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Proessus stohastiques et temps d'atteinte enneurosienes mathematiques.Résumé : In this researh report we de�ne a new event-based mathematial frameworkfor studying the dynamis of networks of integrate-and-�re neuron driven by external noise.Suh networks are lassially studied using the Fokker-Plank equation (Brunel, Hakim).In this study, we use the powerful tools developed for ommuniation networks theory andde�ne a formalism for the study of spiking neuron networks driven by an external noise. Withthis formalism, we address biologial questions to haraterize the di�erent network regimes.In this framework, the probability distribution of the interspike interval is a fundamentalparameter. We developed and apply several tools for de�ning and omputing the probabilitydensity funtion (pdf) of the time of the �rst spike, using stohasti analysis. This point ofview gives us an event-driven strategy for simulating this type of random networks. Thisstrategy has been implemented in an extension of the event-driven simulator Mvaspike.Mots-lés : modèles de neurones, réseau stohastique, modélisation événementielle, simu-lation événementielle, réseau de ommuniation, neurones intègre-et-tire stohastiques.
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8 Jonathan TouboulRésuméCe doument onstitue mon mémoire de Master 2 Reherhe "Probabilités et Appliations",�lière Proessus Stohastiques. J'ai en e�et e�etué mon mémoire de Master au sein del'équipe Odyssée de l'INRIA Sophia-Antipolis, et j'ai travaillé sur la modélisation stohas-tique des neurones et des réseaux de neurones biologiques. De e travail a résulté deuxpubliations dans des onférenes: un poster en ollaboration ave Romain Brette présentéà la onférene NeuroMath 2006 qui s'est tenue à Andorre, et une ommuniation orale enollaboration ave Olivier Faugeras et Theodore Papadopoulo de l'équipe Odyssee et DenisTalay, Etienne Tanré et Mireille Bossy de l'équipe Omega, qui sera présenté à la onféreneNeuroComp les 23 et 24 otobre.Ce doument se ompose de 3 parties prinipales.La première partie est une introdution à la modélisation en neurosienes. Dans ettepartie, je dé�nis les notions prinipales qui interviennent dans les modèles de neurosienes,et j'expose les prinipaux modèles mathématiques, d'abord dans un adre déterministe, puisdans un adre stohastique.La seonde partie traite des temps d'atteinte de proessus stohastiques et de leursapproximations. Le problème que nous herhons à résoudre onsiste à expliiter ou ara-tériser les densités de probabilité des temps d'atteinte de ertains proessus stohastiques àune frontière qui peut être onstante ou variable. Pour e faire, nous étudions deux artilesde J. Durbin [16, 17℄ qui donnent une représentation des temps d'atteinte d'un proessusgaussien (ou du mouvement brownien) d'une ourbe. Ces artiles donnent aussi une sériequi onverge dans sous ertaines hypothèses sur la frontière. Nous prouvons dans le as duproessus d'Ornstein-Uhlenbek qu'une approximation proposée par Durbin dans son artilede 1985 est exate lorsque la frontière onsidérée est onstante égale à la dérive du proessus.Nous expliitons ensuite des formules aratérisant les transformées de Laplae des tempsd'atteinte via des solutions d'EDP elliptiques ou paraboliques, et appliquons es formulationspour trouver des temps d'atteinte de proessus simples (mouvement brownien, Ornstein-Uhlenbek). Nous nous servons de es aratérisations pour prouver des onvergenes en loiet presque sures de temps d'atteinte en fontion de la ondition initiale du proessus.En�n, nous appliquons les méthodes dérites i-dessus pour simuler des densités de prob-abilités de temps d'atteinte utiles en neurosienes, donnant la distribution du premier tempsde spike pour ertains modèles de neurones. Ce travail sera l'objet de la présentation à laonférene NeuroComp.La troisième partie développe un pont entre une lasse de réseaux de neurones biologiqueset un adre mathématique unique, déjà quelque peu étudié par des mathématiiens. Cetravail est l'objet du poster présenté à la onférene NeuroMath.
INRIA



Event-driven stohasti network. 9AbstratThis doument is my master's 2 researh thesis, in the setion Stohasti Proesses, ofUniversity Paris VI (Pierre et Marie Curie). I did this thesis in the Odyssée team of INRIASophia-Antipolis, and my work deals with stohasti modelisation of biologial neuron andneural networks. This work has lead to two publiations in onferenes: a poster togetherwith Romain Brette, at the NeuroMath onferene in Andorra, and an oral ommuniationtogether with Olivier Faugeras and Theodore Papadopoulo of the Odyssee team and DenisTalay, Etienne Tanré and Mireille Bossy of the Omega team, whih will be presented at theonferene NeuroComp on Otober 23rd and 24th.This doument is omposed of three main parts.The �rst part is an introdution the neurosiene modelisation. In this part, I wouldde�ne the main notions used in mathematial models for neurosiene, and I review themain mathematial models of neurons, deterministi and probabilisti.The seond part deals with hitting times of stohasti proesses and with their approxi-mations. The issue we deal with in this part is the problem of haraterizing the probabilitydensities of hitting times of some stohasti proesses with a onstant or moving frontier.To do so, we �rst study Durbin's method, whih he presents in two artiles [16, 17℄, giving arepresentation of the hitting times of a Gaussian proess (or of the Brownian motion) witha urve. These artiles gives a series representation, whih onverges under some onditionson the boundary funtion, to the real probability density. We also prove in the ase ofthe Ornstein-Uhlenbek proess for a very speial boundary that a �rst order approxima-tion gives the real pdf, giving another example (Durbin shows the same property for theBrownian motion rossing a linear boundary in his artile of 1985.Then we make expliit some formulas haraterizing the Laplae transforms of hittingtimes using ellipti or paraboli Partial Di�erential Equations (PDE), and apply those for-mulas to �nd the laws of hitting times of the Brownian motion and the Ornstein-Uhlenbekproess. We use those haraterizations to prove also some onvergenes in law and almostsure of those hitting times when the starting point of the proess under onsideration tendsto the barrier.Finally, we apply those methods to simulate the probability density funtions usefull inneurosiene, giving or approximating the probability distribution of the �rst spike for someneural models. This work will be presented in the NeuroComp onferene.The third part of this doument builds a bridge between a lass of biologial neuralnetworks and a single general mathematial framework, whih has been studied sine thelast ten years by the ommunity of stohasti networks. This study has been presented (withthe poster joint) in the NeuroMath onferene in Andorra.
RR n° 1
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Part ISome Neurosiene Basis

INRIA



Event-driven stohasti network. 11
Chapter 1Biologial Spiking Neuron ModelsThis hapter deals with the biologial neuron models we will use in this doument. Its aimis learly not to give a omprehensive introdution to suh a omplex �eld as neurobiology,but to provide the reader with the basi onepts we will deal with in the rest of thisdoument. The presentation of the biologial bakground is highly simplisti and seletive.It is basially a review of the introdutory hapters of the exellent book of Gerstner andKirsler [22℄. All the �gures and some parts of the text of this hapter is diretly taken fromthis book. Further details an be found therein or in the book of Dayan and Abbott [14℄.First we will introdue several elementary notions of neurosiene, in partiular theonepts of ation potentials, postsynapti potentials, �ring thresholds and refratorynessThen we will introdue the main mathematial equations used to model spiking neurons.The approah hosen is to start from the more preises models and to redue thoses modelsto simpler models, whih would be more reasonnables for a mathematial study. Thesemodels are essentially deterministi models, and we will show how the stohasti nature ofsome phenomena has been introdued so far.1.1 IntrodutionThe struture and funtion of the brain has been widely studied over the last entury. Thebrain is omposed of elementary proessing units onneted to eah other in an intriatepattern, the neurons. But the ortex does not onsist exlusively of neurons. Beside thevarious types of neurons, there is a large number of "supporter" ells, alled glia ells,required for energy supply and strutural stabilization of the brain tissue, but do not seemto be involved in information proessing, so we will not disuss them any further.We will also only deal in doument with spiking neuron models and will neglet all theexisting analog neuron.
RR n° 1



12 Jonathan Touboul

Figure 1.1: Single Neuron struture (drawing by Ramón and Cajal), reprodued in [22℄1.1.1 Struture of the NeuronA typial neuron an be divided in three funtionally distint parts: the dendrites, the somaand the axon (see Fig. 1.1).� The dendrite plays the role of input devie: it ollets the signals from other neuronsand transmits them to the soma.� The soma is the "entral proessing unit". It performs a non linear proessing of theinformations oming from other neurons together with the noise, and generates anoutput signal.� This output signal is transported via the axon to be delivered to other neurons.
INRIA



Event-driven stohasti network. 13The juntion between two neurons is alled a synapse. It is ommon to refer to thesending neuron as the presynapti ell and to the reeiving neuron as the postsynapti ell.1.1.2 The Neuronal SignalThe neuronal signal onsists in short eletrial impulses. These pulses are alled ationpotentials or spikes. They have an amplitude of about 100 mV and a typial duration of 1or 2 ms. Sine every spikes of a given neuron look alike, it is supposed that the form of theation potential does not arry any information. So it is rather the number and the relativetiming of spikes whih matter. In all the models we study, spikes will be onsidered as theelementary unit of signal transmission.Ation potential in a sequene of spikes emitted by the same neuron (spike train) areusually well separated. Even with a very strong input it is impossible to generate a seondspike immediately after a �rst one. The minimal duration of time between two spikes isalled the absolute refratory period. This phase is followed by a seond one, the relativerefratory period, during whih it is di�ult but not impossible to exite the ell.1.1.3 The Neural TransmissionThe site where the axon of a presynapti neuron is in ontat with a postsynapti neuron isalled synapse. The synapse an be one of two types of transmission: hemial or eletrial.The most ustomary is the hemial one. When a spike arrives at the synapse, neuro-transmitter is released inside the tiny gap between the pre- and the postsynapti membrane(the synapti left) and this neurotransmitter is deteted by the postsynapti membranewhih will open ion hannels and let ions from the extraellular �uid �ow into the ell. Thision �ux is then translated into an eletrial signal, the postsynapti potential.The eletrial synapse (or gap juntion) uses spei� membrane proteins able to makediret eletrial onnetions between two neurons.1.1.4 Neuronal CouplingOne of the most important biologial variable is the membrane potential, whih is thedi�erene of eletrial potential between the ell and its neighborhood. Experimentally onean aess to this variable. When no spike is reeived by the neuron, its membrane potentialremains onstant. When a spike is reeived, the potential hanges and returns regularly toits resting potential. If the hange of potential is postive, the synapse is said to be exitatoryand if the hange is negative the synapse is said to be inhibitory.1.1.5 The problem of neural odingThe mammalian brain ontains more than 1010 densely paked neurons onneted in anintriate network. In every small volume of ortex, thousands of spikes are emitted eahmiliseond. The problem is to undestand how the information is oded in the spaio-temporal
RR n° 1



14 Jonathan Touboulpattern of pulses emitted. How the signal is deoded? This is a fundamental issue in neu-rosiene. No de�nitive answear is known so far, but many onjetures have been launhed.This setion is important for our mathematial study beause it gives us the pertinentvariables to model and study.Traditionnally it has been thought that most relevant information was ontained in themean �ring rate, i.e. the mean number of spikes emitted by unit of time, negleting the exattiming of spikes. This is ritiized now with a lot of experimental evidenes suggesting thatthis type of oding is far too simplisti. For instane reation times of human visual systemhas proved that there is no time for the brain to ompute the mean �ring rate beause onlya few spikes an be emitted during the period of time the sene is seen and the reationtakes plae (see for instane the experiments of Thorpe et al, 1996).In the following setion we review some potential oding sheme.Spike ount (Average over time)As disussed in the preliminaries, the ommon de�nition of spike rates is the average overtime, i.e. the number of spikes emited during a period of time T , divided by T . Thisde�nition has been suessful is experiments on sensory motor systems (for example for thestreth reeptor in a musle spindle, Adrian, 1926). From a mathematial point of view itleads us to onsider the output of a neuron as a salar ontinuous variable (the �ring rate).Spike density (Averages over several runs)The variable onsidered is a funtion, the so-alled peri-stimulus-time histogram. The time
t is measured w.r.t. the start of the simulation and the same simulation is repeated severaltimes (see Fig 1.2). A time step ∆t is hosen, typially a few milliseonds, and the spikesare onsidered as funtions of the type 1[t∗,t∗+∆t](t) where t∗ is the �ring time. All thesefuntions are summed over all the repetitions of the experiments and divided by the numberof experiments.This is of partiular interest for our probabilisti study beause it an be interpreted asthe probability density of spiking of the neuron.From a biologial point of view it makes sense if one assume that a population of in-dependant neurons reeive the same stimulus : the brain an then ompute this time ofperi-stimulus-time histogram form a single run.Population ativity (Averages over several neurons)The assumption for using this representation of oding is the same that the assumptionused in the study of spike density: many neurons have similar properties and respond tothe same stimuli. The spikes of a population of neuron M are sent to a set of neurons N .It is assumed that every neuron of N reeives the outputs of all the neurons of M. Therelevant information in this model is the proportion of "ative neurons" of the presynapti

INRIA



Event-driven stohasti network. 15

Figure 1.2: De�nition of the spike density as an average over several runs of the experiment(taken for Gerstner-Kirstler [22℄)population M.
A(t,∆t) =

1

∆t

native(t; t+ ∆t)

|M| (1.1.1)where native(s; t) is the number of spikes ouring in any neuron of the populationM duringthe period of time [s, t].The population ativity may vary very rapidly and an re�et hanges in the stimulusonditions. Nevertheless the population is not homogeneous in general in the brain and onehas to �nd suitable pools of neuron to apply this representation.In an heterogeneous population we an replae the de�nition (1.1.1) by a weighted aver-age over the population.In the above setions we only refered to statistis of spikes. We an also model the neuralode using the spike timing information (whih will be refered in the sequel as event-drivenmodels).Time to �rst spikeIt is not unrealisti to imagine a ode where for eah neuron the timing of the �rst spikeafter a referene ontains all the information about the stimulus. In a pure version of thisoding sheme only the �rst spike emitted transports information. All following spikes areirrelevant.
RR n° 1



16 Jonathan Touboul

Figure 1.3: Phase oding: the neurons �re at di�erent phases with respet to the bakgroundosillation (dashed line). Taken from [22℄This model learly seems simplisti but biologial experiments (see for instane Thorpeet al, 1996) has proved that the brain does not have time to evaluate more than one spikefrom eah neuron per proessing step. This simple model allows us to try mathematialstudies and it would be also of speial interest for us in the rest of this work.Phase odingWhen the stimulus applied is not a single event but a periodi signal, the "time to �rst spike"ode is no more relevant. Osillations in the brain are in fat quite ommon phenomena.In these osillations the information ould be arried by the phase of a pulse with respetto the global osillation observed, alled bakground osillation (see Fig.1.3 ). There arebiologial evidenes that the phase of a spike during global osillations onveys informations(see for instane O'Keefe and Ree, 1993).Correlations and SynhroniesOne an also use spikes form other neurons as the referene signal for a spike ode. Forinstane, synhronies between neurons ould onvey information whih is not ontained inthe �ring rate of neurons (see Fig.1.4).More generally, any preise spaio-temporal pulse pattern ould be a meaningful event(neurons spiking with a determined delay between eah other). This type of oding has beenwidely studied by Abeles.
INRIA



Event-driven stohasti network. 17

Figure 1.4: Synhrony: the upper four neurons are nearly synhronous, two other neuronsat the bottom are not synhronized. Taken from Gerstner-Kirstler [22℄

Figure 1.5: Reverse orrelation tehnique: the stimulus in the top trae has aused the spiketrain shown below. the time ourse of the stimulus just before the spikes has been averagedto yield the typial ourse at the bottomStimulus reonstrution and reverse orrelationLet us onsider a neuron driven by a time dependant stimulus s(t). Every time a spikeours, we note the time ourse of the stimulus in a time window of duration ∆t (in generalabout 100 ms) immediately before the spike. Averaging the results over several spikes yieldsthe typial time ourse of the stimulus just before the spike. This proedure is alled reverseorrelation (see Fig 1.5)
RR n° 1



18 Jonathan TouboulThe typial time ourse of the stimulus an be interpreted as the "meaning" of a singlespike. This approah has been suessful in many experiments (Ekorn et al 1993, Bialek etal 1991, . . . ). This way it is possible to reonstrut the stimulus linearly. This simple reon-strution has given fair estimates of the time ourse of the stimulus in some experiments.1.2 Single Neuron ModelsThis hapter deals with the mathematial models of neurons. We �rst take a biologialpoint of view to explain the emission of ation potentials, then present some detailed neuronmodel suh as the Hodgkin-Huxley (HH) model whih models at the level of the ion hannelsin the ell. This model is very di�ult to handle mathematially so we present then someredutions of the HH model, to get more simple neuron models (suh as formal spikingneuron models).s1.2.1 Detailed neuron modelsFrom a biophysial point of view ation potential are the result of urrents passing throughion hannels in the ell membrane. Hodgkin and Huxley, studying the giant axon of thesquid, sueeded in measuring these urrents and desribed the dynamis in terms of nonlinear di�erential equations. The HH equations are the starting point of detailed models,and aounts for numerous ion hannels, di�erent types of synapses, spaial geometry ofindividual neurons.Hodgkin-Huxley ModelHodgkin and Huxley (1952) found three di�erent types of ion urrent involved in the dynam-is of the membrane potential of neurons: sodium, potassium and the leak urrent onsistingmainly in Cl− ions. Spei� voltage-dependant ion hannels (one for sodium and one forpotassium) ontrol the �ow of those ions through the ell membrane.The model has the eletrial interpretation represented in Fig. 1.6. When an inputurrent I(t) is injeted into the ell, the membrane is harged like a apaitor, and theurrent leaks through the hannels in the ell membrane.Mathematially we have:
C
du

dt
= I(t) −

∑

k

Ik(t) (1.2.1)where k are the di�erent ion hannels.
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Event-driven stohasti network. 19

Figure 1.6: Equivalent eletri iruit of the model of Hodgkin-Huxley. The passive eletrialproperties of the ell membrane are desribed by a apaitane C and a resistor R. The non-linear properties ome from the voltage-dependant ion hannel for sodium and potassium
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20 Jonathan Touboul

Figure 1.7: Equilibrium funtions (left) and time onstant (right) for the gating variables
m, n, h in the Hodgkin-Huxley model.All ion hannels are desribed by their voltage-dependant ondutane gk(u). To modelthese ondutanes we introdue three additionnal variables : m, n and h. The ombinedation of m and h ontrols Na+ hannels and the variable n ontrols the K+ hannels.






INa = gNam
3h(u− ENa)

IK = gKn
4(u− EK)

Il = gl(u− El)
(1.2.2)The parameters ENa, EK and El are the reversal potentials and gNa, gK and gl are themaximal ondutanes of the ion speies. The three variables m, n and h, also alled gatingvariables, evolve aording to the di�erential equations:

dm

dt
= αm(u)(1 −m) − βm(u)m (1.2.3a)

dn

dt
= αn(u)(1 − n) − βn(u)n

dh

dt
= αh(u)(1 − h) − βh(u)h (1.2.3b)The various funtions α and β are empirial funtions, initially taken as exponential(f [22℄, see Fig. 1.7). These equations generate spikes automatially beause of the non-linearity of the equations.These equations are a good model for the eletrophysiologial properties of the giant axonof the squid. However, ortial neurons of vertebrates exhibit other physiologial propertiesbeause other ions are involved, or ion hannels exhibit other behavior (e.g. noninativatingsodium urrent, alium urrent).
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Event-driven stohasti network. 21Synapses ModelsSo far, we mentionned two types of ion hannels: the voltage-ativated and the alium-ativated ion hannels. The third type of ion hannel we have to deal with is the trans-mitter -ativated ion hannel involved in the synapti transmission. The model proposedhere does not take into aount the preise biophysial properties of this phenomenon (iononentrations in the left, metaboli reeptors, . . . ) but desribe transmitter-ativated ionhannels as an expliit time-dependant ondutivity gsyn(t). The urrent passing throughthese hannels depends, as usual, on the di�erene between its reversal potential Esyn andthe atual value of the membrane potential u :
Isyn(t) = gsyn(t)(u − Esyn) (1.2.4)Typially, the gsyn(t) funtion is hosen as a superposition of exponential funtions. Theform of this funtion hanges wether if the synapse is exitatory or inhibitory, and we referto [22℄ for the preise expression of gsyn(t) in those two ases.Spike Transport in Passive DendriteThe ation potential propagates inside the dendrites before arriving to the soma, and whena spike is �red, it propagates along the axon. So far we modeled the neuron as havingthe same eletrial potential all along. But there are also longitudinal urrents along thedendrite. The able equation drives the membrane potential along a passive dendrite as afuntion of time and spae. After eletro-physiologial onsiderations, one �nd the passiveable equation whih is :

∂u

∂t
(t, x) =

∂2u

∂x2
(t, x) − u(t, x) + iext(t, x) (1.2.5)

∂i

∂t
(t, x) =

∂2i

∂x2
(t, x) − i(t, x) +

∂iext
∂x

(t, x) (1.2.6)(1.2.7)Where u desribes the membrane potential at time t and in the position x and i the urrentpassing through the dendrite at the position x and time t. Note that it su�es to solve oneof these equations beause u and i are simply related (∂u
∂x = rLi where rL is the longitudinalresitene per unit of lenght).Those two equations are linear so an be solved by the usual methods (Green funtionfor instane an be omputed easily for an in�nite able, Fourier method, . . . ).Spike Transport in Ative DendritesIn the ontext of a realisti modeling of biologial neurons, one has to take into aountthe non-linear phenomena ouring in the spike transportation in the dendrite. Those non-linearities an be linked with the ion hannels like in the HH equation. We have seen thatRR n° 1



22 Jonathan Touboulion hannels an exhibit omplex dynamis governed by a system of di�erential equations.The urrent through one of these hannels is thus non simply a nonlinear funtion of theatual value of the membrane potential but an also depend on the past time ourse of themembrane potential, whih we denote iion[u](t, x). The extended able equation takes theform:
∂u

∂t
(t, x) =

∂2u

∂x2
(t, x) − u(t, x) − iion[u](t, x) + iext(t, x) (1.2.8)A more realisti desription is obtained if we take into aount the fat that the inputfrom the synapse annot be treated as an ideal urrent soure, but beause of the dynamis ofion hannels, the urrent resulting from an inoming spike is proportionnal to the di�erenebetween the membrane potential and the orresponding ioni reversal portential.So in the equation (1.2.8) the external input urrent iext(t, x) has to be replaed by anappropriate synapti input urrent :

−isyn(t, x) = −gsyn(t, x) (u(t, x) − Esyn), with gsyn being the synapti ondutivity and Esyn the orresponding reveral potential. Sowe obtain:
∂u

∂t
(t, x) =

∂2u

∂x2
(t, x) − u(t, x) − iion[u](t, x) − gsyn(t, x) (u(t, x) − Esyn) (1.2.9)This is still a linear di�erential equation but with time-dependant oe�ients.The form of the synapti ondutivity gsyn is often written as the solution of a di�erentialequation, for instane exponentially deaying with time onstant τsyn (a model we will usein our studies):

{
∂u
∂t (t, x) = ∂2u

∂x2 (t, x) − u(t, x) − iion[u](t, x) − gsyn(t, x) (u(t, x) − Esyn)
∂gsyn

∂t (t, x) − 1
τsyn gsyn(t, x) = S(t, x)

(1.2.10)where S(t, x) is the input urrent, generally a sum of Dira funtions desribing the presy-napti spike train arriving in the synapse at the position x.This new equation is no more linear beause the two unknowns u and gsyn are multipli-ated.1.2.2 Two-dimensional neuron modelsWe have presented in the previous setion detailed neuron models desribed by non-lineardi�erential equations of dimension 4 or more. It's very di�ult to analyse suh types ofINRIA



Event-driven stohasti network. 23systems. So people had to make simpli�ations in the model to be able to study the mathe-matial properties of the neurons. In this setion we present �rst the approximation methodof the four-variable HH models into a two-variables model, using temporal properties of theonstants of the above equation to gather variables.General two-dimensionnal neuron modelsIn this setion we perform a systemati redution of the four-dimensional HH model totwo dimensions. To ahieve this plan, we have to eliminate two of the four initial variable(namely u, m, n and h). The essential ideas of the redution an be applied to detailedneuron models ontaining more ions hannels.The general approah for redution is to observe qualitatively that the time sale of thegating variable m is muh faster than that of u, n and h. This suggests to treat m as aninstantaneous variable, and replae it by its steady state value m0(u(t)). This is alled thequasi steady-state approximation.Seondly, we observe experimentally that the time-onstants τn(u) and τh(u) are roughlythe same, whatever the voltage u, and the graphs of n0(u) and 1 − h0(u) are similar. Thissuggests that we may approximate the two variables n and 1 − h by a same variable ω.More generally, assume that we have a linear approximation of type (b− h) ⋍ a n where
a and b are real valued onstants. and we set ω = b− h = a n. Then we get from equations(1.2.1), (1.2.2) and (1.2.3) the following equation :

C
du

dt
= −gNa [m0(u)]

3
(b − ω) (u− ENa) − gK (ω

a

)4

(u− EK)

−gL (u− EL) + I
(1.2.11)In the rest of the setion we will write this equation for more generality and readabilityin the following way :

du

dt
=

1

τ
[F (u, ω) +RI] (1.2.12)Here R = 1

gL
and τ = RC.The three equations (1.2.3) an be simpli�ed also sine m is onsidered as instantaneous.The equation (1.2.3a) is replaed bym = m0(u), and the two equations (1.2.3b) and (1.2.3b)are replae by one equation on ω:

dω

dt
=

1

τω
G(u, ω), (1.2.13)where τω is a parameter and G a funtion to speify.The two equations (1.2.12) and (1.2.13) de�ne a general two-dimensional neuron model Inthe two following setions we detail whih are the parameters of this system of di�erentialRR n° 1



24 Jonathan Touboulequations in two usual ases, and that yield to two well-known neuron models: the Morris-Lear model and the FitzHugh-Nagumo model.Morris-Lear ModelMorris and Lear (1981) proposed a two-dimensional desription of neuronal spike dynamisof this type. In dimensionless variables the Morris-Lear equations read:
du

dt
= −g1m̂0(u) (u− 1) − g2ω̂ (u− V2) − gL(u− VL) + I (1.2.14a)

dω̂

dt
= − 1

τ(u)
[ω̂ − ω0(u)] (1.2.14b)The additionnal variable ω̂ is alled the reovery variable.If we ompare relations (1.2.14a) with (1.2.11), we note that the �rst urrent term isno more multipliated by (b − ω). Moreover, m̂0 and ω̂ do not have any exponent. Tounderstand better this model we ould set m̂0 = [m0(u)]

3 and ω̂ =
(

ω
a

)4. The funtionshave typially sigmoidal shapes, so are usually approximated by:
m0(u) =

1

2

[
1 + tanh(u− u1

u2

)] (1.2.15)
ω0(u) =

1

2

[
1 + tanh(u− u3

u4

)] (1.2.16)
τ(u) =

τωosh(u−u3

u4

) (1.2.17)where ui and τω are onstant parameters.FitzHugh-Nagumo modelFitzHugh and Nagumo were probably the �rst to propose two-dimensional redutions of theHH model, of type (1.2.12) and (1.2.13). They obtain sharp pulse-like oillations reminisentof spike trains proposing for the funtion F and G the following form:
F (u, ω) = u− 1

3u
3 − ω

G(u, ω) = b0 + b1 u− ω
(1.2.18)Note that the dependane in the reovery variable ω is linear, and the non-linearity isontained in the ubi term of F .
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Event-driven stohasti network. 251.2.3 Formal Spiking Neuron ModelsDetailed ondutane-based neuron models reprodue eletrophysiologial with auray butthey are very di�ult to analyse beause of their intrinsi omplexity. For this reason, simplephenomenologial spiking neuron models are very popular. In this setion we disuss formalthreshold models of neuronal �ring.The general priniple is to assume that the membrane potential has a given dynamiswhile it is underneath the threshold, and when the membrane potential hits a given threshold
θ, then a spike is emitted. So globally one has to study the only variable u and the modelsdi�er essentially in the dynamis of u.First we will deal with the popular and simple integrate-and-�re (IF) model. Then wewill explain another lassial simple model, the Spike Response Model (SRM), and we willonlude on the relation between those models and the ion hannel models.Integrate-and-�re modelsIn this setion we give a brief overview of IF models. Those models are of speial interestfor us: all the neuron models studied in this doument are IF-models, more or less omplex.1. The Perfet Integrate-and-Fire model is the most simple neuron model, and maybethe less realisti of the widely used formal neuron models. The membrane potentialis an integrator: it integrates all the entries. When this potential reahes a thresholdvalue θ, the neuron �res and the membrane potential is reset a �xed value ur.

C du
dt = I(t)

u(t−0 ) = θ ⇒ u(t0) = ur

⊕ spike emitted (1.2.19)2. The Leaky Integrate-and-Fire (LIF model) is similar to the Perfet IF model butwe take into aount the leak of the membrane potential. It an be interpreted as theeletrial iruit of Fig. 1.8The standard equation governing the membrane potential of a LIF neuron is:
τm

du
dt = −u(t) +R I(t)

u(t−0 ) = θ ⇒ u(t0) = ur

⊕ spike emitted (1.2.20)In its general version, the leaky integrate-and-�re model may inorporate an absoluterefratory period. In this ase, if u reahes θ at time t(f), we interrupt the dynamisof u during a period of time ∆abs and restart the integration at time t(f) +Deltaabswith the new initial ondition ur.Note that this model is easily fully solved for onstant urrent input I(t) = I0, andthat we have a lose form for the membrane potential for an arbitrary input.
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26 Jonathan Touboul

Figure 1.8: Shemati diagram of the leaky integrate-and-�re model. The basi iruit isthe module inside the dashed irle on the right hand side. A urrent I(t) harges the RCiruit. The voltage aross the apaitane, u(t), is ompared to the threshold θ. Whenit reahes θ, say at time t(f)
i , then an output pulse δ(t− t

(f)
j ) is generated. In the left partwe see that a presynapti spike is low-pass �ltered at the synapse and generate an impulseurrent α(t − t

(f)
j
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Event-driven stohasti network. 273. TheNonlinear Integrate-and-Fire model: In the general nonlinear integrate-and-�re model the equation of the dynamis of the membrane potential between two spikesis given by :
τ
du

dt
= F (u) +G(u) I (1.2.21)As before, the dynamis is stopped if u reahes the threshold θ, u is reset to ur and aspike is emitted. G(u) an be interpreted as a voltage dependant input resistane and

−F (u)/(u−urest) orrespond to a voltage-dependant deay onstant. For instane wean have a quadrati model (Latham, Izhikevith) given by the equation (1.2.22):
du

dt
= u2 + I (1.2.22)In 2005, Brette and Gerstner de�ned the model of the exponential integrate-and �reneuron on the same idea, taking the interspike dynamis of the membrane potentialfollowing the di�erential equation:

C
du

dt
= −gl(u− El) + gl∆te

(u− Vt

∆t
) + I (1.2.23)or added an adaptation variable w and get the two-dimensionnal formal spiking equa-tion:

{
C du

dt = −gl(u− El) + gl∆te
( u−Vt

∆t
) + I

τw
dw
dt = a(u − El) − w

(1.2.24)4. Stimulation with synapti urrents So far we onsidered an isolated neuron stim-ulated by an external urrent I(t). In a more realisti situation, the IF neuron is partof a network an the input urrent is generated by the ativity of presynapti neurons.In the framework of the IF model, eah presynapti spike generates a postsynaptiurrent pulse. A spike reeived at time t(f) reates in the postsynapti neuron aurrent α(t − t(f)) and the total input of neuron i is the sum over all urrent pulsesof the neighbors of i. Denoting V(i) the set of neighbors of i we an write the urrentinput:
I(t) =

∑

j∈V(i)

∑

{t
(f)
j �ring instants of j}

α(t − t
(f)
j ). (1.2.25)
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28 Jonathan TouboulThough equation (1.2.25) is realisti, in fat the amplitude of the postsynapti urrentis modulated by the membrane potential of i, ui, beause of the hange of ondutanementionned in the setion 1.2.1 and more preisely in the equation (1.2.4):
α(t− t

(f)
j ) = −g(t− t

(f)
j ) (ui(t) − Esyn) . (1.2.26)Spike Response ModelThe Spike Response Model (SRM) is a generalization of the LIF model. In the non-lineargeneralization of the LIF model we took parameters of the LIF model voltage dependant buthere in the SRM we take time-dependant parameters. Another di�erene is the formulationof the model, whih is no more in terms of di�erential equation but in terms of integralover the past. This model is rather general and allows us to model the refratorness invery general terms (redued responsiveness after an output spike, inrease of threshold after�ring and hyperpolarizing spike afterpotential).1. De�nition of the SRM: here again the state of a neuron i is de�ned by its membranepotential ui. In the absene of spike, it is at its resting value urest = 0. Eah inomingspike will perturb ui and it takes some time before ui returns 0. We denote ǫ thefuntion desribing the time-ourse of the response to an inoming spike. If aftersumming the e�ets of all the inoming spikes ui reahes the threshold, then a spike istriggered and ui is reset to the funtion desribing the time ourse of the membranepotential after a spike, denoted η. Assume that the neuron i has �red its last spike attime ti. The evolution of ui is given by:

ui(t) = η(t− ti) +
∑

j∈V(i)

wi,j

∑

{t
(f)
j �ring instants of j}

ǫi,j(t− ti, t− t
(f)
j )

+

∫ ∞

0

κ(t− ti, s)I
ext(t− s)ds

(1.2.27)Moreover, in ontrast to the IF models, the threshold θ is not �xed but may alsodepend on the time elapsed till the last spike θ(t− ti).During the absolute refratory period ∆abs, we may for instane set θ to a large valueto avoid �ring and let it relax bak to its equilibrium value for t > ti + ∆abs.The funtions η, κ and ǫi,j are response kernels that desribe the e�et of spike emissionand spike reeption on the membrane potential:� The kernel η desribes the standard form of an ation potential of neuron i in-luding the negative overshoot whih follows a spike (afterpotential).
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Event-driven stohasti network. 29� The kernel κ(t−ti, s) is the linear response of the membrane potential to an inputurrent. It desribes the time ourse of the deviation of the membrane potentialaused by a short urrent pulse (impulse response). The time dependane of thiskernel allows us to model the e�et of the spike: just after ti many ion hannelsare open so the membrane resistane is redued.� The kernel ǫi,j(t− ti, s) is a funtion of s = t− t
(f)
j and an be interpreted as thetime ourse of the postsynapti potential evoqued by the �ring of a presynaptineuron j at time t(f)

j . The dependane in t − ti models the refratoriness of aneuron after having �red.Note that the dynami threshold θ(t − ti) an in general be formally replaed by aonstant threshold hanging some terms of the SRM.2. Mapping the LIF model to the SRM : It is of speial interest to note that the LIFmodel for instane is a partiular ase of the SRM model. Let us onsider a LIF neurondriven by an external urrent Iext(t) and postsynapti urrent pulses α(t− t
(f)
j ). Thepotential ui is thus given by:

τm
dui

dt
= −ui(t) +R

∑

j

wi,j

∑

t
(f)
j )

α(t − t
(f)
j ) +R Iext(t) (1.2.28)Let us now integrate (1.2.28) starting from time ti with initial ondition ui(ti) = ur,and let us identi�ate the parameters of the orresponding SRM model:

u(t) =ure
−(t−ti)/τm

+
∑

j

wi,j

∑

t
(f)
j )

1

C

∫ t−ti

0

e−s/τmα(t− t
(f)
j − s) ds

+
1

C

∫ t−ti

0

e−s/τmIexti (t− s) ds (1.2.29)So we an easily identify the expression (1.2.29) with the expression of the generalSRM (1.2.27) with:
η(s) = ure

−s/τm (1.2.30a)
ǫ(s, t) =

1

C

∫ s

0

e−t′/τmα(t− t′)dt′ (1.2.30b)
κ(s, t) =

1

C
e−t/τm1s≥t1t≥0 (1.2.30)
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30 Jonathan TouboulLastly, in order to have an expliit expression for the ǫ kernel, let us speify the timeourse of the postsynapti urrent α(t). We an for instane take α(t) exponentiallydeaying:
α(s) =

q

τs
exp(−s/τs)1s≥0 (1.2.31)From detailed neuron models to formal spiking neuronsIn this setion we study the relation between detailed ondutane-based neuron modelsand formal spiking neurons as introdued above. Therefore we aim for a redution towardsa spiking neuron model where spikes are triggered when the membrane potential reahes avoltage thereshold. Spei�ally, we establish an approximation of the HH model in a speialSRM model. To do so, we neglet the time-ourse of the ation potential whih is more orless stereotyped.Let us onsider that a spike has been triggered at time t∗, and that no further stimulationis applied to the neuron afterwards. The voltage trajetory will have a pulse-like exursionbefore it eventually returns to its resting potential. For t > t∗, we set u(t) = η(t− t∗)+urest,where η is the standard shape of the pulse and urest the resting potential. If a urrent pulseis applied at t>t*, the membrane potential will be slightly perturbed form its trajetoryand. If the input urrent is su�iently small, the perturbation an be desribed by a linearimpulse response kernel κ. So we have to haraterize the kernels η and κ, and the valueof the threshold θ. The two kernels are experimentally omputed simulating an HH neuronwith spei�ed inputs. It is rather di�ult to de�ne a hard threshold for a HH neuron. Onone hand, we an say that the HH neuron show a sort of threshold behavior (over a ertainvalue of the membrane potential it is very di�ult to avoid a spike for the neuron), it isvery di�ult to estimate the voltage threshold from simulations. In [22℄ the authors disussof the types of exitations and the way to estimate the threshold.
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Event-driven stohasti network. 31
Chapter 2Randomness in spiking neuronmodelsIn vivo reordings of neuronal ativity are haraterized by a high degree of irregularity.A single neuron reat in general in a very reliable and reprodutible manner to �utuat-ing urrents that are injeted via intraellular eletrodes (when the same signal is injeted,the ation potentials our with preisely the same timing relative to the simulation). Onthe other hand, neurons produe irregular spike trains in the absene of any temporallystrutured stimuli. Irregular spontaneous ativity and trial-to-trial variations are often on-sidered as noise. The origin of irregularities is poorly known, and often added externally tothe neuronal dynamis in the IF or SRM equations in order to mimi the unpreditabilityof neuronal reordings.2.1 Noise souresWe an distinguish between intrinsi noise soures that generates stohasti behavior onthe level of the neuronal dynamis and extrinsi soures arising from network e�ets andsynapti transmission.� An omnipresent noise soure is the thermal noise. Due to the disrete nature ofeletri harge arriers, the voltage u aross any eletrial resistor R �utuates at �nitetemperature (Johnson noise). Sine neuronal dynamis is desribed by an equivalenteletrial iruit ontaining resistors, the neuronal membrane potential �utuates aswell. Flutuations due to Johnson noise are, however, of minor importane omparedto other noise soures in neurons.� Another noise soure arises from the �nite number of ion hannels. Most ion hannelhave only two states: they are open or they are losed. The eletrial ondutivity
RR n° 1



32 Jonathan Touboulof a path of membrane is proportionnal to the number of open ion hannels. For agiven onstant membrane potential u, a fration Pi(u) of ion hannels of type i is openon average. So the ondutivity �utuates and so does the potential. Note that thereexists models taking into aount the �nite number of ion hannel, and that they anreprodue the observed variability (Chow and White, 1996).� Noise due to signal transmission and network e�ets (extrinsi noise): Synapti trans-mission failures, randomness of exitatory and inhibitory onnetions, for instane.2.2 Statistis of spike trainsOne of my works during this study has been to establish a method to approximate spiketrains statistis for simple neuron models. In this setion we will explain basi onepts forthe statistial desription of neuronal spike trains. A entral notion is the interspike interval(ISI) distribution. This study is based on some basi properties of the renewal proesses.2.2.1 Input-dependant renewal systemsWe onsider a single neuron suh as an IF or SRM unit. Conditionnally to the last �ringtime t̂ < t, the membrane potential u is ompletely determined, for instane for the SRMwe have:
u(t|t̂) = η(t− t̂) +

∫ ∞

0

κ(t− t̂, s)I(t− s)ds, (2.2.1)and for the LIF model:
u(t|t̂) = urexp

(
− t− t̂

τ

)
+

1

C

∫ t−t̂

0

exp
(
− s

τ

)
I(t− s)ds, (2.2.2)Here we assumte that I is a given funtion of time. The problem an be desribed as :Knowing the input and the last �ring time t̂ we would like to predit the next spikeemitted.In the absene of noise, the next �ring time is determined by the threshold ondition

u = θ. In the presene of noise, the next time spike is the random time de�ned by the hittingof u of the onstant barrier θ. The problem is to ompute the probability distribution ofthe next �ring time.The sequene of spike times an be onsidered as a generalized renewal proess in theequations (2.2.1) and (2.2.2). It would be a simple renewal proess if the proess I wasstationnary. If not, the proess depends both on the time elapsed till the last spike emittedINRIA



Event-driven stohasti network. 33and the time-shifted input I(t′), t̂ < t′ < t reeived till the last spike. These are alledmodulated renewal proess and has been studied by Reih et al for instane in 1998, ornon-stationnary renewal proess, or inhomogeneous Markov interval proess.2.2.2 Interval distributionThe estimation of the ISI distributions has been widely studied from an experimental pointof view, given a ertain stationnary input (if the input is no more stationnary, then theinterspike intervals have not the same probability law). This allows experimentalists toapply the lassial statistial treatments to the iid sequene of interspike intervals (thedurations between two onseutive spikes).When the input is no more stationnary, experimentalists an also apply statistial meth-ods on an isolated neuron stimulated by a known input urrent I(t) and with some unknownnoise soure. In this ase the law of the interspike interval is assumed to be absolutely on-tinuous w.r.t Lebesgue's measure and we denote PI(t|t̂) the probability density funtion.As usually, we an de�ne the survivor funtion : SI(t|t̂) = 1 −
∫ t

t̂ PI(t
′|t̂)dt′ whih isthe probability that the neuron stays quiesent between t̂ and t. The rate of deay of thesurvivor funtion (alled usuallu hasard funtion) is de�ned by

ρI(t|t̂) = −
dSI(t|t̂)

dt

SI(t|t̂)
(2.2.3)or equivalently

SI(t|t̂) = exp

[
−
∫ t

t̂

ρI(t
′|t̂)dt′

]First of all we will de�ne those variables in the very partiular ase of a stationnaryrenewal proess.2.2.3 Sationnary renewal proessesFirst of all, in the ase of stationnary proesses, the ISI have the same law and depends onlyon the time elapsed till the last spike. So we will simplify the notations the following way:
PI(t|t̂) −→ P0(t− t̂),

SI(t|t̂) −→ S0(t− t̂),

rhoI(t|t̂) −→ ρ0(t− t̂).1. Mean Firing rate: First of all, let us de�ne the mean interval:
< s >=

∫ ∞

0

sP0(s)ds (2.2.4)RR n° 1



34 Jonathan TouboulThe mean �ring rate is de�ned as ν = 1
<s> . Hene,

ν =

[∫ ∞

0

sP0(s)ds

]−1

=

[∫ ∞

0

S0(s)ds

]−1 (2.2.5)(the equality omes by integration by parts).2. Autoorrelation funtion: Consider a spike train Sj(t) =
∑

f δ(t− t
(f)
j ). of length

T . The autoorrelation funtion Cii(s) of the spike train is de�ned as the densityprobability of �nding two spikes separated by a time interval s:
Cii(s) =< Si(t)Si(t+ s) >t (2.2.6)where < · >t denotes the average over time:

< f(·) >t= lim
T→∞

1

T

∫ T/2

−T/2

f(t) dt3. Noise spetrum: The power spetrum (or power spetral density) of a spike trainis de�ned as P(ω) = lim
T→∞

PT (ω) where PT (ω) is the power of a segment of length Tof the spike train,
PT (ω) =

1

T

∣∣∣∣∣

∫ T/2

−T/2

Si(t)e
−iωt dt

∣∣∣∣∣

2 (2.2.7)The power spetrum P(ω) is the Fourier transform Ĉii(ω) of the autoorrelationfuntion (Wiener-Khinhin theorem).Proof.
Ĉii(ω) =

∫ ∞

−∞
< Si(t)Si(t+ s) > e−iωsds

= lim
T→∞

1

T

∫ T/2

−T/2

Si(t)

∫ ∞

−∞
Si(t+ s)e−iωsdsdt

=

( lim
T→∞

1

T

∫ T/2

−T/2

Si(t)e
−iωtdt

)(∫ ∞

−∞
Si(s)e

−iωsds

)

=

∣∣∣∣
∫ ∞

−∞
Si(t)e

−iωt dt

∣∣∣∣
2
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Event-driven stohasti network. 35

Figure 2.1: Noisy Threshold: a neuron an �re at time t with a probability ρ(u(t)− θ) eventhough the membrane potential u has not reahed the threshold θ.2.3 Esape noiseThere are various way to introdue noise in formal spiking neuron models. In this setionwe fous on a "noisy threshold" (also alled esape or hasard model). We are interested inthe e�et of the noise on the distribution of interspike intervals. In the esape model, weonsider that the neuron an �re even though the formal threshold θ has not been reahedor may stay quiesent event though the formal threshold has been passed.Mathematially, we introdue an "esape rate" (or �ring intensity) whih depends onthe momentary state of the neuron (see Fig.2.1).2.3.1 Esape rate and hasard funtionGiven an input I and the �ring time t̂ of the last spike, we an ompute the membranepotential of the SRM or an IF neuron from equations (2.2.1) and (2.2.2). In the deterministimodel the next spike ours when u reahes the threshold θ. In order to introdue somevariability into the generation of spike, we replae the strit threshold by a stohasti �ringriterion. In the noisy threshold model, spikes an our at any time with a probabilitydensity depending on the position membrane potential (noisyless) w.r.t the threshold:
ρ = f(u− θ). (2.3.1)In the point-proess theory, f is known as the "stohasti intensity", and we will alsorefer to ρ as the �ring intensity.

ρI(t|t̂) = f(u(t|t̂) − θ). (2.3.2)RR n° 1



36 Jonathan Touboulwhere ρI is nothing else than the hasard introdued in equation (2.2.3).We an also in this type of onsiderations assume that the esape rate depends not onlyon u but also on its time derivative u̇
ρI(t|t̂) = f(u(t|t̂), u̇(t|t̂)). (2.3.3)The hoie of the esape funtion f in (2.3.2) or (2.3.3)are arbitrary, but a reasonnableondition is to require f −→

u→−∞
0. This funtion ould also expliitly depend on the time

t− t̂ to model the refratory period.2.3.2 Interval distribution and mean �ring rateIn this setion we ombine the esape rate model with the onepts of renewal theory andalulate the input-dependant interval distribution PI(t|t̂) for esape rate models. We have:
PI(t|t̂) = ρI(t|t̂)exp

[∫ t

t̂

ρI(t
′|t̂)
]
dt′ (2.3.4)For the sake of readability we assume here that the funtion f only depends on u, so ityields:

PI(t|t̂) = f(u(t|t̂) − θ)exp

(
−
∫ t

t̂

f(u(t′|t̂) − θ)dt′
)Let us now introdue refratoriness in the model. Consider u having the form:

u(t|t̂) = η(t− t̂) + h(t)where h(t) =
∫∞
0 κ(s)I(t− s)ds. We have:

PI(t|t̂) = f(η(t− t̂) + h(t) − θ)exp

[
−
∫ t

t̂

f(η(t′ − t̂) + h(t′) − θ)dt′
]Simulations have been made of this type of models by Gerstner and Kirstler and resultsare showed in [22℄. we reprodue here in Fig 2.2. They show that with this model one anreprodue the ISI distribution qualitatively found in ortial neurons.2.4 Slow noise in the parametersIn this model some parameters of the neuron model are randomly reset after eah spike ofthe neuron. This an be an approxination for instane if the noise is slow w.r.t. the neuronal
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Event-driven stohasti network. 37
Figure 2.2: A: Iterval distribution P0(s) for a SRM0 neuron with absolute refratory period
∆abs = 4ms followed by an exponentially dereasing afterpotential, stimulated by a onstanturrent (the di�erent urves orrespond to I0 = 0.7, 0.5, 0.3.dynamis. In priniple, any of the neuron parameters (threshold, membrane time onstant,refratory period, . . . ) an be a�eted by this type of noise.In this model one an ompute again the ISI for instane in a SRM model subjet to thistype of noise.2.5 Di�usive NoiseIf we add a "noise term" in the LIF neuron equation (1.2.20), say a proess (ξ(t))t≥0 on theright hand side of the equation, for instane a Brownian motion (in general multipliated by
σ
√
τm where σ models the amplitude of the noise and τm is the time onstant of the neuron,it results a stohasti di�erential equation:

τmdut = −u(t) dt+RI(t) dt+ dξt (2.5.1)whih is an Ornstein-Uhlenbek proess. The neuron �res every time the membrane poten-tial hits the barrier θ. The analysis of eq. (2.5.1) with the threshold ondition is the topiof this setion. But let us �rst introdue why one an think at this model:2.5.1 Stohasti spike arrivalA typial neuron reeives input spikes from thousands of other neurons whih in turn reeiveinputs form their presynapti neurons and so forth. It is obviously impossible to inorporateall neurons in the brain into a huge network model. Instead it is reasonnable ot fous on aspei�
RR n° 1



38 Jonathan Touboul2.6 Stohasti resonane2.7 Stohasti �ring rates models
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Part IIHitting Times Approximations
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Event-driven stohasti network. 41
Chapter 3First passage density of aontinuous gaussian proess to ageneral boundaryAs we will show in the setion 6.2,hitting times in mathematial neurosiene are of partiularinterest, for instane to ompute the sequenes of spike times, whih an be onsidered as avery interesting event of the neuronal dynamis. Those hitting times are useful for instaneto study the integrate-and-�re models (see 1.2.3).Most of the noisy models studied are de�ned by di�erential equations. If we assumethat we are in a random environment, or if we model the di�erent entries of eah neuron asa noise (by a di�usion limit for instane), the dynami of a single neuron under the �ringthreshold will be driven by a stohasti di�erential equation, and the spike time given bythe hitting time of this proess to the �ring threshold, denoted θ in the sequel. Some modelsassume this threshold an be a funtion.On an other hand (see hapter 5), by means of the Dubins-Shwarz theorem, the �ringtime of a neuron desribed by a di�usion SDE hitting a �xed boundary an be seen as aGaussian proess rossing a general boundary.So the artile of J. Durbin [16℄, the �rst-passage density of a ontinuous Gaussian proessto a general boundary will be of partiular interest for us to study.We give in this setion the main results of this artiles and the proofs.This artile gives an expliit expression of the �rst-passage density, whih is rather hardto ompute usually. Then a series approximation is given, whih is omputationally simpleand whih onverges under some assumptions on the barrier to the exat probability densityfuntion (pdf) of the hitting time.
RR n° 1



42 Jonathan Touboul3.1 IntrodutionLet Yt be a ontinuous Gaussian proess with mean 0 1 and ovariane funtion ρ(s, t) for
0 ≤ s ≤ t:

ρ(s, t) := E [Ys Yt] (3.1.1)Let a(·) be a deterministi funtion whih is the boundary onsidered. We are interestedin the hitting time
τa := inf {t > 0; Yt = a(t)} (3.1.2)We assume that this hitting time τa is absolutely ontinuous with respet to Lebesgue'smeasure and denote p(t) its density. The aim of this setion is to ompute a ompat formulafor p(t) under mild restritions on a(t) and ρ(s, t).Remark 1. Strassen in its paper [35℄ shown that atually when a(t) is of lass C1 thenthe �rst hitting time of the Brownian motion to the urve a(t) has a ontinuous pdf w.r.t.Lebesgue's measure.Sine the proess is ontinuous, we an assume without loss of generality that the bound-ary is rossed from below. This ase is the ase in neurosiene for instane, and the rossingfrom above an be obtain by replaing Y by −Y and a by −a.In the following setion we de�ne the main tools useful for the omputation of theprobability density funtion (pdf) and introdue the theorems of representation of thesepdf.3.2 Representation of the probability density funtionDe�nition 3.2.1. Let I(s, Y ) be the indiator funtion:

I(s, Y ) := 1{Y did not rossed the boundary prior to time s} (3.2.1)
= 1{τa(Y )≥s}Let b(t) be the limit, if it exists, de�ned by:

b(t) := lim
sրt

1

t− s
E [I(s, Y ) (a(s) − Ys)|Yt = a(t)] (3.2.2)This limit an be seen as the inverse of the derivative of the onditional expetation ofthe funtion I(s, Y )(a(s) − Ys) onditionally to Yt = a(t).1if not we only have to substrat the mean funtion m(t) := E [Yt] to the proess Yt and study insteadof Yt the proess Yt − m(t) rossing the boundary a(t) − m(t) instead of a(t). INRIA



Event-driven stohasti network. 43De�nition 3.2.2. Let f(t) be the density of Yt on the boundary, that is:
f(t) :=

1√
2πρ(t, t)

e−
a(t)2

2ρ(t,t) (3.2.3)Theorem 3.2.1. Assume that:A.1 The boundary funtion a(t) is ontinuous in [0, t) and left di�erentiable at t.A.2 The ovariane funtion ρ(s, u) is positive de�nite and has ontinuous �rst order partialderivatives on the set : {(s, t); 0 ≤ s ≤ u ≤ t}2A.3 The variane of the inrement y(t) − y(s) satis�es the ondition:
lim
sրt

1

t− s
E [(y(t) − y(s))2

]
= λt (3.2.4)where 0 < λt <∞.Note that sine E [(y(t) − y(s))2

]
= ρ(t, t) − 2ρ(s, t) + ρ(s, s), (3.2.4) is equivalent tothe requirement:

lim
sրt

[
∂ρ(s, t)

∂s
− ∂ρ(s, t)

∂t

]
= λt (3.2.5)Then the �rst passage density of Yt to the boundary a(t) is given by:

p(t) = b(t) f(t) (3.2.6)Remark 2. The struture of the formula (3.2.6) is very simple. Nevertheless the indiatorif very di�ult to handle, sine it is losely linked to the �rst hitting time of the boundary.The �rst funtion b tells us everything we need to know prior to time t and the seond fator
f is only an information about the loal distribution of the proess on the barrier. However,in the ases where the alulation of b is untratable, the formula (3.2.6) an be used toonstrut approximations of the hitting time.This theorem is proved in the artile [16℄ using the Gaussian properties of the proessand referring to the behavior of the Brownian motion.We will not show this theorem in suh a general form but rather show it for the Brownianmotion rossing a general boundary, just beause in our further studies we will only use the"Brownian version" of this theorem.2where appropriate left (resp. right) derivatives are taken at s=t (resp. s = 0) and u = t
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44 Jonathan TouboulTheorem 3.2.2. Let a be a ontinuous funtion on [0,∞) with ontinuous �rst-order deriva-tive on (0,∞), and suh that a(0) > 0.Let B be a Brownian motion with B(0) = 0 and let T := inf{r > 0; Br = a(r)}.Let p denote the probability density funtion of T , i.e. the Radon-Nikodym derivative ofthe probability distribution of T with respet to Lebesgue's measure.Denote q the transition density funtion of the Brownian motion B, i.e. for all t > 0and x, y ∈ R :
q(t, x, y) =

1√
2πt

exp

{
− (y − x)2

2t

}
. (3.2.7)Then the probability density funtion satis�es the following �xed-point equation:

(
a(t)

t
− a′(t)

)
q(t, 0, a(t)) = p(t) +

∫ t

0

p(r)

{
a(t) − a(r)

t− r
− a′(t)

}
q(t− r, a(r), a(t)) dr.(3.2.8)Proof. Let t > 0 be a �xed real, and let y > a(t). If B(t) = y, then obviously T < t. Thusby the strong Markov property of B, onditioning on the �rst hitting time of the frontier

a(t), say r, we have:
q(t, 0, y) =

∫ t

0

p(r)q(t− r, a(r), y) dr (3.2.9)We know the funtion q(t, x, y), and we an see easily that it is di�erentiable with respetto y and that this derivative is equal to − (y−x)
t q(t, x, y). Let us now di�erentiate (3.2.9)with respet to y (say apply the di�erential operator − ∂

∂y ), we get:
y

t
q(t, 0, y) = − ∂

∂y

∫ t

0

p(r)q(t − r, a(r), y) dr

=

∫ t

0

p(r)
y − a(r)

t− r
q(t− r, a(r), y) dr (3.2.10)Indeed, we an di�erentiate under the integral beause the integrand, after di�erentia-tion, is integrable (beause bounded on a �nite interval, reall the form of the funtion qde�ned in (3.2.7)).Let now y → a(t). Let δ > 0 a �xed number smaller than t. Let us denote:

I1(t, δ, y) :=

∫ t−δ

0

p(r)
y − a(r)

t− r
q(t− r, a(r), y) dr (3.2.11)

I2(t, δ, y) :=

∫ t

t−δ

p(r)
y − a(r)

t− r
q(t− r, a(r), y) dr (3.2.12)
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Event-driven stohasti network. 45First of all we onsider the funtion I1(t, δ, y). Let now y → a(t). For y lose to a(t) wehave |y − a(r)| ≤ 1 + |a(r) − a(t)|, and we an bound the integrand with a L1 funtion on
(0, t− δ) so Lebesgue's theorem applies and we get the following limit:

I1(t, δ, y) −−−−−→
yցa(t)

∫ t−δ

0

p(r)
a(t) − a(r)

t− r
q(t− r, a(r), a(t)) dr (3.2.13)Finally we an take the limit when δ → 0 and we get:

lim
yցa(t)

lim
δց0

I1(t, δ, y) =

∫ t

0

p(r)
a(t) − a(r)

t− r
q(t− r, a(r), a(t)) dr (3.2.14)Let us now onsider I2 de�ned by (3.2.12) and let us ompute its limit when y → a(t)and δ → 0. To do this, let us write (3.2.12) as:

I2(t, δ, y) :=

∫ t

t−δ

p(r)

(
y − a(t)

t− r
+
a(t) − a(r)

t− r

)
q(t− r, a(r), y) dr

=

∫ t

t−δ

p(r)
1√

2π(t− r)

(
y − a(t)

t− r
+Ar,t

)
e−

(y−a(t))2

2(t−r)
+Br,t,y dr (3.2.15)where At,r = a(t)−a(r)

t−r and Br,t,y = 1
2Ar,t(a(r) + a(t) − 2y).Now we reall that the funtion

1

2π(t− r)

y − a(t)

t− r
exp

{
− (y − a(t))2

2(t− r)

}tends in distribution to the Dira funtion at time t (it an be seen as the density funtionat t− r of the hitting time of a(t) by a Brownian motion starting at y.Note also that Bt,t,a(t) = 0So we have :
I2(t, δ, y) −−−−−→

yցa(t)
p(t) +

∫ t

t−δ

Ar,tp(r)
1√

2π(t− r)
e

1
2Ar,t(a(r)−a(t)) dr

= p(t) +

∫ t

t−δ

Ar,tp(r)
1√

2π(t− r)
e

(a(r)−a(t))2

2(t−r) dr (3.2.16)The integrand of the seond term of formula (3.2.16) is bounded so the integral tends to
0 when δ → 0.Eventually we get:

lim
yցa(t)

lim
δց0

I2(t, δ, y) = p(t) (3.2.17)RR n° 1



46 Jonathan TouboulFinally we onlude using together (3.2.9), (3.2.14) and (3.2.17):Introduing (3.2.14) and (3.2.17) in (3.2.10) we get :
a(t)

t
q(t, 0, a(t)) = p(t) +

∫ t

0

p(r)
a(t) − a(r)

t− r
q(t− r, a(r), a(t)) drThen subtrating a′(t)q(t, 0, a(t)) and using the integral representation of q(t, 0, a(t))given in (3.2.9), we have:

(
a(t)

t
− a′(t)

)
q(t, 0, a(t)) = p(t) +

∫ t

0

p(r)q(t − r, a(r), a(t))

(
a(t) − a(r)

t− r
− a′(t)

)
dr(3.2.18)Let us now prove the equivalene between Durbin's general representation (3.2.6) andthe �xed point equation (3.2.8) in the ase of the Brownian motion.Note that the �xed point integral equation appearing makes sense intuitively beause inthe initial Durbin's theorem the indiator funtion used is the indiator of T < s this willyield as we will see to the �xed point equation.Theorem 3.2.3. The �xed point equation (3.2.8) is equivalent to Durbin's equation (3.2.6)for the Brownian motion.Proof. In the ase when the Gaussian proess is a Brownian motion, taking the notationsof theorem 3.2.1, we have:

f(t) = q(t, 0, a(t)). (3.2.19)
b(t) = lim

sրt

1

t− s
E [1T≥s (a(s) − Ys)|Yt = a(t)]

= lim
sրt

1

t− s
E [(a(s) − Ys)|Yt = a(t)] − lim

sրt

1

t− s
E [1T<s (a(s) − Ys)|Yt = a(t)] (3.2.20)

=: E1 + E2Then we know that the onditional expetation of Ys knowing Yt is s
tYt.So the �rst term of (3.2.20) reads:E [Ys|Yt = a(t)] =

s

t
a(t)

= a(t) +
s− t

t
a(t) (3.2.21)
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Event-driven stohasti network. 47Hene we get:
b(t) = lim

sրt

(
a(s) − a(t)

t− s
+
a(t)

t

)
+ E2

=
a(t)

t
− a′(t) + E2 (3.2.22)Let us now ompute the seond expetation (E2)

E2 = lim
sրt

1

t− s
E [1T<s (a(s) − Ys)|Yt = a(t)]

= lim
sրt

∫ s

0

1

t− s
E [(a(s) − Ys)|Yu = a(u), Yt = a(t)]

p(u)

q(t, 0, a(t))
duonditioning on the �rst hitting time u of the proess Y to the barrier a(t).Let us now ompute the onditional expetation of Ys on the set : {Yu = a(u), Yt =

a(t)}. The strong Markov property of Y implies that the behavior of the path between uand t is una�eted by the fat that the path of Y must not ross a(t) prior to u. This allowsus to ompute the onditional expetation, realling that the regression oe�ient of Ys on
Yt given Yu = a(u) is s−u

t−uE [Ys|Yt = a(t), Yu = a(u)] = a(u) +
s− u

t− u
(a(t) − a(u)) .

= a(t) +
s− t

t− u
(a(t) − a(u))So we get:

lim
sրt

E [a(s) − Ys|Yt = a(t), Yu = a(u)] = lim
sրt

a(s) − a(t)

t− s
+
a(t) − a(u)

t− u

=
a(t) − a(u)

t− u
− a′(t)So eventually the following formula for E2 holds:

E2 =

∫ t

0

(
a(t) − a(u)

t− u
− a′(t)

)
p(u)

q(t− u, a(u), a(t))

q(t, 0, a(t))
du (3.2.23)So �nally, using the formula (3.2.6), we have the �xed point equation searhed:
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48 Jonathan Touboul
p(t) =

(
a(t)

t
− a′(t)

)
q(t, 0, a(t))

+

∫ t

0

(
a(t) − a(u)

t− u
− a′(t)

)
p(u)q(t− u, a(u), a(t)) du (3.2.24)3.3 Approximations of the probability density funtionAs stated in setion 3.2, the indiator of (3.2.6) is di�ult to handle and there is no way toompute b(t) exept in very partiular ases.The aim of this setion is to provide approximations of the probability density funtionsof hitting times of the Brownian motion to a general boundary using the representationsgiven in setion 3.2.3.3.1 A series expressionThe aim of this subsetion is to state and prove the series expression of the pdf searhed,as Durbin did in its artile [17℄. In this paper the author provide a omputable form of thepdf of the type:

p(t) =

k∑

j=1

(−1)j−1qj(t) + (−1)krk(t), k ∈ N (3.3.1)where
qj(t) =

∫ t

0

∫ t1

0

· · ·
∫ tj−2

0

[
a(tj−1)

tj−1
− a′(tj−1)

]

×
j−1∏

i=1

[
a(ti−1) − a(ti)

ti−1 − ti
− a′(ti−1)

]
f(tj−1, · · · , t1, t) dtj−1 · · · dt1 (t0 = t) (3.3.2)and

rk(t) =

∫ t

0

∫ t1

0

· · ·
∫ tk−1

0

b(tk)
k∏

i=1

[
a(ti−1) − a(ti)

ti−1 − ti
− a′(ti−1)

]

× f(tk, · · · , t1, t) dtk · · · dt1 (t0 = t) (3.3.3)In (3.3.2) and (3.3.3), a′(·) denotes the derivative of a and f(tj−1, · · · , t1, t) denotes thejoint density of (Ytj−1 , . . . , Yt1 , Yt

) on the boundary, i.e. at values a(tj−1), . . . a(t1), a(t).INRIA



Event-driven stohasti network. 49Assumption 3.3.1. In all the sequel we assume that:
a(s)

s
− a′(s) > 0 ∀s > 0 (3.3.4)Remark 3. This assumption is equivalent to the requirement that the interept at s = 0of the tangent to a(s) at s is stritly positive for all s.Proof of the series expansionProof. [series expansion℄ The proof of the expansion (3.3.1) is done by indution.First for k = 1, we use the �xed point equation (3.2.24) and its proof and we have:

b(t) =
a(t)

t
− a′(t) −

∫ t

0

b(r)

[
a(t) − a(r)

t− r
− a′(t)

]
f(r|t)dr

= q1(t) − r1(t)Let us now assume that equation (3.3.1) is true for a determined k and let us prove thatthis equation holds for k + 1:By de�nition (3.3.3), we have:
rk(t) =

∫ t

0

∫ t1

0

· · ·
∫ tk−1

0

b(tk)

k∏

i=1

[
a(ti−1) − a(ti)

ti−1 − ti
− a′(ti−1)

]

× f(tk, · · · , t1, t) dtk · · · dt1 (t0 = t)We extand this expression using the expression of b:
b(tk) = lim

sրt

1

tk − s
E [1T≥s(a(s) − Ys)|Ytk

= a(tk)]

=
a(tk)

tk
− a′(tk) −

∫ tk

0

b(tk+1)

[
a(tk) − a(tk+1)

tk − tk+1
− a′(tk)

]
f(tk+1|tk, · · · , t1)dtk+1using the same arguments as the ase k = 1.So eventually we get

rk(t) = qk+1(t) − rk+1(t)So the expansion (3.3.1) is proved.Now the aim of the sequel is to prove that the rest (3.3.3) tends to zero so that thetrunated Durbin expansion will be an approximation of the real pdf.
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50 Jonathan TouboulError bounds and rate of onvergene.Assumption 3.3.2. We assume in this setion that the boundary is wholly onave (i.e.theboundary is onave everywhere).Then for all s < r, we have: a(s)−a(r)
r−s −a′(r) ≥ 0, so we an see immediately from (3.3.2)and (3.3.3) that 0 ≤ rk(t) ≤ qk+1(t), provided that 0 ≤ b(r) ≤ a(r)

r − a′(r) whih was theassumption 3.3.1.We denote α(r, τ) the tangent to a(τ) at τ = r. We denote I∗(s, Y ) the indiatorfuntion of the event: "Y has rossed this tangent prior to time s", for s < r. It is wellknown that the �rst passage density of Y to a straight line boundary at time r is d
r f(r),where d = a(r) − a′(r)r and f(r) is the density of Yr on the line. (f for instane the proofgiven for the Brownian with drift in setion 4.2.1).Let us now apply Durbin's general formula for the rossing of the tangent, we get:

a(r)

r
− a′(r) = lim

sրr

1

r − s
E [I∗(s, Y )(α(r, s) − Ys)|Yr = a(r)]We ompare this equation to the b(t) of the "original problem":

b(r) = lim
sրr

1

r − s
E [I(s, Y )(a(s) − Ys)|Yr = a(r)]Now, sine the boundary is wholly onave, then tangent is always "above" the boundary.Every path whih fails to ross a(t) neessary fails to ross α(r, s) (or eah path rossing thetangent has neessary already rossed the boundary). Mathematially, this remark meansthat
I(s, Y ) ≤ I∗(s, Y )From the onavity assumption, we also have that a(s) ≤ α(r, s) for all s < r. It followsthat b(r) ≤ a(r)

r − a′(r) omparing the two expressions given above together with thosesimple inequalities.So we an onlude using the de�nition of the general term and the rest of the Durbin'sextension that rk(t) ≤ qk+1(t) for all k and t.We note also that from the de�nition of Durbin's extension (3.3.1) that rk(t) = qk(t) −
rk−1(t) ≤ qk(t)
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Event-driven stohasti network. 51Proof.
p(t) =

k∑

j=1

(−1)j−1qj(t) + (−1)krk(t)

=

k−1∑

j=1

(−1)j−1qj(t) + (−1)k−1qk(t) + (−1)krk(t)

=

k−1∑

j=1

(−1)j−1qj(t) + (−1)k−1rk−1(t)Hene we have rk(t) = qk(t) − rk−1(t) ≤ qk(t).This means that when omputing the series, the error is always bounded by the last termomputed.Assumption 3.3.3. Assume now that the boundary is wholly onvex.We an make the same analysis between two integral variables ti, ti+1, we have thefollowing similar properties:� a(ti−1)−a(ti)
ti−1−ti

− a′(ti−1) ≤ 0� using assumption 3.3.1 q1 ≥ 0, q2 ≤ 0, q3 ≥ 0, and so on, thus the series∑k
j=1(−1)j−1qj(t)is a series of non-negative terms.� rk(t) ≥ qk+1(t) so the bound obtain for the onave ase does not apply.In the onvex ase we do not onsider the tangent to the funtion but the ord from thepoint (0, a(0)) to (r, a(r)). By the onvexity of a(t) we know that the funtion a(u) is alwaysunderneath this ord for 0 ≤ u ≤ r. Let β(s, τ) be the line joining those two points and I∗∗denote the indiator of the event :"Y has rossed β(s, τ) prior to time s". Here as beforewe only have to know the �rst-passage time of the Brownian to an a�ne urve, whih is

a(0)
r f(r).So we get:

a(0)

r
= lim

sրr

1

r − s
E [I∗∗(s, Y )(β(r, s) − Ys)|Yr = a(r)]Here every path rossing a prior to time r must have rossed β(r, τ). so I(s, Y ) ≤

I∗∗(s, Y ) for all s < r, and we have a(s) ≤ β(r, s). Hene for the onave ase, b(r) ≤ a(0)
r .Finally, let uk denote the integral:
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52 Jonathan Touboul
uk(t) :=

∫ t

0

∫ t1

0

· · ·
∫ tk−1

0

a(0)

tk

k∏

i=1

[
a(ti−1) − a(ti)

ti−1 − ti
− a′(ti−1)

]

× f(tk, · · · , t1, t) dtk · · · dt1 (t0 = t)we have |rk(t)| ≤ |uk(t)|Theorem 3.3.1. Under the assumption 3.3.2 or 3.3.3, we have
rk(t) −−−−→

k→∞
0 (3.3.5)In the proof of the theorem we will use the following lemma, we state and prove beforethe proof of the main theorem.Lemma 3.3.2. Let W := (Wt)t≥0 be a standard Brownian motion. Then (ξt)t≤0 :=

(W−t)t≤0 is a Markov proess with the inhomogeneous transition density funtion :
p(s, x, t, y) =

1√
2πt(t− s)/s

e−(y− t
s x)2/2[ t

s (t−s)] (3.3.6)Proof. The Brownian motion is learly a Markov proess, with transition density funtion:
p(s, x, t, y) =

1√
2π(t− s)

e−
(y−x)2

2(t−s)It is lear that ξt := W−t is also a Markov proess. Indeed, let t ≤ 0, A ∈ Fξ
≥t where Fξis the �ltration assoiated to the proess ξ. Then A ∈ FW

≤−t.P [A|Fξ
≥t

]
= P [A|FW

≤−t

]

= P [A|FW
=−t

] by the Markov property of W
= P [A|Fξ

=t

]whih ends the proof of the Markovian property of ξ.Let us now ompute the transition funtion.Let s < t ≤ 0. The joint density pξs,ξt is given by:
pξs,ξt(x, y) = pW−s,W−t(x, y)

=
1√

−2πt
√

2π(−s+ t)
e−y2/(−2t)e−(x−y)2/(−s+t
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Event-driven stohasti network. 53So now let us ompute the onditional probability density funtion:
pξt(y|ξs = x) =

pξs,ξt(x, y)

pξs(x)

=
1√

2πt(t− s)/s
e−

(y−(t/s)x)2

2(t/s)(t−s)Proof. [ Theorem 3.3.1℄ Reall that
rk(t) =

∫ t

0

∫ t1

0

· · ·
∫ tk−1

0

b(tk)
k∏

i=1

[
a(ti−1) − a(ti)

ti−1 − ti
− a′(ti−1)

]

× f(tk, · · · , t1, t) dtk · · · dt1 (t0 = t)Let us denote γ(t) the maximum of |a(r)−a(s)
r−s − a′(r)| for 0 < s < r ≤ t. We have:

|rk(t)| ≤ γ(t)k

∫ t

0

∫ t1

0

· · ·
∫ tk−1

0

b(tk)f(tk, · · · , t1, t) dtk · · · dt1

≤ γ(t)k

∫ t

0

∫ t1

0

· · ·
∫ tk−1

0

b(tk)f(tk|tk−1 · · · , t1, t)f(tk−1 · · · , t1, t) dtk · · · dt1

≤ γ(t)k

∫ t

0

∫ t1

0

· · ·
∫ tk−2

0

f(tk−1 · · · , t1, t) dtk−1 · · · dt1

≤ γ(t)k

∫ t

0

∫ t1

0

· · ·
∫ tk−2

0

k−1∏

i=1

f(ti|ti−1) dtk−1 · · · dt1 (t0 = 0)For the last equality we have used the Markovian property of (Yt−s)s≥0 onditionally on
Yt whih is a diret onsequene of lemma 3.3.2. We also use this lemma again to �nd theonditional density f(ti|ti−1) (here note that ti ≤ ti−1).

f(ti|ti−1) =
1√

2πti(1 − ti/ti−1)
e
− (a(ti)−a(ti−1)ti/ti−1)2

ti(1−ti/ti−1)So we get:
|rk(t)| ≤ γ(t)k(2π)−(k−1)/2

∫ t

0

∫ t1

0

· · ·
∫ tk−2

0

k−1∏

i=1

1√
ti(1 − ti

ti−1
)
dtk−1 · · · dt1 (3.3.7)
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54 Jonathan TouboulLet us now ompute the sequene of integrals. Fist put x = ti

ti−1
. We have:

∫ tk−2

0

1√
tk−1(1 − tk−1

tk−2
)
dtk−1 =

√
tk−2

∫ 1

0

1√
x(1 − x)

dx = π
√
tk−2We then substitute this expression in the integral w.r.t tk−2, and get:

π

∫ tk−3

0

√
tk−2

1√
tk−2(1 − tk−2

tk−3
)
dtk−2 = πtk−3

∫ 1

0

1√
(1 − x)

dx

= 2πtk−3We an ontinue this redution integral after integral and we will always get an expressionof the type:
π

∫ ti−1

0

√
tk−i−2
i

1√
tk−2(1 − ti

ti−1
)
dti = t

(k−i)/2
i−1

∫ 1

0

1√
xk−i−2(1 − x)

dx

= B

(
k − i

2
,
1

2

)
t
(k−i)/2
i−1

=
Γ(k−i

2 )Γ(1
2 )

Γ(k−i+1
2 )

t
(k−i)/2
i−1for all i = (k − 1), . . . , 1.Finally we have :

∫ t

0

∫ t1

0

· · ·
∫ tk−2

0

k−1∏

i=1

1√
ti(1 − ti

ti−1
)
dtk−1 · · ·dt1

=

k−1∏

i=1

Γ(k−i
2 )

Γ(k−i+1
2 )

(πt)(k−i)/2 =
πk/2

Γ(k
2 )
t(k−1)/2And �nally substituting in (3.3.7) we have :

|rk(t)| ≤ γ(t)k2−(k−1)/2
√
π

1

Γ(k
2 )
t(k−1)/2 (3.3.8)
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Event-driven stohasti network. 55And we onlude using Stirling's formula stating that Γ(k
2 ) inreases muh more rapidlythan any kth power of a �nite quantity as k → ∞, thus |rk(t)| −−−−→

k→∞
0, and the seriesexpansion onverge, and

p(t) =

∞∑

j=1

(−1)j−1qj(t) (3.3.9)Remark 4. The trunated series of (3.3.9) is an approximation of the pdf p(t), but wedon't have any information on the rate of onvergene of the series.3.3.2 An Iterative ApproximationIn this setion we use the �xed point expression (3.2.24) to get an iterative approximationof the pdf p(t).Reall that:
p(t) =

(
a(t) +

s− t

t
a(t)

)
q(t, 0, a(t)) +

∫ t

0

(
a(t) − a(u)

t− u
− a′(t)

)
p(u)q(t− u, a(u), a(t)) du(3.3.10)Here p(t) is a L1(R+, dt) funtion sine it is a probability density with respet toLebesgue's measure. L1(R+, dt) is a Banah spae.Let us denote T : L1 → L1 the operator de�ned for all f in L1 by:

Tf(t) :=

(
a(t) +

s− t

t
a(t)

)
q(t, 0, a(t))+

∫ t

0

(
a(t) − a(u)

t− u
− a′(t)

)
f(u)q(t−u, a(u), a(t)) du(3.3.11)Let us denote for the sake of simpliity

A(t) :=

(
a(t) +

s− t

t
a(t)

)
q(t, 0, a(t))

Φ(t, u) :=

(
a(t) − a(u)

t− u
− a′(t)

)
q(t− u, a(u), a(t))So the operator T reads:

Tf(t) := A(t) +

∫ t

0

Φ(t, u)f(u) du (3.3.12)
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56 Jonathan Touboulwhih is known as a linear integral operator (or a linear Volterra integral operator).The pdf we searh is a �xed point of T , i.e. p = Tp.The method of approximation (refered as Piard's method) onsists in de�ning a sequeneof L1 funtions de�ned by reurrene, and prove that this sequene onverge to the �xedpointLet f ∈ L1 be the initial ondition of the sequene. Put p0 := f . We de�ned by indutionthe sequene pn by:
pn+1 = Tpn (3.3.13)Let us now reall the lassial de�nitions for an operator in a Banah spae K. For moredetails on this subjet we refer to [4℄.De�nition 3.3.1. For an operator T : K → K, we say it is :1. ontrative with ontrativity onstant α ∈ [0, 1) if

‖T (u)− T (v)‖K ≤ α‖u− v‖K ∀ u, v, ∈ K2. non expansive if
‖T (u)− T (v)‖K ≤ ‖u− v‖K ∀ u, v, ∈ K3. Lipshitz ontinuous if ∃L ≥ 0 suh that:
‖T (u)− T (v)‖K ≤ L‖u− v‖K ∀ u, v, ∈ KTheorem 3.3.3. [Banah �xed-point theorem℄ Assume that K is a non-empty losedset in a Banah spae V and that T : K → K is a ontrative mapping with ontrativityonstant α ∈ [0, 1). Then the following results hold:1. Existene and uniqueness: There exists a unique u ∈ K suh that

u = T (u).2. Convergene and error estimates of the iteration: For any u0 ∈ K the sequene {un} ⊂
K de�ned by un+1 = T (un) is a Cauhy sequene and onverges to u:

‖un − u‖ −−−−→
n→∞

0For the error, the following bounds are valid:
‖un − u‖V ≤ αn

1 − α
‖u0 − u1‖V

‖un − u‖V ≤ α

1 − α
‖un−1 − un‖V

‖un − u‖V ≤ α‖un−1 − u‖V INRIA



Event-driven stohasti network. 57The proof of this theorem is very lassial and we will not reprodue it here. It is based onproving that the sequene un is a Cauhy sequene. The uniity is given by the ontrataneof the operator and the existene by the onvergene of un.In the representation of the pdf of the �rst hitting time, we have a linear integral equation.For instane if we assume that u ∈ C([a, b], [a, b]) for �xed reals a and b (wih is not thease in general) and with the uniform norm, the operator T is Lipshitz ontinuous withLipshitz onstant α:
α := max

a≤x≤b

∫ b

a

|Φ(t, u)|duSo the operator is ontratant if α ∈ [0, 1).This approah has not been studied yet, but is a way of approximating the pdf p withoutany assumption on the onvexity (or onavity) of the boundary a. This will allow usto study a sinusoïdal entry for a neuron, whih is often the ase of study in ustomaryneurosiene model experiments. This is also the ase studied in the publiation for theNeuroComp onferene [18℄ using the Durbin expansion (where we do not have any proof ofthe onvergene of the series) and the Monte-Carlo method.3.4 Appliation to some simple asesIn this setion we show that the �rst term of Durbin's development (i.e. putting I ≡ 1)gives the real pdf of the hitting time, in the ase of the Brownian motion rossing a onstantboundary,3.4.1 Hitting time of the Brownian Motion to a linear boundaryIn its artile [16℄, Durbin proves that the equation (3.2.6) where he replaes the indiatorfuntion by the onstant funtion 1 gives diretly the true pdf of the Brownian motionrossing a linear boundary, wih is well known analytially (see 4.2.1 where we ompute thisformula).This idea is exploited by the author to provide an approximation of the hitting timewhen the boundary beomes inreasingly remote.In the following setion we show for a more omplex problem that omitting the indiatorfuntion in Durbin's funtion b(t) give us the true pdf for the Ornstein-Uhlenbek proessrossing the onstant frontier 0.3.4.2 Hitting time of the Brownian Motion to an onstant bound-aryIn this setion we onsider an Ornstein-Uhlenbek proess X . Let σ and α be two pos-tive numbers and B := (Bt)t be a standard Brownian motion. The assoiated Ornstein-
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58 Jonathan TouboulUlhenbek proess (Xt)t is de�ned to be the unique solution of the stohasti di�erentialequation:
{
dXt = −αXtdt+ σdBt

X0 = x0 > 0
(3.4.1)We know that the probability density funtion of the hitting time of the onstant barrier

0 an be omputed ([1, 29℄) diretly. Note that this is a very partiular frontier (it is the"equilibrium state" of the proess). For any other frontier there is no losed form for thisdensity funtion.The formula of this pdf is given by:
p(t) =

x0

σ
√

2π
exp

{
− x2

0αe
−αt

2σ2sh(αt)
+
αt

2

}(
α

sh(αt)

) 3
2 (3.4.2)We prove that this result is the �rst Durbin approximation of this pdf.First of all, using the notations of Durbin's theorem about the gaussian proesses, wereall that:

Xt = x0e
−αt + σ

∫ t

0

e−α(t−s)dWs (3.4.3)From this equation we an state that:� Xt is a gaussian proess and for all �xed t ≥ 0, we have:
Xt ∼ N (x0e

−αt, σ2(1 − e−2αt),� the ovariane funtion is given by:
ρ(s, t) = σ2

[
e−α|t−s| − e−α(t+s)

] (3.4.4)Proof. Let s ≤ t. we have:
ρ(s, t) = σ2E [∫ t

0

∫ s

0

e−α(t+s)e−α(u+v)dWudWv

]

= 2σ2e−α(t+s)

∫ s

0

e−2αudu

=
σ2

α
(e−α|t−s| − e−α(t+s))

INRIA



Event-driven stohasti network. 59� it admits the stationnary distribution N (0, σ2). (apply Kolmogorov -or Foker-Plank- equation).So this is a Gaussian proess. To get into the framework of Durbin's theorem we willnot onsider the proess Xt (beause it is not entered) but the proess Xt − x0e
−αt. Thisproess is entered, starts form 0 and has to reah the frontier −x0e

−αt, so the rossingwill our from above. To have a proess rossing the frontier from below, let us de�ne thegaussian proess Y suh that Yt = x0e
−αt −Xt. This is a entered Gaussian proess, andwe are searhing the hitting time of the barrier a(t)x0e

−αt whih is strily above 0 at t = 0so the proess Y will ross a(t) from below. The hitting time of Yt to a(t) has the same lawas the hitting time of X to 0.Now, we show that what we will all the "�rst approximation" of Durbin, i.e Durbin'sformula replaing the indiator funtion by one, gives us the real pdf of this proess (3.4.2).Proposition 3.4.1. Let b1 be the "�rst" approximation of Durbin's funtion b(t), de�nedby:
b1(t) := lim

sրt

1

t− s
E [(a(s) − Ys)|Yt = a(t)] (3.4.5)

=
a(t)

ρ(t, t)

∂ρ(s, t)

∂s

∣∣∣∣
s=t

− a′(t) (3.4.6)Then we have
p(t) = b1(t)f(t) (3.4.7)Proof. Reall that:
Yt := x0e

−αt −XtThe proess Y is a entered gaussian proess of ovariane funtion ρ starting from 0.The boundary we onsider now is the funtion a(t) := x0e
−αt. We an easily see thatassumptions A.1 and A.2 of theorem 3.2.1 are satis�ed :1. the boundary funtion a(t) = x0e

−αt is ontinuous on [0, t) and left di�erentiable at t2. The ovariane funtion is given by (3.4.4), and it is lear that it is positive de�nitewith ontinuous �rst-order derivatives.3. The assumption A.3 an be shown using:
lim
sրt

[
∂ρ(s, t)

∂s
− ∂ρ(s, t)

∂t

]
= 2σ2
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60 Jonathan TouboulLet us now ompute the funtion b1: we have:� ρ(t, t) = σ2

α (1 − e−2αt)� ∂ρ(s,t)
∂s

∣∣∣
s=t

= σ2α(1 + e−2αt)� a′(t) = −αx0e
−αtSo

b1(t) = lim
sրt

1

t− s
E [(a(s) − Ys)|Yt = a(t)]

= lim
sրt

(
a(s) − ρ(s, t)

ρ(t, t)
a(t)

)

= lim
sրt

(
a(s) − a(t) +

ρ(t, t) − ρ(s, t)

ρ(t, t)
a(t)

)

= −a′(t) +
1

ρ(t, t)

∂ρ(s, t)

∂s
|s=ta(t)

= 2αx0
e−αt

1 − e−2αt
= x0

α

sh(αt)Let us now ompute the funtion f(t) (distribution of Y on the barrier):
f(t) =

1√
2πρ(t, t)

e−
a(t)2

2ρ(t,t)

=
1

σ
√

2π(1 − e−2αt/α
exp

{
− x2

0e
−2αt

2sigma2(1 − e−2αt)/α

}

=

√
αe

α
2 t

σ
√

2πsh(αt)
exp

{
− x2

0e
−2αt

2sigma2(1 − e−2αt)/α

}So eventually we get:
p1(t) = b1(t)f(t)

= x0

(
α

sh(αt)

) 3
2 1

σ
√

2π
exp

{
− x2

0e
−2αt

2sigma2(1 − e−2αt)/α
+
α

2
t

}

= p(t) using formula as (3.4.2)So here replaing the indiator by 1 does not hange anything and we still get the goodformula.
INRIA



Event-driven stohasti network. 61
Chapter 4Computing the Laplae transformof the �rst hitting timeIn this hapter we give some formulas and proof for omputing the Laplae transforms ofsome hitting times for di�usion proess to a onstant or moving boundary. We refer to theseformulas as Feynman-Ka formulas.Then we apply this tehnique to ompute the Laplae transforms of Hitting timesfor some lassial proesses (Brownian motion, Brownian motion with drift and Ornstein-Uhlenbek proess. We also use this haraterization to prove the onvergene in law andalmost surely of those hitting time of a onstant barrier when the starting point of theproess tends to the barrier.4.1 Feynman-Ka formulas and Laplae transforms ofHitting TimesLet X := (Xt, t ≥ 0) be a multi-dimensional di�usion proess of in�nitesimal generator Land B := ((B

(i)
t )t≥0)i=1,...,d be a multi-dimensionnal Brownian motion. The aim of thissetion is to prove a link between some funtionals of X and PDEs. For more details ondi�usion proesses we refer to [23, 5, 36℄. The di�usion proess studied here satis�es theequation:

dXt = b(Xt)dt+ σ(Xt)dBt (4.1.1)
RR n° 1



62 Jonathan TouboulWe assume that b and σ are bounded and at least C1. Let L be the di�usion operatorassoiated to the di�usion proess (4.1.1)
Lf(x) :=

1

2

d∑

i,j=1

ai,j(x)
∂2

∂xi∂xj
f(x) + (b(x) · ∇)f(x) (4.1.2)where a(x) = (ai,j(x))i,j ∈ Md is the symmetrial matrix de�ned by a(x) = σ(x)σT (x). Inall this setion we assume that the operator L is uniformly ellipti, i.e.

∃Λ > 0

d∑

i,j=1

ai,j(x)ξiξj ≥ Λ

d∑

i=1

ξ2i ∀x, ξ ∈ Rd (4.1.3)In all the setion, we'll use a real funtion, denoted q, and alled potential, in referenewith the Shrödinger theory.We onsider the operator, alled Shrödinger operator, de�ned by :
Gu(x) := Lu(x) + q(x)u(x) (4.1.4)The goal of the setion is to haraterize solutions of PDEs involving the operator Gof (4.1.4) in terms of X , and eventually to haraterize using this method the Laplaetransforms of hitting times of a one dimensional di�usion proess. The formulas obtainedthis way are alled Feyman-Ka formulas.4.1.1 Some Feynman-Ka formulasIn this setion we state and prove some Feynman-Ka formulas linking solution of somePDEs and the di�usion proess X .Theorem 4.1.1. Let D be a smooth bounded domain, q a C2 funtion on D̄, f a ontinuousfuntion on ∂D. Let τD be the �rst hitting time of the border of D (∂D) by the proess X :

τD := inf{t > 0;Xt ∈ ∂D} = inf{t > 0;Xt ∈ ∂D}Let u be the solution of the PDE equation with Dirihlet ondition :
{

Lu(x) + q(x)u(x) = 0 ∀x ∈ D
u(x) = f(x) ∀x ∈ ∂D

(4.1.5)If q is suh that : Ex

[
e

R τD
0 q+(Xs)ds

]
<∞ (4.1.6)where q+(x) := max(q(x), 0). INRIA



Event-driven stohasti network. 63Then u solution of (4.1.5) an be written :
u(x) = Ex

[
f(XτD)e

R τD
0 q(Xs)ds

] (4.1.7)Proof. Let Yt :=
∫ t

0
q(Xs)ds and onsider the stohasti proess eYtu(Xt). It�'s formulagives the following expression for this proess :

eYtu(Xt) = u(X0) +

∫ t

0

eYsu(Xs)dYs +Mt +

∫ t

0

eYsLu(Xs)ds

= u(X0) +Mt +

∫ t

0

eYs(Lu(Xs) + q(Xs)u(Xs))ds

= u(X0) +Mt +

∫ t

0

eYsGu(Xs)ds (4.1.8)(4.1.9)where Mt denotes a loal martingale assoiated, whih reads :
Mt =

d∑

i=1

∫ t

0

eYsbi(Xs)
∂u

∂xi
(Xs)dsThen let stop the proess under onsideration at the stopping time τD. Let Sn :=

inf{t; dist(Xt, ∂D) < 1/n}. We learly have Sn ր
n→∞

τD. Then sine u ∈ C2(D̄) we have
Mt∧Sn is a martingale for all n ∈ N. Let us take the expetation and apply the optimalstopping theorem to (4.1.8). Stopping the proess at time Sn ensures us that Gu(Xs) is 0beause Xs is always inside the domain D.

eYt∧Snu(Xt∧Sn) = u(X0) +Mt∧Sn and taking the expetationEx

[
eYt∧Snu(Xt∧Sn)

]
= u(x)Finally, letting n → ∞ and using Lebesgue's theorem (the funtion u is bounded insidethe domain D and the hypothesis (4.1.6) ensures us to have a L1 bound) we get :Ex

[
eYt∧τDu(Xt∧τD)

]
= u(x) ∀t > 0We an onlude letting t→ ∞, sine the expetation onverges by Lebesgue's theorem.Theorem 4.1.2. Under suitable onditions on q, D and g , the solution of

{
Lu(x) + q(x)u(x) = −g(x) ∀x ∈ D
u|∂D = 0

(4.1.10)RR n° 1



64 Jonathan Touboulis given by
u(x) = Ex

[∫ τD

0

g(Xs)e
R

s
0

q(Xr)dr ds

] (4.1.11)Theorem 4.1.3. Under suitable onditions on q, f and D , the solution of
{

∂u
∂t = Lu(x) + q(x)u(x) ∀x ∈ Rd

u(x, 0) = f(x)
(4.1.12)is given by

u(x, t) = Ex

[
f(Xt)e

R
t
0

q(Xs)ds
] (4.1.13)The proofs of theorems 4.1.2 and 4.1.3 are very similar to that of theorem 4.1.1, thusleft to the reader.4.1.2 Appliation : Charaterization of hitting times for onstantboundariesLet X = (Xt; t > 0) be a one-dimensional di�usion proess given by the equation :

dXt = b(Xt)dt+ σ(Xt)dBt (4.1.14)where B = (Bt)t≥0 is a standard one-dimensional Brownian motion.Let Tx0 be the �rst passage-time of X to the �xed barrier x0 and let uλ(x) be the Laplaetransform of Tx0 onditionally on the fat that X0 = x.
Tx0 := inf{t > 0;Xt = x0}

uλ(x) := Ex

[
e−λTx0

]
, λ ≥ 0 (4.1.15)Theorem 4.1.4. Assume that x < x0. The Laplae transform uλ(x) is solution of thefollowing PDE together with limit onditions :





Luλ(x) − λuλ(x) = 0
uλ(x0) = 1
lim

x→−∞
uλ(x) = 0

(4.1.16)Remark 5. The ase x > x0 an be treated in the same way with only a few hanges asstated in the beginning of the setion. INRIA



Event-driven stohasti network. 65Proof. In the book of Bass [5, Theorem IV.3.4℄, a proof totally based on theorem 4.1.1 ([5,Theorem II.4.1℄ ) is given, taking D = (−∞, x0). But obviously, this domain in not boundedso we need further elements.With the notations of the proof of theorem 4.1.1, we have Yt = −λt.Neessary ondition:We assume that the solution of equation (4.1.16) exists and is regular. Let us denote
τn
x0

:= inf{t > 0;Xt = x0 or Xt = −n}Then using It�'s formula stopped at time τn
x0

together with the existene assumption ofa regular solution, we get that the loal martingale of It�'s extension is a real martingale,so when we take the expetation it holds :Ex

[
e−λt∧τn

x0u(Xt∧τn
x0

)
]

= uλ(x)We assumed the existene of a solution u to equation (4.1.16), so by de�nition u is regularon (−∞, x0) and tends to 0 in −∞, and to 1 at x0 so is bounded on its de�nition domain.Therefore we an apply Lebesgue's onvergene theorem to let t→ ∞:
t ∧ τn

x0

a.s.−−→ τn
x0

Xt∧τn
x0

a.s.−−−−−−−−−−−→(path ontinuity) Xτn
x0

= x0Y − n(1 − Y )

uλ(Xt∧τn
x0

)
a.s.−−−−−−−−−−−→(regularity of uλ) uλ(Xτn

x0
) = uλ(x0)Y + uλ(−n)(1 − Y )where Y = 1τx0<τ−n .So we have:Ex

[
e−λτx0uλ(x0)1τx0<τ−n

]
+Ex

[
e−λτ−nuλ(−n)1τx0>τ−n

]
= uλ(x) (4.1.17)We know from eq.(4.1.16) that uλ(x) −−−−→

x→∞
0. So the termEx

[
e−λτ−nuλ(−n)1τx0>τ−n

]of eq. (4.1.17), whih is learly bounded by uλ(−n), vanishes when n→ ∞.Moreover, we know that the di�usion will not explode as soon as the oe�ients of thedi�usion operator are Lipshitz. So τ−n −−−−→
n→∞

∞ and the indiative funtion 1τx0<τ−n tendsto 1τx0<∞ when n → ∞. We reall that uλ(x0) = 1, so the term inside the expetation isbounded by 1 and we an apply Lebesgue's theorem and we get the result:Ex

[
e−λTx0

]
= Ex

[
e−λTx01Tx0<∞

]
+Ex

[
e−λTx01Tx0=∞

]

= Ex

[
e−λTx01Tx0<∞

]

= uλ(x)
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66 Jonathan Touboulwhih ends the proof of the neessary ondition.So if a regular solution of (4.1.16) exists, then it is equal to the Laplae transform of Tx0 .Su�ient ondition:We still need to prove that this equation (4.1.16) admits regular solutions. This problem isnot solved here, and in the ases treated later we'll exhibit solutions of this equation.Theorem 4.1.5. The Laplae transform of the hitting time of a di�usion with generator Lan be written: Ex

[
e−λTx0

]
=

Ψλ(x)

Ψλ(x0)
(4.1.18)where Ψλ(·) is proportional to the unique inreasing positive solution of

LΨλ = λΨλ(i.e. the eigen value of the di�usion operator L assoiated to the eigen value λ).Proof. The proof is not very di�ult but introdue some new lemmas, we won't reprodueit here and refer for instane to the exellent book of It� and MKean [23, Chapt. 4.6℄.4.1.3 Appliation : Charaterization of hitting times for movingboundariesWe still onsider in this setion a one-dimensional di�usion proess X = (Xt; t > 0) givenby the equation :
Xt = b(Xt)dt+ σ(Xt)dBt (4.1.19)where B = (Bt)t≥0 is a standard one-dimensional Brownian motion.Let a(t) be the boundary, and τa(X) the �rst passage time of X to the boundary. Wehave already seen Durbin's method to haraterize those hitting times. In this setion weprovide a paraboli di�erential equation with boundary and limit onditions governing theLaplae transform of this hitting time.We denote uλ(x) be the Laplae transform of τa(X) onditionally on the fat that X0 =

x.
τa(X) := inf{t > 0;Xt = a(t)}

uλ(x) := Ex

[
e−λτa(X)

]
, λ ≥ 0 (4.1.20)

INRIA



Event-driven stohasti network. 67Theorem 4.1.6. Assume that x < a(0). Then the Laplae transform uλ(x) = vλ(0, x)where vλ(t, x) is solution of the following PDE together with limit onditions :




∂tvλ(t, x) + Lvλ(t, x) − λvλ(t, x) = 0
vλ(t, a(t)) = 1
lim

x→−∞
vλ(t, x) = 0

(4.1.21)Proof. The proof of the neessary ondition, i.e. assuming that a regular solution (C1,2),the proof is very similar to the one of theorem 4.1.4.To prove this theorem we only have to use It�'s formula to the (assumed) C1,2 funtion
e−λtv(t,Xt). The loal martingale will be a real martingale (it is neessary to bound theproess X also to get a martingale, as we did in the last proof), and the optimal stoppingtheorem will apply and we will eventually get:Ex

[
e−λτa(X)

]
= vλ(0, x)4.2 AppliationsIn this setion we study some properties of the hitting times appearing in setion 6.2, usefulin the sequel. The problem of hitting times of Brownian motion and Ornstein-Ulhenbekproess has been widely studied. In this setion, we only revisit and prove some usefulproperties for the network we will study in setion 6.2.4.2.1 Brownian Motion Hitting TimesIn the setion 6.2.1 we have written the probability density of the hitting time of a onstantboundary of the Brownian motion. In this setion, we derive this formula for the Brownianmotion and the Brownian motion with drift, and obtain the expetation of this hitting timeis in�nite. We establish that this hitting time is almost surely �nite, exept in a speial aseof the Brownian motion with drift where we show that there is a stritly positive probabilityof never hitting the boundary.Standard Brownian motionTheorem 4.2.1. Let (Bt)t≥0 be a standard Brownian motion, starting from 0. Let T a bethe hitting time of a, i.e. the �rst time the Brownian motion Bt is equal to a, namely :

T a := inf {t ≥ 0;Bt = a}Then its Laplae transform reads :E [e−λT a
]

= e−
√

2λa ∀λ ≥ 0 (4.2.1)RR n° 1



68 Jonathan Touboulwhih is known to be the Laplae transform of the inverse Gaussian a2

B2
1
. So T a is abso-lutely ontinuous w.r.t. Lebesgue's measure. We denote p(t) its probability density (i.e.P [T a ∈ dt] =: p(t) dt ). We an write:

p(t) =
|a|√
2πt3

e−a2/2t t > 0 (4.2.2)So with this expression we an see that T a is almost surely �nite andE [T a] = ∞ (4.2.3)Proof. First of all let's ompute the Laplae transform. It's easily done using the exponentialmartingale and the optional sampling theorem [26℄. T a is learly a stopping time sine it'sthe �rst passage time of a ontinuous proess.It's well known that the proess eθBt− θ2

2 t is a martingale. Then we see that eθBt∧Ta− θ2

2 t∧T ais a bounded martingale so a uniformly integrable martingale. The optional sampling theo-rem applies, so we have :
∀t ≥ 0 E [eθBt∧T a− θ2

2 t∧T a
]

= 1Then letting t→ ∞ and using Lebesgue's theorem we have :E [e− θ2

2 T a
]

= e−θaSo that we obtain the formula (4.2.1).To �nd the atual probability density we an use the inverse laplae transform or usethe re�etion priniple. This priniple states thatP [T a < t] = P [T a < t;Bt > a] +P [T a < t;Bt < a]

= P [Bt > a] +P [T a < t;Bt < a]

= P [Bt > a] +E [1T a<tP [Bt < a|FT a ]]

= P [Bt > a] +E [1T a<tP [Bt−Ta+Ta −BTa < 0|FT a ]]

= P [Bt > a] +E [1T a<tP [B̃t−T a < 0|FT a

]] (Strong Markov property)
= P [Bt > a] +

1

2
P [T a < t]So we have the repartition funtion of T aP [T a < t] =

√
2

π

∫ ∞

a/
√

t

e−x2/2 dxand di�erentiating w.r.t. t we get the p.d.f. of T a (4.2.2).Now with this probability density funtion, we an see that the expetation is in�nite,beause the expetation is the integral of a funtion equivalent to C√
t
when t→ ∞.
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Event-driven stohasti network. 69Proposition 4.2.2. The hitting time of the onstant barrier x of the Brownian motionstarting form 0 tends in distribution and in probability to 0 when x tends to 0.Proof. The onvergene in distribution omes from the onvergene of the Laplae transformof T a to 1 when a→ 0 (see theorem 4.2.6 and setion A.2).Let us now prove the onvergene in probability. Let ε be a positive real. We onsiderthe probability of the event {T a > ε} :P [T a > ε] =

∫ ∞

ε

|a|√
2πt3

e−a2/2t dtThe integrand tends almost surely to 0 when a→ 0 and has the upper bound :
∀t > 0, ∀a > 0,

|a|√
2πt3

e−a2/2t ≤ |a|√
2πt3whih is integrable on [ε,∞) so we an apply Lebesgue's theorem and we onlude that

∀ε > 0 P [T a > ε] −−−→
a→0

0whih is the de�nition of the onvergene in probability.Brownian motion with driftThe key onept to study the Brownian motion with drift is the Girsanov's theorem (orthe partiular ase of the Cameron-Martin formula). Details on the Girsanov theorem arenot given here, we refer to [26, Chapter 3.5 ℄). Let W := (Wt)t be a standard Brownianmotion and γ 6= 0 a real number. We onsider the proess Xt := Wt−γt. By the Girsanov'stheorem, the proess X is a Brownian motion under the measure
Qγ |Ft = eγUt−γ2

2 tW|Ftwhere Ut is the anonial proess.This means that ∀A ∈ Ft

Qγ(A) = E [1Ae
γWt−γ2

2 t

]Under this new probability Qγ , Xt is a standard Brownian motion, so Wt = Xt + γt isa Brownian motion with drift γ.
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70 Jonathan Touboul
Qγ [Tb ≤ t] = E [1Tb≤te

γWt− γ2

2 t

]

= E [1Tb≤te
γWt∧Tb

− γ2

2 t∧Tb

] beause{Tb ≤ t} ∈ FTb∧t

= E [1Tb≤te
γb−γ2

2 Tb

]

=

∫ t

0

eγb−γ2

2 tP [Tb ∈ dt] (4.2.4)Now, realling from (4.2.2) the probability density funtion of Tb yields the density of Tbunder Qγ :
Qγ(Tb ∈ dt) =

|b|√
2πt3

exp [− (b− γt)2

2t

]
dt, t > 0 (4.2.5)Finally, letting t→ ∞ in equation (4.2.4), we an write :

Qγ(Tb <∞) = eγbE [e− 1
2 γ2Tb

]and so we obtain from (4.2.1) :
Qγ(Tb <∞) = eγb−|γb| (4.2.6)In partiular, a Brownian motion with drift γ 6= 0 reahes the level b 6= 0 with probabilityone if and only if γ and b have the same sign. If γ and b have opposite signs, the density isdefetive in the sense that Qγ(Tb < ∞) < 1. In this ase, the probability of never rossingthe barrier b is equal to (4.2.6). This di�ers a lot from the behavior of the standard Brownianmotion. Nevertheless, one an prove again the regularity of these hitting time w.r.t. b, asstated in proposition 4.2.3Proposition 4.2.3. The hitting time of the onstant barrier x of the Brownian motion withdrift γ starting form 0 tends in distribution and in probability to 0 when x tends to 0.Proof. The proof is very similar to the proof of theorem 4.2.2. Here we haven't omputedthe Laplae transform of Hitting times so we will use the onvergene in probability to provethe onvergene in law.Here again the only argument to use is Lebesgue's theorem : |b|√

2πt3
exp [− (b−γt)2

2t

]
≤

|b|√
2πt3

whih is integrable on the intervals of the type [ε,∞) with ε > 0. On the other hand,the expression (4.2.5) tends obviously to 0 when b → 0 for all t > 0 so Lebesgue's theoremgives us the onvergene in probability of the hitting time sequene to 0 when b→ 0.Then we know that the onvergene in probability implies the onvergene in law so�nally the proposition is proved. INRIA



Event-driven stohasti network. 71Remark 6. We have proved in theorems 4.2.2 and 4.2.3 that the hitting times onverge inprobability to 0. This means also that there is a subsequene whih onverges to 0 almostsurely. Let us now show that this sequene of hitting times tends to 0 almost surely.Proposition 4.2.4. The family of hitting times (Tb)b≥0 tends to 0 almost surely when
b→ 0.Proof. The de�nition of the onvergene almost sure of a sequene of random variables Xnto a random variable X means that there exist Ω̃ ⊂ Ω suh that P [Ω̃] = 1 and :

∀ω ∈ Ω̃, ∀ε > 0, ∃N suh that n ≥ N ⇒ |Xn(ω) −X(ω)| ≤ εLet Ωε denote the subset ⋃
N≥0

⋂
n≥N

{|Xn−X | ≤ ε}. We have Ω̃ =
⋂

ε>0
Ωε. We have ε→ Ωεis inreasing, so taking the intersetion over ε > 0 is equivalent to taking the intersetion:

Ω̃ =
⋂

p≥1

Ω1/p. So �nally the onvergene almost sure is equivalent to the property:
∀ε > 0, P ⋃

N≥0

⋂

n≥N

{|Xn −X | ≤ ε}


 = 1 (4.2.7)We will prove this property in our ase. The sequene is indexed by R but this sameargument is still valid, beause the sequene of hitting times of the Brownian motion startingfrom 0 to reah b is monotonous.We are interested in the sequene Xn := T1/n. and X = 0.We have:

∪
k≥n

{|Xk −X | > ε} = ∪
k≥n

{T1/k > ε}

= {T1/n > ε}And we have: P [T1/n > ε
]

≤ 1
n

∫∞
ε

1√
2πt3

dt

≤ 1
n

[
− 1

2
√

2πt

]∞
ε

≤ 1
2n

1√
2πε

−−−−→
n→∞

0whih ends the proof.
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72 Jonathan Touboul4.2.2 Ornstein-Ulhenbek hitting timesGeneral properties of Ornstein-Ulhenbek proessesLet B := (Bt)t≥0 be a standard Brownian motion. The assoiated Ornstein Ulhenbek(OU) proess U := (Ut)t≥0 with parameter λ ∈ R is de�ned to be the unique solution ofthe equation
{
dUt = −λUtdt+ dBt

U0 = x ∈ R (4.2.8)This linear equation when integrated gives the following expression for U :
Ut = x e−λt +

∫ t

0

eλ(s−t)dBs ∀t ≥ 0 (4.2.9)By the Dubins-Shwarz theorem, there is a Brownian motion W := (Wt)t≥0 de�ned onthe same probability spae, suh that
∫ t

0

eλsdBs = Wτ(t), t ≥ 0 (4.2.10)where τ(t) = 1
2λ(e2λt − 1). Hene, the representation Ut = e−λt(x + Wτ(t)) holds. Thisrepresentation was �rst introdued by Doob in [15℄ to study some path properties of U .With this representation we an see that U has almost surely ontinuous paths whih arenowhere di�erentiable. Assume that λ > 0. In this ase U is positive reurrent and itssemigroup has a unique invariant measure whih is the law of a entered Gaussian randomvariable with variane 1

2λ .The proess U is a Feller proess (.f. for instane Revuz [31, setion I.5℄ for de�nitionand properties), with in�nitesimal generator denoted L, given on C2
b by:

Lf(x) =
1

2

∂2f

∂x2
(x) − λx

∂f

∂x
(x), x ∈ R (4.2.11)Next, denote by P(λ)

x the law of U when U0 = x ∈ R. Then thanks to Girsanov'stheorem, for any �xed t > 0, the following absolute ontinuity relationship holds :
dP(λ)

x |Ft = exp(−λ
2
(B2

t − x2 − t) − λ2

2

∫ t

0

B2
sds

)
dWx|Ft (4.2.12)whereWx stands for the law of a Brownian motion starting at x.Remark 7. Note that the Radon-Nikodym derivative (4.2.12) is a true martingale.
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Event-driven stohasti network. 73Hitting times of a onstant barrier of the Ornstein-Ulhenbek proessThe properties of hitting times of the OU proess has been widely studied. For instane, in[1℄, the authors give three representations of the probability density of these proesses, andin [32℄ we have an expliit expression of the moments of those hitting times. In this setionwe fous on the regularity properties of those hitting times. The main results of this setionis the onvergene in law (whih is more general as stated in remark 8) and the onvergenealmost sure of the hitting time of the onstant threshold x starting from y when y → x.Let a ∈ R be a given �xed real number and introdue the �rst passage time of the proess
U and B :

Ha := inf{t ≥ 0;Ut = a} (4.2.13a)
T a := inf{t ≥ 0;Bt = a} (4.2.13b)The law of Ha (resp T a) is absolutely ontinuous w.r.t. the Lebesgue measure and itsdensity will be denoted p(λ)

x→a(·) (resp px→a(·)). We fous in this hapter on the ase x < a,i.e. the proess starts below the barrier. The symmetri ase x > a an be treated in thesame way hanging U by −U (whih is also an OU proess), x in −x and a in −a.First of all let us ompute the Laplae transform of Ha, well known sine Siegert [34℄and Breiman [7℄. We'll give here an elementary proof of this.Proposition 4.2.5. For x < a the Laplae transform of Ha is given byEx

[
e−αHa

]
=

H−α/λ(−x
√
λ)

H−α/λ(−a
√
λ)

=
eλx2/2D−α/λ(−x

√
2λ)

eλa2/2D−α/λ(−a
√
λ)

(4.2.14)where Hν stands for Hermite funtion and D−α/λ for the paraboli ylinder funtions re-spetively (see Lebedev [27, hapter 10 ℄ for a preise study of those funtions or the setionA.1).Proof. We use the hitting time haraterization given by Feynman-Ka equations, provedin setion 4.1.2. The Laplae transform of the �rst passage time is given by theorem 4.1.4as the unique solution of the boundary value problem :




Lu(x) = αu(x), for x < a
u(a) = 1
lim

x→−∞
u(x) = 0

(4.2.15)Here the theory applies sine the oe�ients of the di�usion operator L are C∞. This isa singular value problem sine the interval is not bounded. Nevertheless one an prove thatthe solution to the above problem takes the form :Ex

[
e−αHa

]
=
ψα(x)

ψα(a)RR n° 1



74 Jonathan Touboulwhere ψα(·) is up to some multipliative onstant, the unique inreasing positive solutionof the equation Lψα = αψα. By de�nition of Hermite funtions, see A.1, we get ψα(x) =
H−α/λ(x

√
λ), whih ompletes the proof of the �rst equality. Indeed, the equation (4.1.16)reads :






1
2

∂2u
∂x2 (x) − λx∂u

∂x (x) − αu(x) = 0
u(x0) = 1
lim

x→−∞
u(x) = 0The di�erential equation satis�ed by Hν is

f ′′ − 2zf ′(z) + νf(z) = 0Let g(x) = H−α/λ(−x
√
λ). We have :

g′(x) =
√
λH′

−α/λ(−x
√
λ)

g′′(x) = λH′′
−α/λ(−x

√
λ)

1

2
g′′(x) − λxg′(x) − αg(x) =

1

2
λH′′

−α/λ(−x
√
λ) − xλ

√
λH′

−α/λ(−x
√
λ) − αH−α/λ(−x

√
λ)

=
λ

2

(
H−α/λ”(z)− 2zH′

−α/λ(z) − α

λ
H−α/λ(z)

)
|z=x

√
λ

= 0The two fundamental solutions of the linear di�erential equations are H−α/λ(x
√
λ) and

H−α/λ(−x
√
λ). The funtion ψα is up to a positive onstant the one that is inreasing. Withthe series expansion of Hermite's funtions (A.1.2), it's lear that the inreasing funtionresearhed ψα = H−α/λ(−x

√
λ). The seond equality relies on the relation between Hν and

Dν .We are now onerned with the regularity of τx
y := inf{t > 0;Xt = x|X0 = y}. The twofollowing theorems give us the onvergene in law and almost surely of the random variables

τx
y when y → x.Theorem 4.2.6. The sequene of random variables (τx

y )y≤x onverges in law (in distribu-tion) to 0 when y tends to x :
τx
y

L−−−→
y→x

0
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Event-driven stohasti network. 75Proof. Here we prove and use a lassial result of stohasti proess analysis. The proofrelies on the fat that the Laplae transform of the random variable τx
y onverges to theLaplae transform of 0.Indeed, the Laplae transform of τx

y reads, aording to (4.2.14) :Ex

[
e−ατx

y

]
=

H−α/λ(−y
√
λ)

H−α/λ(−x
√
λ)It's lear with the series expansion of the Hermite funtions (A.1.2) that the Hermitefuntion is stritly positive for any real negative argument and is ontinuous, so here theLaplae transform is de�ned and ontinuous for all y ≤ x. When y → x, the Laplaetransform tends to 1 whih is the Laplae transform of the random variable identially 0.We know that the Laplae transform ompletely determines a probability distribution. Wean prove that when a sequene of probability measures Pn has their Laplae transformsonverging to the same Laplae transform of a distribution, then the sequene is tight (seeA.2 for a proof of this or the book of Billingsley [6℄), so the sequene is relatively ompat.Any limit point of the sequene has the same Laplae transform so the limit is unique andthe sequene onverges weakly (or in distribution/law).Eventually, the theorem is proved.Remark 8. This result is muh more general than the partiular ase of the Ornstein-Ulhenbek proess. This proof an be driven without major hange for any di�usion proess,provided the regularity of the Laplae transform. For instane it is the ase of the Brownianmotion hitting time to a onstant barrier, whih has the Laplae transform given by (4.2.1).We now prove that the sequene of hitting times (τx

y )y≤x of the Ornstein-Ulhenbekproess onverges also almost surely to 0 when y → x. To do this we use the expetation ofthis hitting time, di�erentiating the Laplae transform of Ha with respet to the parameter.So �rst we need the expression of the di�erential of the Laplae transform (4.2.14). To havemore simple expressions of this Laplae transform, let us write, using together (4.2.14) andthe expression of the Hermite funtion (A.1.1):
u(α) := Ex

[
e−αHa

]

=
H−α/λ(−x

√
λ)

H−α/λ(−a
√
λ)

=
ϕ(−α/λ,−x

√
λ)

ϕ(−α/λ,−a
√
λ)

(4.2.16)where
ϕ(ν, z) = φ(−ν

2
,
1

2
; z2) − 2

√
2z

Γ(1−ν
2 )

Γ(−ν
2 )

φ(
1 − ν

2
,
3

2
; z2) (4.2.17)This formula is straightforward using Γ(− 1

2 ) = −2Γ(1
2 ).RR n° 1



76 Jonathan TouboulLemma 4.2.7. The funtion ϕ(ν, z) is di�erentiable w.r.t. ν and its derivative reads :
∂ϕ

∂ν
(ν, z) = −1

2
φ(1)

(
−ν

2
,
1

2
; z2

)
−

√
2z

(
−Γ′(1−ν

2 )

Γ(− ν
2 )

+
Γ(1−ν

2 )Γ′(− ν
2 )

Γ(− ν
2 )2

)

φ

(
1 − ν

2
,
3

2
; z2

)
+
√

2z
Γ(1−ν

2 )

Γ(−ν
2 )

φ(1)

(
1 − ν

2
,
3

2
; z2

) (4.2.18)where φ(1)(α, β; z) denotes the derivative w.r.t. the �rst argument of the on�uent hyper-geometri funtion :
φ(1)(α, β; z) =

∂φ

∂α
(α, β; z) =

∞∑

n=0

d(α)n

dα

1

(β)n

zn

n!whih is ontinuous and di�erentiable.The di�erential of ϕ(·, ·) is ontinuous and its value at ν = 0 is :
∂ϕ

∂ν
(ν, z)|ν=0 = −1

2
φ(1)(0,

1

2
; z2) −

√
2πzφ(

1

2
,
3

2
; z2) (4.2.19)Proof. The �rst expression is straightforward, di�erentiating the expression (4.2.17). Weobtain (4.2.19) taking the limit of (4.2.18) at ν = 0. To �nd this limit we use the wellknown limit :

|Γ(z)| −−−→
z→0

∞together with the representation of the one over Gamma funtion used in [40℄ to onlude.
1

Γ(z)
= zexp(γz − ∞∑

k=2

(−1)kζ(k)zk/k

)where ζ(·) is the Riemann zeta funtion and γ is the Euler-Masheroni onstant1.Di�erentiating this expression gives us :
Γ′(z)

Γ(z)2
= eγz−P

∞

k=2
(−1)kζ(k)zk

k + (γ −
∞∑

k=2

(−1)kζ(k)zk−1)
1

Γ(z)The �rst term tends to 1 when z → 0 and the seond one tends to 0, so Γ′(z)
Γ(z)2 −−−→

z→0
1and we have (4.2.19)Theorem 4.2.8. The sequene of hitting times (τx

y )y≤x tends to 0 almost surely when y ր x:
τx
y

almost surely−−−−−−−−→
yրx

01ζ(n) =
P∞

n=1 n−k and γ = lim n → ∞

`
Pn

k=1
1
k
− log(n)

´
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Event-driven stohasti network. 77Proof. We use the representation of the Laplae transform of the hitting times (τx
y )y≤x givenby (4.2.16). We show that the expetation of these hitting times exists, and onverges to 0when y → x, whih gives us the almost sure. The expetation of a random variable, if itexists, is the derivative in 0 of the Laplae transform w.r.t. the argument of the transformE [τx

y

]
=
du(α)

dα

∣∣∣∣
α=0

= − 1

λ

(
∂ϕ
∂ν (0,−x

√
λ)

ϕ(0,−a
√
λ)

−
∂ϕ
∂ν (0,−a

√
λ)ϕ(0,−x

√
λ)

ϕ(0,−a
√
λ)2

)

= − 1

λ

(
∂ϕ

∂ν
(0,−x

√
λ) − ∂ϕ

∂ν
(0,−a

√
λ)

) (4.2.20)Now we use the expressions of ∂ϕ
∂ν given in the lemma 4.2.7, and use the ontinuity ofthese funtion to onlude that the expetation of τx

y tends to 0 uniformly, so the (positive)hitting time τx
y tends to 0 almost surely when y ր x.Remark 9. Note that this theorem is not as general as theorem 4.2.6, beause we needsome properties of regularity on the funtion ψα appearing in the proof of proposition 4.2.5.For instane we have already proved that for the hitting times of the Brownian motion, weould not apply the same tehnique, sine the expetation of the hitting times is alwaysin�nite. In this partiular ase, the funtion ψα is null when α = 0.

RR n° 1



78 Jonathan Touboul

INRIA



Event-driven stohasti network. 79
Chapter 5Numerial Approximation of thepdf for some simple types ofneuron modelsIn this hapter we apply the results of hapter 3 for some simple types of neuron models.Numerial approximation has been done with the help of Theodore Papadopoulo1 whoimplemented in C++ the equations, and with the help of Etienne Tanrï¾½footnoteINRIA,Sophia-Antipolis, Omega projet for the Monte-Carlo Simulations.This hapter is also the ontents of a future oral ommuniation at the NeuroComponferene whih will take plae in Pont-ï¾½Mousson on November 23-24 of this year. Ithas been done together with Olivier Faugeras, Theodore Papadopoulo, Denis Talay, EtienneTanrï¾½Mireille Bossy and me.5.1 IntrodutionThe dynamis of the disharge of neurons in vivo is greatly in�uened by noise. It is generallyagreed that a large part of the noise experiened by a ortial neuron is due to the intensiveand random exitation of synapti sites. The impat of noise on neuronal dynamis anbe studied in detail in a simple spiking neuron model, the integrate-and-�re (IF) neuron[37℄. For more ompliated models the authors usually make use of the framework of theFokker-Plank equation assoiated to a set of stohasti di�erential equations desribing thedynamis of the neuron membrane potential in the presene of synapti noise [33℄. Sinethis equation annot in general be solved analytially, the authors resort to various plausibleapproximations to obtain analytial results in various extreme ase [10, 20℄. In this paper1INRIA, Sophia-Antipolis, Odyssï¾½ projet
RR n° 1



80 Jonathan Touboulwe outline a method that an produe the statistis of the inter-spikes time intervals for anyinput urrent and for a variety of synapti noise types.5.2 Monte-Carlo MethodA method used in this study to have an approximation of the hitting time is the Monote-Carlo Method. We will not explain in details this very lassial method here, but just reallthe priniple of this method, sine we show some numerial simulations based on Monte-Carlo.This method onsists in simulating the trajetories of the proess using independentBrownian inrements. The time is disretised, and we simulate a large number of inde-pendent trajetories. We onsider that the proess has rossed the boundary either if thesimulation point is other the boundary, or we an ompute the probability of rossing theboundary when two onseutive points are underneath the boundary.5.3 Integrate and �re with instantaneous synapti on-dutanesThe simplest model we onsider is the integrate and �re where the membrane potential ufollows the stohasti di�erential equation
τdu = (µ− u(t))dt+ Ie(t)dt + σdW,with initial ondition u(0) = 0, where τ is the time onstant of the membrane, µ a reversalpotential, Ie(t) the injeted urrent and W (t) a Brownian proess representing synaptiinput. The neuron emits a spike eah time its membrane potential reahes a threshold θ.The membrane potential is then reinitialized to the initial value, i.e. 0. We are interested inharaterizing the sequene {ti}, i = 1, · · · , ti > 0, ti+1 > ti when the neuron emits spikes.5.3.1 The time of the �rst spikeThe problem of haraterizing the �rst time t1 when the membrane potential reahes thethreshold θ is de�ned as

t1 = inf{t : t > 0, u(t) = θ},where u(t) is given by the following expression
u(t) = µ(1 − e−

t
τ ) + 1

τ

∫ t

0
e

s−t
τ Ie(s) ds+ σ

τ

∫ t

0
e

s−t
τ dW (s)The ondition u(t) = θ an be rewritten as

∫ t

0

e
s
τ dW = τ

σ

[
(θ − µ)e

t
τ + µ− 1

τ

∫ t

0 e
s
τ Ie(s) ds

]
≡ b(t) (5.3.1)INRIA



Event-driven stohasti network. 81In order to haraterize t1 we need the followingLemma 5.3.1. Let X(t) =
∫ t

0 e
s
τ dW (s) The stohasti proess X(t) is a Brownian motionif we hange the time sale: X(t) = W

(
τ
2

(
e2

t
τ − 1

)).Proof. This lemma is in fat a diret onsequene of the Dubins-Shwarz theorem [26℄. Weprovide an elementary proof for ompleteness. Let r = τ
2

(
e2

t
τ − 1

), it is a monotonouslyinreasing funtion of t equal to 0 for t = 0. For all times 0 < r1 < r2 < · · · < rn,the random variables X(r1), X(r2) −X(r1), . . .X(rn) −X(rn−1) are independent beause
W is a Brownian motion. Finally, it is easy to see that X(t2) − X(t1) is distributed as
N(0,

∫ t2
t1
e2

s
τ ds) whih implies that X(r2) −X(r1) is distributed as N(0, r2 − r1).We an now rewrite the threshold rossing ondition above as

W (r) = τ
σ

[
(θ − µ)

√
2
τ r + 1 + µ− 1

τ

∫ r

0
Ĩe(s) ds

]
,where

Ĩe(s) =
Ie(

τ
2 log

(
2
τ s+ 1

)
)√

2
τ s+ 1The time t1 at whih the membrane potential reahes the threshold θ is obtained from thetime r1 at whih the Brownian motion W reahes for the �rst time the urve a(r) de�nedby the equation

y = a(r) = τ
σ

[
(θ − µ)

√
2
τ r + 1 + µ− 1

τ

∫ r

0 Ĩe(s) ds
]
,by the formula

t1 :=
τ

2
log(

2

τ
r1 + 1)The orresponding problem has been studied in partiular by Durbin [16, 17℄ who providesan integral equation for the probability density funtion (pdf) of r1. From this integralequation he dedues a series approximation of the pdf and proves onvergene when theurve is onave or onvex.This result is summarized in the next theorem.Theorem 5.3.2 (Durbin). LetW (τ) be a standard Brownian motion for τ ≥ 0 and y = a(τ)be a boundary suh that a(0) > 0 and a(τ) is ontinuously di�erentiable for τ ≥ 0. The �rst-passage density p(t) of W (τ) to a(t) an be written as

p(t) =

k∑

j=1

(−1)j−1qj(t) + rk(t),
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82 Jonathan Touboulwhere
qj(t) =

∫ t

0

qj−1(s)(
a(t) − a(s)

t− s
− a′(t))f(t|s) ds j ≥ 1.

a′(t) is the derivative of a(t) and q0 is given by
q0(t) = (

a(t)

t
− a′(t))f0(t),where f0(t) is the density of W (t) on the boundary, i.e.

f0(t) = (2πt)−1/2 exp(−a(t)2/2t),and f(t|s) is the joint density of W (s) and W (t) −W (s) on the boundary, i.e.
f(t|s) = f0(s)(2π(t− s))−1/2 exp(−(a(t) − a(s))2/(2(t− s))).The remainder rk(t) goes to 0 if a(τ) is onvex or onave.As an appliation of the above, we onsider two examples.Constant intensityIn this ase the membrane potential is the realization of an Ornstein-Uhlenbek proess. Thefuntion a(r) is onvex, hene the hypotheses of Durbin's theorem are satis�ed. Moreoversome analytial results have been obtained for the �rst moment of the law of the �rst passagetime. In table 5.1, we show the suessive approximations of the values of the integral ofthe law (whih should be equal to 1); the mean value is found to be equal to 1.93 (whih isthe value found by the analytial formula found in, e.g., [32℄). The values of the parametersare θ = σ = 2, µ = τ = 1. time-terms 3 5 7 9

103 0.86 0.86 0.86 0.86
105 0.98 0.95 0.95 0.95
107 1.12 0.97 0.98 0.98
109 1.44 1.01 0.99 0.99Table 5.1: Values of the integral of the estimated pdf for Ie = 0. The left olumn indiatesthe range of the values of r, the �rst line the number of terms in the series approximation.Periodi intensityWe hoose Ie(t) = sin(2πft). Table 5.2 is similar to 5.1. The parameters are the same as inthe previous example, f = 1. It is seen that Durbin's series onverges very quikly. FigureINRIA



Event-driven stohasti network. 83time-terms 3 5 7 9
103 0.86 0.88 0.88 0.88
105 0.86 0.97 0.96 0.96
107 0.82 1.00 0.98 0.98
109 0.88 0.97 1.00 0.99Table 5.2: Values of the integral of the estimated pdf for Ie = sin(2πt).5.1 shows the shape of the pdf of the �rst passage time and the �rst four terms in the seriesapproximation. Tables 5.1 and 5.2 indiate that a very good approximation of the pdf anbe obtained with only 5 terms in the series. The total omputation time is 8 seonds on a2GHz omputer for 800 sample points.
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2 4 6 8 10 12 14 16 18 20Figure 5.1: Four terms of the series approximation of the pdf when Ie(t) = sin(2πt) and theresulting pdf (the horizontal sale is in r units).5.3.2 Validation of these approximationsIn the ase when the intensity is onstant, we an ompute using the Laplae transformof the Ornstein-Ulhenbek proess the moments of the law of the �rst hitting time. Thenusing those simulations we an ompute the empirial �rst, seond and third moments ofthe law. The validation here was meant to ompare those three values and to see wetherthe simulations were stable or not.RR n° 1
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Figure 5.2: Monte-Carlo approximation of the pdf when Ie(t) = sin(2πt)
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Event-driven stohasti network. 85To ompute the moments of the law, I refer to the artile of Riiardi and Sato [32℄. Inthis artile the authors give a rather ompliated method to ompute the moments of theOrnstein-Ulhenbek proess.In our ase, we are only interested in the �rst three moments, so we give here the expliitformulae of those moments:Theorem 5.3.3. We denote α := µ
σ and β := σ

θ
√

τ
.Let us de�ne the three following funtions:

Φ1(z) :=
1

2

∞∑

n=1

(
2

β

)n
1

n!
Γ(
n

2
)(z − α)n

Φ2(z) :=
1

2

∞∑

n=1

(
2

β

)n
1

n!
Γ(
n

2
)
(
Ψ(
n

2
) − Ψ(1)

)
(z − α)n

Φ1(z) :=
3

8

∞∑

n=1

(
2

β

)n
1

n!
Γ(
n

2
)(z − α)nρ(3)

nwhere Γ is the gamma funtion, Ψ(z) = Γ′(z)
Γ(z) is the digamma funtion, and

ρ(3)
n =

(
Ψ(
n

2
) − Ψ(1)

)2

+
(
Ψ′(

n

2
) − Ψ′(1)

)Then let X be our OU proess starting from 0. Let T be the hitting time of this proessto the barrier θ. We have: E [T ] = τ(Φ1(1) − Φ1(0)) (5.3.2)E [T 2
]

= τ2(2Φ1(1)2 − Φ2(1) − 2Φ1(1)Φ1(0) + Φ2(0)) (5.3.3)E [T 3
]

= τ3
{
6Φ1(1)3 − 6Φ1(1)Φ2(1) + Φ3(1)

−6(Φ1(1)2 − 3Φ2(1))Φ1(0) + 3Φ1(1)Φ2(0) − Φ3(0)
} (5.3.4)With the variables we hose in our simulations, we obtain, using maple and trunatingthe series appearing in the de�nitions of Φi the referene values. Then we ompute theempirial expetation, �rst and seond moment for di�erent parameters. The results are inthe table 5.3.5.3.3 The times of the next spikesThe previous analysis and results an be extended to the times t2, . . . tn of the next spikes.We disuss how to determine tn given tn−1, i.e. how to ompute p(tn|tn−1). The senario issimilar to the one used to ompute t1.RR n° 1



86 Jonathan Touboulmethod E [T ] E [T 2
] E [T 3

]theoretial values 1.9319289 7.1356162 40.0830265Durbin, 30 terms, Tmax = 1036, step = 10−2 1.9292822 7.1269290 39.8541918Monte-Carlo, 106 realizations, step = 10−4 1.932180 7.139402 40.079556Table 5.3: Values of the �rst 3 moments of the Ornstein-Ulhenbek proess and the empirialvalues, for the parameters: θ = σ = 2, µ = τ = 1We know that the proess ut is strongly Markovian (di�usion proess with Lipshitzoe�ients, see [26, 36℄). Conditionally on the stopping time tn−1, determining the interspikeinterval redues to the problem of determining the �rst stopping time t1. The only di�ereneis that the random time shift tn−1 appears in the input Ie (but the onditioning allows usto apply the same method as before).More preisely, we have for r ≥ 0

u(tn−1 + r) = µ(1 − e−
r
τ ) + 1

τ

∫ r

0
e

s−r
τ Ie(s+ tn−1) ds+ σ

τ

∫ r

0
e

s−t
τ dW (s). (5.3.5)Let rn be the nth interspike interval. We have tn = tn−1 + rn. The same loal martingaleas in setion 5.3.1 an be used. The Dubins-Shwarz' theorem yields the same hange ofvariables and eventually the rossing ondition reads :

W̃r =
τ

σ

{
(θ − µ)

√
2

τ
r + 1 + µ− 1

τ

∫ r

0

Ĩ(n)
e (s)ds

}
,where

Ĩ(n)
e (s) =

Ie(
τ
2 log

(
2
τ s+ 1

)
+ tn−1)√

2
τ s+ 1

.Finally, the problem of �nding the sequene of stopping times (tn)n≥1 is equivalent to theproblem of �nding the �rst stopping time. Furthermore, we an see that the sequene (tn)is a Markov hain, and that if the input is onstant, the interspike intervals are independentand identially distributed.5.4 Integrate and �re with exponentially deaying synap-ti ondutanesWe modify the model of setion 5.3 to inlude exponentially deaying synapti ondutanes.
{

τdu = (µ− u(t))dt+ Ie(t)dt+ Is(t)dt
τsdIs = −Is(t)dt+ σdW INRIA



Event-driven stohasti network. 87We an integrate this system of stohasti di�erential equations as follows. The �rst equationyields
u(t) = µ(1 − e−

t
τ ) + 1

τ

∫ t

0 e
s−t
τ Ie(s) ds+ 1

τ

∫ t

0 e
s−t
τ Is(s) ds,the seond equation an be integrated as

Is(t) = Is(0)e
− t

τs +
σ

τs

∫ t

0

e
s−t
τs dW (s),where Is(0) is a given random variable. We de�ne 1

α = 1
τ − 1

τs
. Replaing in the �rstequation Is(t) by its value in the seond equation we obtain

u(t) = µ(1 − e−
t
τ ) + 1

τ

∫ t

0
e

s−t
τ Ie(s) ds+ Is(0)

1− τ
τs

(e
− t

τs − e−
t
τ )+

σ

ττs
e−

t
τ

∫ t

0

e
s
α

(∫ s

0

e
s′

τs dW (s′)

)
ds5.4.1 The time of the �rst spikeWe prove the followingLemma 5.4.1. Let X(t) =

∫ t

0
e

s
α

(∫ s

0
e

s′

τs dW (s′)

)
ds, the stohasti proess X(t) is aBrownian motion if we hange the time sale:

X(t) = W

(
(τ − τs)

2e2
t
τ − τs(τ + τs)e

2
t
α + 4ττse

t
α − τ(τ + τs)

).Proof. This result is also a onsequene of the Dubins-Shwarz' theorem. We provide a shortelementary proof. By exhanging the order of integration in the de�nition of X(t) (Fubini'stheorem, whih here is equivalent to an integration by parts) we obtain
X(t) =

∫ t

0

e
s′

τs

(∫ t

s′

e
s
α ds

)
dW (s′) = α

∫ t

0

e
s′

τs (e
t
α − e

s′

α ) dW (s′),and the result follows from the omputation of f(t) = α2
∫ t

0 e
2

s′

τs (e
t
α − e

s′

α )2 ds′.In the same line of idea as in setion 5.3, we an express the problem of haraterizingthe time t1 at whih the membrane potential reahes the threshold θ as that at whih
X(t) +

ατs
σ
Is(0)(e

t
α − 1) =

ττs
σ

[
(θ − µ)e

t
τ + µ− 1

τ

∫ t

0

e
s
τ Ie(s) ds

]
,
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88 Jonathan Touboulor equivalently at whih
W (r) +

ατs
σ
Is(0)(e

f−1(r)
α − 1) =

ττs
σ

[
(θ − µ)e

f−1(r)
τ + µ− 1

τ

∫ r

0

Ĩe(s) ds

]
,where f is the funtion de�ned in the proof of lemma 5.4.1 and

Ĩe(s) = e
f−1(s)

τ
Ie(f

−1(s))

f ′(f−1(s))It is easy to verify that if τ > τs, f is monotonously inreasing. The time t1 at whihthe membrane potential reahes the threshold θ for the �rst time is therefore obtained,onditionally on the random variable Is(0), from the time r1 at whih the Brownian motionreahes for the �rst time the urve a(r) de�ned by the equation
y = a(r) =

ττs
σ

[
(θ − µ)e

f−1(r)
τ + µ− 1

τ

∫ r

0

Ĩe(s) ds

]
− ατs

σ
Is(0)(e

f−1(r)
α − 1)by Durbin's theorem and the formula

t1 = f−1(r1)5.4.2 The times of the next spikesAs in the ase of instantaneous synapti ondutanes, we an extend our analysis andompute the onditional probabilities p(tn|tn−1), or rather p(tn|tn−1, Is(0)), as follows. For
t > tn−1, let us denote r = t − tn−1. We know that the proess Is is Markovian, heneonditionally on tn−1 and by the uniqueness of Is we obtain:

Is(tn−1 + r) = Is(tn−1)e
− r

τs +
σ

τs

∫ r

0

e
s−r
τs dW (s).Conditionally on tn−1 we an integrate the equation from this origin, and we obtain thefollowing expression for the membrane potential:

u(t) = u(tn−1 + r) = µ(1 − e−
r
τ ) + 1

τ

∫ r

0 e
s−r

τ Ie(s+ tn−1) ds+ Is(tn−1)
1− τ

τs

(e
− r

τs − e−
r
τ )+

σ

ττs
e−

r
τ

∫ r

0

e
s
α

(∫ s

0

e
s′

τs dW (s′)

)
dsHere again the problem is exatly the same as �nding the �rst spike time. The only di�ereneis that we ondition on tn−1, and this only amounts to hange Is(0) to Is(tn−1) and Ie(·) by

Ie(· + tn−1). The time tn at whih the membrane potential reahes the threshold θ for theINRIA



Event-driven stohasti network. 89�rst time after tn−1 is therefore obtained, onditionally on the random variables Is(0) and
tn−1, from the time rn at whih the Brownian motion reahes for the �rst time the urve
a(r) de�ned by the equation

y = a(r) =
ττs
σ

[
(θ − µ)e

f−1(r)
τ + µ− 1

τ

∫ r

0

Ĩ(n)
e (s) ds

]
− ατs

σ
Is(tn−1)(e

f−1(r)
α − 1),where f(t) = α2

∫ t

0 e
2

s′

τs (e
t
α −e

s′

α )2 ds′ is the hange of time sale used in the proof of lemma5.4.1, and
Ĩ(n)
e (s) = e

f−1(s)
τ

Ie(f
−1(s) + tn−1)

f ′(f−1(s))
.Finally we obtain tn by Durbin's theorem and the formula

tn = tn−1 + f−1(rn)Again, we an state that onditionally on the random variable Is(0) the sequene (tn)n≥0 isa Markov hain.5.5 ConlusionWe have outlined a method for omputing the pdf's of the spikes times of two variationsof the integrate and �re neuron model with synapti ondutanes. The method is basedupon representing the membrane potential as the sum of a deterministi funtion and a loalmartingale. Due to a theorem by Dubins and Shwarz, by hanging the time sale we anturn the loal martingale into a Brownian motion and the problem of omputing the pdfs ofthe spikes times into that of omputing the �rst-passage density of the Brownian motion toa urved boundary. This partiular problem an be solved through a method due to Durbin[17℄ whih provides a series approximation of the pdf. Numerial experiments show that theseries onverges rapidly. The method an be extended to more omplex neuron models [24℄[8℄

RR n° 1



90 Jonathan Touboul

INRIA



Event-driven stohasti network. 91
ConlusionThis study has opened a large number of issues, I will try to list now. Addressing thoseproblem would probably be the �rst part of my thesis work I will follow jointly in the Odysséelaboratory and in the Omega Laboratory.First we would like to extand the method presented in the hapter 5 for some other typesof neurons and of inputs. The problem is that we do not have any proof of the onvergeneof Durbin's expansion when the frontier is not onave or onvex. So it would be interestingto extand the proof of onvergene of the Durbin's series to a wider range of proesses.It would also be interesting to study inside Durbin's or Feynman-Ka's frameworks someother types of neurons.We ould also try to get some informations about the pdf of some hitting times usingDurbin's �xed-point equation, whih is more general than the series expansion and whihhas not been studied yet, so far as we know.For the network, we are working to extend the results of Cottrell and Philippe Robertto our problems, and we may have a hane to prove it using Lyapunov funtions, but wehave no formal proof so far.
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Part IIIA stohasti network of biologialneurons
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Event-driven stohasti network. 93
Chapter 6Dynamis of Noisy InhibitoryNetworks of Integrate-and FireNeuron: A Stohasti NetworkTheory ApproahIn this hapter we onstrut a network model of noisy integrate-and-�re neurons. The aimof this setion is to prove that a wide range of neuron models �t into a general mathematialframework.We still have to study some more the mathematial framwork we de�ne here.Nevertheless, some mathematial results are already known, and have been proved inthe past ten years by some authors suh as Marie Cottrell, Philippe Robert and TatianaTurova. We will state these results in the setion 7, but it does not apply diretly to ournetwork model. All my future work will onsist in extending these results to a more generalase where the biologial networks lie.6.1 Introdution : Basi de�nitionsIn this paper we build a bridge between a wide range of biologial networks models and ageneral mathematial framework.The networks studied onsist in a set of N noisy integrate-and-�re models. Every neuronof the networks has the same dynamis (the parameters of the model an hange, suh asthe spiking threshold, the time onstants, the noise level, . . . ).The interations between the neurons are inhibitory: when a postsynapti neuron reeivesa spike, it prevent it from spiking immediately. The onnetivity map is arbitrary. In thesequel, the set of neighbors of the neuron i is denoted V(i).RR n° 1



94 Jonathan Touboul6.1.1 Integrate-and-�re neuronsIn the lassial neuron models, the state of a neuron is desribed by its membrane potential,whih we will denote V (i) in the following.During the time intervals when no neuron spike, the states of all neurons evolve asindependent stohasti proesses, following one of the di�erent evolution equation as detailedin setion 6.2.When the membrane potential V (i)(t) of some neuron, say i, reahes a deterministithreshold value θ at time t0 (i.e. V (i)(t−0 ) = θ), then a spike is produed, and subsequentlywe have :� the membrane potential V (i) reset : ( V (i)(t0) = Vr )� the states of the target neurons j onneted to the neuron i (i.e. j ∈ V(i)) aremodi�ed. The e�et of a pre-synapti spike reeived by a neuron an be instantaneous(i.e. V (j)(t0) = V (j)(t−0 ) + wi,j where wi,j < 0 denotes the synapti e�ieny of theonnetion i → j ) or more ompliated (via synapti urrent, synapti pulses, et.).Many examples are treated in the following setions 6.2 and 6.3. Figure 6.1.1 illustratesthe dynamis of the network, showing the struture of the network in 6.1(a) and thedynamis of the membrane potential in 6.1(b)This type of model was studied for instane by Brunel and Hakim [9℄ with the use ofthe Fokker-Plank equation. Assuming that the network is sparsely onneted, they foundthat in the limit N → ∞ the network exhibited a sharp transition between two regimes:a stationnary regime and a weakly synhronized osillatory regime. Eah neuron is anintegrate-and-�re neuron, and is randomly onneted to C neurons of the network, and to
Cext external neurons. The sparse onnetivity assumption is ε = C

N ≪ 1. Interationsbetween external and internal neurons are delayed by a onstant delay δ (i.e. when a spikeis emitted by a neuron of the network, it dereases or inreases the membrane potentialafter a time δ, see setion 6.3). This delay plays a ruial role in the generation of globalosillations.We wish to re-express the dynamis from an event-driven point of view (see for exampleReutimann et al [30℄), and to onsider the noise in the dynamis of eah individual neuron.6.1.2 Mathematial Framework: The Hourglass ModelIndependently, in the �eld of stohasti networks and queue theory and Markov proesses,a network model has been developed during the last 10 years. It is referred for instane asthe hourglass model by Turova [3, 12, 38, 39℄. This model has been introdued for the �rsttime by Marie Cottrell in [11℄, and the variable taken into aount was initially alled theinhibition proess, whih is a rather onfusing term in the neurosiene �eld, so we will usein the sequel the term of ountdown proess.Consider a N nodes network. This model has two types of parameter:
INRIA
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96 Jonathan Touboul� The random variables (Yi)i=1...N whih desribe the interspike interval distribution forthe neuron i.� (ηi,j)i6=j desribing the interation of i→ j.Let the state of the network be desribed by a N-dimensional vetor (Xt)t≥0 =
(
(X

(i)
t )i=1...N

)

t≥0having the following dynamis: let t > 0,1. if ∀i ∈ {1 . . .N}, Xi(t) > 0 then eah omponent of X dereases linearly with slope
−1 in time.2. if ∃i ∈ {1 . . .N}, Xi(t

−) = 0, subsequently we have:� Xi is reset to a random variable independent of all the history of the proess andwith distribution Yi.� ∀j ∈ V(i), a positive random variable ηi,j is added to Xj :
Xj(t) = Xj(t

−) + ηi,jOur study will lead us to extend this model to other types of random variables. The onlydi�erene we have from the initial hourglass model de�ned here is in the random variable ofinteration ηi,j . In the ases we study, this random variable an depend on Xj(t
−), t and a

N2-dimensional proess H de�ned by:De�nition 6.1.1. Let (Ht)t≥0 = ((hi,j(t))t≥0, where ∀t ≥ 0, hi,j(t) ∈ N be the past-interation matrix de�ned by:1. ∀i ∈ {1, . . . , N}, ∀t ≥ 0, hi,i(t) = 02. if j 6= i, hi,j(t) is the number of spikes reeived by the neuron j from neuron iLet us now assume that ηi,j is no more a random variable but a random funtion of thevariables (X, H, t).Theorem 6.1.1. Let Yt := (Xt, Ht, t) is a Markov jump proess.� The �rst jump after time t our at time inf
k=1...N

X
(k)
t and we denote i the neuronrealizing this inf.� At this time, say τ� X(i)(τ)t is set to an independent opy of Yi� hi,j(τ) = hi,j(τ

−) + 1j∈V(i), ∀j ∈ {1, . . .N}� hj,i(τ) = 0, ∀j ∈ {1, . . .N}� All the over omponents of H are unhanged.� ∀j ∈ V(i), X(j)(τ) = X
(j)

τ− + ηi,j(X
(j)(τ−), Hτ− , τ)
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Event-driven stohasti network. 976.1.3 From Biologial networks to the Hourglass modelLet us now onsider a network suh as those de�ned in setion 6.1.1.De�nition 6.1.2. [Countdown proess℄ For eah neuron i, let us de�ne X(i)(t) ≥ 0 theduration of time (after time t) till the �rst �ring moment of this neuron, if no interationtakes plae meanwhile. We will all this stohasti proess the ountdown proess of theneurons.Remark 10. This proess is alled ountdown beause of its dynamis, but in fat at anytime, its value gives us the time to wait till the next spike, so it an be also seen as a lok.It an be seen as a ountdown set at the instant of reeption of the last spike or just after thespike, to the time to wait for the next spike to our if no interation takes plae meanwhile.Proposition 6.1.2. The dynamis of the variableX i is linear and dereasing in the intervalsof time where no spike is reeived or produed:
dX(i)

dt
= −1 (6.1.1)At time t, the next spike will our in neuron i = Arg Min

j∈1...N
X(j)(t) at time t + X(i)(t) (tis the absolute time). In most of the ase (for instane in the ase where all the randomvariables have a density with respet to Lebesgue's measure), the probability for two neuronsto spike exatly at the same time is null sine the network is inhibitory so we will negletthis ase and assume that only one neuron spikes at a given time. At spike time, X(i)(t) isinstantaneously reset by drawing the law of a random variable noted Yi, whih has the samedistribution as the �rst hitting time of the stohasti proess (V

(i)
t )t≥0 to θ (the distributionof the interspike interval in terms of neural models). The states of all neurons just before thespike are given by: X(j)

(
(t+X(i))−

)
= X(j)(t)−X(i)(t). Finally, the states of all neurons

j onneted to neuron i are modi�ed aording to the spike produed by neuron i. Beausethe interation is inhibitory, this amounts to postponing the spike produed by neuron j byan amount ηi,j ≥ 0 (see Fig 6.1(b)), beause the inhibition inreases the time to the nextspike.In general, ηi,j is a random variable depending on the membrane potential V (j) at time
t. In most of the models onsidered in setion 6.2, it depends in fat only on X(j), so thatthe update reads X(j)(t +X(i)) = X(j)(t) −X(i)(t) + ηi,j(X

(j)(t) −X(i)(t)), where ηi,j(x)is a random funtion.In all our mathematial study we onsider the proess
X(t) := (X(i)(t))1≤i≤N (6.1.2)Up to an additional Markov hain, this model will be a ontinuous time Markov proess, aswe will show in setion 6.2.
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98 Jonathan TouboulNevertheless, the proess (Xt)t de�ned is pieewise ontinuous, so the analysis of Davisin [13℄ an be applied here. But our ase is even more simple sine the disontinuities arevery simply related to the value of the proess. This very partiular property implies thatstudying the ontinuous time stohasti proess is stritly equivalent to onsidering one ofthe two folloving disrete time Markov hain (6.1.3) and (6.1.4).Proposition 6.1.3. Let (tn) denote the time sequene of the spikes emitted by one of allthe neurons, (Zn) the sequene of the states just before eah spike and (Xn) the vetor ofstates just after eah spike.
Zn = X(t−n ) (6.1.3)
Xn = X(tn) (6.1.4)Consider now the random variable ηi,j to add to the state of a postsynapti neuron jwhen reeiving a spike from i at time t∗. This random variable is the delay aused bythe inhibition, i.e. the additional time to wait for j to spike beause of the reeption of apresynapti spike.Example. In the ase of instantaneous synapti interations, the inhibition applies to themembrane potential and the random variable to add to the state of the neuron j ∈ V(i) is:

θi,j(X
(j)(t−0 )) = (τ j

V (j)(t−0 )+wi,j
− τ j

V (j)(t−0 )
|X(j)) = (τ j

V (j)(t−0 )+wi,j
−X(j)|X(j)) (6.1.5)where τ j

x denotes the �rst hitting time of the onstant barrier θ starting from x of thestohasti proess V (j)(t).All the work done in the following setions 6.2 and 6.3 is aimed to show that manybiologial neuron models �t into the framework desribed in setion 6.1.2 and to identifythe parameters of the orresponding Hourglass model.6.2 Single Neuron Biologial ModelsIn this setion we onsider di�erent types of models of integrate-and-�re neurons and di�er-ent types of synapti interations, and up to a transformation show that the network modelan be onsidered as an hourglass network, and identify the parameters of the model.The �rst model we onsider is a noisy integrate-and-�re neuron without leak urrent,whih we refer as the perfet noisy integrate-and-�re neuron. We then add a leak urrent.
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(d) Corresponding ountdown proess : An inhibitory spike at time t∗ postponesthe next spike to time X(j)(t∗) + θi,j(X(j)(t∗))
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100 Jonathan Touboul6.2.1 Perfet integrate-and-�re modelsModelWe start by onsidering integrate-and-�re models driven by noise. The membrane potentialof the neuron i, denoted V (i)(t), is driven by the following equation between two spikes:
τidV

(i)(t) = I(i)
e (t)dt + σidW

(i)
t (6.2.1)where τi is the membrane potential time onstant, I(i)

e (t) is the input urrent, σi the standarddeviation of the noise and (W (i))1≤i≤N are independent Brownian motions, whih representsexternal synapti stimulations1.The neuron �res when its membrane potential reahes the threshold θ: the membranepotential is reset to a value Vr and a spike is emitted.
V (i)(t−) = θ ⇒ V (i)(t) = Vr (6.2.2)We refer to the ase I(i)

e ≡ 0 as the perfet integrate-and-�re model and I(i)
e (t) ≡ µi 6= 0as the perfet integrate-and-�re with drift.In the absene of interations, V (i)(t) integrates the entry I(i)

e with an additive noiseproportional to a Brownian motion, i.e. :
V (i)(t) =

∫ t

0

Ie(i)(s) ds+ σiW
(i)
t (6.2.3)The interations are taken instantaneous: if neuron i spikes at time t∗, then:

∀j ∈ V(i)V (j)(t∗) = V (j)(t∗−) + ωi,j (6.2.4)Link with the Hourglass model and parametersAs in setion 6.1.3, we de�ne X(i) the orresponding ountdown proess, so we have to derivethe two random parameters of this model.In the general ase, the threshold rossing ondition happens at time:
τ := inf

{
t > 0; W

(i)
t =

1

σi
(θ −

∫ t

0

Ie(i)(s) ds)

} (6.2.5)1It ould have been possible to replae the Brownian motions by instantaneous spikes (V (i)
→ V (i) + δ)triggered aording to a Poisson proess (the equation (6.2.1) would be the di�usion approximation ofthis type of exitation). This would hange onsiderably the following study, sine the proess is no moreontinuous between two onseutive spikes
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Event-driven stohasti network. 101With a general entry Ie, this time an be approximated using for instane the methodsof Durbins (see for instane [17, 16℄), as stated in Faugeras, Papadopoulo and Touboul in[19℄.Let us ompute expliitly the probability density funtion of this hitting time in the ase
I
(i)
e ≡ 0 (Brownian motion) and in the ase I(i)

e ≡ µi 6= 0 (drifted Brownian motion).The expression of the distribution of the �rst hitting time to the boundary θ, whih isthe distribution of Ui, is well known analytially, see below equations (6.2.6) and (6.2.7).Let us examine the e�et of synapti interations in the two ases:We onsider that neuron j reeives an inhibitory spike from neuron i at time t. Thetime of the next spike of neuron j is t+X(j)(t) + ηi,j , where ηi,j is the �rst hitting time ofthe drifted Brownian motion to θ, starting from θ + wi,j (reall that wi,j ≤ 0, whih is the�rst hitting time of a drifted Brownian motion starting from 0 to the onstant barrier wi,j(beause the stohasti proess solution of (6.2.1) is a Lévy proess).For the Brownian motion without drift, the probability density funtion of this randomvariable is well known and an be omputed by using the exponential martingale of theBrownian motion and the optional sampling theorem. Expliit omputation of this hittingtime is given in 4.2.1. This density reads :
p(j)(t) =

|wi,j |√
2πt3

e−
w2

i,j
2t 1R∗

+
(t) (6.2.6)For the Brownian motion with drift, we an prove by means of the Girsanov's theorem[26℄ that this random variable is absolutely ontinuous with respet to (w.r.t.) Lebesgue'smeasure and has the density :

p(j)(t) =
|wi,j |√
2πt3

e−
(wi,j−µj t)2

2t 1R∗

+
(t) (6.2.7)Thus in the ase of the perfet integrate-and-�re (resp. perfet integrate-and-�re withdrift) model, the e�et of the reeption of a spike is equivalent to adding an independentrandom variable with the probability density w.r.t. Lebesgue's measure given by (6.2.6)(resp. (6.2.7)).6.2.2 Leaky integrate-and-�re modelsLet us now onsider leaky integrate-and-�re (LIF) models.The general LIF equation with instantaneous synapti and noisy input urrents reads :

{
τidV

(i) = fi(V
(i), t)dt+ σidW

(i)
t

V (i)(t−) = θ ⇒ V (i)(t) = Vr
(6.2.8)Where (W i

t )1≤i≤N are independent Brownian motions.For tehnial reasons we onsider right-ontinuous sample paths. In all the followingsetions, we only onsider
fi(u, s) = −u+ I(i)

e (s) (6.2.9)RR n° 1



102 Jonathan TouboulSo �nally the evolution equation of the membrane potential during the time where nospike is emitted reads:
{
τidV

(i) = −V (i)dt+ I
(i)
e (t)dt+ σidW

(i)
t

V (i)(t−) = θ ⇒ V (i)(t) = Vr
(6.2.10)Where I(i)

e is a urrent modeling the entries of the neuron i.The aim of this setion is to relate those type of neuron models to the Hourglass model.To do this, we onsider the ountdown proess related to thisThe random variable denoted Yi in setion 6.1.2 will be the same for all synapti intera-tions. It is distributed as the hitting time of the threshold θ starting from Vr of the proessde�ned by (6.2.10). The only di�ulty arises from the urrent input Ie: if it depends onthe time t, then this random variable has not the same law at eah time but depends on thetime of the spike.If Ie is onstant, then:
Yi := inf

{
t > 0; V

(i)
t = θ|V (i)

0 = Vr

} (6.2.11)where V (i) is solution of (6.2.10).If Ie is not onstant, then assume that the neuron i spikes at time t∗. At this time, theproess X(i) is reset by drawing an independent random variable having the law of (6.2.11)where V (i) is solution of (6.2.10) with the time-shifted input urrent I(i)′

e (t) = I
(i)
e (t+ t∗).Let us now speify the synapti interations and ompute the other parameter of theHourglass model, denoted ηi,j in the setion 6.1.2.LIF model with instantaneous synapti urrentsWe onsider that the membrane potential follows the equation (6.2.10), together with thespiking ondition:

V (i)(t−) = θ ⇒
{
V (i)(t) = Vr

V (j)(t) = V (j)(t−) + wi,j1j∈V(i)
(6.2.12)We ompute the membrane potential with and without the reeption of a spike. Let

t∗ be the time when the neuron j reeives a spike, V (j) the membrane potential of theneuron j after reeption of a spike, Ṽ (j) the membrane potential of the neuron j withoutany interation with other neurons, V ∗
(j) := V (j)(t∗−) and X∗

(j) := X(j)(t∗−). We have :
V (j)(t∗ + t) =(V ∗

(j) + wi,j)e
−t/τ +

1

τ

∫ t

0

e(s−t)/τIj
e (s+ t∗) ds+

1

τ

∫ t

0

e(s−t)/τσ dWs
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Event-driven stohasti network. 103
Ṽ (j)(t∗ + t) = V ∗

(j)e
−t/τ +

1

τ

∫ t

0

e(s−t)/τ Ij
e (s+ t∗) ds+

1

τ

∫ t

0

e(s−t)/τσ dWsFrom the two equations above we an easily see that :
V (j)(t∗ + t) = Ṽ (j)(t∗ + t) + wi,je

−t/τ (6.2.13)For t = X∗
(j) we have Ṽ (j)(t∗ +X∗

(j)) = θ and from (6.2.13) we have :
V (j)(t∗ +X∗

(j) + t) = (θ + wi,je
−X∗

(j)/τ )e−t/τ +
1

τ

∫ t

0

e(s−t)/τIj
e (s+ t∗ +X∗

(j)) ds

+
1

τ

∫ t

0

e(s−t)/τσ dWs (6.2.14)Remark 11. To �nd this result we ould have integrated the di�erene between V and Ṽ .We keep this simple but longer proof beause it is more general and applies to the otherresults we state in the sequel.It is lear from equation (6.2.13) that the hitting time of the barrier θ by the proess
V (j), onditionally on the random variable X∗

(j) is the sum of X∗
(j) and an independentrandom variable whose law is equal to the hitting time of the barrier θ of the proess (6.2.8)with initial ondition V (j)(0) = θ + wi,je

−X∗

(j)/τ and with the time shifted input urrent
˜
Ij
e (t) := Ij

e (t+ t∗ +X∗
(j)).

ηi,j(u) := inf
{
t > 0; U (j)(t) = θ|U (j)(0) = θ + wi,je

−X∗

(j)/τ
} (6.2.15)where U (j)(t) is the solution of equation (6.2.10) with the time-shifted urrent spei�ed.Remark 12. We will show in setion 4.2.2 that for some simple ases of the input urrent theLaplae transform of this random variable is known. In other ases, the methods developedin [19℄ will apply and we an approximate these hitting times.Remark 13. We also show that this random variable tends to 0 in law and almost surely(a.s.), when X∗

(j) tends to in�nity. The in�uene of a spike reeived when the neuron isstrongly inhibited is very small.Remark 14. Finally, in this ase the random variable to add depends onX∗
(j). Conditionallyto X∗

(j), the random variable added is independent of the past of the proess, so the sequene
X(j) is Markovian.
RR n° 1



104 Jonathan TouboulLIF model with exponentially deaying synapti ondutanesThe equations of the models are the following :
{
τidV

(i) = (µi − V (i)(t))dt + Ii
e(t)dt+ Ii

s(t)dt 1 ≤ i ≤ N
τsdI

i
s = −Ii

s(t)dt+ σidW
i
t

(6.2.16)The spike ondition in this model is :
V (i)(t−) = θ ⇒

{
V (i)(t) = Vr

Ij
s (t) = Ij

s (t−) + wi,j1j∈V(i)
(6.2.17)Qualitatively, when a spike is reeived by a neuron, the synapti urrent Is integratesthe spike and the e�et on the membrane potential is smoother.Driving the same type of alulus as in the previous setion we obtain, for j ∈ V(i) and

τ 6= τs the relationship :
V (j)(t∗ + t) = Ṽ (j)(t∗ + t) + e−t/τwi,j

1 − e−αt

α
(6.2.18)where α = 1

τs
− 1

τ and again Ṽ (j)(t∗ + t) the membrane potential of the neuron j withoutany interation.Eventually we an see that after the time X∗
(j), the membrane potential of j is θ +

wi,je
−t/τ 1−e

−αX∗

(j)

α . The evolution of the potential V (j) after t∗ +X∗
(j) and onditionally on

X∗
(j) and Is(t

∗) is independent of the past, so we have to wait for the proess (6.2.17) toreah the threshold θ from the initial ondition θ + wi,je
−t/τ 1−e

−αX∗

(j)

α and with the timeshifted urrents ˜
Ij
e (t) := Ij

e (t+ t∗ +X∗
(j)).Remark 15. In this ase we note that the proessXt itself is not a Markov proess anymore,but the proess (X(t), Is(t))t is a Markov proess.Note that in the ase τ = τs we only have to replae the expression 1−e

−αX∗

(j)

α by
X∗

(j)wi,je
−t/τ . Here again, the random variable tends almost surely to 0, even if the ef-fet of the spike is larger than in the ase (6.2.12) beause the spike is integrated by thesynapti urrent and a�ets the membrane potential for a longer time.LIF model with general post-synapti urrent pulseIn this setion we onsider a LIF neuron desribed by (6.2.8). Like presented in the setion4.1.3 of [22℄ eah presynapti spike generates a postsynapti urrent pulse. More preisely,if the neuron i spikes at time t∗ and j ∈ V(i) reeives the spike, then this neuron feel anadditional input urrent

IPSP (t∗ + t) = wi,j α(t) (6.2.19)INRIA



Event-driven stohasti network. 105Let's inlude this e�et inside the input urrent Ĩe (i.e.
Ĩe(t) = Ie(t) +

∑

i6=j

∑

tj≤tj
i≤t

wi,j α(t− tji )where tj denotes the time of the last spike emitted by the neuron j and tji the sequenes ofspikes emitted from the neuron i to the neuron j.The same alulations drive to :
V (j)(t∗ +X∗

(j)) = θ + wi,je
−X∗

(j)/τ

∫ X∗

(j)

0

α(s)es/τds (6.2.20)So eventually the lasting time to spike for the neuron j is the time the stohasti proess
V (j), beginning from the value (6.2.20), reahes the threshold θ, with a new external urrent.The random variable here is again (X(t), Ĩe(t))t. Adding this new Markov proess allowsus to onsider an extended model of the hourglass model in whih one omponent is theountdown proess.LIF model with a potential-dependant post-synapti urrentThe equation (6.2.18) is a reasonable model of interation. Nevertheless in reality it is evenmore ompliated. In fat the amplitude of the post-synapti urrent pulse depends onthe atual value of the membrane potential V (j). It has been proved that eah presynaptispike evokes a hange in the ondutane of the post-synapti membrane with a ertain timeourse g(t− t∗). A post-synapti urrent model taking in aount this type of phenomenonan be written as :

{
τdV (i) = −V (i)dt+ Ie(t)dt + Is(t)dt+ σdW i

t

V (i)(t−) = θ ⇒ V (i)(t) = Vr
(6.2.21)where Is is null if the neuron i doesn't reeive a pre-synapti spike. If a neuron, say j,reeives a spike from one of its neighbors i, we add to the urrent Is the synapti urrent

wi,jg(t− t∗)(V (j) − Esyn) where Esyn is the reversal potential of the synapse.In this ase we an still have an expliit expression for the membrane potential, but wean't have an losed-form for the random variable of the delay indued by the reeption ofa spike.
V (j)(t+ t∗) = V ∗

(j)e
−Φ(t) +

∫ t

0

I∗e (s)eΦ(s)−Φ(t) ds+

∫ t

0

σeΦ(s)−Φ(t) dWs (6.2.22)With Φ(t) := 1
τ

(
t+

∫ t

0 wi,jg(s) ds
) and I∗e (t) = Ie(t

∗+t)+wi,jg(t)Esyn. This membranepotential is to ompare to the potential without any spike reeived, whih reads :
Ṽ (j)(t+ t∗) = V ∗

(j)e
−t/τ +

∫ t

0

Ie(t
∗ + s)e(s−t)/τ ds+

∫ t

0

σe(s−t)/τ dWs (6.2.23)RR n° 1



106 Jonathan TouboulSo we an't write a simple relation between (6.2.22) and (6.2.23) more expliit than(6.1.5). Again, X itself is no more a Markov proess, it depends on the number of spikesreeived between the last spike emitted by the neuron j and t, like in the setion of the LIFmodel with a potential dependant post-synapti urrent.This ase seems very di�ult to deal with so we won't disuss it any further.6.3 Inluding Synapti Delays and Refratory PeriodIn all the models of setion 6.2 we have modeled di�erent types of spike integration in thepost-synapti neuron, but we never onsidered the spike transmission in the axon and thebehavior of a neuron after emitting a spike. In this setion we disuss the e�et of onsideringthose types of phenomena in the models presented in the previous setion.6.3.1 Synapti Delays and Refratory PeriodIn this setion we build models of network inluding synapti delays. Those synapti delaysmodel the transmission time of the spike in the axon. In terms of network interations, weonsider that spikes emitted by a neuron do not a�et instantaneously the target neurons,but only after some delay ∆i,j (.f. Fig. 6.3.2).The refratory period models the perturbation indued by the emission of a spike by aneuron, just after having triggered. More preisely, in most nerve ells, the ation potentialis followed by a transient hyperpolarization, alled the after-potential. This phenomenonis losely linked with the ion hannels behavior after a spike emission. During this transi-tion period, the neuron is in a refratory state, and it is impossible to exite the ell, nomatter how great the stimulating urrent applied is (see for instane [25℄, hapter 9, for afurther biologial disussion of the phenomenon and [22, 2℄ for a disussion on modellingthis refratory period). In the rest of the setion we denote the refratory period Ri.If an inoming spike from neuron i ats on neuron j at time t, we distinguish two di�erentases, depending on wether ∆i,j < X(j)(t) or not.If ∆i,j < X(j)(t), then the reeption of a spike at time t in�uenes the post-synaptineuron at time t + ∆i,j the same ways as disussed in the di�erent models onsidered insetion 6.2.If ∆i,j ≥ X(j)(t), the neuron j will spike before the inoming spike from the neuron iarrives. If ∆i,j −X(j)(t) ≤ R then the spike is lost, sine it arrives at neuron j during therefratory period. Otherwise it will in�uene the neuron j at time t+ ∆i,j (this ase ouldbe troublesome in our mathematial framework).Finally, if the neuron j spikes at time t0 and reeives a spike from neuron i after havingspiked at time t1 > t0, and if (t1 − t0) + ∆i,j < R then again this spike is lost.
INRIA



Event-driven stohasti network. 1076.3.2 A speial ase of synapti delays and refratory periodAssumption 6.3.1. In this ase, we assume that the refratory period is equal to thesynapti delay (i.e. Rj = Deltai,j ∀(i, j) ∈ {1, . . . , N}2).This an approximation of the global dynamis desribed. This assumption allows us tokeep onsidering the same Markov proess as before, sine the neuron keeps "forgetting" thepast events.In reality we do not need suh a strong assumption and we an assume the followingproperty is ful�lled:Assumption 6.3.2. When a neuron spikes, every inoming spike is lost, and will not a�etthe future dynamis of this neuron.Those two assumptions are biologially relevant: we know that the probability for a spiketo our during the short ritial period of time is very small and we an in a �rst modelneglet this ase, whih is not fundamental in the studied phenomenon. On the other hand,it is known that refratory period and synapti are of the same order, around 5ms [14, 22℄.Under one of these assumptions, we have two types of interations between two neighborneurons. Assume that the neuron i emits a spike to its neighbor j. We an have have oneof two e�ets:1. If ∆i,j < X(j)(t), then the neuron j is a�eted like in the previous models if it reeivedthe spike at time t+ ∆i,j .2. If ∆i,j > X(j), then the spike would not in�uene the dynamis of X(j).Let us now hek how these synapti delays a�et the random variables to add in ournetwork model, for the di�erent types of models presented in the previous setion.First of all it is lear that sine these events only a�et the interations between twoneurons, the "private" random variable Yi is in all the ases disussed already is the samethat the one where no synapti delay or refratory period was taken into aount. The onlyhange is that the ell annot spike during the refratory period, whih means that the newrandom variable Yi is related to the random variable already omputed Ỹi by the followingrelation:
Yi = Ỹi1 eYi≥RiPerfet Integrate-and-FireInluding synapti delays in the perfet integrate-and-�re model doesn't hange very muhthe initial model. If the spike is reeived by the post-synapti neuron (i.e. ∆i,j < X(j)(t))then we add the same random variable as in the later ase, whih was the hitting time of aBrownian motion (resp. drifted Brownian motion) with the onstant barrier wi,j , otherwiseit has no e�et on the post-synapti neuron. So in this ase we have a state-dependantinteration rather simple, instead of the state independent interation we had in setionRR n° 1



108 Jonathan Touboul

Vr

θ

Vr

θ

Vi(t)

Vj (t)

t∗

t∗

t∗ + ∆i,j

refratory period

ηi,j(Xj(t∗))

wi,j

θ

Vk(t)

V k
rFigure 6.1: Synapti delays and refratory period. Neuron i spikes at time t∗. Neuron jreeives the spike during its lassial behavior at time t∗ + ∆i,j : it's inhibited after thesynapti delay. Neuron k reeives the spike at time t∗ + ∆i,k but spiked during the intervalof time [t∗, t∗ + ∆i,k], so the spike is reeived during its refratory period and the neuron isnot inhibited.
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Event-driven stohasti network. 1096.2.1. Let η̃i,j be a random variable desribing the hitting time of a Brownian motion (resp.drifted Brownian motion) with the onstant barrier wi,j and t∗ the time when a spike fromneuron i is sent to the neuron j. Then the random variable ηi,j to add is now a randomfuntion depending on the state of the postsynapti neuron j (Xj(t
∗)) and has the law ofthe random variable :

ηi,j(Xj(t
∗)) = η̃i,j1Xj(t∗)>∆i,j

(6.3.1)Leaky integrate-and-�re modelsWe ompute like in setion 6.2.2 the random variables to add in the various ases studied.In all the ases the omputations are the same and they are straightforward. It onsists intreating the two possible behaviors separately. Let i denote the presynapti neuron, j thepostsynapti, and t∗ the time of the spike. In the �rst ase (∆i,j < X(j)(t∗) =: X∗
j ) werefer to the results obtained in the setion 6.2.2 inluding the delay information, and in theseond ase the random variable is 0. So we get the following results :1. LIF with instantaneous synapti ondutanes: We denote η̃i,j(x, τ) the hitting timeof the onstant θ of the proess given by 6.2.9 starting from x, with the time-shiftedinput urrent funtion Ie(· + τ). The random variable to add is :

ηi,j(X
∗
j ) = η̃i,j(θ + wi,je

∆i,je−Xj(t
∗)1Xj>∆i,j , t

∗ + ∆i,j)1Xj>∆i,j (6.3.2)We an see in this equation appear an observed synapti oe�ient wi,je
∆i,j with isin absolute value larger than the real synapti oe�ient. It will appear in all the LIFmodels onsidered.2. LIF model with exponentially deaying synapti ondutanes, synapti delay and re-fratory period: We still denote Yi,j(x, τ) the random variable de�ned above, but forthis new proess. With the notations of setion 6.2, if α 6= 0, the random variable toadd has the same distribution as :

ηi,j(Xj) = η̃i,j(θ + wi,je
∆i,j

1 − eα(∆i,j−Xj(t∗))

α
e−X∗

j , t∗ + ∆i,j)1Xj>∆i,j (6.3.3)If α = 0, we have
ηi,j(Xj) = η̃i,j(θ + wi,je

∆i,j(X∗
j − ∆i,j)e

−X∗

j , t∗ + ∆i,j)1Xj>∆i,j3. LIF model with general post-synapti urrent pulse: With the same notations asbefore, we have:
ηi,j(Xj) = η̃i,j(θ + wi,je

∆i,je−X∗

j

∫ X∗

j −∆i,j

0

α(s)es/τ ds, t∗ + ∆i,j)1Xj>∆i,j (6.3.4)
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110 Jonathan Touboul4. LIF model with potential-dependant post-synapti urrent, synapti delays and refra-tory period: In this ase there is in the general ase no expliit formula for therandom variable to add, but if any, or a numerial approximation of its probabilitydensity funtion (pdf) then we ould ompute in the same way the new random vari-able : onditionally on X∗
j , if ∆i,j < X∗

j , then the random variable has the samedistribution as the random variable to add at time X∗
j − ∆i,j , else it is 0.
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Event-driven stohasti network. 111
Chapter 7Mathematial Analysis of theHourglass modelIn this hapter we review and prove some of the main results obtained in the ergodiityanalysis of the Hourglass model. First we will begin to prove the results of Marie Cottrellin the founding artile of this network, [11℄. In this artile the interations between theneurons are onstant (i.e. ∀i, j, we have ηi,j(u) ≡ η where η is a positive onstant.In her artile, she proves the irredutibility and the aperiodiity of the Markov hain weonsider, �nd a riterion for the positive reurrene of this hain and haraterizes the ISIfor a two neuron network. In the transient ase she shows that some neuron will stop �ringin a �nite time, and study the pattern formed by the "dead" neurons.Then we will review the artile of Friker, Robert et al [21℄, where the interation variable
ηi,j is no more onstant but is a random variable. Speifying the topology of the network,they obtain ergodiity onditions on the parameters of the model, for the fully onnetednetwork and for the linear network.7.1 Constant InterationsThe �rst result obtained in [11℄ is the irredutibility and aperiodiity of the hain.The proof of this property is rather simple. It onsists in onstruting a set of probabilityin whih all the N neurons �re onseutively. The probability of this set is stritly postive,and we an show that every state is aessible after the Nth spike triggered by the lastneuron. The same analysis an be done after the next spike, so at spike N +1, whih provesthat the embedded Markov hain Xn is irredutible and aperiodi.Then the author proves the following theorem:Theorem 7.1.1. If θ < inf

i=1,...,N

E[Y ]
|V(i)| and E [Y 2

i

]
< ∞, then (Xt)t and (Xn) are ergodis,irredutibles, aperiodis and positive reurrents.RR n° 1



112 Jonathan Touboul7.2 IID InterationsIn the artile of Friker, Robert et al [21℄, the authors �nd neessary and su�ient onditionsof ergodiity for the system when the variables of interations ηi,j does not depend on thestate of the variable, and are an iid sequene of random variables.Assume that the network is fully onneted, and that the reinitialisation random variables
Yi are exponentially distributed, with parameter λi, and that the interations are the samefor all the neighbors of a neuron (i.e. ηi,j = ηi for all j ∈ V(i).For the fully onneted network, the authors prove that the network is stable if ρ =
maxiρi := maxiE [ηi]E [Yi] < 1.Under this stability ondition, they give an expliit expression for the Laplae transformof the invariant measure of the Markov proess assoiated to this model. Then they provethat if ρ > 1, then the network is not stable, and after a �nite time, only one neuron wouldspike and all the other neuron are "dead" (i.e. will not �re anymore).Then the authors examine the ase of the linear network of size N . Now the randomvariables sent to the neighbors are no more the same, but independant and with the samelaw ηi, whih is exponentially distributed (with parameter µ, and assume that ∀iλi = λ.Then the authors prove that:1. if N is odd then the network is stable if ρ = λ

µ < 1/2 and not stable if ρ > 1/2.2. if N is even, then the network is stable if ρ < 1
2cos(π/(N+1)) and not stable if ρ >

1
2cos(π/(N+1))Note that the proof of ergodiity is based on an adapted version of the seond vetor �eldassoiated to a Markov proess. It was introdued by Malyshev and Menshikov in [28℄, andwill be used by T. Turova to extand those results.
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Appendix AMathematial ComplementsA.1 Hermite FuntionsThe speial funtions used in previous setions are realled below and we refer to [27℄ formost of the results and proofs.De�nition A.1.1. The Hermite funtion Hν is de�ned by :

Hν(z) :=
2νΓ(1

2 )

Γ(1−ν
2 )

φ

(
−ν

2
,
1

2
; z2

)
+

2ν+ 1
2 Γ(− 1

2 )

Γ(−ν
2 )

zφ

(
1 − ν

2
,
3

2
; z2

) (A.1.1)where φ denotes the on�uent hypergeometri funtion (or Kummer's funtion of the �rstkind) and Γ the gamma funtion.
φ(a, b; z) := 1 +

a

b
z +

a(a+ 1)

b(b+ 1)

z2

2!
+
a(a+ 1)(a+ 2)

b(b+ 1)(b + 2)

z3

3!
+ . . .

:=

∞∑

k=0

(a)k

(b)k

zk

k!Proposition A.1.1. Hermite funtion satis�es the following relations :i. The Hermite funtion has the following series representation :
Hν(z) =

1

2Γ(−ν)
∞∑

m=0

(−1)m

m!
Γ

(
m− ν

2

)
(2z)m, |z| <∞ (A.1.2)
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114 Jonathan Touboulii. The following reurrene relations hold :
∂Hν(z)

∂z
= 2νHν−1(z) (A.1.3)

Hν+1(z) = 2zHν(z) − 2νHν−1(z) (A.1.4)iii. Hν(z) and Hν(−z) are fundamental solutions of the ordinary so alled Hermite equa-tion :
f ′′(z) − 2zf ′(x) + 2νf = 0 (A.1.5)Proof. The series expansion of i. omes from the de�nition of the φ funtion.The reurrene relations of ii. ome from the fundamental relation on Γ : Γ(1+z) = zΓ(z)and the series expansion (A.1.2) : on one hand we have

∂Hν(z)

∂z
=

1

2Γ(−ν)
∞∑

m=1

(−1)m

m!
Γ

(
m− ν

2

)
2m(2z)m−1

=
−2

2Γ(−ν)

∞∑

m=0

(−1)m

m!
Γ

(
m+ 1 − ν

2

)
(2z)m hanging m to m+ 1On the other hand,

2νHν−1(z) =
2ν

2Γ(1 − ν)

∞∑

m=0

(−1)m

m!
Γ

(
m− ν + 1

2

)
(2z)mAnd onlude with the relation Γ(1 − ν) = −νΓ(−ν).The seond reurrene relation omes also from those two relations. To hek this relationwe ompare the oe�ient of the power of 2z of the series expansion of the two sides of (A.1.4)and play with the fundamental relation of Γ.Finally, the ordinary di�erential equation (A.1.5) is no more than (A.1.4), writing Hν−1and Hν−2 in terms of derivatives of Hν using (A.1.3).A.2 Convergene of probability measuresTheorem A.2.1. Let (Pn)n≥0 be a sequene of probability measures and let P be a prob-ability measure. We denote Ln(t) (resp L(t)) the Laplae transform of Pn (resp P). Thenthe following equivalene holds:Pn

L−−−−→
n→∞

P ⇔ Ln(t)
pointwise−−−−−−→

n→∞
L(t) ∀t ≥ 0 (A.2.1)

INRIA



Event-driven stohasti network. 115Proof. The diret diretion of the equivalene is obvious, (it's a partiular ase of the fun-tional de�nition of the weak onvergene, using the exponential funtion).Let us prove the onverse. The only thing to prove is the tightness of the sequene, theuniqueness of limit points being lear. To prove the tightness of the sequene, we want tomajor uniformly for a given n0 all the probabilities of the type Pn(A,∞), for all n ≥ n0,with a bound going to 0. To do this we use the following relation between the Laplaetransform and the probabilities of suh events.
1

u

∫ u

0

(1 − Ln(t))dt =
1

u

∫

x≥0

∫ u

0

(1 − e−tx)dt dPn(x)

≥ 1

u

∫

x≥1/u

∫ u

0

(1 − e−tx)dt dPn(x)

≥ 1

u

∫

x≥1/u

∫ u

0

(1 − e−t/u)dt dPn(x)

≥ e−1Pn(
1

u
,∞)To bound uniformly the expression 1

u

∫ u

0
(1 − Ln(t))dt we refer to L. L(t) is ontinuousand L(0) = 1.Let ε > 0 a given real. There is a u suh that u−1

∫ u

0 (1 − L(t))dt < ε
2e . Sine

Ln(t) →
n→∞

L(t) for all t and the integration interval is bounded, Lebesgue's theorem en-sures us that u−1
∫ u

0
(1 − Ln(t))dt < ε

e for all n beyond some n0. Let A := u−1. We have: Pn[0;A] ≥ 1 − ε ∀n ≥ n0.Therefore, (Pn)n is tight.By Prohorov theorem (f for instane [6℄), the sequene is relatively ompat. Let Q be alimit point. Neessarily the Laplae transform of Q is L by the diret sense of the theorem,so Q = P in distribution. So eventually, the sequene is relatively ompat with only onelimit point so the sequene Pn onverges weakly (i.e. in distribution) to P
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