-
tion by a rational function of a given order. We prove that all strictly Schur rational
function of degree n can be written as the 2n-th convergent of the Schur algorithm if
the interpolation points are correctly chosen. This leads to a parametrization using
the Schur algorithm. We give some details about it, and also explain how to com-
pute effectively the L?-norm. Some examples are computed using an optimization
process, and the results are validated by a comparison with the unconstrained L?
rational approximation.

2 Notations and first definitions

This section presents some basic notations and definitions that will be used through-
out our study.

RR n® 6620



4 Lunot & Baratchart € Kupin € Olivi

We denote by D the unit disc D = {z € C,|2| < 1} and by T the unit circle T =
{z€C,|z| =1}.

H (D) and C(D) represent respectively the set of analytic functions and the set of
continuous functions over ). We denote by A(ID) the disk algebra, i.e. the set of
analytic functions in D, continuous on D.

For a function f, we define the infinity norm || - || by || fllcc = sup.ep |f(2)].

Definition 2.1 An analytic function f on D such that ||f||ec < 1 is called a Schur
function. The set S of all Schur functions is called the Schur class S.
If f is an analytic function in D with || f|le < 1, we will say that f is strictly Schur.

Let {z,} be a subset of D\ {0} and s be a nonnegative integer. A function of the
form

H 20| 20 —

L 2y 1 — ZpnZ
is called a Blaschke product. Furthermore, if the set {z,} is finite, it is called a finite
Blaschke product.
It is well known (e.g. [12] or [25]) that if ) (1 —|z,|) < oo, then B is in H*(D),
the zeros of B are the points z, (and 0 if s > 0) and |B| = 1 almost everywhere
on T. Therefore, Y (1 — |2,|) < oo is a sufficient condition for the existence of a
non-zero function in H*°(D) with given zeros {z,}. In fact, this is also a necessary
condition (e.g. [12] or [25]): the zeros z, of a non-zero function in H>°(ID) satisfy
Yol —z]) < 0.

We will sometimes use the following corollary: if a function in H*°(ID) has an infinity
of zeros at the points z, and if > (1 — |2,|) = oo, then it is the zero function.

For a sequence {a;}32, C D with ag = 0, we define the elementary Blaschke factors

Z — O
= E>0 1
Ck 1 — apz y v — ( )
and the partial Blaschke products
{ BO(’Z) = % (2)
Bi(2) = Bi-1(2)C(2) = [[;=) 755 for k > 1.

The functions {By, By, ..., B,} span the space

»Cn:{ﬂ_n : ]]:[11_0%2 pnepn} (3)

where P, is the space of algebraic polynomials of degree at most n.
In particular, if all the oy, are equal to 0, the space £, coincides with the space P,,.
Note that a function of £, is analytic in D.

INRIA



Schur rational approximation 5

For any function f, we introduce the parahermitian conjugate f, defined by

fu(z) = f(1/2). (4)

Two useful and immediate equalities are ¢,,, = ¢, ' and By, = B, .
We set for any function f € L,:

It is immediate to check that f* is also in L,.
We denote by B,,; the product Hij Go. If

f = aan + &nfllgnfl + -+ a115’1 “+ ag

then
f* = C_]JOBn,l + algnﬂ + -+ C_L17,72Bn,n71 + anflgn,n + C_Ln-

Finally, we remark that the leading coefficient a,, is given by

An = f*(an>

and that
Qg = f(Of1)~

We denote by m the normalized Lebesgue measure on T : m(T) = 1.
Now that all the main notations have been presented, we are able to begin with the
study of the Schur algorithm.

3 The Schur algorithm

Starting from a Schur function f, the classical Schur algorithm ([26]) gives a sequence
of Schur functions (f),cy and a sequence of complex numbers (), as follows:

= o

Yk = fr(0),

f (z):lm for k > 0.
o 21 = fr(z)’

Note that for every k € N, w — % is a Moebius transform which maps D onto D,
so by the Schwarz lemma ([12]) fi is a Schur function for every k € N. An interesting
property ([4]) of the Schur algorithm is that it realizes a one-to-one correspondence
between the Schur class S and the sequence of complex numbers (7yx), .y having the
properties: |vx| < 1 for k& > 0, and if for a certain kg, |y, | = 1, fr,(2) = Yk, 1s a
constant function and then v, = 0 for k > k.

Note that the Schur algorithm extends to operator-valued functions ([24], [§]).

RR n® 6620



6 Lunot & Baratchart € Kupin € Olivi

3.1 Multipoint Schur algorithm

In the classical algorithm, the Schur parameters ~, are obtained by evaluating the
functions f,, at 0. This process can be extended to evaluation points arbitrary in D
(e.g. [18], [21]). We next describe such an algorithm.

Let {a}72, be a sequence of points in D and {c;}72, be a sequence of points in T
with ¢g = 1. Then, the generalized Schur algorithm is :

For k > 0, fi. and . are defined by

Jo=Tf

V& = Ekfk(aki-l) for k> 0
1 afi—w =

fk+1 -

Cht1 1 — VCrfr

where ¢, is the Moebius transform defined by ([I).
If || = 1, the algorithm stops.

The parameters (ay) are the interpolations points. They are those parameters equal
to 0 in the classical Schur algorithm, which are presently taken anywhere in the disk.
The parameters (c;) have modulus equal to 1, and are rotations applied to the fy
at each step of the algorithm. Note that the (c;) can also be seen as normalization
parameters of the Moebius transforms since

L Cufr —
Cer1 1 — YCr fr
Ck fr—
Ces1 1 — Vil fr
L fo— felars)
CkCri11 — fk(ak+1>fk'

frs1

As in the classical case, the sequence (f,)nen is a sequence of Schur functions,
therefore the (7,)nen lie in D.

Definition 3.1 The sequence (V) oy 15 called the sequence of Schur parameters of
the Schur function f associated to the sequence (o).

The Schur parameters depend only on the values of f and its derivatives fU) at the
points (ag)x. More precisely,

Proposition 3.2 For k € N, v, depends only on the values f©(ajy1), 0 < j <k,
0 <@ < mjy1, where mjyy is the multiplicity of a1 at the k-th step, i.e. mjyq is
the cardinality of the set {I, 0 <1<k, ay41 = aji1}.

INRIA



Schur rational approximation 7

Proof Noticing that f;(a;) = fi_i(a;)¢j-1%; 1_‘1];_‘0‘ ®__ the proof is immediate by

j
J —1(ay)[??
induction.

The Schur algorithm can be reversed in order to express fr_; as a function of f.
We obtain

_ 1 - 1P
Ckfkf"‘%c 1 ZCk—Wk—Hr( _h% 1 )c;; 1Ck. (6)
1+ Ak—1Ce fx Ve-1Gk + -

We denote by 7, the map

%: D — S

fk—l = Ck—1

(1*|’Yk|2)Cka+1 .
C 4 — s fu) 7£ 0
w — Tk(m) = { KTk 7Yk<k+1+:1] ! !

Ck Yk if w=0.

Note that we should write 7(w)(z) because 7(w) is a Schur function of z through
Ck+1- Much of the recursive complexity of the Schur algorithm lies in the fact that
we shall substitute to w a function of z to make 74 (w(2))(2) a function of z only. In
particular, we have f = 7x(fxr1). Therefore, f is equal to

f=momo o (fu) (7)

Proposition 3.3 The Schur algorithm stops if and only if f is a finite Blaschke
product.

Proof For p a polynomial, denote by p the polynomial 2z"p (%) where n is the degree
of p.

Suppose that f, is a Blaschke product of degree n. Then f, can be expressed as %
where p has its roots in D, so

1 — @12 Cup — Yup

Z — Onp41 ﬁ - ’Vnénp

f n+l —
Let Py = ¢,p — Vnp. Then Py = cn(P — CaYnp), SO %
polynomial P. Note that, since ¢, f,(an11) = Yn, P vanishes at a,,1 1. Therefore
fne1 is a Blaschke product of degree n — 1. Thus, if f is a Blaschke product of
degree n, f, is a Blaschke product of degree 0, i.e. a constant of modulus 1, and the
algorithm stops.
Conversely, if fr = ;isa Blaschke product of degree n — k, then

is of the form % for some

. (z — aw)p + V—1p(1 — O 2)

Jeo1=cCro1 — — )
p(l — OékZ) + ’)/kfl(Z — Oék)p

so fr—1 is a Blaschke product of degree at most n — k + 1. In fact, using the first

part of the proof, we get that fx_; is exactly of degree n — k + 1 (otherwise f is

not of degree n — k). Therefore, if f, is a constant of modulus 1, f is a Blaschke

product of degree n.

RR n® 6620



8 Lunot & Baratchart € Kupin € Olivi

3.2 Continued fractions

In this section, we give a very short introduction to continued fractions. Many good
references, such as [29], can be found on this topic.
A continued fraction is an infinite expression of the form

ai
bp + —m—.
by + —%%—
1t b2+b3+3%
also denoted for economy of space by
Qg as

ot b2 B
O 4 by + by ...

Let to(w) = by + w and

t = for k > 1.
Hw) b +w o=
We call the n-th convergent, and we denote by P, /@, the fraction
P, ax
0 tgoty o0ty (0) = by + :
Q. e — T —

ba+
n

Proposition 3.4 The quantities P, and Q,, are given by the recurrence relations

P, = 17@*1 =0,

Py = by, Qo =1,

Pypy = bpp1 P + ap1 Py
Qry1 = bp1Qr + ar1Qr—1

for all non-negative k.
More generally,

Pn—lw + Pn
tootio---0t, =
0 ' (w) Qn—lw +Qn
Proof By induction. We have
P,1W + P()
to(w) =byg+w = —"""——.
o) ’ Q1w + Qo

Suppose the statement true for k. Then
P12 4 P

Bt
Qr1 b:f;iw + Qk

Prw + by P, + a1 Py
Qrw + b1 Qr + ap1Qr—1
P.w+ Py

Qrw + Qrs1

tootlo~~~otk+1(w) =

INRIA
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This gives the announced result.

3.3 Wall rational functions

In this section, we follow the same scheme as in ([20]).

Let (dg)ren be a sequence of points on the unit circle T, with dy = 1. We now define
the ¢, of the Schur algorithm by ¢, = di. Let (aj) be a sequence of points in the
unit disk D. Recall from that f =07 00 7,(fnpr1) With

(1 - |’Yk’2)ck<k+1
ViCr+1 + %

Te(w) = v +

A rational Schur function R, of degree at most n can be obtained by interrupting
the Schur algorithm at step n, that is, by replacing f,, 11 by 0:

R,=m0T1 0 0T, 107,(0)

=T9p0710:-+0 Tnfl(cn’}/n)'

(8)

The rational functions R, play a key role in what follows. Indeed, we will see
later how to approximate f using the sequence (R,). Therefore, we will now pay a
particular attention to the properties of these rational functions. The first one is an
interpolation property:

Theorem 3.5 The rational function R, interpolates f at the points ap, 1 < k <
n+ 1, and has the same n + 1 first Schur parameters as f.

Proof Remark that 7 (w)(ag41) is independent of w. Indeed, 7 (w)(ags1) = cxVi-
Let k be an integer such that 0 < k < n. Then:

f(ak—i-l) = TOO"'OTk(TkHO"‘OTnoan)(akH)
= 790 0T(Ths1 0+ 0 T5(0)) (tht1)
= Ru(arn).

Thus, R, interpolates f at the point oy 1.

We next prove by induction that f and R,, have the same n+1 first Schur parameters.
Using what precedes, we get that f and R, have the same first Schur parameter
Yo. Now, suppose that the k first Schur parameters of f and R, are equal. Then,
if we denote b Rg], ... R!™ the Schur functions of R, obtained through the Schur
algorithm, RY is equal to 7. o o1y (R,). Thus,

R (agn) = 7t 00 org (Ry)(akm)
= 7'1:1 o---0 7'0_1 0TgpOT{0--+0 Tn_l(Cn”yn)(()ék+1)

= Tp©O-:-0 Tnfl(cnf}/n)(alH»l) = CkVk

RR n® 6620



10 Lunot & Baratchart € Kupin € Olivi

since 7 (w)(ag+1) = cxye. Therefore, the k + 1-st Schur parameter of R,, is equal to
the k + 1-st Schur parameter of f.
[ |

The previous theorem leads to the existence of a function with given Schur param-
eters:

Corollary 3.6 Let ¥, 0 < ¢ < n — 1, be n points in the unit disk D and c;,
0 <i<n—1, be n points on the unit circle T. Then, there is a Schur function
whose n first Schur parameters are the ¥;, 0 <1 <n — 1.

Proof Using the previous theorem, the function

Rn - ’7_0 0:--0 7v_nfl(cnfr)/n)

where o
(1 — |%&]?) exCrrr

FrCrs1 + %

Te(w) = aYr +

satisfies the announced condition.
[ |

We are now going to study the sequence of rational Schur function R,, using contin-
ued fractions. We note S—“ the sequence of convergents associated to the continued

fraction ) ) ) )
— C 1— c
CO,VOJF( |_70’ )coCi ( ’_71| Je1Ge ()
YoC1 +oan t Y162 T+
so that the R, are the convergents of even index: R, = %.

By proposition [3.4] for n > 1:

Pon = i ¥nPon—1+ Pan—o

Q2n = caMnQ2n—1 + Q2n—2
Pan1 = n-1GnPan—2 + (1 = [Yn—1*)cn-16a Pons
Q2n—1 = Fn-1GnQ2n—2 + (1 — [1n-1]*)€n-1(aQ2n—3

(10)

with
Pi=1 R=cyw=7% Q-1=0 Q=1

Our purpose is now to give explicit formulas in order to compute R,, that is formulas
for P, and @)5,. The following lemma expresses the relations between the rational
functions of even and odd order. We shall make the convention that @5, = B,,Qan.,
and ()5, ., = Bnt1Q2n+1, and similarly for P, and Ps,qq. It will actually follow
from the lemma that this convention agrees with definition , in that we will have

Popi1, Qong1 € Lo and Pay,, Qo € L, by (10).

INRIA



Schur rational approximation 11

Lemma 3.7 Forn >0, we have

P2n+1 = CnCnJrlQ;n’ Q2n+1 = CnCn+1P2*n

where C,, = Zig c, € T.

Proof For n =0 we have

Pr = %oGieono + (1= [70l*) et = o1 Qg
and
Q1= %G = oG Fy -

Assuming the hypothesis is true for all indices smaller than n, we obtain that

Crln1@s, = Colupi(cnVnQan1 + Qon—2)"
= CuGut1(E Q21 + (nQ3y_2)
= Coo1Gui1(Tn@on1 + cnGu@s,_o)
= Cn—lCn+1(’7nén—1P2n—2 + CnC_'n_1P2n—1)
= Cot1(GnPon—2 + cnPon—1)
= Cot1(VnPon — Cn‘7n|2p2n71 + cnPon-1)

P2n+1'
This yields the first relation of the lemma. The proof of the other relation is similar.

[
From ((10)), we have for n > 1 :

P2n+1 - ’7n<n+1p2n + (1 - |7n|2)chn+1P2n—1
’_YnCnJrl (Cn’YnPanl + P2n72) + (1 - ".)/nIQ)CnCn+1P2n71
= ﬁngn—l—lPQn—Z + Cngn—i—lPQn—l

and similarly Qon1 = YnCur1Q2n—2 + cnCur1Q2n—1 so that

Poni1 Qons _ cnCnt1 YnCnt1 Pyo1 Qo
P2n QQn YnCn 1 P2n—2 QQn—Z

Cnt1 O I cn 0 Pyo1 Qo
0 1 Tn 1 0 1 P2n—2 Q2n—2 .
Therefore

Cni1 O Py Qantr
O Cn—l—l P2n QQn

— Snt1 Cnt1 0 1 Vn Cn 0 Cn, 0 PQn—l QQn—l
G 0 1 Yo 1 0 1 0 G Popo Qopn—o |’

RR n® 6620




12 Lunot & Baratchart € Kupin € Olivi

Thus, using the previous lemma,

Cpnn 0| @5, B3,
0 1 P2n QQn

_|:Cn+1 01[1 7n:||:Cn 0:||:Cn0]|:Q§n—2 PQ*n—2}
N 0 1 Tn 1 0 1 0 1 P2n—2 QQn—2 .

[terating, we get

CnJrlQ;n CnJrlPQ*n
PQn QZn

(e s P Ie ) e B]

Let 2, = HZ:O dy. Note that, by definition of ¢, we have X2 :_C'n. We choose
as representative of R, the rational function R, = 4= with A, = £, P, and B,, =

_ Bn
an2n~

(11)

(12)

Definition 3.8 A, and B,, are called the n-th Wall rational functions associated to
the Schur function f and the sequences (o) and (dy).

As pointed out before, R, plays a key role in the theory. This role will now be
emphasized through the Wall rational functions A,, and B,,.

From what precedes, we have :

Proposition 3.9 The Wall rational functions A,, and B,, are given by the formula
v | ot 0 B: Ar
"10 1 A, B,

- (@ I )G

k=n
Sn =[] d-
k=0

with

Corollary 3.10 A, and B, have the following properties :
1. By(2)Bi(z) — An(2) AL (2) = By (2)wn,
2. |Bn<€)|2 - |An(€)|2 = Wn f07”€ € T7

3. flag) = g—Z(O@) = f—’}(ai) foralll<i<n+1

INRIA



Schur rational approximation 13

with

k=n

Wn = H (1- |’Vk|2)'

k=0

Proof By taking the determinant, we obtain from that
Bn(2)B(2) — An(2)A,(2) = Qan(2)@3,(2) — Pan(2) Py, (2)

= B.(2) [T~ 1u).

k=0

The conclusion is then immediate.

Important properties of the Wall rational functions are:

Proposition 3.11 For alln >0 :

1. B, is an analytic function which does not vanish on D,

*

2. F* 18 a Schur function.

Proof The proof will be given for P, and ()s,. Since Py = 79 and @)y = 1, F, and
Qo are two analytic functions and Qg does not vanish on D. Let us assume that
these hypothesis are true for n. Then both functions % and % are analytic on D.
From corollary 3.10] and by the maximum principle, these two functions are Schur.
Furthermore, from , it is immediate that Py, and ()s,.2 are both analytic in

the disk and that

1Qani2(2)] = [Cor1(2)CrsrVni1 P (2) + Qan(2)]
1Qan2)| (1—|%+1y )>o.

The Wall rational functions A, and B, are related to f by the following formula:

v

By,

Theorem 3.12 The Wall rational functions A,, and B, are rational functions € L,

such that
An(2) + Cui1(2) Bi(2) fria (2)
Bp(2) + Cup1(2) A5 (2) frra(2)

Proof Proposition applied to the continuous fraction @ gives us in view of @

f(z) =

1
P2nfn_+1 + P2n+1 o P2n + P2n+1fn+1

fz) = Qann;_,_l + Qi1 Qon + Qanirfar

RR n°® 6620



14 Lunot & Baratchart € Kupin € Olivi

But using lemma we get

P2n + Cngn—l—lQ;nfn—l-l
Q2n + CnCnJrlPZ*nfnJrl

—1/2
n / P2n + 0711/2Cn+1Q§nfn+1

—)

Co 2 Qo+ OV 1 P foria
Ap + G By frg

By 4 G Al fosr

fz) =

4 Orthogonal rational functions on the unit circle

Orthogonal rational functions have been widely studied ([9], [23], [6]). We recall
here the main aspects of this theory. Its remarkable feature is to make connection
with the Schur algorithm as we shall see in the next section.

4.1 Reproducing kernel Hilbert spaces

Good references on reproducing kernel Hilbert spaces are [27], [11] and [2]. We recall
here, mostly without proof, the properties that will be useful in what follows. We
will write RKHS for “Reproducing Kernel Hilbert Space”.

A RKHS is a complex-valued function Hilbert space in which pointwise evaluation
is a continuous linear function, that is:

Definition 4.1 Let X be an arbitrary set and H be an Hilbert space of complex
valued functions on X. H is a RKHS if and only if the linear map f — f(x) from
H to C is continuous for each v € X.

From the Riesz-Fréchet theorem ([25]), for w € X there exists a unique function
k(.,w) in H such that

fw) = {f.k(,w) VfeH.
Definition 4.2 The function (z,w) — k(z,w) from X x X to C such that
fw)=(fik(,w)) VfeH (13)
1s called the reproducing kernel of H. The reproducing kernel is clearly unique.
The reproducing kernel is a Hermitian function, that is
Vz e X,Vw € X, k(z,w) = k(w, 2).

Since in a Hilbert space of finite dimension pointwise evaluation is always continuous,
we have

INRIA



Schur rational approximation 15

Proposition 4.3 A Hilbert space of functions of finite dimension is a RKHS.
The result we mainly use throughout is:

Proposition 4.4 If H is a« RKHS, and if (e,) is an orthonormal basis, then the
reproducing kernel k of H is equal to

k(z,w) = Z en(2)en(w). (14)

Proof First, note that if dim(H) = oo, ) en(2)e,(w) converges in H. Indeed, we
have > le,(w)]? =", (en(.), k(,,w)) = ||k(.,w)|l2 < +o0 because k(.,w) € H.

We next prove the equality . Let f in H. Expressing f in the basis (e,), we
obtain that f =" aye, for some a, € C. Thus,

(£, en(en(w)) = O anen(), D enl)en(w))
= Z(anen(-)ven(w)en(->>

n

= Z anen(w)

n

= flw).

As the reproducing kernel is unique, we get

k(z,w) = Z en(2)en(w).

n

4.2 Christoffel-Darboux formulas in £,

Let i be a real probability measure on the unit circle T with infinite support and
L*(p) the familiar Hilbert space with inner product

(9 = /T (9 du(€).

The space £,, endowed with the inner product < .,. >, is a Hilbert space of finite
dimension, so it is a RKHS. Therefore, there exists a reproducing kernel k,(z,w)
such that for every point w € D, k,(z,w) € L,, as a function of z and

Vf € Lo, Yw €D, f(w) = (f(),kn(-sw)), . (15)

RR n® 6620



16 Lunot & Baratchart € Kupin € Olivi

Let us denote by {¢g, ¢1, ..., ¢,} an orthonormal basis for £, such that ¢g = 1 and
¢r € Ly \ Lr_1. Such a basis is easily obtained by the Gram-Schmidt orthonormal-
ization process applied to By, By, ..., B,. We can write

¢n = an,an + an,n—an—l +... .+ an,llgl + an,OlgOa An.p = Kn. (16)

Note that k, = ¢ (ay,).
For 0 < k < n, B,¢x, is in L,. Moreover, {B,oo,, Bpd1,,- -, Budn,} is also an
orthonormal basis, since

(Butes Bt = [ IBLOFBEH(EE) = b
Using this new basis to compute the reproducing kernel, we get by ([14]) that
k=0

Letting w — ay,, since B, (a,) = 0 and no term is singular except if k& = n, every
term in the sum vanishes except for £k = n, and computing the limit we have

kn(zv an) = Bn(z)¢n*(z) wlijgn Bn(w)¢n* (w>

= ¢7.(2)97(an) (18)
= Kudp(2).
In particular, k,(a,, a,) = |k,|?. From (17) we may write
kn(z,w)  kpea(z,w)

= On.(2)Pn.(w), n>1.

Bn(Z)Bn(U)) Bn_l(Z)Bn_l(’LU)

Multiplying by B, (z)B,(w) gives the following important relation:

kin(2,w0) = G (2) (W) kn-1(z, w) = ¢;,(2) 7 (w). (19)
Using with the orthonormal basis (¢y, ..., ¢,), we also have that
kn(z,w) = kn_1(2,w) + ¢ (2)n(w), n>1. (20)

We may use this relation to replace either k,(z,w) or k,_1(z,w) in relation
and then compute the other one. We get this way the following Christoffel-Darboux
relations ([6], Theorem 3.1.3):

Proposition 4.5 For z and w in C such that z and w do not coincide on T, and
forn >1, we have

) = G5 — 0,(2)5,)
s (2, w) o (21)

)
o) — S — GG on()dn(w) )
n’ 1_Cn(Z)Cn( )
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Schur rational approximation 17

A direct application of the Christoffel-Darboux relations is ([6], Corollary 3.1.4):

Proposition 4.6 For alln > 1, for all z €D : ¢¥(z) #0 and < 1.

Pn(2)
¢7.(2)
Proof From (21)), we get for w = z that

(1 =162 kn1 (2, 2) = [65,(2)]* — |9n(2)]*.
But - -
For(2,2) = S 10k = 1+ 3 [an2) > 0.

Since k,_1(z,2) > 0 and |(,(2)] < 1 for z € D, we deduce that

|6n(2)] > |¢n(2)]

and the conclusion is immediate.

Using the above proposition, we get ¢ (ay,—1) # 0 for every n > 0. Therefore, since
¢n is uniquely determined up to a multiplicative constant of modulus 1, we can
fix ¢, uniquely by assuming ¢ (a,—1) > 0. In what follows, we denote by ¢,, the
orthogonal rational functions normalized by

o (1) > 0. (23)

Note that this is not the same normalization as in [6], where it is supposed that
fin = @p(an) > 0.

The Christoffel-Darboux formulas imply a recurrence relation for the ¢,, which is
the object of the next section.

4.3 Orthogonal rational functions of the first kind

Evaluate at w = «a,_1 and take into account the equality k,_i(z,a,_1) =
Kn—10}_1(2) (see (18])). This gives the relation

_ Cb;kl(z)qb;kz(an—l) - Cbn(z)qbn(an—l)
1— Cn(z)cn(an—l)

K10 _1(2) ., n>1. (24)

Then take the superstar conjugate

On(2) 0 (an—1) — ¢ (2)Pn(an-1)
Cn(z) - Cn(anfl)

mgbnfl (Z) =

RR n® 6620



18 Lunot & Baratchart € Kupin € Olivi

and put these equations together into a linear system to obtain
|: gb;kz(an—l) _¢n(an—1) :| |: (bn(z) :|
_¢n(an71) ¢;;<05n71) (ZS:L(Z)

- { s ] { I o e ] { 0 ]

so that we have the recurrence relations

[ n(2) ] = T,(2) [ ¢Z:1(Z) ] Vn > 1,

¢ (2)
where T}, is equal to
T — |I€7‘L 1| |:¢ (an 1) an(an 1):|
T ()P - |¢n(an D2 L dnlan-1) o5, (ozn 1)

|: m/|/€n—1| :| |: Cn O — 1 0 :|
0 Rn— 1/|/{n 1| 1— Cn(anfl><n .

Now, it is easily checked that

(L — lan]) (2 = an-1)
(1 —ana,_1)(1— ayz)’
(1 — Jo[*) (L — an12)
(1 — ap@n_1)(1 — ay2)’

(n(2) = Colan) =

1= Gulan-1)C(2) =

so that
R e Ry
— (nlOpn—1)nlZ
Qs T 0] 6 0] %)
(I —anan D(1—anz) | 0 1 0 1
where | —aa
=TT e eT. (26)
Furthermore,
{m On(an-1) } {m/mnﬂ 0 } { T 0 }
Pn(n-1) ¢p(an-1) 0 Kn—1/|Kn—1] 0 1 I (27)
_ lﬁb’ﬁ(@n—l)nnm/mn—ﬂ ) 0 } { _1~ —n }
0 Oy (0n—1)kn1/[Fn-1] Yo 1
where
S = PO Fact (28)

¢;I;(Oén—1) Rn—1 ’ o

Note that, by proposition [.6] 4, is well defined in D.

INRIA



Schur rational approximation 19

Definition 4.7 We call 7, € D the n-th Szegd (or Geronimus) parameter of the
measure (i associated to the sequence (o).

Evaluating at z = «a,_1 and taking the square root, we get after a short com-
putation

\/|¢:(an—1)|2 - |¢n(an—1)|2
\/1 - |O‘n—1|2\/1 — |an|?

|"£n—1| = |1 - dnan—1|

so that, from ([28)),

|/fn—1| |]- - d/nQ{n—1|

|65 (1) 2 = [dn(n-)P /T = Jon_ 1P/ — |62 (an-1) /T = [Ful?
Combining , and , we finally have that

To(2) = 1— |y, |? 1 1— a2 { A O ] { 1 —%1 [Qn_l(z) 01
" Lo JT=]5,2 1=anz [ 0 A || =90 1 0 1
(30)
where
A, = 11 _O_éno_énfl‘ & (on—1) i Rn—1 _ 1 _O_éno_énfl Rn—1 cT. (31)
1 — a1 |95 (an-1)| 7 [Kn-1] 11— anan1| [Kn-1]

We have obtained the following result ([6], Theorem 4.1.1, but with another nor-
malization of the orthogonal rational functions):

Proposition 4.8 The orthogonal rational functions are given by the formula

e eneo 4] vz

with T,,(z) defined as in (30).

A first application of this formula is to the location of the roots of the orthogonal
rational functions. Note that by proposition [£.6] since the set of roots of ¢, is the
image of the set of roots of ¢! by the map z — 1/z, we already know that the roots
are in the closed unit disk .

Corollary 4.9 The orthogonal rational functions ¢, have all their roots in D.

Proof By induction, we show that ¢ has no roots in D. This is clearly true for

n = 0. If it is true for n, then the function i—" is analytic in D and by proposition

4.6, i—z < 1in D. Using the previous recurrence formula on ¢ ;, we obtain that
1 — |ans1]? 1 - 1=,z 5 On,
Qb:; = —_—\ - ¢Z 1 = Ynt1Cnry ) -
+1 1 — |an’2 1 |5/n+1|2 +1l — Api1z +1 Qb;

RR n® 6620



20 Lunot & Baratchart € Kupin € Olivi

< |Ans1]| < 1 for all z € D, the

Using the induction hypothesis, and since |%+1Cn$—f

latter expression does not have any root in D.
|

The recurrence relation can be inverted in order to express ¢,_i1, ¢;_; as functions

of én, ¢y,

Corollary 4.10 The orthogonal rational functions are given by the reverse recur-

rence formula
Pn-1(2) | _ e On(2)
o0 e |G e
with T, 1 (2) equal to
R s e l—anz [ = O][ 1 A ][X O
e - e AT I R I

L —an|?> /1= Fp2 1 — Q12

Proof Immediate since A, is in T hence

For w € D, we denote by P(.,w) the Poisson kernel

Note that whenever u is harmonic in D and continuous on D, we have

u(w) :/Tu(z)P(z,w)dm(z).

This we call the Poisson identity for harmonic functions.
We now get the orthonormality of ¢y, ..., ¢, with respect to another measure than
i ([6], Theorem 6.1.9).

Corollary 4.11 The rational functions ¢y, . . . , ¢, are orthonormal in L? (ﬁ;jg)dm>

INRIA



Schur rational approximation 21

Proof Let N = fT i CTS dm. Then £
and k < n, we have

N|¢ Nionk Plan) i is a probability measure. For n > 0

VN /N ( ) _ ¢k*
NonVNoRs ™ = fg,, Pl endm
= /¢>I:Ck+l CnP(‘aan>dm
T ¥},
-0

because we can apply the Poisson identity since ¢,* has no zero in D. We also have

/\\/_%\2 ]\;wn‘; m—/TP(.,an)dm:L

Therefore, v N ¢, is orthonormal to VN, ...,V N¢,_1, that is to £,,_;, with re-

spect to the measure Zm’lﬁ dm. But the reverse recurrence formula (corollary 4.10

together With shows that the first n — 1 orthogonal rational functions normal-
ized by (23] are umquely determined by the n-th orthogonal rational function and

the (o). Therefore the VNéy, 0 < k < n, are the orthonormal rational functions
Pl.a

for the measure )dm. Tn particular,

Nion!?
P(.,ap)
\/_¢2< )m—/ " dm = 1.
fvAe G = [ S5
Thus, N =1, and the conclusion is immediate.
|
Iterating the recurrence formula, we obtain an expression of ¢,.
Corollary 4.12 Forn > 1, ¢, and ¢, are given by the relation:
2 k=1 -
$n | _ V1-]al? 1 11 A 0 1 = | | Ge-1(2) O 1
oy, 1—a,z 11, P 0 Mg - 1 0 1 1
with
k=1
= | R
k=n
Proof Immediate from proposition [4.8|since ap = 0 and ¢y = ¢f = 1.
|
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4.4 Orthogonal rational functions of the second kind

As in [6], chapter 4, we now define the sequence (1),,) of orthogonal rational functions
of the second kind. We shall see later that this sequence satisfies the same recurrence
relations than ¢,,, but with 7, replaced by —7,.

Definition 4.13 Given p, (o) and (¢y,) as before, we call orthogonal rational func-
tions of the second kind the sequence 1, such that

Yo =1
bal) = / L2 (6ult) — 6ul2)) dp(t)

Tt—2z

We will see later that the 1, are indeed rational functions. The following proposition
([6], Lemma 4.2.2 and 4.2.3) is very useful for computations.

Proposition 4.14 Forn > 1, the functions (1,) satisfy the formulas:

@) = [

Tt_z(¢dﬂg@)—¢n@kﬂd)mdﬂ

for all g such that g, € L,,_1, and moreover we have

EE2 Gn(0)h(t) — 6 (2)h(2)) du(t)

t— =z

ke = [

T

for all h such that hy € (Lp_1.
Proof We first prove the first equality. If g is constant, the result is immediate.

We therefore suppose n > 2. Let z € D.
If 2 = ay for some k, 1 <k <n—1, g(z) = co. By definition, we have

t+ «
tnlan) = [ T2 (6,00~ b)) du()
Tl Qk
But, since :J_FZ’; € L, 1 and n > 2, we get by orthogonality
t+ «
n(an) = =dnlan) | ()
TV Ok

which is the announced result when g(z) = 0.

Suppose z # ap for all k, 1 < k < n—1. By density, it is enough to prove the result
if g(z) is analytic at z with g(z) # 0. In order to conclude, using the defintion of
¥, we just have to check that

t+z, . 9() [tz
/t — Zﬁf)n(t)g(z)d/i(t) = / = Zgbn(t)du(t) whenever ¢, € £,,_1.
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Schur rational approximation 23

But % — 1 vanishes for ¢t = z, therefore

P =t 2) =L

9(2) ijhl(t — ag)

where p is a polynomial in ¢ of degree at most n — 2. Thus,

[Eew (S5 -1) w0 = [ 9=t s

9(2) t—=z w1 (t—ag)
S . G )T (ORI

1 (E—ag)

-/ ( AR 20 >¢n(t)du(t)

1 (1 —aut)

= 0

because, since t = % on T and degp < n — 2, we have on T:

et 2p(t) (/e (D)

k=n—1 —\ k=n—1 — n—
o1 (L — it) i (L — Qit)

Therefore, the first equality is proved.
Since B,h is in L, 1, we get from the latter

UnlDBar(a(2) = [ 5 (0B l)h(0) = 60(2B,n ()0 2) di().

We conclude by taking the lower-* conjugate in z of this expression.

We deduce from the following proposition that 1, is indeed a rational function (see
[6], Theorem 4.2.4).

Proposition 4.15 The sequences (¢,,) and (1) satisfy the recurrence relations:

{qsn Un }_ 1= 1 H[A oH 1 —%Hm(z) o] {1

n ke
with

k=1
I, = [[ vV1- 1l
k=n

In particular, ¥, is in L,.

RR n°® 6620

1
-1

|



24 Lunot & Baratchart € Kupin € Olivi

Proof From Corollary 4.12 n we now that this relation holds for (¢, ¢}), so we just
have to prove it for (i,,"). We first check that this result for n = 1. As ¢y = 1,
we want to prove that

z+
v =Big il
12
with
1 — |061|2
b1 =] ——=A\.
' AR
We have

bi(2) =.At+zwmw—¢mammw
_ m/jrzfj (1t:;t - 12__;112) du(t)
trz( (t—2)(1—a)
6l/t—z ((1—Oz_1t)(1—a_12)> dp(?)
= 6/ (t+2){ Oq_%) dp(t)

(1 —aqt)(1 —agz)

1— o7 t+ z
_ p T / dp(t).

1l—aqz Jp1—aqt

As ¢, is orthogonal to 1, we also have

t — 1
d Y du(t). 32
[ =nt) =7 [ gt (32)
Therefore
Il —am — 1
_ g—am d
() = BTt (i +2) [ )
But, by ,
1
d =1 dp(
/1_a_1t 11(t) +a1/1_a_1tu
= 1 d
4‘@1%/T I —at u(t)
thus ) .
/ —— du(t) = ——=.
Tl —aat I —am
Therefore,
I —am
= — P (H +z —
U1(z) i T (7 )1 e
z —I—T
= B
— oz
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Schur rational approximation 25

which is the result we want.
We now proceed by induction.
Assume n > 1. Proposition [4.14] gives us with n replaced by n—1 and g = 1 together

with b = Co_1.,
gb” 1( ) . an_l(z)
Lo <>] [ ;A@})Wﬁ’

i |- /t+§<

Multiplying by T, (z) whose definition was given in (30f), we obtain
Tn( |: wn 1

t+ 2 D1 (t) [ 6 (2)
: /t—z<ﬂ“> 2ﬁ2ﬁ1@>]‘_¢ma})@“>

L [t (0—m@mn-ms) | 228 o ona(t) | [ 6u(z)
- /t—z((l—an U= R B ”231% ()] {qﬁ;’;(z)Dd““)
(

1
_ t+z ((I—aut)(z — ap 1) G (1) . bn(2)
- [ (e L6053 o
But, by proposition applied with g(z) = (1 — @,2)/(z — a,—1), the first row in

the right handside of the last term is equal to ,. So it only remains to prove that
the second row is equal to —. To this effect, observe that

[ (e 22}
/iféggizfﬁ&fzj)f_an¢<> )
[ G e N = )

_ (t—i—Z)( Ol — 1)
= [ B G W)
= 0

because
(t+ 2) (o, — 1)

(t = ana)(1 = @2)

as a function of ¢ for fixed z € D. Therefore,

t+z (1 —ant)(z—an1) , el
/t—z <(1—a_nz)(t—an_1)¢n(t) o ))du(t)

/ t+z ((1 — @t)(z — an)¢;(t) — ¢Z(z)>du(t)

t—z \ (1 —an2)(t—ay)
Ly

B,_1(t)

€ 'Cnfl
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by proposition with h(z) = (1 — @,2)/(2 — «,). This achieves the induction

step.

We now show that the sequence (1),,) satisfies the same recurrence relations than

(¢n), but with 4, replaced by —4,:

Corollary 4.16 The sequence v, satisfies the recurrence relations:

k=n

] (e R T[4 )]

Proof Note that, by Proposition [4.15]

Yo | VI-Jal® 1 H A O 1 3 [ [ Galz) 0
-5 | 1—anz I, 0 M\ —ve 1 0 1

2
Therefore, since [ L0 } =1d,

Proposition 4.17 For all z in D, it holds that

On(2)15 (2) + O (2)2hn(2) = 2

Proof Taking determinants in the relation of proposition [4.15] we get

1— ; 9 k=n

) 4 ) = 2 TG (o)
k=1

= 2 L lonf 2B (z)l_&_nz

(1—a2)2 7" 2 —ay,
1— |O‘n|2

=T ey

z2B,(2).

)

]
=
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|
In particular, we have:
Corollary 4.18 For z € T, one has
On(2)Un(2) + &7, (2)10n(2) = 2B (2) P(z, an) (33)
where P(z, ) = L:‘g:l‘z 1s the Poisson kernel at o,.

5 Link between orthogonal rational functions and
Wall rational functions

If we glance at Propositions and [4.15] we see that the recurrence formulas for
the Wall rational functions A,,, B,, and for the orthogonal rational functions ¢,,, ¥,
look quite similar. In this section, we will use this similarity to prove a generalized
Geronimus theorem (see [I3] for the original version). We first need to associate to
a Schur function f a measure p: we use for this the Herglotz transform. Next, we
prove a Geronimus theorem which states the relation between the Szegé parameters
of y1 and the Schur parameters of f ([21]).

5.1 The Herglotz transform
We denote by F' the Herglotz transform of u:

E+ 2

F(z) = i

dp(§)- (34)
We have ([7], Theorem 3.4):

Proposition 5.1 The Herglotz transform is related to the orthogonal rational func-
tions ¢, 1V, associated with v by a relation of the form

4i(e) | Bu(2ulz)
FO=00 " ok

where u is an analytic function in D.

Proof Proposition gives us with h(z) = 1/B,(z)
F(2)on(z) —n(z) _ [t+z00(2) , t+z (o)  dh(z)
B.(2) - /t—zB ) (t)+/t—z (Bn(t) Bn(z)> ault)
t+ 2z ¢k (1)
/t—zB ()du(t)

t
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This is a Cauchy integral, so it is a holomorphic function of z in . Evaluating this
function at 0, we get

/Z%w@=/EEW®=O

by orthogonality of ¢,, and 1. The conclusion is then immediate.
|

The Riesz-Herglotz theorem [25] states that the Herglotz transform is a one-to-
one mapping between the set of probability measures on T and the set of analytic
functions F in D satisfying

F(0)=1, ReF(z)>0, zeD.

li—jri is a Schur function that vanishes at zero, so the Schwarz lemma implies that
1F(z)—1
J(2) = 2F(2)+1

is also a Schur function. Therefore, we obtain a one-to-one correspondence between
probability measures g on T and Schur functions f via the relation

£+ 2 1+ zf(2)
/T () = (35)

For fixed z € D, we denote by €2, the map

Qz:lew__l.
zw—+1

Note that f(z) = Q.(F(z)).

Definition 5.2 The function f associated to p through will be called the Schur
function of .

Applying Fatou’s theorem on nontangential limits of harmonic functions ([12]) to
the real part of , we obtain an expression for the Lebesgue derivative ' of the
measure y in terms of f:

o L= [fOP
KO = Terer

Since 1 — zf(z) is a non-zero function of H*, it cannot vanish on a set of positive
measure. Therefore, ¢/ > 0 a.e. on T if and only if |f| < 1 a.e. on T.

The Schur parameters of the function f associated with p can be computed from
the orthogonal rationals functions of u:

a.e. on T. (36)
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Proposition 5.3 f(z) and €, (Z”g;) have the same first n Schur parameters.

Proof From Proposition 5.1} we get

o= () () e e

Let j be an integer such that 0 < j <n —1. We denote by m;; the multiplicity of
aji1 at the n-th step (see Proposition . Then, if 0 < ¢ < mjyq, since B,(z) =

h(2) [I193 (2 — aj41) with h € £, we have B (a;,1) = 0. Therefore, using ,
we obtain

F(i)(%‘ﬂ) = (%) (Qjt1)-

Since f(z) = Q.(F(z)), we conclude using Proposition [3.2]

5.2 A Geronimus theorem

Geronimus was first to express the relation between the classical Schur algorithm
applied to the Schur function of a measure p and the orthogonal polynomials of p. In
[21], the connection between the Geronimus parameters of the orthogonal rational
functions and the Schur parameters of a multipoint Schur algorithm is detailed.
However, the normalisation of the orthogonal rational functions in this reference is
different from ours, so the link is made with a multipoint Schur algorithm without
the rotations c;. We chose to keep our generalized multipoint algorithm and we give
below another proof of the Geronimus theorem.

Theorem 5.4 Fiz (ag)r>1 € D and f € S.

We associate with f the measure p given by . We denote by (V),~, the Geron-
imus parameters of p (see (@), and by N, the elements of T defined by .

If the parameters (ci),~, of the multipoint Schur algorithm are defined by

2
Ck:)\ka co =1,

then the Geronimus parameters (Vk),>, and the Schur parameters (Vi)uen of f are
related by
Yer1 = Y for all k > 0.
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Proof We first study the connection between the recurrence formulas. From propo-
sition [4.15], we have

|i ¢n+1( 77Z)7l+1 z :|

ni1(2) 1 (2)
e (TP TS

el I ER IR e

P VA R Y § e Y
n+1 1 Oén+1z Hn+1 /1—_ ’ryk‘2 .

Therefore, if the parameters ¢, are taken such that ¢, = A? for all £ > 1 and if U"
stands for the n-th convergent of a Schur function with parameters v := Y511 for
all k > 0 (such a function exists because of Corollary [3.6), we get from Proposition
the following expression of ¢, 1, with respect to U, V,,

[ ¢n+1(2) ¢n+1(2)

Gr1(2) =i (2) i

_v A {—10 [anoHV; U;H<00H—1 oHl 1}
nEntll g 1 0lo 1 |U, Vi, |0 1 0 1|1 -1

_s A 1 0| [ean O[] —2Vr+U —2Vi-U?

I B 0 1 —2U,+V, —zU,-V,

with En = HZ:l )\k‘

Since
n+1

| IZI

n n+1 n

= (H ) 1= (H |/\k|) A1 = Anga
k=1 k=1 k=1

and ¢,y = A2 41, We obtain

{ -1 0 ] [ Pnr1(2)  Yni1(2) ]

0 1 :-1-1(2) - :H-l(z)

V1= Jana? 1 [ Anp1 O } [ —VEH U =2V — U

L=z [0 /1— [ M1 | | —2Un+ Ve —2U, =V,
(38)
In particular, we have
=TT (39)

e =
nbl L= 2y
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3:23 =o. (5]

Then, from proposition 2 has the same first n + 1 Schur parameters as the
Schur function f of the measure . This gives the expected result.

SO

Note that a consequence of the theorem is that the elements U,, and V,, of the proof
are equal to the Wall rational functions A, and B, of f. In particular, equations

and gives us
el ey

0 1 ;+1(2) - Z+1(z)

V1= anal? 1 {ARH 0 ][ —2Bf + A% —2Bf — AX

1 — Qpy12 HZQ V1= 72 Ant1 —2A,+ B, —zA,— B,
(40)
and )
* 1+ z52
n+l By (41)

D1 11— Zg—:.
5.3 Consequences of the Geronimus theorem

The following corollary to Theorem [5.4] gives the expression of the measure associated
to the Wall rational functions by the Herglotz transform. This is a generalization
to the multipoint case of [20], Corollary 5.2.

Corollary 5.5 g—: is the Schur function of the measure %dm.
Proof Indeed, by , we have on T :
Re ( 1 o By i1 (w;+1¢n+1 + ¢Z+1¢n+1)
¢

" 2
n+1 2 |¢n+1‘
_ P(a an+1)
|§bn—i-1|2
Thus, Unit and [ bz LG o‘”“ sdm(t) are two analytic functions in D with the same

n+1 t—z |¢)

real part, therefore they are related by

1 :/t—i—zP(t,anH)
¢:L+1 % |¢n+1(t)|2

where c is a real constant. So by ,

dm(t) + ic

1+ z4e t+ 2 P(t, Qny) :
Ty :/t—z PO dm(t) + ic.
Bn TL+1

RR n® 6620



32 Lunot & Baratchart € Kupin € Olivi

Evaluating the above expression at 0 gives us

1:/P("a"+l>dm—|—ic.

’¢n+1 |2

Since the integral is real, ¢ = 0.
|

In view of Corollary [£.16 the Geronimus theorem also leads to another definition
of the orthogonal rational functions of the second kind:

Corollary 5.6 Up to a normalization, the orthogonal rational functions of the sec-
ond kind associated to f (or F) are the orthogonal rational functions of the first
kind associated to —f (or ).

The following theorem gives a useful relation between the Lebesgue derivative p’
of the measure p, the Schur functions f, and the orthogonal rational functions ¢,.
This is a generalization to the multipoint case of [20], Theorem 2.

Theorem 5.7 Let (¢,,) be the orthogonal rational functions of a probability measure
w associated to a sequence (o), and (f,) the Schur functions associated to pn with
the choice ¢, = \2. Then

, L—|fa?  P(,an)

W= — a.e. onT.
‘]- - CnCni_gfnP ‘¢n‘2

Proof From Theorem [3.12] we have:

An + CnJrlB;;fnJrl ?

Bn + Cn+1A:<Lfn+1

|Bn + <n+1A2fn+1|2 - |An + Cn+1B:1fn+1|2
‘Bn + gnJrlA;fnJrlP '

Note that on T, A*B, = A, B’ so that

TSP = -

Cn+1Aan+1B_n + Bngn-i-lA;kan-‘rl - A_nCn-&—lB;szn-i—l - AnCn-&—lB;szn-ﬁ—l = 0.
Therefore, on expanding , we find that

(IBnl* = [Anl) (1 = |fn1a]*)
|Bn + Cn+1A;kan+1|2

Furthermore, by Corollary [3.10, we obtain

n 1- |fn 1|2)
1— 2 — w ( + 43
|f| |Bn + <n+1A;fn+1|2 ( )

1 |f =
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where
k=n

Wn = H (1- |'Yk|2)'

k=0
Using again Theorem [3.12 we get

11— 2f)? ‘1_ 2An + G128 fo

Bn + Cn—&-lA;;fn—i—l
‘ By — 2An + Curr furr (A — 2B) |
By 4 Cup1 A% fora

In another connection, we deduce from and Theorem that

* * _ 1—-& +12
ZBn - An /—n >V Wn)‘n+1¢n+1
1—|an41]
1—dpi12
Bn A m\/ wn)\n+1¢n+l
n+1

and therefore

2 _
1— 7n >\n ; - Sn n /\n n
it —zf|2 _ An41% Jon +19n41 — Cat1 St 1 A1 Pnt (44)
\/ 1— |an+1|2 Bn + Cn—&-lA;;fn-i-l
1— _n 2 )\n ; - Sn n )\n n
_ Wn‘ o +12|2 1051 — € +1f*+1 +10n+1 (45)
1- |Oén+1| Bn + Cn—i—lAnfn—i-l
From what precedes, we deduce that
1_|f|2 _ 1_|fn+1’2 1_|O‘n+1‘2
11— 2 f[? |¢Z+1 — Cot 1Cn4 1 frt1Ons1|? [1 — Qg1 2)?
Since p/(§) = i I&Cf(@))‘w a.e. on T by (36) and [¢}_ | = |¢n41| on T, we obtain
p= Lo |fn+1|2 L - |Oén+1|2 a.e. on T
|¢n+1|2|1 - C?’H—lgn—l—lzg_ifn-i—lp |§ - Oén+1|
[ |

6 Some asymptotic properties

In [20], various kinds of convergence for the rational functions g—z are studied in the
case of the classical Schur algorithm. There, it is in particular shown that ([20],
Theorem 1):

If aj, = 0 for every k > 0, then | f| <1 a.e. on'T if and only if lim,, [, |f,[*dm = 0.
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In this section, we study asymptotic properties of the Schur functions f, and of
the Wall rational functions A, /B,,. Except for an “asymptotic-BMO-type” conver-
gence of the Schur functions f,,, these are mainly generalizations of the results of
Khrushchev where errors are integrated against the Poisson kernel of o, rather than
the Lebesgue measure. The difficulty here comes from the fact that we let the points
go to the circle.

In order to prove the convergence respect to the Poincaré metric, we first need to
solve a Szeg6-type problem.

6.1 A Szego-type problem

6.1.1 Generalities

We denote by u’ the Lebesgue derivative of the positive measure .
Definition 6.1 A measure p is called a Szegé measure if log(y') € L*(T).
Let p be a Szeg6 measure and let S be the Szegd function of p:

() = exp (5 [ 5 tox(uyantt) ).

t—z

The Szegd function is outer ([12]) and satisfies |S|*> = i/ almost everywhere on T.
Szeg6 proved ([28]) the following relation between the orthonormal polynomials ¢,
of an absolutely continuous Szeg6é measure and the Szeg6 function S :

lim ¢} (2)S(z) = 1 locally uniformly in D.

This was later extended to non-absolutely continuous Szegé measures (see for ex-

ample [22]).

A generalization of this theorem is given in [6] (Theorem 9.6.9) for orthogonal ra-

tional functions :

If p is Szegd and if the points (o) are compactly included in D, then we have locally

uniformly in D

S(2)¢;,(2)(1 — anz)
V1= lof]

Szegd also proved that the convergence of the orthonormal polynomials is uniform

on the unit circle if the Lebesgue derivative of the measure is everywhere strictly
positive on T and Lipschitz-Dini continuous, i.e. satisfies

|10 +0) — p/(9)] < L|log(d)|

where L and A are fixed positive numbers. Our study is akin to this: indeed, we
will prove that if 1 is absolutely continuous and Szegd, and if >/~ (1 — |ow|) = oo,
then the orthogonal rational functions ¢,, satisfy

lim |7, (o) IS () [* (1 = Jowa ) = 1

lim

n
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as soon as g is strictly positive and Dini-continuous. We do not assume here that
the a,, are compactly included in D.

A direct consequence of this result is that, under the above hypotheses and if
lim, |a,| = 1, then |¢* ()| diverges at the same rate as (1 — |a,|?) ™!

The main tools we will use are reproducing kernels (see section and some facts
from rational approximation.

6.1.2 An approximation problem

We recall that m, is defined in ' We denote by P, < dyt 2> the subspace of

7'('

L? (M E > of polynomials of degree at most n and by H? < > the closure of the

polynomials in L? (d—“>

a2

The idea here is to express |¢F(a,)|?|S(an)*(1 — |an|?) in terms of reproducing
du

kernels of the spaces P, % and H? - > In what follows, we will sometime

use the notation du,, for |7f“‘2

Proposition 6.2 Let pu be an absolutely continuous Szegé measure. Then, the re-

producing kernel E, of H* ( d“P) 15 equal to

L mn(§7mn(w)

Bl ) = T 550

Proof First of all it is clear that E,(.,w) is in H? (du,) for a fixed w in D because
on the one hand, 5) can be uniformly approximated by polynomials in D, and in

the other hand, the fact that S is outer implies by the Beurling theorem ([12]) that
there is a sequence (py) of polynomials such that limy |1 — prS||r2(4m) = 0. Then,

1 du 1 |S[2dm / dm
—_ il - Lol B 1—p
/T<S p’“) BN /(5 p’“) mE 0P

HS||L2(dm)||1 - kaHL2(dm)

< .
- infr |m,|?

by the Schwartz inequality. Therefore, we get limy, ||[pr, — 1/S||r2(du,) = 0.
Next, let ¢ be a polynomial. We have

1 m®)m(w) ) dult) 1L mu(t)ma(w) [S(t)[*dm(t)
/Tq(t)(l—tw S(H)S(@) )Im(zf)l2 B /TQ(t)l—tw SOS@) Mm@
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As % is in H?, we obtain by the Cauchy theorem that
t)S(t
[ 2050y = 5
7 (f — w)m(t)
Thus, we get

L m(Om(w)) dult) = or ever olynomia
/TQ(t) (1 —tw S(t)S(w) ) T ()2 g(w) y ¢ poly 1.

By density, this is true for every f in H?(du,). As the reproducing kernel is unique,
the conclusion is immediate.

Proposition 6.3 Let R, be the reproducing kernel of P, (—dL) Then

|7n?

|Rn(., )| _
[ R (- an)l 2 (dpn)

’anbm =

Proof Let p, 1 be a polynomial of degree at most n — 1. As ¢, is orthogonal to
L,_1, we have

T Tp—1
But

[l - [ameat0=an,,

TTp—1 )

[ @) paa () (1 — ant)
- /Tsnm PRI

[ ey o) paa ()1 — ant)
N /1r¢n<t)t”7rn(t) RO

_ /Twn<t)¢2(t>t”‘1pn—l<t>(t‘ 0‘“%

= /Tm(tm;;(t) (t”—lpnl (%—) (t— an)> %-

Therefore, since t"'p,_; (1/t) ranges over P,_1(z) as p,_; ranges over the same set,
Tn@y 1S pn-orthogonal to every polynomial of degree at most n which vanishes at
a,. This is also true for R,(.,a,). Thus, m,¢* and R,(.,a,) are proportional. We
conclude using the following equality

(s o) 2

Oén)||L2(dun)

du R
0672y = / It =1 H |
L2(dpn) T |7Tn|2 HRn('7 L2(dpn)
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|
We now derive an expression of |¢% (a,)|?|S(an)|>(1 — |an|?) in terms of the repro-

ducing kernels R,, and F,,.

Corollary 6.4 For everyn > 1,

R, (an, ay)

6% () |?|S () (1 = |ua]?) = Ep(c, an)

<1 (46)

Proof By definition of the reproducing kernel, we have

ot
HRn(, Oén)H%Q(dun) = / Rn<t> an)Rn(ta an)—(>2 - Rn(Qna an)-
T |7 (2)]
Therefore, by proposition [6.3]
* RTL anaan 2
ma(an)dn(an) P = —felom @l g o)

IR )72
and we get the first equality in using the fact that, from proposition

1 |7Tn(04n)|2
L — o |? [S(an)?

E.(an, a,) = (47)

Furthermore, as R, (.,w) is the orthogonal projection of E,(.,w) on P, (d—“> since

7n]?
Po(dp,) € H*(dpy,), we have
| R ()|l L2(dpn) < 1 En (-, W)l £2(dpn) for all w € D.

Therefore,
1R (- )l 2y < 1B )220
As R, (ap, ap) = ||Rn(.,ozn)||%2(d#n) and E, (o, a,) = ||En(.,ozn)||%2(d“n), we get

Rn (Oén, an)

< 1.
En(am an) o

We now state our problem in an approximation-theoretic manner.
Because R, (., a,) is the orthogonal projection of E, (., a,) on P, (du,), R.(., ) is
the polynomial of degree at most n which minimizes

min ||, (., o) — 7o 22(dp) -

™ E€Pn
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But
2
1 m(t)m(an) 1S(t)]?
E, (. ) —1|2 _ / - — 1t m(t
1B (s an) = TnllZ2 @) | T—ant S()S () Q | ()2 ©)
2
1 o, n(£)S (1
- [ mE nsef,,
7|1 =@t S(ay,) (1)
Thus, finding the polynomial P, which minimizes
1
pn€Pn || 1 — ant Wn(t) L2(dm)

gives us R, (., a,) by the relation

P,.

R.(.,a,) =

nn

(o)

Then, in view of and (7)), the quantity |6 (a)[?[S(e)|?(1 — |an|?) in which
we are interested can be expressed as

G0 PIS(an) 21~ o) = | P23 (C ), (49)
Now, for every polynomial p,
[ -2 e (- 5250 =2l
n(t)S ’
(1 - pwfbt)l (S>> 10‘% L2(dm)
n(a 1 w(an)S(an)  pa(t)S 1P
- - e (e - ) Eal

Using the orthogonality between analytic and antianalytic functions and the Cauchy
theorem, we get

H 1 paD)SW)
1— aput Tn(t)

2

AT S e e
(50)

Therefore, if a sequence of polynomials (p,,) exists such that

ENE ;dm) = 1)
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then by the definition of P, (see (48])) we also have

2 1
= 0 _— s
L2(dm) <1 - |an|2)

lim Po(an)S(a)
o Taoq(an)

1 —ant mn(t)

H 1 P,(t)S(t)

and using , we obtain
=1.

Then, gives
lim |7, (o) | (0t ) [* (L — Jowa|*) = 1.

Now, suppose that p’ is strictly positive and Dini continuous on T. Then, % is an
analytic function, continuous on T. If Y7, (1 — |ag|) = oo, then U2 (L is dense
in the disk algebra A(ID) ([I]). Therefore, a sequence of polynomials p,, of degree n

exists such that

1 n
lim ‘— | —)
n Tl oo
Thus,
TLS n
1imH1—p < ||5||0011mH——p— = 0.
" Tn 00 Tn [e's]
Since by the Cauchy theorem
L pa®OS@|" | PuaS 1
1 — a,t T (t) L2(dm) Tt || 1 — |ow|?’

the sequence (p,_1) satisfies (51]). We therefore obtained the following theorem :

Theorem 6.5 If p is an absolutely continuous measure such that ' is strictly pos-
itive and Dini continuous on T, and if Y, _ (1 — |o|) = oo, then

lim |7, (o) |5 () [* (1 — | *) = 1.

Note that in our argument, we uniformly approximate the inverse of S. This leads
to quite strong hypotheses. In fact, we only need to find a sequence of polynomials
which satisfies the problem defined by (51). This problem is stated in term of
L? norm, and without inverse of S. Therefore, the hypotheses could be probably
weakened using another argument.

6.2 Convergence of the Schur functions f,

We first give a L2-convergence property with respect to a varying weight which is the
Poisson kernel taken at the points «;. This leads to the construction of a sequence
of interpolation points for which we obtain an asymptotic-BMO-type convergence.
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6.2.1 L? convergence with respect to a varying weight

We first show a weak-(*) convergence of the measures | - |§)d

Lemma 6.6 If 3.1=:°(1 — |ax|) = oo then

. P(.,Ocn)
(*)—hrrln o dm = dy.

|on|?
Therefore, @y, ..., ¢, are orthonormal in L?*(du) and in L? (P("a" dm). Thus,

|n |2
[oa gt = [odan

for all 0 < 1,5 < n. In particular, for all 0 <7 < n, we have

fotigtin = [Loan

As (¢r)o<k<n is a basis of L, for all g € L,,, we get

[on

fa g = [Laan (53)

But, as S5 "1 — Joy|) = oo, UE= Ly, |JUK= L, is dense in C(T), the space of
continuous functlons in T ([1]). Therefore,

Proof Corollary [4.11] states that ¢y,..., ¢, are orthonormal in L? ( (. a")dm>.

and upon conjugating,

. P(.,a,
(%) — hran ’(¢n|2 >dm =dp.

Note that if the points are compactly included in D and if I is an open arc on T
such that p has no mass at the end-points, then we have

hm/ \QS ‘2 dm < /gd,u for every g € C(T). (54)
n 1

Indeed, let € > 0 and let h; be a continuous positive function such that h;(t) = 1
for every ¢ in I and [ hydp < p(I)+ e. Then, since all the functions are positive,

we have P ) (o)
. QO dm b Uy, J
/I [6al? /I o
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We conclude using the previous lemma since

hm/h[ |¢ |2 :/hldug,u(l)—l—e.
n T

Note also that if Z (1 —|ag|) = oo, since P(z an) = z/(z—ap)+anz/(1—ayz),
P(.,ap)isin L, + En, then we get using and .

/T Plan)t \;; T;")dm: /T Pl ay)dp. (55)

If the interpolation points do not tend “too quickly” toward the circle, we have the
following L2-convergence :

Theorem 6.7 Let i be an absolutely continuous measure. If Sr—>>(1 — |oy|) = oo
and limy, |ag| = 1, and if at every point of accumulation of the (ak) f 1is continuous
and |f| < 1, then

liin/ | fel?P(., o )dm = 0.

Proof Suppose that the limit does not converge to 0. Then, there is € > 0, an
infinite set K C N and a sub-sequence of (aj) which converges to o € T such that

Vn € K, /|fn|2P(.,an)dm > €.

By theorem [5.7] using the elementary equality

Pn
(b*

Pn

fn‘z =1 + |fn‘2 - 2R€(CnCn¢

we get

Pn

o fa)) = (L= 1ful)P(., )

’¢n|2ﬂl(1 + |fn|2 —2Re(Crn—

and therefore

P(,a,) — |¢n|2,u/ X 2|¢n|2M/R€<an$_gfn)

|fN|2: 2, 2,/
P(., o) + |on | P(., o) + |on |

Thus, we obtain

2 Pl P Plao) B (o) (e o)
I = B o T 1o~ Ploag) + o g Tn) e g dn )

Since (,(a,) = 0, we get by harmonicity

/Re (ag‘nzn fn> P(.,a,)dm = 0.
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Consequently,

2 _ P('aoén) B ‘¢n|2,u, _ —_— ¢n
J it oan = [ty (1 e (W6 ) ) Ploonyin

But since (,, f, and z—z are Schur functions (see proposition ,

o
and we get
[16.2PConm <2 [| 2'%’2' P(.. an)d (56)
n an m - Qo )am.
Q) + [ [P
Let )
2|

gn =
P(.,an) + |on2/

Using the inequality
4

(14 2)?

2 _ Al a1 P (s an) )2
/TQnP(.,Ozn)dm = /T(l—i-!(anM/P(-,Oén)I)QP('7Qn)dm

< /\qbn\z,u’P(.,an)1P(.,an)dm
T

— [lonPuiam <1
T

<zforallz >0

we deduce

because of the orthonormality of ¢,. By the Schwarz inequality, it follows that

1/2
/ P an)dm < < / G2 P(., Ozn)dm) <1 (57)
T
Furthermore, we get again by the Schwarz inequality:

Pl adm — V20 oul Vil /P an) VP, aw) + [0aP/P( ) -
/T\/;P(” n)d T /P, an) + |2 V2|6 !

< (o) (L () )"

Using and the absolutely continuity of the measure, we get

/T VP an)dm < ( /T gnP<-,an>dm> " ( /T“'P ("O‘”)dm> R
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Since by hypothesis, («,) converges to o € T and ' is continuous at «, passing to
the inferior limit in (58)), we get

ViF@) < Vi it [ Ptain) "

Therefore, we obtain
liminf/gnP(.,an)dm > 1.
T

n

Combining this last inequality with , we obtain

lim/gnP(.,an)dm = lim/giP(.,ozn)dm =1

moJT moJT

It follows that
lim/(l—gn)QP(.,an)dm:/P(.,an)dm—2lim/gnP(.,an)dm—l—lim/gZP(.,an)dm:0.
moJT T moJT moJT

Thus, using the Schwarz inequality and , we conclude that

lim/]fn|2P(.,ozn)dm:O.
mJT

A similar type of convergence is obtained when the («,) are compactly in included
in D.

Theorem 6.8 If the (o) are compactly included in D and if |f| < 1 a.e. on T,
then

lim/ |fa2P(., ap)dm = 0.

Proof We denote by @ € D an accumulation point of (ay). Using the same
argument as above, equation still holds. Now, for any open arc I on T with no
mass at the end-points, we get by the Schwarz inequality:

o VIGIWE Pl Tl
f i = o Pl Ve

(s i) (o | (S ) om)
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As g, = 131(\%'2\5/{)13(6290‘”)) 11, we have 0 < g, <2 a.e on T. Let g be a weak-(x) limit

of the bounded sequence (g,), in L>(T). Passing to the limit in (60), and using
(54)), we obtain

1/2
one (i fomn) (357 i o)
IAGEE NI
Thus, by Lebesgue’s theorem on differentiation and by Helly’s theorem ([10]),
1/2
\/_<\/_<u—|— ,u) < Vg1’ a.e. on T.

Since ¢/ > 0 a.e. on T, g > 1 a.e. on T. Combining this last inequality with ,
and using the fact that lim, P(.,a,) = P(., @) uniformly on T, we obtain

a)
lim/gnP(.,an)dmzlim/giP(.,ozn)dm: 1.
moJT moJT

It follows that
lim/(l—gn)zp(.,an)dm:/P(.,an)dm—2lim/gnP(.,an)dm+lim/giP(.,an)dm: 0.
moJr T noJr noJr

Thus, using the Schwarz inequality and , we conclude that

lim/]fn|2P(.,ozn)dm:O.
moJT

Combining the proofs of the two previous theorems, we obtain:

Corollary 6.9 Let p be an absolutely continuous measure. ]fz (1= ag|) = oo,
if |fl <1 a.e. on T and if at every point of accumulation of the (ag) in T, f is
continuous and | f| < 1, then

nin/ F2P(., a)dm = 0.

In particular, we obtain a result stated in ([20]) for the classical Schur algorithm:

Corollary 6.10 If1 <p<oo, |f| <1 a.e. onT and ay, =0 for every k > 1 then

lim/|fn|pdm:O.
noJT

Proof As ||fulle < 1 for all n, the sequence f, is in L? for all 1 < p < oo. But
| fnll2 converges to 0, so for every sequence, we can extract a subsequence such that

limy, fx(t) = 0 a.e. on T. We conclude using Lebesgue’s dominated convergence.
|
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6.2.2 An asymptotic-BMO-type convergence

In the following, we will construct a sequence of interpolation points for which the
sequence f, tends in L' mean to its average on smaller and smaller intervals.

Theorem 6.11 Let (ex)ken be a sequence of real numbers such that

1

0< €k S g’

k=00 o
k=0 € = OQ,
limy o € = 0,

and f be a continuous Schur function such that |f| <1 on T.
Then the points (ay) can be chosen such that

lim sup/]fn — £(@)] Pt a)dm(t) = 0.

n CMEDn

where D,, denotes the closed disk of radius 1 — e, 7 :
D,={z€C,|z| <1—e¢,m}.

Proof Recall that '
Fule”) — fulown) |
1- fn(anJrl)fn(ew)

We denote by Z,, the application from D to [0, 1] such that
2
fa(t) = fula)

o) = - @0

At each step of the Schur algorithm, we may choose a1 € D, which maximizes
Z,,. Then we have :

| far(e?)] =

P(t,a)dm(t).

P(t, apyq)dm(t)

/|fn+1(t)|2p(t,06n+1)dm(t> = / 1fn(t;(_i;;+(lt)>
' Tl = Jnl®nt1)]n

- fut) = fule) ||
¥ o R
As f,, is Schur, |1 — fu (@) fn(t)| < 2. Therefore,
/ Furr (D2 P(E, @ )dm(t) > sup / Falt) — Fule) 2 Pt a)dm().
aEDy,

Using the Schwarz inequality, we get

/Ifn+1 )I* P(t, 1) dm(t) > (sup /!fn — ful@)| P(t, a)dmi(t ))2.

CMEDn
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Thus, corollary [6.9] gives

lim sup / £alt) — fa()] P(t, a)dm(t) = 0.

n QEDn

Corollary 6.12 Under the same hypothesis as the previous theorem, the points
(au)k can be chosen such that

lim sup /|fn— fn)ldm =0

n—00 m(I) >6n

Proof Let I be an arc of T such that m(I) > e,.
Suppose first that m(l) < % and define by «; the point of D, such that ay =
(1 — m(I)m)e®t where ¢! is the center of I. We have

where (f,); is defined by

P(e? ar) = L~ Joy|”
’ 1 —2|ay|cos(8 — 6;) + |as|?
o 1+ |Oé[‘
1— |Oé[| + 2|Oé[|1 (ioslz |01)

Suppose that e € I, that is |0 — 07| < m([)7. Using the inequality 1 — cos(z) < &
we get

. 1
(0-01)2
1- |O‘I| + |O‘I| o]
= -t ||C:¥I|’7r2 ()2
1-— |Oz1| + IIT
S 2 —mm([)
— 1—mm(I))m2m(I)?
wm(D) 4 QommEnn
> 1
- m(l)m

Therefore, if x stands for the characteristic function of I and if ¢, < m(I) < %, then

X0 < 7P(t,ay).
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Furthermore, if m(I) > 1, we have 7P(t,0) = 7 > ﬁ Thus, for all arc I of T

such that m([) > €,, a point o in D,, exists such that

x(®) _
W P(t,Oq).
Now, remark that |(f,); — fu(os)| < 1/m(I) [} | fo — fa(ar)|dm. Indeed,

(s — Fulan)] = ‘% /I fodm — ffan)| =
1
< 5 [l hanlan.

We conclude using the above theorem and the following inequalities:

s / fo— (f),ldm < sup %) / (o = Falan)] + fular) = (fu),]) dm

>en m(I)>en TTL(

‘ 1

W/I(fn—fn(az))dm

< 2 swp 1 /Ifn Falan)| dm

m(I) >en

= 2 sup /m\fn—fn(alﬂdm

m(I)>en

< 27 sup /!fn fular)| P(., ar)dm

m(Il)>en

< 27 sup / = Fal@)] P(a)dm

a€D,,

If no constraint is made on the length of the intervals (i.e. €, = 0 for each n),
then the convergence in the previous corollary is called a BMO convergence. Details
about BMO can be found in [I2], Chapter 6.

Here, an unsolved question appears: which hypotheses are needed on f in order
to obtain a BMO convergence? The difficulty to answer such a question is that
the hypotheses made on f have to propagate to every f,, throughout the Schur
algorithm.

Note also that we do not obtain a similar result of convergence for the Wall rational
functions A, /B,. Here, the problem is due to the mean (f,);.

6.3 Convergence of the Wall rational functions A, /B,

We will now give different kinds of convergence for the Wall rational functions.
The first one is convergence on compact subset which is deduced merely from an
elementary property satisfied by the zeros of a non-zero function in H*°. The other
three (convergence in the pseudo-hyperbolic distance, the Poincaré metric, and in
L?(T)) are implied by the convergence of the Schur functions f, in L*(T).
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6.3.1 Convergence on compact subsets

Convergence of A, /B, on compact subsets of D is easily obtained, using the fact
that the zeros of a non-zero function in H* satisfy the relation Y - (1 — |ay|) < 0o

(25]).

Theorem 6.13 If Zz:fo(l — |ag]) = oo, g—z converges to f uniformly on compact
subsets of D.

Proof As‘ »

subsequence that converges uniformly on compact subsets can be extracted. We
denote by f the limit of such a subsequence. As g—z(ak) = f(ay) for allmn > k — 1,

f(a) = f(oy) for all k. Thus, the function f — f belongs to H® and the points ay
are its zeros. As :30(1 — |ag|) = 0o, we conclude that f = f. Thus, f is the only

limit point, and A, /B,, converges to f, locally uniformly in D

An
B

< 1 for all n € N, {g—:} is a normal family. Therefore, a

6.3.2 Convergence with respect to the pseudohyperbolic distance
The pseudohyperbolic distance p on D is defined by ([12])

Z— W

plew) = [T

Convergence with respect to the pseudohyperbolic distance is essentially a conse-
quence of the following well-known property.

Property 6.14 The pseudohyperbolic distance is invariant under Moebius transfor-
mations.

Proof Let M be the Moebius transform defined by

M(z) = ﬁlz__;‘z with a € D and 3 € T.
We have
Z— w—«
M(z) = M(w) = 6(1—(12_ 1—aw>
APz -w)
(1—az)(l—aw)
and

1 - M()M(w) = 1_Wﬁw_a

1—az 1—aw
(1= [af*)(1 = zw)
(1—az)(1-aw)
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Therefore,

The proof of convergence is now immediate ([20], Corollary 2.4 for ay = 0):

Theorem 6.15 If |f| <1 on T, f continuous, and Zij{o(l — |ag|) = oo then

A 2
i [0 (122) Plonwiin -
nJr B,

Proof As the pseudohyperbolic distance is invariant under Moebius transforma-
tions, we have in view of and ,

(1) = oo nluame 0 m(0) = s 0) = [l

We conclude using Corollary [6.9

6.3.3 Convergence with respect to the Poincaré metric

In the disk, the Poincaré metric is defined by
1
PB(z,w) = log (M) for z,w € D.

The following theorem is given in the classical case (i.e. ay = 0) in [20], Theorem
2.6.

Theorem 6.16 If i is an absolutely continuous measure such that p' is positive
and Dini continuous on T and if Y ;_,(1 — |ag|) = oo, then

liin/T‘IS (f, %) P(., apy1)dm = 0.

In particular, this holds if | f| < 1 and f is Dini-continuous on T.

Proof Using again the invariance of the pseudohyperbolic distance under Moebius
transformations, we get p ( 1, g—:) = | fns1]. This gives

An 1+ ‘fn+1’)
(o)) e
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Using Theorem and the definition of the Szegé function S, since |¢,| = |¢%| on

T, we get

|2’1 O‘ﬂf‘Q _ 1_‘fn’2
—lowl? 1 =T G fal?

Furthermore, if g is a Schur function, 1—g is a function in H* such that Re(1—g) >
0, and therefore 1 — g is an outer function (see [12], Corollary 4.8). Thus,

|05

a.e. on T. (62)

[ 10811 = 9P )dm = log([1 ~ g(a) )
T
Consequently, since (,(a,,) = 0,we obtain on putting g = aCnZ—f fn that

Pn(n)
o5 (an)

/]I‘log |1 - QCn%fnPP(a Oén)dm logﬂl - CnCn(an> fTL(Oén)P) = log(l) = 0.

Using the previous equation and , we get

[ 1o (|¢;;|2|S|2M) P& an)dm() = [ 1og(1 = 5,)P(€. an)dm(e),

||
As ¢, S% and 1 — @,,€ are outer functions, we obtain
log(|¢y, () ?IS () (1 = |aw|*)) = /Tlog(l — )P (. cn)dm,
and Theorem [6.5] gives us
lién/Tlog(l £ P)PL, an)dm = 0. (63)

Using the inequality log(1 + x) < x for z > —1, we get

0 < |ful* < —log(1—|ful*) (64)

and
0 < log(1 + |fal) < Ifsl (65)

Therefore, by and ,
lim/ FaPP(., c)dm = 0
noJr

and, by the previous equation and ,

lim/log(l F1ADPC, an)dm = 0
noJr
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because, by the Schwarz inequality,

1/2
0< /Tlog(1+|fn|)P(.,an)dm < [T\fnlp(.,an)dm < (/T|fn|2P(.,an)dm> |
Since log(1 — | f,|?) = log(1 — | f,]) + log(1 + | f,]), we also have
lim/ log(1 — | fu]) P(., a)dm = 0.
moJr

We obtain the expected result by .

6.3.4 Convergence in L*(T)

Using the relation between f,.; and g—z and the L? convergence of the Schur func-
tions f,, we shall directly obtain the L? convergence of the Wall rational functions

4o as follows.

Lemma 6.17 Fort € T, we have

A

(011~ G070 = |10 - 5200

Proof Proposition [3.12] gives

An(2) + Cui1(2) Bi(2) fria(2)
B(2) + a1 (2) A5 (2) frra ()

f(z) =

Therefore,
Bji(z) — AL(2)f(2)
Bn(2) ‘

) = Cut1(2) frr1(2)

B (t)(Bn(t) = An() (1))
By(1)

= [Gur1(t) frr1(D)]

= ’fnJrl(t)’

= |farn@®I[1-
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Proposition 6.18 The convergence in LP, 1 < p < oo, of f, to zero with respect
to the varying weight P(.,oy,) implies the convergence in LP of g—z to f with respect
to P(.,O&nJrl).

Proof As f and % are two Schur functions, using the previous lemma, we get

‘f(t) - %(t)' < 2| fusa(t)| for t € T.

The conclusion is then immediate by dominated convergence.

The two following corollaries are direct applications of the previous results.

Corollary 6.19 If Zzz‘f(l — |ag|) = o0, and if |f| <1 and f is continuous on T,

then
lim /
noJr

In particular, we obtain a result given in [20] for the classical Schur algorithm:

2
f— P(.,a,,)dm = 0.

Anfl
Bn—l

Corollary 6.20 If 1 < p < 400, |f| <1 a.e. onT, and ap = 0 for every k > 1,

then
lim /
noJr

7 Approximation by a Schur rational function of
given degree

AP
f—B—: dm = 0.

The goal of this section is to give practical means of approximating a function
by a Schur rational function. We first show that the Schur algorithm leads to a
parametrization of all strictly Schur rational functions of given degree. We next
explain how to compute efficiently the L? norm of a rational function analytic in the
unit disk. We then have all the necessary information to implement an optimization
process. Examples are given, and compared with L? unconstrained approximation.

7.1 Parametrization of strictly Schur rational functions

Below, we parametrize the strictly Schur rational functions of order n by their
convergents of order n (see section . Let (cx)k>0 be a sequence on T with ¢o = 1.
We denote by S, the set of all strictly Schur rational functions of degree at most n
and we define the application I' by

r: D2+t — S,
(ala"wanvaOV"a’yn) L — Rn
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where
R,=momo---0T,107,(0)

with

(1 — J7&l?) cxCrpa
YiCep1 + =
The next theorem shows that I is surjective.

For h a polynomial of degree n, we denote by h the polynomial of degree n defined
by h(z) = z"h(2).

Te(w) = v +

Theorem 7.1 FEvery strictly Schur irreducible rational function § of degree n can
be written as a convergent of order n.

Furthermore, the only possible interpolation points o, ..., a, (counted with multi-
plicity) are the points in the set

R = {z €D, (pp— qd)() = 0}

Proof We will show that choosing the interpolation points in R leads to a constant
Schur function f,,. We then conclude applying the reverse Schur algorithm.

1. We first prove that pp — qq has n roots in the unit disk ID. Suppose that
pp — qq is a polynomial of degree m < 2n. Then if we put p = Y _;_, ax2" and
q=>1_obx2", we have

gl — bp_bpe =0 for all 0 < k < 2n —m

and therefore, 0 is a root of pp—¢q with multiplicity 2n —m. Suppose now that

some root £ is on the unit circle T. As § is Schur and irreducible, ¢(&) # 0.
_ 2

Then (&) = g({)‘ = 1, and therefore, 2 is not strictly Schur, a contradic-

tion. Furthermore, if £ # 0 is a root of pp — ¢g, + is also a root of pp — ¢q.

&
Therefore, there are exactly n points (counted with multiplicity) in R.

2. We now show that the degree of f; decreases at each step of the Schur algorithm
if and only if the a; are taken in R.

Recall that

_p— gl —aiz

Ji=2a — .
q— CoYp £ — o

First, note that p — cyy0q and ¢ — ¢oyp are relatively prime. Indeed, if « is a
common root, we have p(a) = cyyoq(a) and g(a) — |70|*¢(a) = 0. Therefore,
q(o) = 0 and p(a) = 0. This contradicts the irreducibility of 2.
Note also that, if deg(p — cov0q) < n — 1 and deg(q — Gyop) < n — 1, then
degp < n—1 and degqg < n — 1. Indeed, we get a, — copyob, = 0 and
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b, — Cooa, = 0, and therefore a,(1 — |coy0|?) = 0 and b, (1 — |ce70]?) = 0.
Since |coy| < 1, we obtain a, = b, = 0. This contradicts the hypothesis

degp/q = n.
Thus, the degree of f; is equal to n — 1 if and only if

e 2z —  divides p — cpY0q, and
e 1 — ayz divides ¢ — coyop if a1 # 0, or else the degree of g — ¢yyop is
<n-—1.

Note that, in this case, d°f — d°f, = 1.
Suppose oy € R. Then (pp — qq)(c1) = 0. As %’ is irreducible and analytic in
D, g(ay) # 0. Thus

(93 — pp)(a1)
Q(Oél)

. 1 . 1
a'ql =) -Gy -arp|{=)=0.
o1 g

We deduce that 1 — ayz divides ¢ — ¢yyop. If oy = 0, by , the degree of
q—Coop is strictly less than n. Furthermore, by definition of vy, z —ay divides
P — coYoq- Thus, deg f; =n — 1.

= (o) — coroplar) = 0. (66)

If oy # 0, then

Conversely, if a1 # 0 with p(ay) — covoq(1) = 0 and q(aél) - mp(%) =0,
then ¢(an) — coyop(ar) = 0, from which it follows that a; € R. If @y = 0 and
p(0) = co70q(0) with deg(g — coYop) < n, then §(0) — c9y0p(0) = 0 and again
oy € R.

. We finally prove that if f; = *Z—i, then the roots of p1p; — 17 that lie in the

unit disk are the points of R \ {1} (counting multiplicity). Since

_ o~ -1 _
PG\ _ (2 0 C p
Q1 Copr 0 l-mz —Gn 1 q

taking determinants, we get

)

hfi =

PP —4qq
z—ap)(l—az)

mp — g = (1 — |70|2)(

Therefore, the set of the roots of pi1py — 1y in D is R\ {ay }.

[terating this process n times, we get f,(2) = 7,. Conclusion is then immediate.

We endow the space of rational functions of degree n with the differential structure
which is naturally inherited from the coefficients of the numerators and denomina-
tors. Then it becomes a smooth submanifold of every Hardy space H?, 1 < p < o0,
of the disk of dimension 2n + 1 over C ([3]).
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Theorem 7.2 If a = (a1, ..., 00,70, ---,%n) 1S Such that the points ay, ..., «, are
all distinct and d°T'(a) = n, then the derivative dl'(a) at a € D*" ! is an isomor-
phism.

Proof We give a proof by induction. The result is immediate if n = 0. We denote
by I';:

Fi<ai+17 sy Oy Vi e 7/yn> =T7;0---0 TTL(O)
We therefore have

Too (g, ..o, Y1y oy V)
Clrl(a27 ey Oy Y1y e 7771) + Y%
1 +%C1F1(0427 N TR 4 7771)

F(alw"aana’)/()a"w’yn)

Note that, in the following, we will just write I'; for I'1(cw, ..., an, 71, .-, 7). On
differentiating if the space of rational functions of degree n is viewed as a submanifold
of H?, 1 < p < 0o, we have

o 1
o 1 +%6(2)T1(2)
or - GENE)(G(E)(2) + )
Mo (1 +7G(2)T1(2))?
8_F _ 'y (2) 1 — |yol?
Oy 1+ (2)l1(2)? 1 -z
o G(2)N(z) (1—|v]?)z
day (1 +%G(2)M(2)?* 1-aiz
and for £ > 1,
o GE—|wP) oy
oal® (1 +70G(2)T1(2))? On
o GE—|wP) ory
M (1 +3G(2)'1(2))? 07k
or G-’ o
Oy 41 (1 +7G1(2)T1(2))? Qa1
or G-l o
a1 (1 +70G1(2)T1(2))? OagT

Suppose that the hypothesis is true for n — 1, that is if as, ..., «,, are all distinct and
d°T'y(a) = n — 1 then dI';(a) is an isomorphism, with @ = (g, ..., @, Y1,y Tn)-
Suppose there exists a linear combination such that:

or ar or ar or , . or
dyy + ——dFi + ——d 7T ) + ——dyn + —d77 = 0
ZZ; (a o+ =+ G dan + e ow) + g+ 5=
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Then we have for every z, on multiplying by (1 + %(1(2)T1(2))?,

n—1
0F1 (9F1 _ (9F1 arl
0= 1 — |yl —d —d —d d
G(2)( 70l ); (8% "t o i+ Do Qpq1 + D Oél+1>
ol ol
+ ¢ (2)(1 = |l (_d%ff'—_d%)
— (1 —|nl*)z
+ G (2)T1(2) { Fodro — (G(2)T1(2) + v0)dyo + Wda_l
—aq
1— |y
PR E
1 -0z
Evaluating at aq, we get
T'i(a) (1 = [l?)
dyo = d
0 1—oul? o (68)
Therefore, the last row in @ can be expressed as :
'y (o) I'i(z)
1 — |yl? — d
(=l (220 - 2 ) o,
This can be written as
['1(a1)
2 Loy
(Iol” = 1)¢u(2) (91(2) + Oﬂm> don
with r r
gi(2) = 1(2) — 1(041).
zZ — Q1
A cancellation by (; in gives us:
n—1
ol ory oIy ol
0=(1-—|yl? —d —d ——d dag 1
( 170l ); (871 Y+ o Y+ Do, Q41+ Jai 041+1)
or or
#1= bl (G + GLam)
Vn OV (69)

1—a7z2

+T(z) <%d70 — (G ()1 (2) + v0)d70 + wda—l)

+(ol? - 1) <gl<z) +a—M) dov,.

T aa]?

I'; is a rational irreducible function % of degree n — 1 by Theorem (7.1} Thus

% c —PQ‘;{Q where [ denotes any of the variable «;, 7;, &; or 4;. In fact, in the

previous expression, all terms are in %, except perhaps
1
~G(2)TE(2)d7
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and
2 (2)

daor.
1—20a7z2 u

(1— |%|2)

Using and , we get
(_ TR 2F1(2)> e Pons )

1—|a1?  1—1aqz @ (2)?
Note that

Fl(Oq) zI’l(z)

1—|y? 1-—a32

(1 —laa*)zqu(2) = Ta(en)(z = en)pa(2)

— Gi(2)I17(2) (1—|aa?)(1 = a12)q1(2)?

=pi(2)

(71)
Suppose that dag # 0.
Then, if oy # 0, combining and , we get
pi(1/a0) (ar(1/a1) = Ti(an)pi(1/an)) = 0.
If p1(1/a7) = 0, then

p(x) _ (2= an)pi(2) + conom (=) (1 — aiz)
12) () - @2) + amlz - api(z)

has the same degree than 2 (because 1 — @1z is a common factor).
If ¢;(1/a7) — I'y(cq)p1(1/@y) = 0, then (p1p1 — ¢1G1)(a1) = 0 and 4 is a multiple
root.

Furthermore, if oy = 0, we have zp;(z) (ql(z) - Fl(O)pl(z)) € Pop_o if and only

if deg(zp1(2)) < n —1 or deg(q1(z) — I'1(0)p1(2)) < m — 2, which is equivalent to
deg(zp1(2)) <n —1or (pp—qq)(0) = 0.

From what precedes, we deduce that if degp/q = n and «; is not a multiple root,
then the derivative dI'(a) is injective (and therefore surjective counting dimensions).

7.2 Computation of the L? norm

In order to be able to optimize with respect to the L? norm, we will now see how
to numerically compute efficiently the Hermitian product (f,g) = [, f(t)g(t)dm(t)
for f, g rational functions analytic inside the unit disk. Two kind of methods are
presented : the first one uses elementary operations on polynomials, and the other
one uses matrix operations.
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7.2.1 Two methods using elementary operations on polynomials

The two methods proposed brings the computation of the Hermitian product of
two rational functions back to the computation of the Hermitian product of two
polynomials. Therefore, they essentially use the elementary property :

Property 7.3 Ifp= lezgn prz® and g = lezg qe2" are two polynomials then

min(m,n

)
p9) = > il
k=0

The first method is very basic and gives an approximation of the Hermitian product.
However, it is quite efficient for Schur rational functions of small degree. It simply
consists in approximating f and g by their Taylor polynomials of order N, the
Hermitian product is then obtained using the previous property. If N is sufficiently
big, the result is very good (for the examples presented in the next section, two
hundred Taylor coefficients were taken). The Taylor coefficients are easily obtained
using the “long” division with respect to increasing powers.

The second method has the advantage of avoiding any truncation. However, it
requires to efficiently compute an extended ged. For a neater notation, the following
computation is done for ¥ and 7 rational functions analytic outside the unit disk,
i.e. the roots of b and ¢ are in the unit disk. This is equivalent to the corresponding
problem in the disk upon changing z into 1/z. Here, for a polynomial ¢, we denote

by ¢ the polynomial § = z%"9q (1) As ged(b, @) = 1, there exist u and v such that

z

ub+wvqg = 1. Then, if r = r1q + r¢o with d°rq < d°r,
<a q> _ Ja(ub+vq) r
b’/ b "q

i) (50

q b q

~ fnr+ (510

where we have taken into account the orthogonality of H?(D) and H?(C\ D). As

avg T\ _ favaTt
b q/ b )

The euclidean division of avz?? by b gives

g =2"1q (1), we have

avz®? = kb + p.

Therefore,
a
<E’ g> = (au,r1) + (k1,7) .
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Note that the Hermitian product of two rational functions f = Z—g and g = &

q0
analytic inside the unit disk is

ap To
o = (2
bo " qo
- Zdoqo ’I"~0 Zdobo do
- Zd"’l‘o q~07 Zdoao b~0
and is therefore obtained as a Hermitian product of two rational function analytic
outside the disk.

7.2.2 A method using matrix representations

We now present a method which adopts the matrix point of view. The computation
is carried out using a realization of f and g, i.e. by expressing these functions with
matrices. More details about realizations and system theory can be found in [19].

Definition 7.4 A rational function is proper (resp. strictly proper) if the numera-
tor’s degree is less or equal (resp. strictly less) than the denominator’s degree.

A matriz is proper rational (resp. strictly proper rational) if its entries are rational
proper (resp. strictly proper) functions.

In fact, we will study here how to compute the L? norm of proper rational matrices.
For this, we first want to express strictly proper rational matrices using 3 complex
matrices A, B, C.

Let H(s) be a strictly proper rational matrix m x p and let d(s) = s"+dys" ' +...+d,
be the least common denominator of the entries of H(s). Then H(s) = %, where
N(s) is a matrix m X p with polynomial entries. As H is strictly proper, there exist
complex matrices m X p Ny, Ny, ..., N, such that N(s) = Nys" '+ Nos" 2 + ...+ N,..
We denote by I, the p x p identity matrix.

We define the matrices A : pr x pr , B: pr xp,C : m X pr by :

( [ I, —dyl, --- —d,I,
I, 0 - 0
A= : : :
(0) L, 0
[p
0
B = . )
| 0
L C=[N1 N, N, |
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Then:
(s —A)[s" ', &2, --- I,
[ (s+d)I, doI, --- dI, s,
B —1, s, (0) s 21,
(0) —1I, sl Iy

[ (5" 4 dys" "t dos" 2+ .+ d,),
(_S’I"—l +ST—1>IP

—sl + sl

]p
0
= d(s) | .
0
UL,k *
1 | s :
We deduce that (sI — A)~! = O] ' " |- Therefore,
I, * *
C(sI —A)'B
1 . . t
= gl N N[ S e )

Definition 7.5 Let H(s) be a proper rational matriz. We call realization of H any
4-tuple (A, B,C, D) of complex matrices such that H(s) = C(sI — A)"'B+ D .

From what precedes, a realization of a strictly proper rational matrix always exists.
Let now H be proper rational and let D = lim, .o H. Then H — D is strictly
proper, so there exists (A, B,C) such that H — D = C(sI — A)™'B. Therefore,
H = C(sI — A)7'B+ D. Thus, we have obtained a realization for a proper rational
matrix. Note that a proper rational matrix does not have a unique realization.

A realization is called a minimal realization of H if the size of A is minimal among
all the possible realizations of H.
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We now briefly explain how to compute the L? norm using a minimal realization.
We now suppose that (A4, B, C, D) is a minimal realization of a proper rational matrix
H whose entries are analytic outside the unit disk and up to the unit circle. It is
well-known that the eigenvalues of A are the poles of H ([19], [14]). By analyticity
of H, the eigenvalues of A are therefore inside the unit disk. We have

1 —1 A\ -1 = (AY 4 —(+1)
(sI —A)" =s I—; =s Z " :ZAJSJ .
=0

Jj=0

Therefore, H(s) = D + Y2 CA'Bs~U*!. Let Hy and H, be two strictly proper
rational matrices whose entries are analytical outside the unit disk. From what
precedes, we have

Hl(g) = D1 + Z;}io OlA{Blsi(jJrl), and
Hy(s) = Dy + 322 Co Ay Bys™ UHD),

Thus

(Hy,H,) = Tr (D1D3+201A{3135(A;)J’0;>

=0

= TIr (D1D>2k +Ch (Z A{BlB;(A;)j) C’;) :

=0

We denote by P the matrix P =3 Al By B3(A%)7, which is well-defined since A;
and A, have all their eigenvalues in D. It is immediate that P is a solution of the
Stein (or Lyapounov) equation: A;PA5 + By B = P. Since all the eigenvalues of
A; and As are in D, no eigenvalue of A; is the reciprocal of an eigenvalue of A,.
Therefore, the Stein problem has a unique solution. Since (Hi, Hy) = Tr(D1Dj +
C1PC3), solving the Stein problem gives the value of (Hy, Hs).

More details about the matrix P and the Stein problem can be found in [3].

7.3 Examples

In order to approximate a function f, we have implemented an optimization process
using the parametrization presented in section[7.I} The criterion which is minimized
is the relative L? error

=T, a0, )2

6(041,--~7am’707~--77n)— ”fHZ
In practice, the points of the unit disk ay, ..., a,, Y, - - ., 7n are parametrized by the
application
R? — D
A () 2 z

\/x2+y2+1 + Z\/$2+y2+1 .
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This allows to do an unconstrained optimization : to compute a Schur rational
function of degree n, we would like to optimize

inf ||f_P(A(xa17ya1)7'"’A(‘/E’anyvn))H?'

(Tay Yoy seesan Yon ) ERIMT2

This problem depends of 4n+2 real parameters. Note that, as the parametrization I'
is not defined for parameters of modulus 1, the infimum is not necessarily attained.
In the following examples, the initialization of the optimization is done using the
asymptotic-BMO-type criterion (see section , that is by computing a sequence
of points () such that a,,1; minimizes

T(e) :/T 1= ful@) falt)

No refined attempts at solving this optimization problem were made: we simply
used a grid search.

The results obtained by this “Schur optimization” are compared with the L? un-
constrained approximation given by the hyperion softwareﬂ ([15]). In particular, we
check that the error of our result s lies between the L? error of the result h given
by hyperion and the “normalized L* error” (i.e. the error of the arl2 function of
the hyperion software scaled into the unit disk in order to obtain a Schur function),

that is we check that e(h) <e(s) <e (ﬁ)

2

fat) = fal@) P(t,a)dm(t).

In the following figures, when a function g is plotted, the left graph represents the
image by g of the unit circle, and the right graph is the modulus of this image, i.e.
we plot:

On the left: ¢ — g(e™) and on the right: ¢ — |g(e™)| for —7 <t<m.

7.3.1 Approximation of Schur functions

Example 1

We are now interested in approximating a polynomial p30 of degree 30 plotted in
Fig. [1] Note that p30 is Schur and [|p30||s = 0.7852.

The results given by our optimization process and by hyperion for degrees 7 to 9 are
presented in Tab. . None of the best L2-unconstrained approximations is Schur.
Fig. [2|is a good example of what happens when one approximates a Schur function
whose modulus is near 1 on an interval of the unit circle: the L? unconstrained
approximation oscillates (in modulus) around one. Here, where the approximation
computed by hyperion exceeds 1 (in modulus), the Schur approximation “hits” one.
On this example, the initialization points are not very good (see fig. , and @

IThe hyperion software essential feature is to find a rational approximation of McMillan degree
n of a stable transfer function given by incomplete frequency measures. Its development has been
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Figure 1: Function p30, polynomial of degree 30, Schur.

Degree 7 | Degree 8 | Degree 9

L? I|-loo 1.0235 1.0056 1.0014
(hyperion) | error || 6.72e-2 | 1.16 e-2 | 1.32 ¢-3
Schur error || 6.89 e-2 | 1.19e-2 | 1.51 e-3

L? normalized | error || 7.09 e-2 | 1.29 e-2 | 1.99 -3

Table 1: Approximation of the Schur function p30 : comparison between our Schur
process and hyperion

asp B
0s
07
08
0s
04
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|

) \ /
oL ‘ ‘
-3 -2 -1 0

Figure 2: Function p30 (blue), Schur approximation (green) and L? approximation
(red) of degree 7.
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Figure 3: Initialization points (left) and optimized points (right) of the Schur func-
tion of degree 7 : parameters « (blue) and v (red).
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Figure 4: Function p30 (blue), Schur approximation (green) and L? approximation
(red) of degree 8.
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Figure 5: Initialization points (left) and optimized points (right) of the Schur func-
tion of degree 8 : parameters « (blue) and v (red).
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Figure 6: Function p30 (blue), Schur approximation (green) and L? approximation
(red) of degree 9.
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Figure 7: Initialization points (left) and optimized points (right) of the Schur func-
tion of degree 9 : parameters « (blue) and v (red).

Figure 8: Function f, polynomial of degree 60.

Example 2

We are now interested in approximating a polynomial p60 of degree 60 plotted in
fig. |8l Note that p60 is Schur and ||p60||2 = 0.9304.

The approximations of degree 7 to 9 obtained using our Schur process and hyperion
are compared in Tab. . Note that none of the best L?-unconstrained approxima-
tions is Schur.

abandoned in 2001. The Endymion software, which is still under development, will offer most
of the functionalities of hyperion. Note that the author of the hyperion software chose to write
“hyperion” in lowercase letters.
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Degree 7 | Degree 8 | Degree 9

L? |- Ilso 1.0053 1.0037 1.0014
(hyperion) error | 2.97e-2 | 1.69e-2 | 4.5e-3
Schur error || 3.0l e2 | 1.70 e-2 | 4.7 e-3

L? normalized | error || 3.02 e-2 | 1.73 -2 4.8 e-3

Table 2: Approximation of the Schur function p60 : comparison between our Schur
process and hyperion

L L L L L L L L L L L L L L L
-1 08 08 04 02 ] 0z 04 08 08 1 3 2 -1 0 1 2 3

Figure 9: Function p60 (blue), Schur approximation (green) and L? approximation
(red) of degree 7.

For the initialization, we first computed points «q, ..., a9 using the asymptotic-
BMO-type criterion and chose among them. The initial interpolation points at
degree 7 are the points am, ..., ag, at degree 8 they are aq,...,ag, and at degree 9
they are auo, ..., aj. The initializations for the degrees 7 and 8 are quite good (see

fig. and fig. [12).

7.3.2 Approximation of analytic but not Schur functions

In the two following examples, we are interested in approximating analytic, but not
Schur, functions. In practice, standard applications arise from the fact that the
function is known to be Schur, but some measurement errors occurred and lead to
a function with values greater than 1 in modulus at some places.

Example 3

An example is taken of a rational function 75 of degree 5 such that [[r5]|, = 1.01
and ||r5|l2 = 0.6225. Note that r5 is not Schur but is analytic in the unit disk.
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Figure 10: Initialization points (left) and optimized points (right) of the Schur
function of degree 7 : parameters « (blue) and « (red).

Figure 11: Function p60 (blue), Schur approximation (green) and L? approximation
(red) of degree 8.
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Figure 12: Initialization points (left) and optimized points (right) of the Schur

function of degree 8 : parameters « (blue) and v (red).

Figure 13: Function p60 (blue), Schur approximation (green) and L? approximation

(red) of degree 9.
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Figure 14: Initialization points (left) and optimized points (right) of the Schur
function of degree 9 : parameters « (blue) and v (red).
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Figure 15: Function r5 (red) and Schur approximation (green) of degree 5.

As the asymptotic-BMO-type criterion can be applied only to Schur functions, the
initialization was done upon applying it to the Schur function r5/||r5|| .

Using our optimization process, we obtain an approximation of degree 5 with an
error of 7.89e — 3. Scaling 75 into the unit disk (i.e. considering the function ﬁ)
gives an error of 9.90e — 3.

Consider the initial and optimized parameters (see fig. . In this example, the
interpolation points « given by the asymptotic-BMO-type criterion are surprisingly
good.

Example 4
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Figure 16: Initialization points (left) and optimized points (right) of the Schur
function of degree 5 : parameters « (blue) and v (red).

Figure 17: Initialization points (left) and optimized points (right) of the Schur
function of degree 10 : parameters « (blue) and v (red).

We want here to approximate a rational function 710 of degree 10, analytic in the
unit disk, and such that ||[710|| = 1.02 and ||r10||s = 0.6772. The asymptotic-
BMO-type criterion applied to 710/||r10|| gives a sequence of points with one of
multiplicity 3. As such an initialization could numerically leads to some problems,
we chose to apply the asymptotic-BMO-type criterion to the strictly Schur function

ﬁ)%. The result is quite good : indeed, only one of the interpolation points a seems

to have moved (see fig. [17).

RR n® 6620



72 Lunot & Baratchart € Kupin € Olivi

Figure 19: Another initialization for the approximation of degree 7 of p30 : param-
eters « (blue) and ~ (red).

The error of approximation is 2.58¢ — 3 (see fig. . Scaling 710 into the unit disk
gives an error of 1.96e — 2.

On the last three examples, at least one initialization for a given degree seems to
be quite good. However, all the initial interpolation points of the first example are
bad. We chose to compute again an initialization but this time to the scaled strictly
Schur function 0.97 x p30. This leads to the points plotted in fig. for the degree
7. The interpolation points are “in the same directions” than the optimized points
of the fig. [3
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8 Conclusion

In the previous section, we used a parametrization with Schur parameters of modulus
strictly less than 1 only. Using this method, only strictly Schur rational functions
could be represented. Finding a way to parametrize all Schur rational functions of
given degree would be a great improvement. This is our attempt in this section. We
will present an interpolation on the circle, and also another algorithm with Schur
parameters strictly less than 1, but which has the advantage to have a limit when the
parameters tend toward the circle. How to merge the two types of parametrization
into a single one is an open problem as for now.

8.1 J-inner matrices and the Schur algorithm

This section is an introduction to the J-inner matrices and some of their properties.

Definition 8.1 Let J = (1) _01 . A 2 X 2 matriz-valued funtion 6 is called

J-inner if it is meromorphic in D and
o 0(2)J0(z)" < J at every point z of analyticity of 0 in D, and

e 0(2)J0(2)* = J at almost every point z of T.

Many properties of J-inner matrices can be found in ([II]). A basic one is the
following;:

Proposition 8.2 If0 = ( 011 012
621 922

Schur function, then (0219 + 022) is invertible in D. Furthermore, if Ty(g) is defined
by

> 15 2 X 2 J-inner and analytic in D and g is a

Ty(g) = (0119 + 012) (0219 + O22) "
then f = Ty(g) is a Schur function.

The result carries to higher sizes of # but we will not need it.

Proof The proof can be found in different references, e.g. [I1] for the matricial
case. However, for a better understanding, we choose to give it again.

We first prove that 0519 + 099 is invertible at any point of ID. As @ is J-inner, we
have 0J0* < J that is

( |911_|2_ |912£ 9119_21—9129_22) < < 1 0 ) D
021011 — 022012 [021]> — 62> ) — \ 0 —1 ’
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This leads to |01 |> — |f22|> < —1, which is equivalent to |fas|?> > 1+ |021]*. Therefore,
25 is invertible at any point of D. We thus have

001 | 1
1—|— — >0
O | — |02
2
that is % < 1 at any point of D. We then deduce that 01 g+020 = 09205 a1g+1)

is invertible at any point of .
We now prove that f is Schur. We have:

(D - < Ziiizﬁ ) (6219 + 022) —9(§)<921g+922)—1
IN (N e
(1)J(1>—|f|—1-

fP=1 = (bag+060)"(g 1)6°J0 ( ‘(1} ) (0219 + 022) "

< (O219 + O22) *(|g|* — 1)(0a1g + O22) "
< 0

and

Therefore,

and f is Schur.

|
Note that the multipoint Schur algorithm we used is such that
= Cf1+ 70
14+ %G1 f1
that is f = Ty, (f1) with
1 G(z) )
01(2) = ——= | _ . 72
1(2) m(m@) I (72)
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It is easy to check that #, is J-inner. Indeed,

0N TO ) — T 1 G(z) 1 G(2) 706i(2)
T -hiaIee) = J \/1—|‘v3|(%<1<z> 1)‘%—%( )

_ . 1 G(z) m ’Yom

= Jo1z |7é| (70@1(2) 1 ) ( % 1 )

_ 1 < L—|GE)? =)= 1) )
1=\ —(GEP 1) 1 —1G:)P)

_ 1_|<1 ( Yo )
1_”70 Yo ol

1—1G(2) (1>
= _— _ ]_ ’Y
=g %)
OforzeDand =0 for z € T.

AV

The Schur algorithm is based on the following result:

Let f be a Schur function. f satisfies the interpolation property f(on) = o if
and only if f =Ty (f1) for some Schur function f;.

This result holds if we replace 8; by any J-inner function of the form 6; H where H
is a constant matrix satisfying H*JH = J (such a matrix H is called J-unitary).
This is a very particular case of the Nevanlinna-Pick interpolation problem studied
for example in [I1].

In section another choice of J-inner matrix will be proposed.

8.2 Interpolation on the circle

The Schur algorithm studied in the previous section falls short of considering points
on the unit circle. We now study an algorithm which manages such an interpolation.
The following proposition shows a relation between the value of a Schur function at
points of the unit circle, and the value of its angular derivative. The proof can be
found in [5].

Proposition 8.3 Let ar and yp in T. We denote by f'(ar) the limit lim,_,,. f'(2)
where z converges to ar nontangentially. If f is a Schur function such that f(ar) =
vyr, then f'(ar) = paryr where p is a positive real constant.

We now define a J-inner matrix which leads to an interpolation scheme on the circle.

Proposition 8.4 Let ar and ~vr be points of the unit circle, p be a positive real
constant, and xp be the vector such that xt. = (1 7). Then, the matriz 6y defined

by

1 z+ar
) =L+ —
2(2) 2+2pz—ozT

xpxpJ
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18 J-inner.

Proof We have

1 1
T — 0s(2)J02(2)" = J— (12 b2 aTxTxi}J) J (Iz +— (Z il O‘T) Jmei_;>

2p 2z — ap 20\ z — ar

1 z+ar . 1 (z+ar .
= —— TpTp — — Trx
2pz—aTTT 20\ z — ar T

2
(1 = lyr)zras.

1
(2p)?

Z 4+ ar
Z — Qr

As |yr| =1, we get

1
J — 92(2)J(92(Z)* = _Z_p

z+ ap z+ ap . 1 z -+ ar .
+ xrrp = ——Re Trxp.
Z— ar Z— ar P Q

2+ s~ _ 2 2_ 2
But Re (i—g) = Re <|Z‘ afi;;; lar| > = ‘170‘;@‘ < 0 for all z € D, and conse-

quently, J — 09(2)J02(2)* > 0.

Proposition 8.5 If g is a Schur function such that g(ar) # vy then f = Ty,(g) is
a Schur function such that f(ar) = ~yr and f'(ar) = pagyr.

Proof We have

14 Lzter o7 ztar
_ 2p z—ar 2p z—aTr
92(2) = ( Jr ztar 1 — 1 zt+ar

2p z—ar 2p z—ar
so that
f(e) _ 20z =) + (2 + 0r))g(e) — (e + ax)
yr(z + ar)g(z) + 2p(z — ar) — (2 + ar)
Therefore

~ 2ar(glar) —vr)
flar) = 20r(Yrg(ar) —1)

T

because g(ar) # vr.
A direct computation gives

Far) ((2p+ Dg(ar) + 2arg' (ar) — yr)
2ar(Yrg(ar) — 1)
(Yrg(ar) + 2aryrg’ (ar) + 2p — 1)(2ar(g(ar) — yr)
(2ar(Yrg(ar) —1))?
2p(g(or) — 1)
2ar(yrg(ar) = 1)
= porir.
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Note that if f = p/q, an interpolation point in the circle is always a root of pp — ¢q.
We will now show that if we apply the algorithm associated to 65 to a Schur rational
function p/q of degree n such that p/q(ar) = vr and (p/q)'(ar) = paryr, then

g="Ty (§> is a Schur rational function of degree n — 1. Indeed,

2p(z — ar)t — (2 + ar) <§ - 7T>

g =
2p(z —ar) + (2 + ar) <1 — §T§>
2pp — (2 + ap) B2

P—Tq "’
z—ar

2pq — (z+ ar)7r
But evaluating the numerator and denominator of g at a gives
2pp(ar) — 2arq(ar) f'(ar) = 2pyrq(ar) — 2arq(ar)paryr =0

and
2pq(ar) — 2007rq(ar) f'(ar) = 2pq(ar) — 2a0yrq(ar) paryr = 0.

Therefore, the degree of g is at most n — 1. Applying the linear transform Ty, to ¢
increases the degree of at most one. Thus, the degree of ¢ is exactly n — 1.

8.3 A better algorithm ?

We are now going to study another parametrization whose advantage is to have
a limit when points tend towards the circle. The link with the previous Schur
algorithm is given.

8.3.1 Another algorithm

Proposition 8.6 Let a and v be points of the unit disk D, and x be the vector
(1 7). Then, the matriz 03 defined by

——uxx"J (73)

18 J-inner.
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Proof We have

J —05(2)J605(z) = J— (12 + %me) J (12 + Jm%)

Ca(z) —1 * *Ca(z) —1 - |<a(z) — 1|2 *

_1——|72|Ix T BE =7 Tx
= (G R - T 1) £
= —((Ca(2) = D(Cal2) = 1) + Cal2) = 14 Calz) - 1>1f_w|7|2
1= G .
TohE
> 0 for all z € D.

Proposition 8.7 Let g be a Schur function. Then f = Ty, (g) is a Schur function
such that f(a) = 7.

Proof We have

r*J0s3(a) = " J —

1
Qx*Jxx*J
1 — v

and z*Jx = 1 — |y|?, therefore x*Jf3(«) = 0. Thus,

e () =w o) (7)) (@ateste) + @) =0

and we get f(a) =17.

8.3.2 Relation between the two algorithms

We now show that the J-inner matrix of the “new” algorithm is in fact the J-inner
matrix of the previous algorithm multiplied by a constant matrix H.
The proof of the following lemma is immediate.

Lemma 8.8 Let v in D and

Hm:ﬁ(; 1)

The matriz H(v) has the following properties:
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e H(v) is J-unitary, i.e. H(y)JH(y)* = J,
o H(y)™' = H(—).

We now give another expression of the J-inner matrix associated to the “new”
algorithm ([16]).

Proposition 8.9 The matriz 05 defined by 1s of the form

o) =) (G ) e

Proof We have

HEEHG) = #) (o SO T) )
_ Ca(2) —1 *
= I+ 1_—WH(—7)9595 JH(v)
— Ca(2) — 1 5[ 1 2
= b+1fqﬂ;v1—h!<o)vl—hl(10)

Note that the matrix 6, defined by is of the form

91=H(V)(% g)

Therefore, the link between the matrix #5 and 6, is given by

93 = 91H(—7)

8.3.3 Toward a parametrization of all Schur rational functions

We now show that when the point a tends to a point az of the unit circle, f5 tends
to 0y ([I7]). We have

Calz) — 1 _lel zma

a 1l—az

L-[f@))  1-|f(a)]?

—lol(z—a)—(a—|alz)

S
1= f(a)f(a)

(o] - g
L= fla)f(a)
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Using a Taylor expansion, we get

f(e) = flar) + (a —ar) f'(ar) + of|a — arl).

Therefore,
1- f(@)F(@) = ~2Re (o~ ar)flar)f(ar)] +ofla - az])
= —2Re|(a — ar)yrparyr] + o(|a — ar|)
= —2Re[p(aar — 1)] + o(|a — ar])
and we get

Cal2) — 1 (lo = Vs

L—|f(@)]?  2Rep(aar —1)] + o|a — ar])’

It remains to check that %

such that a = ar + 1. Then

tends toward % Let n be a complex number

|af* = |ar|* + 2Re(nar) + In|* = 1+ 2Re(nar) + nf?

and we deduce that
la| = 1+ Re(nar) + o(n).

Thus |a| — 1 = Re(nar) + o(n). As 2Re (aar — 1) = 2Re(nar), the conclusion is
immediate.

As stated before, only strictly Schur rational functions can be represented using
the parametrization of the previous section. From what precedes, we see that the
algorithm associated to 63 could be combined with interpolation on the unit circle,
and therefore, parameters could be taken in the closed unit disk D. This could be
a great improvment. However, new questions arise: could this algorithm be related
to orthogonal rational functions ? And in practice, when do you choose to take
interpolation points on the circle and how could one compute the parameter p?
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