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BP 239 - 54506 Vandœuvre-lès-Nancy - France

E-mail: joris.rehm@loria.fr

Abstract

Many specialised formal methods exist for specifying

and verifying real-time systems. We propose extending a

traditional method in order to model time with a pattern.

In order to carry out verification by model-checking, we

demonstrate a new instance of a pattern for real-time mod-

elling. The former pattern is useful to carry out verifica-

tion by theorem proving. The equivalence with the previ-

ous version is studied, and interesting properties for model-

checking are reviewed. Finally we report on an experimen-

tal case-study.

Keywords. formal method, real-time, model-checking, Event-

B method, pattern

1 Introduction

Despite numerous work on timed systems and sophisti-

cated tools for verifying them, many people still use non-

specialised formal methods to work on their timed specifi-

cations and systems. This is not because the results in this

area are not recognised but because it is complex to mix

together different theories and tools. In many cases real-

time systems arise in specialised areas like distributed com-

puting, for this reason it is a promising approach to extend

an existing specification with some timing properties. The

work presented in this paper starts with this situation: we

can see in [6] a distributed election algorithm, where most

of the problem studied does not require time to be taken into

account. But the final phase of this algorithm uses timing

constraints, so we found it useful to find a practical way to

verify those timing aspects using the same formal method:

the Event-B method. We have already proposed a way to

model the time as a pattern for this method in [10] and we

succeeded in verifying our case-study by theorem proving

in [19]. In this work, here a pattern is an element of method-

ology which explains how it is possible to handle time con-

straints within the Event-B method.

Section 2 of this paper describes the initial real-time pat-

tern from [10] with a light improvement. In addition to the-

orem proving we used model-checking on the case-study

[19], we report here the experience gained in this work.

Models created with this pattern cannot be model-checked

easily because the pattern contains unbounded variables.

For example, it contains the variable now for the current

time and of course the time progresses indefinitely.

We propose in section 3 an equivalent version of this pat-

tern for real-time modelling and checking. This new version

uses only relative values about time and timing. We demon-

strate the equivalence of the two patterns through a proof of

bi-refinement (mutual refinement between the two model).

And we show the properties of this pattern which allow the

finiteness of the states reachable by model-checking. Fi-

nally section 4 reports on the application of our technique

on a case-study, and we conclude.

1.1 Related works

In [1] Abadi and Lamport show a “recipe” to model real-

time specifications without a specialised formal method.

They call this: explicit-time specification. They focus on

worst-case upper and lower bounds on real-time delays.

They use the variable now which is a real number that

never decreases to represent the current time. Transition

of the system can be make the time progress or not. Time-

progression transitions are done by the action called “tick”,

and timing constraints can block the time in order to force

other actions to run. An absolute timer, which can be a

lower-bound or a upper-bound, imposes timing bound on

actions. A volatile δ-timer counts how much time an action

has been continuously enabled. A persistent δ-timer is the

same as a volatile δ-timer without the continuous condition

over the activation.

More generally the application of a formal-method over

a timed system is a rich scientific domain. We can cite

several review papers such as [21, 14]; we can also find
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books on the subject such as [23]. Besides general study

within this domain, many “untimed” formal methods have

extensions to handle real-time. For the (classical) B method

(which is the “parent” of the Event-B method used here) an

extension using duration calculus is described in the thesis

[11] and in the article [12]. Our work here is largely differ-

ent because classical B principally uses operations, which

take a certain amount of time to run, whereas an event is an

instantaneous action. For Action Systems, the time aware

system refinement in [22] and in this approach gives a the-

ory for stepwise refinement with time, actions also take a

certain time. It is also interesting to look at the work con-

cerning CSP and time: a retrospective can be found in [18]

and more complete material in the book [20].

In the same context as our work, i.e. explicit-time speci-

fication and model-checking, we can cite two articles.

In [16] Lamport advocates that it is easy to write and

verify explicit-time specification (here with TLA [15]) with

an ordinary model-checker. This work follows [1] for the

modeling issue and shows a view symmetry over states, and

results are compared with real-time model-checkers for two

examples. The author introduces a symmetry under time-

translation (two states are equivalent iff they are the same

except for absolute time) and use this symmetry with the

model-checker of TLA, namely TLC, with discrete time.

Similarly, Dutertre and Sorea in [13] use SAL to model

and verify an explicit-time specification of a distributed al-

gorithm of election. Here timing constraints are modeled as

a timeout and calendar. The calendar gives the future times

of execution of some events, and this notion is very close

to our pattern for Event-B in [10]. But the authors do not

use a non-deterministic “tick” event which makes the time

progress. Instead the time goes directly from one event ac-

tivation to the next event activation. This model prevent the

use of clocks which vary continuously. Furthermore, this

model allows the authors to use a continuous time with an

ordinary model-checker because no values varies continu-

ously in this model.

We are going to show here a different solution with a par-

ticular event for time-progression and which uses discrete

time.

2 Overview of event-B development by step-

wise refinement

2.1 Event-based modelling

Our event-driven approach [3] is based on the B notation.

It extends the methodological scope of basic concepts in or-

der to take into account the idea of formal models. Roughly

speaking, a formal model is characterised by a (finite) list

x of state variables possibly modified by a (finite) list of

events; an invariant I(x) states properties that must always

be satisfied by the variables x and maintained by the activa-

tion of the events. In the following, we briefly recall defini-

tions and principles of formal models and explain how they

can be managed by tools [5].

Generalised substitutions are borrowed from the B nota-

tion. They provide a means for expressing changes to state

variable values. In its simple form, x := E(x), a gener-

alised substitution looks like an assignment statement. In

this construct, x denotes a vector built on the set of state

variables of the model, and E(x) a vector of expressions.

However, the interpretation we shall give here to this state-

ment is not that of an assignment statement. We interpret

it as a logical simultaneous substitution of each variable of

the vector x by the corresponding expression of the vector

E(x). There exists a more general normal form, denoted

by the construct x :| P (x, x′). This should be read: “x is

modified in such a way that the predicate P (x, x′) holds”,

where x′ denotes the new value of the vector and x denotes

its old value. This is clearly non-deterministic in general.

An event has two main parts: a guard, which is a pred-

icate built on the state variables, and an action, which

is a generalised substitution. An event can take one

of the three normal forms. The first form (evnt =̂
BEGIN x :| P (x, x′) END) shows an event that is

not guarded: it is thus always enabled and is seman-

tically defined by P (x, x′). The second (evt =̂
WHEN G(x) THEN x :| Q(x, x′) END) and third (evt =̂
ANY t WHERE G(t, x) THEN x :| R(x, x′) END)

forms are guarded by a guard which states the necessary

conditions for these events to occur. Such a guard is

represented by WHEN G(x) in the second form, and by

ANY t WHERE G(t, x) (for ∃ t · G(t, x) ) in the third

form. We note that the third form defines a possibly

non-deterministic event where t represents a vector of dis-

tinct local variables. The, so-called, before-after predicate

BA(x, x′) associated with each of the three event types, de-

scribes the event as a logical predicate expressing the rela-

tionship linking the values of the state variables just before

(x) and just after (x′) the “execution” of event evt.

Proof obligations are produced from events in order to

state that an invariant condition I(x) is preserved. Their

general form follows immediately from the definition of the

before-after predicate, BA(x, x′), of each event:

I(x) ∧ BA(x, x′) ⇒ I(x′)

Note that it follows from the two guarded forms of the

events that this obligation is trivially discharged when the

guard of the event is false.

2.2 Model Refinement

The refinement of a formal model allows us to enrich a

model in a step-by-step approach, and is the foundation of
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our correct-by-construction approach. Refinement provides

a way to strengthen invariants and to add details to a model.

It is also used to transform an abstract model into a more

concrete version by modifying the state description. This

is done by extending the list of state variables, by refining

each abstract event into a corresponding concrete version,

and by adding new events. The abstract state variables, x,

and the concrete ones, y, are linked together by means of

a, so-called, gluing invariant J(x, y). A number of proof

obligations ensure that (1) each abstract event is correctly

refined by its corresponding concrete version, (2) each new

event refines skip, (3) no new event takes control for ever,

and (4) relative deadlock-freeness is preserved. Details of

the formulation of these proofs follows.

We suppose that an abstract model AM with variables x

and invariant I(x) is refined by a concrete model CM with

variables y and gluing invariant J(x, y). If BAA(x, x′)
and BAC(y, y′) are respectively the abstract and concrete

before-after predicates of the same event, we have to prove

the following statement, corresponding to proof obligation

(1):

I(x) ∧ J(x, y) ∧ BAC(y, y′)
⇒

∃x′ · (BAA(x, x′) ∧ J(x′, y′))

Now, proof obligation (2) states that BA(y, y′) must re-

fine skip (x′ = x), generating the following simple state-

ment to prove (2):

I(x) ∧ J(x, y) ∧ BA(y, y′) ⇒ J(x, y′)

For the third proof obligation, we formalise the notion of

the system advancing in its execution; a standard technique

is to introduce a variant V (y) that is decreased by each new

event (to guarantee that an abstract step may occur). This

leads to the following statement to prove (3):

I(x) ∧ J(x, y) ∧ BA(y, y′) ⇒ V (y′) < V (y)

Finally, to prove that the concrete model does not intro-

duce additional deadlocks, we give formalisms for reason-

ing about the event guards in the concrete and abstract mod-

els: grds(AM) represents the disjunction of the guards of

the events of the abstract model, and grds(CM) represents

the disjunction of the guards of the events of the concrete

model. Relative deadlock freeness is now easily formalised

as the following proof obligation (4):

I(x) ∧ J(x, y) ∧ grds(AM) ⇒ grds(CM)

To review, refinement guarantees that the set of traces of

the refined model contains (modulo stuttering) the traces of

the resulting model.

P(E) Power set of E

E \ F Set difference

x 7→ y Pair (x, y)
E → F Set of total functions from E to F

dom(f) Domain of f

f ; g Forward composition of function

f ⊳− {x 7→ y} Overriding with (x, y) over f

x := y x becomes equal to y

x :∈ E x becomes element of E

Figure 1. Event-B Notations used in this pa-

per

Fig. 1 shows notations, from the B-method, used in this

paper. Most of them are classical. The ⊳− operator can be

defined by r⊳−s =̂ {x 7→ y| if x ∈ dom(s) then x 7→ y ∈ s

else x 7→ y ∈ r}. This operator gives a convenient way

to change only a subset of the mappings of a relation. To

change only one mapping of a function we can use: f(x) :=
E which is defined by f := (f \ {x 7→ f(x)}) ∪ {x 7→ E}.

The two last operators := and :∈ define a substitution and

can be used only in the action part of an event.

For more details of the event-B method see [9, 7], and for

the B notation see [2]. Tools can be found at the Event-B

website1.

3 Real-Time Pattern

Our explicit-time pattern [10] for real-time system is

based on an event-calendar. Let evts be the finite set of

events for one model. And let the variables now and at

(stands for Activation Times). The pattern variable now

represents the current real-time, here we have a discrete

time: now ∈ N. And at is the event-calendar. In this

pattern, an event-calendar is a function that gives for ev-

ery element of evts, a set of activation times in the future:

at ∈ evts → P(N). Therefore, we have in invariant:

∀e·(e ∈ evts ∧ at(e) 6= ∅ ⇒ now ≤ min(at(e)))

Fig. 2 gives the pattern which shows how to write an event-

B model of a real-time system. Each event of the model will

refine one (or maybe several) event(s) of the pattern. In [10],

which originally defines the pattern, a possible specific im-

provement is given: we can index different sets by a process

or a name. As you can see, we decided here to systemati-

cally index the at set by the corresponding event, which will

use this at set. We think this improvement should become

standard as it provides a crucial information for verifying

and validating a model.

1http://www.event-b.org
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INITIALISATION =̂
BEGIN

act1: now := 0
act2: at :∈ evts → P(N)

END

add =̂
ANY

e

ntime

WHERE

grd1: e ∈ dom(at)
grd2: now < ntime

THEN

act1: at(e) := at(e) ∪ {ntime}
END

use =̂
ANY

e

WHERE

grd1: e ∈ dom(at)
grd2: now ∈ at(e)

THEN

act1: at(e) := at(e) \ {now}
END

tic =̂
ANY

n now

WHERE

grd1: now < n now

grd2: ∀e·e ∈ dom(at) ∧ at(e) 6= ∅

⇒n now ≤ min(at(e))
THEN

act1: now := n now

END

Figure 2. Real-time pattern for Event-B.

The pattern has three aspects and of course one initiali-

sation. The event add shows how to add a new future acti-

vation time ntime in the calendar of event e . The event use

shows how to activate an event e, at the current time now,

if e has been scheduled to this current time (now ∈ at(e));
in this case we remove the current time from the calendar of

e. Finally the event tic represents the time progression, we

increase the current time at least to now + 1 and at most to

the smallest time of the calendar (if any).

4 Real-Time Pattern with Relative Timing

Most, if not all, non trivial real-time systems are cyclic,

or are composed by cyclic elements. Their behaviours do

not depend on an absolute timing but only on relative delays

between events. Therefore, for model-checking, it is crucial

to exploit this property. With timed automata [8] (and so for

many real-time model-checkers) the model relies on clocks

which can be reset. Therefore we can easily specify a fi-

nite model. But in explicit-time models (see section 1.1) we

use a time model more close to an absolute interpretation

of time. This interpretation is natural for verification by

theorem proving but inefficient for direct model-checking

because many variables of the model increase indefinitely.

The article [16] uses three kinds of timer variables: count-

down timer, count-up timer, and expiration timer. The arti-

cle [13] uses timeout and event-calendar. In our approach

we use the event-calendar at defined in the previous section.

The expiration timer, timeout and event-calendar are quite

similar, in the sense that they refere to a future absolute

time. We consider here the (variable) function at, which

has already been formally defined as an event-calendar.

We show here how to refine a model with absolute timing

to a model with relative timing and we show the equivalence

(in sense of bi-refinement) of the two models.

Firstly now is rewritten to 0. Secondly at is refined to

rat (represents the Relative Activation Time) with the in-

variant: rat ∈ evts → P(N), and dom(at) = dom(rat) =
evts, and:

∀e·

(
e ∈ dom(at)⇒

(∀x·x ∈ rat(e) ⇔ x + now ∈ at(e))

)

As you can see the two variables now and at of the ab-

stract model disappear and the new refined model only has

rat as variable. We can see in this invariant that the relation

between abstract and concrete variables is stated, we call

this a gluing invariant. Instead of letting the current time

now progress to a event activation time, we decrease all ac-

tivation times to zero. As in the previous abstract pattern we

can add new timeout in the future and use it when the time

comes (it is when one timeout of rat is equal to 0). In Fig.

3 we can see the formal pattern refined accordingly. All the

proofs for the invariant and the refinement were done with

the Rodin tool [4], we found the proof easy and only a few
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interactive steps are needed. The refinement proof is done

in two directions to show the equivalence.

In event add we can see in the witness that the absolute

new timeout ntime is equal to ntimer+now, with ntimer

the relative new timeout. In the witness one is allowed to

use old variables of the abstract event in order to prove the

refinement. Therefore we can see that the concrete version

of the event add shows the same behaviour as the concrete

version if we shift the value of the added timeout by now.

For the event use it is easy to see that 0 ∈ rat(e) is

equivalent to now ∈ at(e) as the values of rat are the value

of at shifted by now, as stated in the gluing invariant.

Finally for the equivalence of the event tic we need to

show that increasing the variable now (not after the first

value of at) is equivalent to decreasing all the values in-

side rat (not below zero). In the abstract version, the local

variable n now is the new increased value of now; this lo-

cal variable disappears and is replaced by now + shift.

The variable shift is a new local variable which is the rela-

tive value of time progression and this value cannot be more

than the smallest value of rat. We also defined an auxiliary

function as a local variable of this event: the function m is

used to decreased by shift the values inside a set given by

the parameter of m. In order to decrease all the timeouts of

the relative event-calendar rat, we replace rat by the for-

ward composition of rat and m. Intuitively the equivalence

seems to be correct and to verify this with the proof assistant

we just needed to instantiate correctly the gluing invariant

and to apply the definition of m.

Of course everything works here because we use discret

time. We must consider very carefully the choice between

discrete or continuous time modelling: a discrete time adds

a synchronisation between transitions. Consequently, some

subtle error of interleaving may be not revealed by the

model checking. If the model-checker requires to instanti-

ate parameters, and if the values of those parameters control

the possible interleaving between events, then one has to

choose parameters carefully in order to not forbid important

traces. Of course, if you use a parametric model-checker or

do verification by theorem-proving, then parameters of the

model can be left non instantiated (with maybe some ab-

stract conditions between them). In this case, discrete time

is not a big issue because the real-time timing value can be

as high as we want. And if the timing betwen event activa-

tions is as long as we want, we can split the time as small as

we want, but not indefinitely.

For continuous time, model-checking with a non-

specialised model-checker becomes difficult. The continu-

ity of the time domain leads to an infinite number of states,

for example see how [13] deals with this problem employ-

ing a classical model-checker.

INITIALISATION =̂
BEGIN

act1: rat :∈ evts → P(N)
END

add =̂
ANY

e

ntimer

WHERE

grd1: e ∈ dom(rat)
grd2: 0 < ntimer

WITH

ntime: ntime = now + ntimer

THEN

act1: rat(e) := rat(e) ∪ {ntimer}
END

use =̂
ANY

e

WHERE

grd1: e ∈ dom(rat)
grd2: 0 ∈ rat(e)

THEN

act1: rat(e) := rat(e) \ {0}
END

tic =̂
ANY

shift

m

WHERE

grd1: 0 < shift

grd2: ∀e·

(
e ∈ dom(rat) ∧ rat(e) 6= ∅

⇒shift ≤ min(rat(e))

)

grd3: m ∈ ran(rat) → P(N)

grd4: ∀s·

(
s ∈ P(N)
⇒m(s) = {x|x + shift ∈ s}

)

WITH

n now : n now = now + shift

THEN

act1 : rat := rat;m
END

Figure 3. Refined real-time pattern for Event-
B with relative timing.
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init =̂
BEGIN

act2: rat := { off 7→ ∅ }
act3: light on := FALSE

END

switch on =̂
ANY

d

WHERE

grd1: d∈ 9.. 11

grd2: light on=FALSE

WHERE

act1: light on:= TRUE

act2: rat(off) := rat(off) ∪ {d}
END

switch off =̂
WHEN

grd1: 0 ∈ rat(off)

THEN

act1: rat(off) := rat(off) \ {0}
act2: light on:= FALSE

END

tic =̂
ANY

shift

WHERE

grd1: 0 < shift

grd2:∀ e·e∈dom(rat) ∧ rat(e)6= ∅⇒shift≤min(rat(e))

THEN

act1: rat(off) := { x| x+shift∈ rat(off)}
END

Figure 4. Events of the example model

4.1 Example: a timer for light switch

Before the case study, we can consider an example with

a light and a timer which switch off this light. Here we have

only one timed event: evts = {off}. An user can push

the button of the light and then we observe the switch on

event. Some delay after the light automatically turn off with

the event switch off. Thoses events can be seen in Fig. 4.

The variables are rat from the pattern and light on for the

state of the light.

The event switch on observes the change on the system

when somebody push the button, is so the light turn on (see

act1) and a timer is launched (see act2) to switch off the

light in 10±1 units of time. This event switch on refines the

event add of the pattern. The added value d to the variable

rat is choosen in the interval 9 ..11 to represent the possible

inaccuracy of the timer. In fact, in this simple example, act2

can be replaced by

act2: rat(off) := {d}

Since we can deduce rat(off) = ∅ from the guard grd2 of

this event and the invariant inv3.

The event switch off is triggered 10 units (more or less

1) of time after the switch on event. This event refines the

event use of the pattern. In the same way as previously, the

line act1 of the guard can be simplified by

act1: rat(off) := ∅

Finally the event tic is given in a less general form.

While evts is a finite set, this formalisation can always be

used.

The invariants of this model are:

inv1: rat ∈ evts → P(N)

inv2: light on ∈ BOOL

inv3: light on = FALSE ⇔ rat(off) = ∅

inv4: card(rat(off)) ≤ 1

The invariant inv1 comes from the pattern; inv2 gives the

type for light on the state of the light, BOOL is the set of

boolean; inv3 states that the calendar for the event off is

empty iff the light is off; and with inv4 we can only have

one value in the calendar of off .

4.2 Model-checking

In order to model-check our model we have some final

considerations. In this work we did experimentation with

ProB [17].

In the section 4 we give a general form of the substitution

in the event tic. ProB can evaluate this general form but

slowly, therefore we recommend to use the form given in

the previous section. This change preserves the equivalence

between the two pattern while for the next considerations

the pattern for model-checking is only a refinement of the

original pattern.

If all values of the range of rat (a set of subset of N)

are empty, the value of the variable shift of the event tic is

not limited and the model-checker may loop while finding

all possible values of the variable shift. But, in this case,

the substitution done by the tic event does not have an effect

because the sets of the range of rat are empty. In other word

this activation of the event tic represent the progression of

the time without effect on the studied system. In the original

pattern this progression was represented by the unlimited

incrementation of the variable now of the model.

We have, so far, 4 solutions to this problem.
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1. We can add the folowing guard to the event tic:

grd5: ∃x·x ∈ ran(rat) ∧ x 6= ∅

This guard just block the event in the problematic case.

2. Another possible solution is to limite the size of the

variable shift by a constant c:

grd5’: shift ≤ c

3. As a sub-case of solution 2 we can choose c = 1. This

value limits the number of tic transitions studied by the

model-checker.

4. As in [13] we can also take shift = min(rat(e))
where e ∈ dom(rat) and rat(e) 6= ∅. In this way

the time jumps directly to the next scheduled event ac-

tivation and of course the event tic is blocked when

rat(e) = ∅ for all e. This solution works if all events

are scheduled in the calendar, but if we still have event

not constraints by real-time they are not taked into

acount by the progession of the time.

Now if we want to verify, by model-checking, a model

written with this pattern then the values inside the co-

domain of rat need to be finite. A good way to respect

this is to bound every value added to rat. Therefore, we

need the constraint:

grd3: ntimer ≤ m

where m ∈ N, which must hold in the guard of the event

add. Then we have:

∀e·e ∈ dom(rat) ⇒ (∀x·x ∈ rat(e) ⇒ x ≤ m)

and by the gluing invariant between rat and at:

∀e·e ∈ dom(at) ⇒ (∀x·x ∈ at(e) ⇒ x − now ≤ m)

Finally all the values of the co-domain of rat are bounded

naturals and while evts is a finite set (see Section 2) then

rat has a finite number of values and a finite number of

transitions can be obtained with the pattern event use. We

also learn that, from the perspective of the first pattern, the

system has a finite number of states if it uses only the timing

values (of at) inside a “time window” from now to now +
m. In other words if the system is relative to the current

time, and does not refer to an absolute time.

We see also that if nothing reacts to the time in the sys-

tem then we do not care about the time progression. This

real-time pattern respects this because the tic event has an

effect on the variables only if ∃x·x ∈ ran(rat) ∧ x 6= ∅.

The previous version of tic does not respect this because it

always increases the value of now.

Figure 5. Available events for the devices in

the RCP case study

5 Case study: IEEE 1394 Root Contention

Protocol

We have applied our method, with success, on the IEEE

1394 Root Contention Protocol (RCP). In a previous paper

[19] we have created a model of the RCP and verified it by

theorem proving. We describe here the model-checking of

this case-study with the method of this paper. The RCP is an

election procedure between two devices with asynchronous

communication. In order to elect a device, signals are sent

on a bidirectional channel. Of course with asynchronous

communication, signals can be sent and received in almost

the same time. If a device receives a signal and has not yet

sent a signal then it is elected. In the case where the signals

from the two devices cross each other then it is not possible

to elect a device, we call this situation the “contention”. To

resolve the contention, device choses randomly a delay be-

tween a short (st) and a long (lt), and re-send a signal after

that delay. The development of RCP consists of 4 models

link by 3 refinements in this order: m0, m1, m2,and m3.

Each model of the development introduces new details: m0

specifies we want an election between two devices; m1 in-

troduces device-states and communication-channels (with-

out timing); m2 adds the propagation time (prop) of signals

over channels; m3 adds a randomly chosen waiting delay.

In Fig. 5 we can see possible event activation of the

model m1 labelled with the name of the corresponding

events. In this figure only the events relevent for the two de-

vices appear, in particular we also have in the model events

which make signal progressing on the wires between de-

vices. The device can send a signal and accept it. If the

contention appears they start by sleep and wake up after

the delay with either awake send or awake accept. Event-
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names start with a or b to express which device observes the

event. The possible traces present a cycle with two sleep

events the sleep event for the device a) followed by two

awake send event the awake send event for the device a).

If we use the real-time pattern (section 2) this cycle is un-

folded by the absolute time. If we use the real-time pattern

with relative timing (section 3) this cycle is still present in

the states reached by the model-checker.

In [19] we show, by theorem proving, safety properties of

this model. The parameters of the model (called constants

in Event-B) are prop, st, and lt and verify the following

axioms:

st ≥ prop × 2

and

lt ≥ prop × 2 + st − 1

We showed in particular that:

∀x, y · x ∈ at(a awake) ∧ y ∈ at(b awake) ⇒
if a sleept 6= b sleept then prop ≤ |x − y|

else prop > |x − y|

With at(a awake) (respectively at(b awake)) the cal-

endar of the events a awake accept and a awake send

(b awake accept and b awake send), which expresses

when the device a or b will wake up after the waiting time

and re-try to send a signal or accept a signal; and with

a sleep (respectively b sleep) the chosen delay for a (b).

This part of the invariant shows that if the two devices

choose a different delay to re-send a signal then the prop-

agation time of signals is smaller than the delay between

the re-activation of the devices. Therefore the first device to

wake up will have enough time to transmit its signal to the

other device, and the protocol will work. Furthermore no-

tice that this formula does not change if we would use rat

instead of at because we take the difference between two

values of at(a awake) or at(b awake).
In [19], we use an another form for the calendar at or

rat: instead we use several sub-sets of N specialised to our

needs instead of the general function at. We call these sub-

sets “at sets”. For example, we use here at(a awake) but

in [19] we use at a awake. It is possible because with the

B method we can employ data refinement to use a new ver-

sion of a variable. Of course the equivalence between the

abstract and concrete variable must be proven. Notice that

several Event-B events can use (refine the event use of the

pattern) one same event e in the sens of a value inside an

at set (e ∈ dom(at) if we follow stricly the pattern). For

example: the at set at a awake can be used by the events

a awake send or a awake accept.

Verification with the B Method is traditionally done by

theorem proving, but recently a model-checker called ProB

[17] became available. Therefore it is possible to check this

case-study with our method. But with ProB it is not possible

prop reachable states

1 25

2 51

3 81

4 117

5 159

6 207

Figure 6. Number of reachable states: m2

prop st lt reachable states

1 2 3 54

2 4 7 186

3 6 11 376

4 8 15 624

5 10 19 930

6 12 23 1294

Figure 7. Number of reachable states: m3

to do parametric model-checking, therefore we need to give

a value (which verifies all hypotheses) to prop, st, and lt.

We rewrote the model from the first pattern with absolute

timing to the second pattern with relative timing. Finally

we were able to check all models (invariant included) with

ProB, Fig 6 and 7 give the reachable number of states for

the model m2 and m3, and the used valuation of constants.

From [19] we can extract parts of the invariant of the

models which shows that added values to the calendar have

a bounded difference with the current time. As the sys-

tem is symmetrical we show only invariants concerning the

device a. As at(a pass) represents the time of the re-

ception of a signal, and signals take the propagation time

prop to progress in the channel, then this set is bound by

time + prop:

∀x·(x ∈ at(a pass) ⇒ x ≤ now + prop)
And we have a upper bound for the set at(a awake):

∀x·(x ∈ at(a awake) ⇒ x ≤ now + a sleept)
We can easly rewrite those formula with at to a formula

with rat, we just need to remove now.

Therefore, we could verify the invariant of the four mod-

els (m0 and m1 are trivially checked) over reachable states.

It is also possible to check the properties of the constants

st and lt, if the properties are not well chosen then we can

find counter-examples with the help of the invariant. In this

way the model-checker is very useful to find errors before

the proof process (while the proof verifies the models for

any parameter values).

6 Conclusion

We have presented an approach to model and check real-

time systems. Our approach can be used to check explicit

8



timed specifications with a generic model-checker.

An explicit timed specification used a non specialised

formal method with ordinary variables to represent the time.

The papers [16, 13] show how to model-check this kind of

system with a variable call now (or time) which model the

current time. We have proposed a similar method in [10]

but for theorem proving, and here we propose a new ver-

sion of this pattern. The two methods and our later pattern

differ on the formal language used, the discrete or continu-

ous time, and with the means of expressing time-constraints

(timer, timeout or event calendar). Here we use the event-B

formal method, a discrete time, event-calendar and the ProB

model-checker [17]. The two methods [16, 13] use a vari-

able (now or time) for the current time, and we show that if

we remove this variable (and modify all time-constraints of

the studied model to keep the behaviour) then the model-

checking is easier. This kind of model-checking works

nicely if one uses discrete time as show in [16] (where the

symmetry under time translation simplifies the checking by

adding a relation of equivalence over states) or with a con-

tinuous time but without continuous dynamics as in [13].

As most real-time systems do not depend on absolute

timing, it is essential to use this property. We proposed an

equivalent version of our pattern [10], this version allows

one to model-check systems which depend only on timings

relative to the current time. The proof of equivalence is

shown and we report the use of the Rodin software [4] as

a proof assistant in order to formally verify this proof. We

explain what properties over the models written with our

pattern are required to be able to use a model-checker over

those models. With a discrete time those properties directly

lead to a finite number of states (of course, if other untimed

elements of the model are also model-checkable).

Our approach is suitable for model-checking models

with our pattern of time and has been successfully applied

to the case study describes in [19]. We will continue to ex-

plore how this idea can enhance verification of models, as

in [16, 13]. For the use with the Event-B method, we pro-

pose to add a plug-in to the software Rodin [4] in order to

automatically translate the models written with our formal

pattern (which is suited to theorem proving).
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