
HAL Id: hal-00218338
https://hal.archives-ouvertes.fr/hal-00218338v2

Submitted on 8 Sep 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

SimpleMKL
Alain Rakotomamonjy, Francis Bach, Stephane Canu, Yves Grandvalet

To cite this version:
Alain Rakotomamonjy, Francis Bach, Stephane Canu, Yves Grandvalet. SimpleMKL. Journal of
Machine Learning Research, Microtome Publishing, 2008, 9, pp.2491-2521. �hal-00218338v2�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/50227849?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr/hal-00218338v2
https://hal.archives-ouvertes.fr

Journal of Machine Learning Research X (2008) 1-34 Submitted 01/08; Revised 08/08; Published XX/XX

SimpleMKL

Alain Rakotomamonjy alain.rakotomamonjy@insa-rouen.fr

LITIS EA 4108
Université de Rouen
76800 Saint Etienne du Rouvray, France

Francis R. Bach francis.bach@mines.org

INRIA - WILLOW Project - Team
Laboratoire d’Informatique de l’Ecole Normale Supérieure(CNRS/ENS/INRIA UMR 8548)
45, Rue d’Ulm, 75230 Paris, France

Stéphane Canu stephane.canu@insa-rouen.fr

LITIS EA 4108
INSA de Rouen
76801 Saint Etienne du Rouvray, France

Yves Grandvalet yves.grandvalet@utc.fr

Idiap Research Institute, Centre du Parc, 1920 Martigny, Switzerland

Heudiasyc, CNRS/Université de Technologie de Compiègne (UMR 6599), 60205 Compiègne, France

Editor: Nello Cristianini

Abstract

Multiple kernel learning (MKL) aims at simultaneously learning a kernel and the associ-
ated predictor in supervised learning settings. For the support vector machine, an efficient
and general multiple kernel learning algorithm, based on semi-infinite linear progamming,
has been recently proposed. This approach has opened new perspectives since it makes
MKL tractable for large-scale problems, by iteratively using existing support vector ma-
chine code. However, it turns out that this iterative algorithm needs numerous iterations
for converging towards a reasonable solution. In this paper, we address the MKL prob-
lem through a weighted 2-norm regularization formulation with an additional constraint
on the weights that encourages sparse kernel combinations. Apart from learning the com-
bination, we solve a standard SVM optimization problem, where the kernel is defined as
a linear combination of multiple kernels. We propose an algorithm, named SimpleMKL,
for solving this MKL problem and provide a new insight on MKL algorithms based on
mixed-norm regularization by showing that the two approaches are equivalent. We show
how SimpleMKL can be applied beyond binary classification, for problems like regression,
clustering (one-class classification) or multiclass classification. Experimental results show
that the proposed algorithm converges rapidly and that its efficiency compares favorably
to other MKL algorithms. Finally, we illustrate the usefulness of MKL for some regres-
sors based on wavelet kernels and on some model selection problems related to multiclass
classification problems.

c©2008 Rakotomamonjy et al..

Rakotomamonjy et al.

1. Introduction

During the last few years, kernel methods, such as support vector machines (SVM) have
proved to be efficient tools for solving learning problems like classification or regression
(Schölkopf and Smola, 2001). For such tasks, the performance of the learning algorithm
strongly depends on the data representation. In kernel methods, the data representation
is implicitly chosen through the so-called kernel K(x, x′). This kernel actually plays two
roles: it defines the similarity between two examples x and x′, while defining an appropriate
regularization term for the learning problem.

Let {xi, yi}
ℓ
i=1 be the learning set, where xi belongs to some input space X and yi is the

target value for pattern xi. For kernel algorithms, the solution of the learning problem is
of the form

f(x) =

ℓ
∑

i=1

α⋆
iK(x, xi) + b⋆, (1)

where α⋆
i and b⋆ are some coefficients to be learned from examples, while K(·, ·) is a given

positive definite kernel associated with a reproducing kernel Hilbert space (RKHS) H.
In some situations, a machine learning practitioner may be interested in more flexible

models. Recent applications have shown that using multiple kernels instead of a single
one can enhance the interpretability of the decision function and improve performances
(Lanckriet et al., 2004a). In such cases, a convenient approach is to consider that the kernel
K(x, x′) is actually a convex combination of basis kernels:

K(x, x′) =

M
∑

m=1

dmKm(x, x′) , with dm ≥ 0 ,

M
∑

m=1

dm = 1 ,

where M is the total number of kernels. Each basis kernel Km may either use the full set of
variables describing x or subsets of variables stemming from different data sources (Lanck-
riet et al., 2004a). Alternatively, the kernels Km can simply be classical kernels (such as
Gaussian kernels) with different parameters. Within this framework, the problem of data
representation through the kernel is then transferred to the choice of weights dm.

Learning both the coefficients αi and the weights dm in a single optimization problem is
known as the multiple kernel learning (MKL) problem. For binary classification, the MKL
problem has been introduced by Lanckriet et al. (2004b), resulting in a quadratically con-
strained quadratic programming problem that becomes rapidly intractable as the number
of learning examples or kernels become large.

What makes this problem difficult is that it is actually a convex but non-smooth min-
imization problem. Indeed, Bach et al. (2004a) have shown that the MKL formulation of
Lanckriet et al. (2004b) is actually the dual of a SVM problem in which the weight vector
has been regularized according to a mixed (ℓ2, ℓ1)-norm instead of the classical squared
ℓ2-norm. Bach et al. (2004a) have considered a smoothed version of the problem for which
they proposed a SMO-like algorithm that enables to tackle medium-scale problems.

Sonnenburg et al. (2006) reformulate the MKL problem of Lanckriet et al. (2004b) as
a semi-infinite linear program (SILP). The advantage of the latter formulation is that the
algorithm addresses the problem by iteratively solving a classical SVM problem with a single
kernel, for which many efficient toolboxes exist (Vishwanathan et al., 2003, Loosli et al.,

2

SimpleMKL

2005, Chang and Lin, 2001), and a linear program whose number of constraints increases
along with iterations. A very nice feature of this algorithm is that is can be extended to
a large class of convex loss functions. For instance, Zien and Ong (2007) have proposed a
multiclass MKL algorithm based on similar ideas.

In this paper, we present another formulation of the multiple learning problem. We first
depart from the primal formulation proposed by Bach et al. (2004a) and further used by
Bach et al. (2004b) and Sonnenburg et al. (2006). Indeed, we replace the mixed-norm regu-
larization by a weighted ℓ2-norm regularization, where the sparsity of the linear combination
of kernels is controlled by a ℓ1-norm constraint on the kernel weights. This new formula-
tion of MKL leads to a smooth and convex optimization problem. By using a variational
formulation of the mixed-norm regularization, we show that our formulation is equivalent
to the ones of Lanckriet et al. (2004b), Bach et al. (2004a) and Sonnenburg et al. (2006).

The main contribution of this paper is to propose an efficient algorithm, named Sim-
pleMKL, for solving the MKL problem, through a primal formulation involving a weighted
ℓ2-norm regularization. Indeed, our algorithm is simple, essentially based on a gradient
descent on the SVM objective value. We iteratively determine the combination of kernels
by a gradient descent wrapping a standard SVM solver, which is SimpleSVM in our case.
Our scheme is similar to the one of Sonnenburg et al. (2006), and both algorithms minimize
the same objective function. However, they differ in that we use reduced gradient descent in
the primal, whereas Sonnenburg et al.’s SILP relies on cutting planes. We will empirically
show that our optimization strategy is more efficient, with new evidences confirming the
preliminary results reported in Rakotomamonjy et al. (2007).

Then, extensions of SimpleMKL to other supervised learning problems such as regression
SVM, one-class SVM or multiclass SVM problems based on pairwise coupling are proposed.
Although it is not the main purpose of the paper, we will also discuss the applicability of
our approach to general convex loss functions.

This paper also presents several illustrations of the usefulness of our algorithm. For
instance, in addition to the empirical efficiency comparison, we also show, in a SVM regres-
sion problem involving wavelet kernels, that automatic learning of the kernels leads to far
better performances. Then we depict how our MKL algorithm behaves on some multiclass
problems.

The paper is organized as follows. Section 2 presents the functional settings of our MKL
problem and its formulation. Details on the algorithm and discussion of convergence and
computational complexity are given in Section 3. Extensions of our algorithm to other
SVM problems are discussed in Section 4 while experimental results dealing with computa-
tional complexity or with comparison with other model selection methods are presented in
Section 5.

A SimpleMKL toolbox based on Matlab code is available at http://www.mloss.org.
This toolbox is an extension of our SVM-KM toolbox (Canu et al., 2003).

2. Multiple Kernel Learning Framework

In this section, we present our MKL formulation and derive its dual. In the sequel, i
and j are indices on examples, wheras m is the kernel index. In order to lighten notations,

3

Rakotomamonjy et al.

we omit to specify that summations on i and j go from 1 to ℓ, and that summations on m
go from 1 to M .

2.1 Functional framework

Before entering into the details of the MKL optimization problem, we first present the
functional framework adopted for multiple kernel learning. Assume Km,m = 1, ...,M are
M positive definite kernels on the same input space X , each of them being associated with
an RKHS Hm endowed with an inner product 〈·, ·〉m. For any m, let dm be a non-negative
coefficient and H′

m be the Hilbert space derived from Hm as follows:

H′
m = {f | f ∈ Hm :

‖f‖Hm

dm
<∞} ,

endowed with the inner product

〈f, g〉H′

m
=

1

dm
〈f, g〉m .

In this paper, we use the convention that x
0 = 0 if x = 0 and ∞ otherwise. This means

that, if dm = 0 then a function f belongs to the Hilbert space H′
m only if f = 0 ∈ Hm. In

such a case, H′
m is restricted to the null element of Hm.

Within this framework, H′
m is a RKHS with kernel K(x, x′) = dm Km(x, x′) since

∀f ∈ H′
m ⊆ Hm , f(x) = 〈f(·),Km(x, ·)〉m

=
1

dm
〈f(·), dmKm(x, ·)〉m

= 〈f(·), dmKm(x, ·)〉H′

m
.

Now, if we define H as the direct sum of the spaces H′
m, i.e.,

H =
M
⊕

m=1

H′
m ,

then, a classical result on RKHS (Aronszajn, 1950) says that H is a RKHS of kernel

K(x, x′) =
M
∑

m=1

dmKm(x, x′) .

Owing to this simple construction, we have built a RKHS H for which any function is a
sum of functions belonging to Hm. In our framework, MKL aims at determining the set of
coefficients {dm} within the learning process of the decision function. The multiple kernel
learning problem can thus be envisioned as learning a predictor belonging to an adaptive
hypothesis space endowed with an adaptive inner product. The forthcoming sections explain
how we solve this problem.

4

SimpleMKL

2.2 Multiple kernel learning primal problem

In the SVM methodology, the decision function is of the form given in equation (1),
where the optimal parameters α⋆

i and b⋆ are obtained by solving the dual of the following
optimization problem:

min
f,b,ξ

1

2
‖f‖2H + C

∑

i

ξi

s.t. yi(f(xi) + b) ≥ 1− ξi ∀i
ξi ≥ 0 ∀i .

In the MKL framework, one looks for a decision function of the form f(x) + b =
∑

m fm(x) + b, where each function fm belongs to a different RKHS Hm associated with
a kernel Km. According to the above functional framework and inspired by the multiple
smoothing splines framework of Wahba (1990, chap. 10), we propose to address the MKL
SVM problem by solving the following convex problem (see proof in appendix), which we
will be referred to as the primal MKL problem:

min
{fm},b,ξ,d

1

2

∑

m

1

dm
‖fm‖

2
Hm

+C
∑

i

ξi

s.t. yi

∑

m

fm(xi) + yib ≥ 1− ξi ∀i

ξi ≥ 0 ∀i
∑

m

dm = 1 , dm ≥ 0 ∀m ,

(2)

where each dm controls the squared norm of fm in the objective function.
The smaller dm is, the smoother fm (as measured by ‖fm‖Hm

) should be. When dm = 0,
‖fm‖Hm

has also to be equal to zero to yield a finite objective value. The ℓ1-norm constraint
on the vector d is a sparsity constraint that will force some dm to be zero, thus encouraging
sparse basis kernel expansions.

2.3 Connections with mixed-norm regularization formulation of MKL

The MKL formulation introduced by Bach et al. (2004a) and further developed by Son-
nenburg et al. (2006) consists in solving an optimization problem expressed in a functional
form as

min
{f},b,ξ

1

2

(

∑

m

‖fm‖Hm

)2

+ C
∑

i

ξi

s.t. yi

∑

m

fm(xi) + yib ≥ 1− ξi ∀i

ξi ≥ 0 ∀i.

(3)

Note that the objective function of this problem is not smooth since ‖fm‖Hm
is not differen-

tiable at fm = 0. However, what makes this formulation interesting is that the mixed-norm
penalization of f =

∑

m fm is a soft-thresholding penalizer that leads to a sparse solution,
for which the algorithm performs kernel selection (Bach, 2008). We have stated in the
previous section that our problem should also lead to sparse solutions. In the following, we
show that the formulations (2) and (3) are equivalent.

5

Rakotomamonjy et al.

For this purpose, we simply show that the variational formulation of the mixed-norm
regularization is equal to the weighted 2-norm regularization, (which is a particular case of a
more general equivalence proposed by Micchelli and Pontil (2005)) i.e., by Cauchy-Schwartz
inequality, for any vector d on the simplex:

(

∑

m

‖fm‖Hm

)2

=

(

∑

m

‖fm‖Hm

d
1/2
m

d1/2
m

)2

6

(

∑

m

‖fm‖
2
Hm

dm

)(

∑

m

dm

)

6
∑

m

‖fm‖
2
Hm

dm
,

where equality is met when d
1/2
m is proportional to ‖fm‖Hm

/d
1/2
m , that is:

dm =
‖fm‖Hm
∑

q

‖fq‖Hq

, (4)

which leads to

min
dm≥0,

P

m dm=1

∑

m

‖fm‖
2
Hm

dm
=

(

∑

m

‖fm‖Hm

)2

. (5)

Hence, owing to this variational formulation, the non-smooth mixed-norm objective
function of problem (3) has been turned into a smooth objective function in problem (2).
Although the number of variables has increased, we will see that this problem can be solved
more efficiently.

2.4 The MKL dual problem

The dual problem is a key point for deriving MKL algorithms and for studying their
convergence properties. Since our primal problem (2) is equivalent to the one of Bach et al.
(2004a), they lead to the same dual. However, our primal formulation being convex and
differentiable, it provides a simple derivation of the dual, that does not use conic duality.

The Lagrangian of problem (2) is

L =
1

2

∑

m

1

dm
‖fm‖

2
Hm

+ C
∑

i

ξi +
∑

i

αi

(

1− ξi − yi

∑

m

fm(xi)− yib

)

−
∑

i

νiξi

+λ

(

∑

m

dm − 1

)

−
∑

m

ηmdm , (6)

where αi and νi are the Lagrange multipliers of the constraints related to the usual SVM
problem, whereas λ and ηm are associated to the constraints on dm. When setting to zero

6

SimpleMKL

the gradient of the Lagrangian with respect to the primal variables, we get the following

(a)
1

dm
fm(·) =

∑

i

αiyiKm(·, xi) , ∀m

(b)
∑

i

αiyi = 0

(c) C − αi − νi = 0 , ∀i

(d) −
1

2

‖fm‖
2
Hm

d2
m

+ λ− ηm = 0 , ∀m .

(7)

We note again here that fm(·) has to go to 0 if the coefficient dm vanishes. Plugging these
optimality conditions in the Lagrangian gives the dual problem

max
αi,λ

∑

i

αi − λ

s.t.
∑

i

αiyi = 0

0 ≤ αi ≤ C ∀i
1

2

∑

i,j

αiαjyiyjKm(xi, xj) ≤ λ , ∀m .

(8)

This dual problem1 is difficult to optimize due to the last constraint. This constraint
may be moved to the objective function, but then, the latter becomes non-differentiable
causing new difficulties (Bach et al., 2004a). Hence, in the forthcoming section, we propose
an approach based on the minimization of the primal. In this framework, we benefit from
differentiability which allows for an efficient derivation of an approximate primal solution,
whose accuracy will be monitored by the duality gap.

3. Algorithm for solving the MKL primal problem

One possible approach for solving problem (2) is to use the alternate optimization algo-
rithm applied by Grandvalet and Canu (1999, 2003) in another context. In the first step,
problem (2) is optimized with respect to fm, b and ξ, with d fixed. Then, in the second
step, the weight vector d is updated to decrease the objective function of problem (2), with
fm, b and ξ being fixed. In Section 2.3, we showed that the second step can be carried out
in closed form. However, this approach lacks convergence guarantees and may lead to nu-
merical problems, in particular when some elements of d approach zero (Grandvalet, 1998).
Note that these numerical problems can be handled by introducing a perturbed version of
the alternate algorithm as shown by Argyriou et al. (2008).

Instead of using an alternate optimization algorithm, we prefer to consider here the
following constrained optimization problem:

min
d
J(d) such that

M
∑

m=1

dm = 1, dm ≥ 0 , (9)

1. Note that Bach et al. (2004a) formulation differs slightly, in that the kernels are weighted by some
pre-defined coefficients that were not considered here.

7

Rakotomamonjy et al.

where

J(d) =























min
{f},b,ξ

1

2

∑

m

1

dm
‖fm‖

2
Hm

+ C
∑

i

ξi ∀i

s.t. yi

∑

m

fm(xi) + yib ≥ 1− ξi

ξi ≥ 0 ∀i .

(10)

We show below how to solve problem (9) on the simplex by a simple gradient method. We
will first note that the objective function J(d) is actually an optimal SVM objective value.
We will then discuss the existence and computation of the gradient of J(·), which is at the
core of the proposed approach.

3.1 Computing the optimal SVM value and its derivatives

The Lagrangian of problem (10) is identical to the first line of equation (6). By setting to
zero the derivatives of this Lagrangian according to the primal variables, we get conditions
(7) (a) to (c), from which we derive the associated dual problem

max
α

−
1

2

∑

i,j

αiαjyiyj

∑

m

dmKm(xi, xj) +
∑

i

αi

with
∑

i

αiyi = 0

C ≥ αi ≥ 0 ∀i ,

(11)

which is identified as the standard SVM dual formulation using the combined kernel
K(xi, xj) =

∑

m dmKm(xi, xj). Function J(d) is defined as the optimal objective value
of problem (10). Because of strong duality, J(d) is also the objective value of the dual
problem:

J(d) = −
1

2

∑

i,j

α⋆
iα

⋆
jyiyj

∑

m

dmKm(xi, xj) +
∑

i

α⋆
i , (12)

where α⋆ maximizes (11). Note that the objective value J(d) can be obtained by any SVM
algorithm. Our method can thus take advantage of any progress in single kernel algorithms.
In particular, if the SVM algorithm we use is able to handle large-scale problems, so will
our MKL algorithm. Thus, the overall complexity of SimpleMKL is tied to the one of the
single kernel SVM algorithm.

From now on, we assume that each Gram matrix (Km(xi, xj))i,j is positive definite,
with all eigenvalues greater than some η > 0 (to enforce this property, a small ridge may
be added to the diagonal of the Gram matrices). This implies that, for any admissible
value of d, the dual problem is strictly concave with convexity parameter η (Lemaréchal
and Sagastizabal, 1997). In turn, this strict concavity property ensures that α⋆ is unique,
a characteristic that eases the analysis of the differentiability of J(·).

Existence and computation of derivatives of optimal value functions such as J(·) have
been largely discussed in the literature. For our purpose, the appropriate reference is
Theorem 4.1 in Bonnans and Shapiro (1998), which has already been applied by Chapelle
et al. (2002) for tuning squared-hinge loss SVM. This theorem is reproduced in the appendix
for self-containedness. In a nutshell, it says that differentiability of J(d) is ensured by

8

SimpleMKL

the unicity of α⋆, and by the differentiability of the objective function that gives J(d).
Furthermore, the derivatives of J(d) can be computed as if α⋆ were not to depend on d.
Thus, by simple differentiation of the dual function (11) with respect to dm, we have:

∂J

∂dm
= −

1

2

∑

i,j

α⋆
iα

⋆
jyiyjKm(xi, xj) ∀m . (13)

We will see in the sequel that the applicability of this theorem can be extended to other
SVM problems. Note that complexity of the gradient computation is of the order of m ·n2

SV ,
with nSV being the number of support vectors for the current d.

3.2 Reduced gradient algorithm

The optimization problem we have to deal with in (9) is a non-linear objective function
with constraints over the simplex. With our positivity assumption on the kernel matrices,
J(·) is convex and differentiable with Lipschitz gradient (Lemaréchal and Sagastizabal,
1997). The approach we use for solving this problem is a reduced gradient method, which
converges for such functions (Luenberger, 1984).

Once the gradient of J(d) is computed, d is updated by using a descent direction ensuring
that the equality constraint and the non-negativity constraints on d are satisfied. We
handle the equality constraint by computing the reduced gradient (Luenberger, 1984, Chap.
11). Let dµ be a non-zero entry of d, the reduced gradient of J(d), denoted ∇redJ , has
components:

[∇redJ]m =
∂J

∂dm
−

∂J

∂dµ
∀m 6= µ , and [∇redJ]µ =

∑

m6=µ

(

∂J

∂dµ
−

∂J

∂dm

)

.

We chose µ to be the index of the largest component of vector d, for better numerical
stability (Bonnans, 2006).

The positivity constraints have also to be taken into account in the descent direction.
Since we want to minimize J(·), −∇redJ is a descent direction. However, if there is an index
m such that dm = 0 and [∇redJ]m > 0, using this direction would violate the positivity
constraint for dm. Hence, the descent direction for that component is set to 0. This gives
the descent direction for updating d as

Dm =



























0 if dm = 0 and ∂J
∂dm
− ∂J

∂dµ
> 0

−
∂J

∂dm
+
∂J

∂dµ
if dm > 0 and m 6= µ

∑

g 6=µ,dν>0

(

∂J

∂dν
−
∂J

∂dµ

)

for m = µ .

(14)

The usual updating scheme is d← d+γD , where γ is the step size. Here, as detailed in
Algorithm 1, we go one step beyond: once a descent direction D has been computed, we first
look for the maximal admissible step size in that direction and check whether the objective
value decreases or not. The maximal admissible step size corresponds to a component, say
dν , set to zero. If the objective value decreases, d is updated, we set Dν = 0 and normalize D
to comply with the equality constraint. This procedure is repeated until the objective value

9

Rakotomamonjy et al.

Algorithm 1 SimpleMKL algorithm

set dm = 1
M for m = 1, . . . ,M

while stopping criterion not met do

compute J(d) by using an SVM solver with K =
∑

m dmKm

compute ∂J
∂dm

for m = 1, . . . ,M and descent direction D (14).

set µ = argmax
m

dm, J† = 0, d† = d, D† = D

while J† < J(d) do {descent direction update}
d = d†, D = D†

ν = argmin
{m|Dm<0}

−dm/Dm, γmax = −dν/Dν

d† = d+ γmaxD, D†
µ = Dµ −Dν , D†

ν = 0

compute J† by using an SVM solver with K =
∑

m d†mKm

end while

line search along D for γ ∈ [0, γmax] {calls an SVM solver for each γ trial value}
d← d+ γD

end while

stops decreasing. At this point, we look for the optimal step size γ, which is determined by
using a one-dimensional line search, with proper stopping criterion, such as Armijo’s rule,
to ensure global convergence.

In this algorithm, computing the descent direction and the line search are based on the
evaluation of the objective function J(·), which requires solving an SVM problem. This
may seem very costly but, for small variations of d, learning is very fast when the SVM
solver is initialized with the previous values of α⋆ (DeCoste and Wagstaff., 2000). Note
that the gradient of the cost function is not computed after each update of the weight
vector d. Instead, we take advantage of an easily updated descent direction as long as the
objective value decreases. We will see in the numerical experiments that this approach
saves a substantial amount of computation time compared to the usual update scheme
where the descent direction is recomputed after each update of d. Note that we have also
investigated gradient projection algorithms (Bertsekas, 1999, Chap 2.3), but this turned out
to be slightly less efficient than the proposed approach, and we will not report these results.

The algorithm is terminated when a stopping criterion is met. This stopping criterion
can be either based on the duality gap, the KKT conditions, the variation of d between
two consecutive steps or, even more simply, on a maximal number of iterations. Our
implementation, based on the duality gap, is detailed in the forthcoming section.

3.3 Optimality conditions

In a convex constrained optimization algorithm such as the one we are considering, we
have the opportunity to check for proper optimality conditions such as the KKT conditions
or the duality gap (the difference between primal and dual objective values), which should
be zero at the optimum. From the primal and dual objectives provided respectively in (2)
and (8), the MKL duality gap is

10

SimpleMKL

DualGap = J(d⋆)−
∑

i

α⋆
i +

1

2
max

m

∑

i,j

α⋆
iα

⋆
jyiyjKm(xi, xj) , ,

where d⋆ and {α⋆
i } are optimal primal and dual variables, and J(d⋆) depends implicitly on

optimal primal variables {f⋆
m}, b

⋆ and {ξ⋆
i }. If J(d⋆) has been obtained through the dual

problem (11), then this MKL duality gap can also be computed from the single kernel SVM
algorithm duality gap DGSVM. Indeed, equation (12) holds only when the single kernel
SVM algorithm returns an exact solution with DGSVM = 0. Otherwise, we have

DGSVM = J(d⋆) +
1

2

∑

i,j

α⋆
iα

⋆
jyiyj

∑

m

d⋆
mKm(xi, xj)−

∑

i

α⋆
i

then the MKL duality gap becomes

DualGap = DGSVM −
1

2

∑

i,j

α⋆
iα

⋆
jyiyj

∑

m

d⋆
mKm(xi, xj) +

1

2
max

m

∑

i,j

α⋆
iα

⋆
jyiyjKm(xi, xj) .

Hence, it can be obtained with a small additional computational cost compared to the SVM
duality gap.

In iterative procedures, it is common to stop the algorithm when the optimality condi-
tions are respected up to a tolerance threshold ε. Obviously, SimpleMKL has no impact on
DGSVM, hence, one may assume, as we did here, that DGSVM needs not to be monitored.
Consequently, we terminate the algorithm when

max
m

∑

i,j

α⋆
iα

⋆
jyiyjKm(xi, xj)−

∑

i,j

α⋆
iα

⋆
jyiyj

∑

m

d⋆
mKm(xi, xj) ≤ ε . (15)

For some of the other MKL algorithms that will be presented in Section 4, the dual
function may be more difficult to derive. Hence, it may be easier to rely on approximate
KKT conditions as a stopping criterion. For the general MKL problem (9), the first order
optimality conditions are obtained through the KKT conditions:

∂J

∂dm
+ λ− ηm = 0 ∀m

ηm · dm = 0 ∀m ,

where λ and {ηm} are respectively the Lagrange multipliers for the equality and inequality
constraints of (9). These KKT conditions imply

∂J

∂dm
= −λ if dm > 0

∂J

∂dm
≥ −λ if dm = 0 .

However, as Algorithm 1 is not based on the Lagrangian formulation of problem (9), λ
is not computed. Hence, we derive approximate necessary optimality conditions to be used
for termination criterion. Let’s define dJmin and dJmax as

dJmin = min
{dm|dm>0}

∂J

∂dm
and dJmax = max

{dm|dm>0}

∂J

∂dm
,

11

Rakotomamonjy et al.

then, the necessary optimality conditions are approximated by the following termination
conditions:

|dJmin − dJmax| ≤ ε and
∂J

∂dm
≥ dJmax if dm = 0

In other words, we are considered at the optimum when the gradient components for all
positive dm lie in a ε-tube and when all gradient components for vanishing dm are outside
this tube. Note that these approximate necessary optimality conditions are available right
away for any differentiable objective function J(d).

3.4 Cutting Planes, Steepest Descent and Computational Complexity

As we stated in the introduction, several algorithms have been proposed for solving the
original MKL problem defined by Lanckriet et al. (2004b). All these algorithms are based
on equivalent formulations of the same dual problem; they all aim at providing a pair of
optimal vectors (d, α).

In this subsection, we contrast SimpleMKL with its closest relative, the SILP algorithm
of Sonnenburg et al. (2005, 2006). Indeed, from an implementation point of view, the
two algorithms are alike, since they are wrapping a standard single kernel SVM algorithm.
This feature makes both algorithms very easy to implement. They, however, differ in
computational efficiency, because the kernel weights dm are optimized in quite different
ways, as detailed below.

Let us first recall that our differentiable function J(d) is defined as:

J(d) =















max
α

−
1

2

∑

i,j

αiαjyiyj

∑

m

dmKm(xi, xj) +
∑

i

αi

with
∑

i

αiyi = 0, C ≥ αi ≥ 0 ∀i ,

and both algorithms aim at minimizing this differentiable function. However, using a SILP
approach in this case, does not take advantage of the smoothness of the objective function.

The SILP algorithm of Sonnenburg et al. (2006) is a cutting plane method to minimize J
with respect to d. For each value of d, the best α is found and leads to an affine lower bound
on J(d). The number of lower bounding affine functions increases as more (d, α) pairs are
computed, and the next candidate vector d is the minimizer of the current lower bound on
J(d), that is, the maximum over all the affine functions. Cutting planes method do converge
but they are known for their instability, notably when the number of lower-bounding affine
functions is small: the approximation of the objective function is then loose and the iterates
may oscillate (Bonnans et al., 2003). Our steepest descent approach, with the proposed line
search, does not suffer from instability since we have a differentiable function to minimize.
Figure 1 illustrates the behaviour of both algorithms in a simple case, with oscillations for
cutting planes and direct convergence for gradient descent.

Section 5 evaluates how these oscillations impact on the computational time of the
SILP algorithm on several examples. These experiments show that our algorithm needs
less costly gradient computations. Conversely, the line search in the gradient base approach
requires more SVM retrainings in the process of querying the objective function. However,

12

SimpleMKL

Figure 1: Illustrating three iterations of the SILP algorithm and a gradient descent algo-
rithm for a one-dimensional problem. This dimensionality is not representative of
the MKL framework, but our aim is to illustrate the typical oscillations of cutting
planes around the optimal solution (with iterates d0 to d3). Note that computing
an affine lower bound at a given d requires a gradient computation. Provided
the step size is chosen correctly, gradient descent converges directly towards the
optimal solution without overshooting (from d0 to d⋆).

the computation time per SVM training is considerably reduced, since the gradient based
approach produces estimates of d on a smooth trajectory, so that the previous SVM solution
provides a good guess for the current SVM training. In SILP, with the oscillatory subsequent
approximations of d⋆, the benefit of warm-start training severely decreases.

3.5 Convergence Analysis

In this paragraph, we briefly discuss the convergence of the algorithm we propose. We
first suppose that problem (10) is always exactly solved, which means that the duality gap of
such problem is 0. With such conditions, the gradient computation in (13) is exact and thus
our algorithm performs reduced gradient descent on a continuously differentiable function
J(·) (remember that we have assumed that the kernel matrices are positive definite) defined
on the simplex {d|

∑

m dm = 1, dm ≥ 0}, which does converge to the global minimum of
J (Luenberger, 1984).

However, in practice, problem (10) is not solved exactly since most SVM algorithms
will stop when the duality gap is smaller than a given ε. In this case, the convergence of
our projected gradient method is no more guaranteed by standard arguments. Indeed, the
output of the approximately solved SVM leads only to an ε-subgradient (Bonnans et al.,
2003, Bach et al., 2004a). This situation is more difficult to analyze and we plan to address
it thoroughly in future work (see for instance D’Aspremont (2008) for an example of such
analysis in a similar context).

13

Rakotomamonjy et al.

4. Extensions

In this section, we discuss how the proposed algorithm can be simply extended to other
SVM algorithms such as SVM regression, one-class SVM or pairwise multiclass SVM algo-
rithms. More generally, we will discuss other loss functions that can be used within our
MKL algorithms.

4.1 Extensions to other SVM Algorithms

The algorithm we described in the previous section focuses on binary classification
SVMs, but it is worth noting that our MKL algorithm can be extended to other SVM
algorithms with only little changes. For SVM regression with the ε-insensitive loss, or clus-
tering with the one-class soft margin loss, the problem only changes in the definition of the
objective function J(d) in (10).

For SVM regression (Vapnik et al., 1997, Schölkopf and Smola, 2001), we have

J(d) =







































min
fm,b,ξi

1

2

∑

m

1

dm
‖fm‖

2
Hm

+ C
∑

i

(ξi + ξ∗i)

s.t. yi −
∑

m

fm(xi)− b ≤ ε+ ξi ∀i

∑

m

fm(xi) + b− yi ≤ ε+ ξ∗i ∀i

ξi ≥ 0, ξ∗i ≤ 0 ∀i ,

(16)

and for one-class SVMs (Schölkopf and Smola, 2001), we have:

J(d) =























min
fm,b,ξi

1

2

∑

m

1

dm
‖fm‖

2
Hm

+
1

νℓ

∑

i

ξi − b

s.t.
∑

m

fm(xi) ≥ b− ξi

ξi ≥ 0 .

(17)

Again, J(d) can be defined according to the dual functions of these two optimization prob-
lems, which are respectively

J(d) =























max
α,β

∑

i

(βi − αi)yi − ε
∑

i

(βi + αi)−
1

2

∑

i,j

(βi − αi)(βj − αj)
∑

m

dmKm(xi, xj)

with
∑

i

(βi − αi) = 0

0 ≤ αi , βi ≤ C, ∀i ,
(18)

and

J(d) =































max
α

−
1

2

∑

i,j

αiαj

∑

m

dmKm(xi, xj)

with 0 ≤ αi ≤
1

νℓ
∀i

∑

i

αi = 1 ,

(19)

14

SimpleMKL

where {αi} and {βi} are Lagrange multipliers.

Then, as long as J(d) is differentiable, a property strictly related to the strict concavity
of its dual function, our descent algorithm can still be applied. The main effort for the
extension of our algorithm is the evaluation of J(d) and the computation of its derivatives.
Like for binary classification SVM, J(d) can be computed by means of efficient off-the-shelf
SVM solvers and the gradient of J(d) is easily obtained through the dual problems. For
SVM regression, we have:

∂J

∂dm
= −

1

2

∑

i,j

(β⋆
i − α

⋆
i)(β

⋆
j − α

⋆
j)Km(xi, xj) ∀m , (20)

and for one-class SVM, we have:

∂J

∂dm
= −

1

2

∑

i,j

α⋆
iα

⋆
jKm(xi, xj) ∀m , (21)

where α⋆
i and β⋆

i are the optimal values of the Lagrange multipliers. These examples
illustrate that extending SimpleMKL to other SVM problems is rather straighforward. This
observation is valid for other SVM algorithms (based for instance on the ν parameter, a
squared hinge loss or squared-ε tube) that we do not detail here. Again, our algorithm
can be used provided J(d) is differentiable, by plugging in the algorithm the function that
evaluates the objective value J(d) and its gradient. Of course, the duality gap may be
considered as a stopping criterion if it can be computed.

4.2 Multiclass Multiple Kernel Learning

With SVMs, multiclass problems are customarily solved by combining several binary
classifiers. The well-known one-against-all and one-against-one approaches are the two
most common ways for building a multiclass decision function based on pairwise decision
functions. Multiclass SVM may also be defined right away as the solution of a global
optimization problem (Weston and Watkins, 1999, Crammer and Singer, 2001), that may
also be addressed with structured-output SVM (Tsochantaridis et al., 2005). Very recently,
an MKL algorithm based on structured-output SVM has been proposed by Zien and Ong
(2007). This work extends the work of Sonnenburg et al. (2006) to multiclass problems,
with an MKL implementation still based on a QCQP or SILP approach.

Several works have compared the performance of multiclass SVM algorithms (Duan and
Keerthi, 2005, Hsu and Lin, 2002, Rifkin and Klautau, 2004). In this subsection, we do
not deal with this aspect; we explain how SimpleMKL can be extended to pairwise SVM
multiclass implementations. The problem of applying our algorithm to structured-output
SVM will be briefly discussed later.

Suppose we have a multiclass problem with P classes. For a one-against-all multiclass
SVM, we need to train P binary SVM classifiers, where the p-th classifier is trained by con-
sidering all examples of class p as positive examples while all other examples are considered
negative. For a one-against-one multiclass problem, P (P − 1)/2 binary SVM classifiers are
built from all pairs of distinct classes. Our multiclass MKL extension of SimpleMKL differs
from the binary version only in the definition of a new cost function J(d). As we now look

15

Rakotomamonjy et al.

for the combination of kernels that jointly optimizes all the pairwise decision functions, the
objective function we want to optimize according to the kernel weights {dm} is:

J(d) =
∑

p∈P

Jp(d) ,

where P is the set of all pairs to be considered, and Jp(d) is the binary SVM objective value
for the classification problem pertaining to pair p.

Once the new objective function is defined, the lines of Algorithm 1 still apply. The
gradient of J(d) is still very simple to obtain, since owing to linearity, we have:

∂J

∂dm
= −

1

2

∑

p∈P

∑

i,j

α⋆
i,pα

⋆
j,pyiyjKm(xi, xj) ∀m , (22)

where αj,p is the Lagrange multiplier of the j-th example involved in the p-th decision
function. Note that those Lagrange multipliers can be obtained independently for each
pair.

The approach described above aims at finding the combination of kernels that jointly
optimizes all binary classification problems: this one set of features should maximize the
sum of margins. Another possible and straightforward approach consists in running inde-
pendently SimpleMKL for each classification task. However, this choice is likely to result
in as many combinations of kernels as there are binary classifiers.

4.3 Other loss functions

Multiple kernel learning has been of great interest and since the seminal work of Lanck-
riet et al. (2004b), several works on this topic have flourished. For instance, multiple kernel
learning has been transposed to least-square fitting and logistic regression (Bach et al.,
2004b). Independently, several authors have applied mixed-norm regularization, such as
the additive spline regression model of Grandvalet and Canu (1999). This type of regular-
ization, which is now known as the group lasso, may be seen as a linear version of multiple
kernel learning (Bach, 2008). Several algorithms have been proposed for solving the group
lasso problem. Some of them are based on projected gradient or on coordinate descent
algorithm. However, they all consider the non-smooth version of the problem.

We previously mentioned that Zien and Ong (2007) have proposed an MKL algorithm
based on structured-output SVMs. For such problem, the loss function, which differs from
the usual SVM hinge loss, leads to an algorithm based on cutting planes instead of the
usual QP approach.

Provided the gradient of the objective value can be obtained, our algorithm can be
applied to group lasso and structured-output SVMs. The key point is whether the theorem
of Bonnans et al. (2003) can be applied or not. Although we have not deeply investigated
this point, we think that many problems comply with this requirement, but we leave these
developments for future work.

4.4 Approximate regularization path

SimpleMKL requires the setting of the usual SVM hyperparameter C, which usually
needs to be tuned for the problem at hand. For doing so, a practical and useful technique

16

SimpleMKL

is to compute the so-called regularization path, which describes the set of solutions as C
varies from 0 to ∞.

Exact path following techniques have been derived for some specific problems like SVMs
or the lasso (Hastie et al., 2004, Efron et al., 2004). Besides, regularization paths can be
sampled by predictor-corrector methods (Rosset, 2004, Bach et al., 2004b).

For model selection purposes, an approximation of the regularization path may be suf-
ficient. This approach has been applied for instance by Koh et al. (2007) in regularized
logistic regression.

Here, we compute an approximate regularization path based on a warm-start technique.
Suppose, that for a given value of C, we have computed the optimal (d⋆, α⋆) pair; the idea
of a warm-start is to use this solution for initializing another MKL problem with a different
value of C. In our case, we iteratively compute the solutions for decreasing values of C
(note that α⋆ has to be modified to be a feasible initialization of the more constrained SVM
problem).

5. Numerical experiments

In this experimental section, we essentially aim at illustrating three points. The first
point is to show that our gradient descent algorithm is efficient. This is achieved by binary
classification experiments, where SimpleMKL is compared to the SILP approach of Sonnen-
burg et al. (2006). Then, we illustrate the usefulness of a multiple kernel learning approach
in the context of regression. The examples we use are based on wavelet-based regression in
which the multiple kernel learning framework naturally fits. The final experiment aims at
evaluating the multiple kernel approach in a model selection problem for some multiclass
problems.

5.1 Computation time

The aim of this first set of experiments is to assess the running times of SimpleMKL. 2

First, we compare with SILP regarding the time required for computing a single solution
of MKL with a given C hyperparameter. Then, we compute an approximate regularization
path by varying C values. We finally provide hints on the expected complexity of Sim-
pleMKL, by measuring the growth of running time as the number of examples or kernels
increases.

5.1.1 Time needed for reaching a single solution

In this first benchmark, we put SimpleMKL and SILP side by side, for a fixed value
of the hyperparameter C (C = 100). This procedure, which does not take into account a
proper model selection procedure, is not representative of the typical use of SVMs. It is
however relevant for the purpose of comparing algorithmic issues.

The evaluation is made on five datasets from the UCI repository: Liver, Wpbc, Iono-
sphere, Pima, Sonar (Blake and Merz, 1998). The candidate kernels are:

2. All the experiments have been run on a Pentium D-3 GHz with 3 GB of RAM.

17

Rakotomamonjy et al.

• Gaussian kernels with 10 different bandwidths σ, on all variables and on each single
variable;

• polynomial kernels of degree 1 to 3, again on all and each single variable.

All kernel matrices have been normalized to unit trace, and are precomputed prior to
running the algorithms.

Both SimpleMKL and SILP wrap an SVM dual solver based on SimpleSVM, an active
constraints method written in Matlab (Canu et al., 2003). The descent procedure of Sim-
pleMKL is also implemented in Matlab, whereas the linear programming involved in SILP
is implemented in the publicly available toolbox LPSOLVE (Berkelaar et al., 2004).

For a fair comparison, we use the same stopping criterion for both algorithms. They
halt when, either the duality gap is lower than 0.01, or the number of iterations exceeds
2000. Quantitatively, the displayed results differ from the preliminary version of this work,
where the stopping criterion was based on the stabilization of the weights, but they are
qualitatively similar (Rakotomamonjy et al., 2007).

For each dataset, the algorithms were run 20 times with different train and test sets
(70% of the examples for training and 30% for testing). Training examples were normalized
to zero mean and unit variance.

In Table 1, we report different performance measures: accuracy, number of selected
kernels and running time. As the latter is mainly spent in querying the SVM solver and in
computing the gradient of J with respect to d, the number of calls to these two routines is
also reported.

Both algorithms are nearly identical in performance accuracy. Their number of selected
kernels are of same magnitude, although SimpleMKL tends to select 10 to 20% more ker-
nels. As both algorithms address the same convex optimization problem, with convergent
methods starting from the same initialization, the observed differences are only due to the
inaccuracy of the solution when the stopping criterion is met. Hence, the trajectories chosen
by each algorithm for reaching the solution, detailed in Section 3.4, explain the differences
in the number of selected kernels. The updates of dm based on the descent algorithm of
SimpleMKL are rather conservative (small steps departing from 1/M for all dm), whereas
the oscillations of cutting planes are likely to favor extreme solutions, hitting the edges of
the simplex.

This explanation is corroborated by Figure 2, which compares the behavior of the dm

coefficients through time. The instability of SILP is clearly visible, with very high oscilla-
tions in the first iterations and a noticeable residual noise in the long run. In comparison,
the trajectories for SimpleSVM are much smoother.

If we now look at the overall difference in computation time reported in Table 1, clearly,
on all data sets, SimpleSVM is faster than SILP, with an average gain factor of about 5.
Furthermore, the larger the number of kernels is, the larger the speed gain we achieve.
Looking at the last column of Table 1, we see that the main reason for improvement is that
SimpleMKL converges in fewer iterations (that is, gradient computations). It may seem
surprising that this gain is not conterbalanced by the fact that SimpleMKL requires many
more calls to the SVM solver (on average, about 4 times). As we stated in Section 3.4,
when the number of kernels is large, computing the gradient may be expensive compared
to SVM retraining with warm-start techniques.

18

SimpleMKL

Table 1: Average performance measures for the two MKL algorithms and a plain gradient
descent algorithm.

Liver ℓ = 241 M = 91

Algorithm # Kernel Accuracy Time (s) # SVM eval # Gradient eval

SILP 10.6 ± 1.3 65.9 ± 2.6 47.6 ± 9.8 99.8 ± 20 99.8 ± 20

SimpleMKL 11.2 ± 1.2 65.9 ± 2.3 18.9 ± 12.6 522 ± 382 37.0 ± 26

Grad. Desc. 11.6 ± 1.3 66.1 ± 2.7 31.3 ± 14.2 972 ± 630 103 ± 27

Pima ℓ = 538 M = 117

Algorithm # Kernel Accuracy Time (s) # SVM eval # Gradient eval

SILP 11.6 ± 1.0 76.5 ± 2.3 224 ± 37 95.6 ± 13 95.6 ± 13

SimpleMKL 14.7 ± 1.4 76.5 ± 2.6 79.0 ± 13 314 ± 44 24.3 ± 4.8

Grad. Desc. 14.8 ± 1.4 75.5 ± 2.5 219 ± 24 873 ± 147 118 ± 8.7

Ionosphere ℓ = 246 M = 442

Algorithm # Kernel Accuracy Time (s) # SVM eval # Gradient eval

SILP 21.6 ± 2.2 91.7 ± 2.5 535 ± 105 403 ± 53 403 ± 53

SimpleMKL 23.6 ± 2.6 91.5 ± 2.5 123 ± 46 1170 ± 369 64 ± 25

Grad. Desc. 22.9 ± 3.2 92.1 ± 2.5 421 ± 61.9 4000 ± 874 478 ± 38

Wpbc ℓ = 136 M = 442

Algorithm # Kernel Accuracy Time (s) # SVM eval # Gradient eval

SILP 13.7 ± 2.5 76.8 ± 1.2 88.6 ± 32 157 ± 44 157 ± 44

SimpleMKL 15.8 ± 2.4 76.7 ± 1.2 20.6 ± 6.2 618 ± 148 24 ± 10

Grad. Desc. 16.8 ± 2.8 76.9 ± 1.5 106 ± 6.1 2620 ± 232 361 ± 16

Sonar ℓ = 146 M = 793

Algorithm # Kernel Accuracy Time (s) # SVM eval # Gradient eval

SILP 33.5 ± 3.8 80.5 ± 5.1 2290± 864 903 ± 187 903 ± 187

SimpleMKL 36.7 ± 5.1 80.6 ± 5.1 163 ± 93 2770 ± 1560 115 ± 66

Grad. Desc. 35.7 ± 3.9 80.2 ± 4.7 469 ± 90 7630 ± 2600 836 ± 99

19

Rakotomamonjy et al.

0 2 4 6 8 10 12
0

0.1

0.2

0.3

0.4
d k S

im
pl

eM
K

L

0 20 40 60 80 100 120
0

0.1

0.2

0.3

0.4

Iterations

d k S
IL

P

0 10 20 30 40 50 60 70
0

0.1

0.2

0.3

0.4

d k S
im

pl
eM

K
L

0 50 100 150 200 250 300 350
0

0.1

0.2

0.3

0.4

Iterations

d k S
IL

P

Pima Ionosphere

Figure 2: Evolution of the five largest weights dm for SimpleMKL and SILP; left row: Pima;
right row: Ionosphere.

To understand why, with this large number of calls to the SVM solver, SimpleMKL is
still much faster than SILP, we have to look back at Figure 2. On the one hand, the large
variations in subsequents dm values for SILP, entail that subsequent SVM problems are not
likely to have similar solutions: a warm-start call to the SVM solver does not help much.
On the other hand, with the smooth trajectories of dm in SimpleMKL, the previous SVM
solution is often a good guess for the current problem: a warm-start call to the SVM solver
results in much less computation than a call from scratch.

Table 1 also shows the results obtained when replacing the update scheme described
in Algorithm 1 by a usual reduced gradient update, which, at each iteration, modifies d
by computing the optimal step size on the descent direction D (14). The training of this
variant is considerably slower than SimpleMKL and is only slightly better than SILP. We
see that the gradient descent updates require many more calls to the SVM solver and a
number of gradient computations comparable with SILP. Note that, compared to SILP, the
numerous additional calls to the SVM solver have not a drastic effect on running time. The
gradient updates are stable, so that they can benefit from warm-start contrary to SILP.

To end this first series of experiments, Figure 3 depicts the evolution of the objective
function for the data sets that were used in Figure 2. Besides the fact that SILP needs more
iterations for achieving a good approximation of the final solution, it is worth noting that
the objective values rapidly reach their steady state while still being far from convergence,
when dm values are far from being settled. Thus, monitoring objective values is not suitable
to assess convergence.

5.1.2 Time needed for getting an approximate regularization path

In practice, the optimal value of C is unknown, and one has to solve several SVM prob-
lems, spanning a wide range of C values, before choosing a solution according to some model
selection criterion like the cross-validation error. Here, we further pursue the comparison

20

SimpleMKL

0 20 40 60 80 100 120
2

2.5

3

3.5
x 10

4
O

bj
ec

tiv
e

va
lu

e

Iterations

SimpleMKL
SILP

0 50 100 150 200 250 300 350
0

5000

10000

15000

O
bj

ec
tiv

e
va

lu
e

Iterations

SimpleMKL
SILP

Pima Ionosphere

Figure 3: Evolution of the objective values for SimpleSVM and SILP; left row: Pima; right
row: Ionosphere.

of the running times of SimpleMKL and SILP, in a series of experiments that include the
search for a sensible value of C.

In this new benchmark, we use the same data sets as in the previous experiments, with
the same kernel settings. The task is only changed in the respect that we now evaluate the
running times needed by both algorithms to compute an approximate regularization path.

For both algorithms, we use a simple warm-start technique, which consists in using the
optimal solutions {d⋆

m} and {α⋆
i } obtained for a given C to initialize a new MKL problem

with C+∆C (DeCoste and Wagstaff., 2000). As described in Section 4.4, we start from the
largest C and then approximate the regularization path by decreasing its value. The set of
C values is obtained by evenly sampling the interval [0.01, 1000] on a logarithmic scale.

Figure 4 shows the variations of the number of selected kernels and the values of d along
the regularization path for the Pima and Wpbc datasets. The number of kernels is not a
monotone function of C: for small values of C, the number of kernels is somewhat constant,
then, it rises rapidly. There is a small overshooth before reaching a plateau corresponding
to very high values of C. This trend is similar for the number of leading terms in the kernel
weight vector d. Both phenomenon were observed consistently over the datasets we used.

Table 2 displays the average computation time (over 10 runs) required for building the
approximate regularization path. As previously, SimpleMKL is more efficient than SILP,
with a gain factor increasing with the number of kernels in the combination. The range
of gain factors, from 5.9 to 23, is even more impressive than in the previous benchmark.
SimpleMKL benefits from the continuity of solutions along the regularization path, whereas
SILP does not take advantage of warm starts. Even provided with a good initialization, it
needs many cutting planes to stabilize.

21

Rakotomamonjy et al.

10
−2

10
−1

10
0

10
1

10
2

10
3

0

2

4

6

8

10

12

14

16

18

20

C

nu
m

be
r

of
 s

el
ec

te
d

ke
rn

el
s

10
−2

10
−1

10
0

10
1

10
2

10
3

0

2

4

6

8

10

12

14

16

18

20

C

nu
m

be
r

of
 s

el
ec

te
d

ke
rn

el
s

10
−2

10
−1

10
0

10
1

10
2

10
3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C

d k

10
−2

10
−1

10
0

10
1

10
2

10
3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C

d k

Pima Wpbc

Figure 4: Regularization paths for dm and the number of selected kernels versus C; left
row: Pima; right row: Wpbc.

Table 2: Average computation time (in seconds) for getting an approximate regularization
path. For the Sonar data set, SILP was extremely slow, so that regularization
path was computed only once.

Dataset SimpleMKL SILP Ratio

Liver 148 ± 37 875 ± 125 5.9

Pima 1030 ± 195 6070 ± 1430 5.9

Ionosphere 1290 ± 927 8840 ± 1850 6.8

Wpbc 88 ± 16 2040 ± 544 23

Sonar 625 ± 174 1.52 · 105 (*) 243

22

SimpleMKL

5.1.3 More on SimpleMKL running times

Here, we provide an empirical assessment of the expected complexity of SimpleMKL
on different data sets from the UCI repository. We first look at the situation where kernel
matrices can be pre-computed and stored in memory, before reporting experiments where
the memory are too high, leading to repeated kernel evaluations.

In a first set of experiments, we use Gaussian kernels, computed on random subsets of
variables and with random width. These kernels are precomputed and stored in memory,
and we report the average CPU running times obtained from 20 runs differing in the random
draw of training examples. The stopping criterion is the same as in the previous section: a
relative duality gap less than ε = 0.01.

The first two rows of Figure 5 depicts the growth of computation time as the num-
ber of kernel increases. We observe a nearly linear trend for the four learning problems.
This growth rate could be expected considering the linear convergence property of gradient
techniques, but the absence of overhead is valuable.

The last row of Figure 5 depicts the growth of computation time as the number of
examples increases. Here, the number of kernels is set to 10. In these plots, the observed
trend is clearly superlinear. Again, this trend could be expected, considering that SVM
expected training times are superlinear in the number of training examples. As we already
mentioned, the complexity of SimpleMKL is tightly linked to the one of SVM training (for
some examples of single kernel SVM running time, one can refer to the work of Loosli and
Canu (2007)).

When all the kernels used for MKL cannot be stored in memory, one can resort to a
decomposition method. Table 3 reports the average computation times, over 10 runs, in this
more difficult situation. The large-scale SVM scheme of Joachims (1999) has been imple-
mented, with basis kernels recomputed whenever needed. This approach is computationally
expensive but goes with no memory limit. For these experiments, the stopping criterion is
based on the variation of the weights dm. As shown in Figure 2, the kernel weights rapidly
reach a steady state and many iterations are spent for fine tuning the weight and reach the
duality gap tolerance. Here, we trade the optimality guarantees provided by the duality
gap for substantial computational time savings. The algorithm terminates when the kernel
weights variation is lower than 0.001.

Results reported in Table 3 just aim at showing that medium and large-scale situations
can be handled by SimpleMKL. Note that Sonnenburg et al. (2006) have run a modified
version of their SILP algorithm on a larger scale datasets. However, for such experiments,
they have taken advantage of some specific feature map properties. And, as they stated,
for general cases where kernel matrices are dense, they have to rely on the SILP algorithm
we used in this section for efficiency comparison .

5.2 Multiple kernel regression examples

Several research papers have already claimed that using multiple kernel learning can
lead to better generalization performances in some classification problems (Lanckriet et al.,
2004a, Zien and Ong, 2007, Harchaoui and Bach, 2007). This next experiment aims at
illustrating this point but in the context of regression. The problem we deal with is a
classical univariate regression problem where the design points are irregular (D’Amato et al.,

23

Rakotomamonjy et al.

0 50 100 150 200 250
0

20

40

60

80

100

120

140

160

180

200

Number of kernels

cp
u

tim
e

in
 s

ec
on

ds

0 10 20 30 40 50 60 70 80
10

20

30

40

50

60

70

80

90

100

Number of kernels

cp
u

tim
e

in
 s

ec
on

ds

Credit, ℓ = 588 Yeast, ℓ = 1187

0 10 20 30 40 50 60
0

500

1000

1500

2000

2500

3000

3500

4000

Number of kernels

cp
u

tim
e

in
 s

ec
on

ds

0 10 20 30 40 50 60
−100

0

100

200

300

400

500

600

700

Number of kernels

cp
u

tim
e

in
 s

ec
on

ds

Spamdata, ℓ = 1380 Optdigits, ℓ = 1686

0 500 1000 1500 2000 2500 3000 3500
0

100

200

300

400

500

600

Number of training examples

cp
u

tim
e

in
 s

ec
on

ds

500 1000 1500 2000 2500 3000
0

50

100

150

200

250

300

350

Number of training examples

cp
u

tim
e

in
 s

ec
on

ds

Spamdata, M = 10 Optdigits, M = 10

Figure 5: SimpleMKL average computation times for different datasets; top two rows: num-
ber of training examples fixed, number of kernels varying; bottom row: number
of training examples varying, number of kernels fixed.

Table 3: Average computation time needed by SimpleSVM using decomposition methods.

Dataset Nb Examples # Kernel Accuracy (%) Time (s)

Yeast 1335 22 77.25 1130

Spamdata 4140 71 93.49 34200

24

SimpleMKL

2006). Furthermore, according to equation (16), we look for the regression function f(x)
as a linear combination of functions each belonging to a wavelet based reproducing kernel
Hilbert space.

The algorithm we use is a classical SVM regression algorithm with multiple kernels where
each kernel is built from a set of wavelets. These kernels have been obtained according to
the expression:

K(x, x′) =
∑

j

∑

s

1

2j
ψj,s(x)ψj,s(x

′)

where ψ(·) is a mother wavelet and j,s are respectively the dilation and translation pa-
rameters of the wavelet ψj,s(·). The theoretical details on how such kernels can been built
are available in D’Amato et al. (2006), Rakotomamonjy and Canu (2005), Rakotomamonjy
et al. (2005).

Our hope when using multiple kernel learning in this context is to capture the multiscale
structure of the target function. Hence, each kernel involved in the combination should be
weighted accordingly to its correlation to the target function. Furthermore, such a kernel
has to be built according to the multiscale structure we wish to capture. In this experiment,
we have used three different choices of multiple kernels setting. Suppose we have a set of
wavelets with j ∈ [jmin, jmax] and s ∈∈ [smin, smax].

First of all, we have build a single kernel from all the wavelets according to the above
equation. Then we have created kernels from all wavelets of a given scale (dilation)

KDil,J(x, x′) =

smax
∑

s=smin

1

2j
ψJ,s(x)ψJ,s(x

′) ∀J ∈ [jmin, jmax]

and lastly, we have a set of kernels, where each kernel is built from wavelets located at a
given scale and given time-location:

KDil−Trans,J,S(x, x′) =
∑

s=S

1

2j
ψJ,s(x)ψJ,s(x

′) ∀J ∈ [jmin, jmax]

where S is a given set of translation parameter. These sets are built by splitting the full
translation parameters index in contiguous and non-overlapping index. The mother wavelet
we used is a Symmlet Daubechies wavelet with 6 vanishing moments. The resolution levels
of the wavelet goes from jmin = −3 to jmin = 6. According to these settings, we have 10
dilation kernels and 48 dilation-translation kernels.

We applied this MKL SVM regression algorithm to simulated datasets which are well-
known functions in the wavelet literature (Antoniadis and Fan, 2001). Each signal length is
512 and a Gaussian independent random has been added to each signal so that the signal to
noise ratio is equal to 5. Examples of the true signals and their noisy versions are displayed
in Figure 6. Note that the LinChirp and Wave signals present some multiscale features
that should suit well to an MKL approach.

Performance of the different multiple kernel settings have been compared according
to the following experimental setting. For each training signal, we have estimated the
regularization parameter C of the MKL SVM regression by means of a validation procedure.
The 512 samples have been randomly separated in a learning and a validation sets. Then, by

25

Rakotomamonjy et al.

0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1
LinChirp

0 0.2 0.4 0.6 0.8 1
−2

−1

0

1

2

x

0 0.2 0.4 0.6 0.8 1
0.2

0.4

0.6

0.8

1
Wave

0 0.2 0.4 0.6 0.8 1
0

0.5

1

x

0 0.2 0.4 0.6 0.8 1
0.2

0.4

0.6

0.8

1
Blocks

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

x

0 0.2 0.4 0.6 0.8 1
0.2

0.4

0.6

0.8

1
Spikes

0 0.2 0.4 0.6 0.8 1
0

0.5

1

x

Figure 6: Examples of signals to approximate in the regression problem. (top-left)
LinChirp. (top-right) Wave. (bottom-left) Blocks. (bottom-right) Spikes. For
each figure, the top plot depicts the true signal while the bottom one presents an
example of their randomly sampled noisy versions.

means of an approximate regularization path as described in Section 4.4, we learn different
regression functions for 20 samples of C logarithmically sampled on the interval [0.01, 1000].
This is performed for 5 random draws of the learning and validation sets. The C value that
gives the lowest average normalized mean-square error is considered as the optimal one.
Finally, we use all the samples of the training signal and the optimal C value to train an
MKL SVM regression. The quality of the resulting regression function is then evaluated
with respect to 1000 samples of the true signal. For all the simulations the ε has been fixed
to 0.1.

Table 4 summarizes the generalization performances achieved by the three different ker-
nel settings. As expected, using a multiple kernel learning setting outperforms the single
kernel setting especially when the target function presents multiscale structure. This is

26

SimpleMKL

Table 4: Normalized Mean Square error for the data described in Figure 6. The results are
averaged over 20 runs. The first column give the performance of a SVM regression
using a single kernel which is the average sum of all the kernels used for the two
other results. Results corresponding to the columns Kernel Dil and Kernel Dil-
Trans are related to MKL SVM regression with multiple kernels. # Kernel denotes
the number of kernels selected by SimpleMKL.

Single Kernel Kernel Dil Kernel Dil-Trans

Dataset Norm. MSE (%) #Kernel Norm. MSE #Kernel Norm. MSE

LinChirp 1.46 ± 0.28 7.0 1.00 ± 0.15 21.5 0.92 ± 0.20

Wave 0.98 ± 0.06 5.5 0.73 ± 0.10 20.6 0.79 ± 0.07

Blocks 1.96 ± 0.14 6.0 2.11 ± 0.12 19.4 1.94 ± 0.13

Spike 6.85 ± 0.68 6.1 6.97 ± 0.84 12.8 5.58 ± 0.84

noticeable for the LinChirp and Wave dataset. Interestingly, for these two signals, perfor-
mances of the multiple kernel settings also depend on the signal structure. Indeed, Wave
presents a frequency located structure while LinChirp has a time and frequency located
structure. Therefore, it is natural that the Dilation set of kernels performs better than the
Dilation-Translation ones for Wave. Figure 7 depicts an example of multiscale regression
function obtained when using the Dilation set of kernels. These plots show how the kernel
weights adapt themselves to the function to estimate. For the same reason of adaptivity
to the signal, the Dilation-Translation set of kernels achieves better performances for Wave
and Spikes. We also notice that for the Blocks signal using multiple kernels only slightly
improves performance compared to a single kernel.

5.3 Multiclass problem

For selecting the kernel and regularization parameter of a SVM, one usually tries all
pairs of parameters and picks the couple that achieves the best cross-validation performance.
Using an MKL approach, one can instead let the algorithm combine all available kernels
(obtained by sampling the parameter) and just selects the regularization parameter by
cross-validation. This last experiment aims at comparing on several multi-class datasets
problem, these two model selection approaches (using MKL and CV) for choosing the
kernel. Thus, we evaluate the two methods on some multiclass datasets taken from the
UCI collection: dna, waveform, image segmentation and abe a subset problem of the Letter
dataset corresponding to the classes A, B and E. Some information about the dataset are
given in Table 5. For each dataset, we divide the whole data into a training set and a
test set. This random splitting has been performed 20 times. For ease of comparison
with previous works, we have used the splitting proposed by Duan and Keerthi (2005) and
available at http://www.keerthis.com/multiclass.html. Then we have just computed
the performance of SimpleMKL and report their results for the CV approach.

27

Rakotomamonjy et al.

0 0.2 0.4 0.6 0.8 1
1

2

3

4

5

6

7

8

9

10

11

x

E
st

im
at

io
n

at
 a

 g
iv

en
 le

ve
l

0 0.2 0.4 0.6 0.8 1
1

2

3

4

5

6

7

8

9

10

11

x

E
st

im
at

io
n

at
 a

 g
iv

en
 le

ve
l

Figure 7: Examples of multiscale analysis of the LinChirp signal (left) and the Wave signal
(right) when using Dilation based multiple kernels. The plots show how each
function fm(·) of the estimation focuses on a particular scale of the target function.
The y-axis denotes the scale j of the wavelet used for building the kernel. We
can see that some low resolution space are not useful for the target estimation.

Table 5: Summary of the multiclass datasets and the training set size used.

Training Set Size
Dataset #Classes # examples Medium Large

ABE 3 2323 560 1120

DNA 3 3186 500 1000

SEG 7 2310 500 1000

WAV 3 5000 300 600

In our MKL one-against-all approach, we have used a polynomial kernel of degree 1
to 3 and Gaussian kernel for which σ belongs to [0.5, 1, 2, 5, 7, 10, 12, 15, 17, 20]. For the
regularization parameter C, we have 10 samples over the interval [0.01, 10000]. Note that
Duan and Keerthi (2005) have used a more sophisticated sampling strategy based on a
coarse sampling of σ and C and followed by fine-tuned sampling procedure. They also
select the same couple of C and σ over all pairwise decision functions. Similarly to Duan
and Keerthi (2005), the best hyperparameter C has been tuned according to a five-fold
cross-validation. According to this best C, we have learned an MKL all the full training set
and evaluated the resulting decision function on the test set.

The comparison results are summarized on Table 6. We can see that the generaliza-
tion performances of an MKL approach is either similar or better than the performance
obtained when selecting the kernel through cross-validation, even though we have roughly
searched the kernel and regularization parameter space. Hence, we can deduce that MKL

28

SimpleMKL

Table 6: Comparison of the generalization performances of an MKL approach and a cross-
validation approach for selecting models in some multiclass problems. We have
reported the average (over 20 runs) the test set errors of our algorithm while the
errors obtained for the SV approach have been extracted from Duan and Keerthi
(2005). Results also depend on the training set sizes.

Training set size

Medium Large

Dataset MKL CV MKL CV

ABE 0.73 ± 0.28 (16) 0.96 ± 0.36 0.44 ± 0.67 (11) 0.46 ± 0.20

DNA 7.69 ± 0.76 (11) 7.84 ± 0.79 5.59 ± 0.55 (10) 5.59 ± 0.39

SEG 6.52 ± 0.76 (10) 6.51 ± 0.99 4.71 ± 0.67 (13) 4.89 ± 0.71

WAV 15.18 ± 0.90 (15) 15.43 ± 0.97 14.26 ± 0.68 (8) 14.09 ± 0.55

can favorably replace cross-validation on kernel parameters. This result based on empirical
observations is in accordance with some other works (Lanckriet et al., 2004b, Fung et al.,
2004, Kim et al., 2006). However, we think that MKL and thus SimpleMKL in particular,
can be better exploited and thus performs better than cross-validation when the kernels
have been obtained from heterogenous source as described for instance in Lanckriet et al.
(2004a), Zien and Ong (2007), Harchaoui and Bach (2007).

6. Conclusion

In this paper, we introduced SimpleMKL, a novel algorithm for solving the Multiple
Kernel Learning problem. Our formalization of the MKL problem results in a smooth
and convex optimization problem, which is actually equivalent to other MKL formulations
available in the literature. The main added value of the smoothness of our new objec-
tive function is that descent methods become practical and efficient means to solve the
optimization problem that wraps a single kernel SVM solver. We provide optimality con-
ditions, analyze convergence and computational complexity issues for binary classification.
The SimpleMKL algorithm and the resulting analyses can be easily be transposed to SVM
regression, one-class SVM and multiclass SVM to name a few.

We provide experimental evidence that SimpleMKL is significantly more efficient than
the state-of-the art SILP approach (Sonnenburg et al., 2006). This efficiency permits to
demonstrate the usefulness of our algorithm on wavelet kernel based regression. We also
illustrate in multiclass problems that MKL is a viable alternative to cross-validation for
selecting a model.

Possible extensions of this work include other learning problems, such as semi-supervised
learning or kernel eigenvalue problem like kernel Fisher discriminant analysis. We also plan
to explore two different ways to speed up the algorithm. As a first direction, we will

29

Rakotomamonjy et al.

investigate ways to obtain a better the descent direction, for example with second-order
methods. Note however that computing the Hessian needs the derivative of the dual variable
with respects to the weights d. This operation requires solving a linear system (Chapelle
et al., 2002) and thus may produce some computational overhead. The second direction is
motivated by the observation that most of the computational load is to the computation of
the kernel combination. Hence, coordinate-wise optimizers may provide promising routes
for improvements.

Acknowlegments

We would like to thank the anonymous reviewers for their useful comments. This work
was supported in part by the IST Program of the European Community, under the PAS-
CAL Network of Excellence, IST-2002-506778. Alain Rakotomamonjy, Francis Bach and
Stéphane Canu were also supported by French grants from the Agence Nationale de la
Recherche (KernSig for AR and SC, MGA for FB).

References

A. Antoniadis and J. Fan. Regularization by Wavelet Approximations. J. American Sta-
tistical Association, 96:939–967, 2001.

A. Argyriou, T. Evgeniou, and M. Pontil. Convex multi-task feature learning. Machine
Learning, to appear, 2008.

N. Aronszajn. Theory of reproducing kernels. Trans. Am. Math. Soc., (68):337–404, 1950.

F. Bach. Consistency of the group Lasso and multiple kernel learning. Journal of Machine
Learning Research, 9:1179–1225, 2008.

F. Bach, G. Lanckriet, and M. Jordan. Multiple kernel learning, conic duality, and the SMO
algorithm. In Proceedings of the 21st International Conference on Machine Learning,
pages 41–48, 2004a.

F. Bach, R. Thibaux, and M. Jordan. Computing regularization paths for learning multiple
kernels. In Advances in Neural Information Processing Systems, volume 17, pages 41–48,
2004b.

M. Berkelaar, K. Eikland, and P. Notebaert. Lpsolve, Version 5.1.0.0, 2004. URL http:

//lpsolve.sourceforge.net/5.5/.

D. Bertsekas. Nonlinear programming. Athena scientific, 1999.

C. Blake and C. Merz. UCI repository of machine learning databases. University of
California, Irvine, Dept. of Information and Computer Sciences, 1998. URL http:

//www.ics.uci.edu/~mlearn/MLRepository.html.

F. Bonnans. Optimisation continue. Dunod, 2006.

30

SimpleMKL

J.F. Bonnans and A. Shapiro. Optimization problems with pertubation : A guided tour.
SIAM Review, 40(2):202–227, 1998.

J.F. Bonnans, J.C Gilbert, C. Lemaréchal, and C.A Sagastizbal. Numerical Optimization
Theoretical and Practical Aspects. Springer, 2003.

S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, 2004.

S. Canu, Y. Grandvalet, V. Guigue, and A. Rakotomamonjy. SVM and kernel methods
Matlab toolbox. LITIS EA4108, INSA de Rouen, Rouen, France, 2003. URL http:

//asi.insa-rouen.fr/enseignants/~arakotom/toolbox/index.html.

C-C. Chang and C-J. Lin. LIBSVM: a library for support vector machines, 2001. Software
available at http://www.csie.ntu.edu.tw/~cjlin/libsvm.

O. Chapelle, V. Vapnik, O. Bousquet, and S. Mukerjhee. Choosing multiple parameters for
SVM. Machine Learning, 46(1-3):131–159, 2002.

K. Crammer and Y. Singer. On the Algorithmic Implementation of Multiclass Kernel-based
Vector Machines. Journal of Machine Learning Research, 2:265–292, 2001.

A. D’Amato, A. Antoniadis, and M. Pensky. Wavelet kernel penalized estimation for non-
equispaced design regression. Statistics and Computing, 16:37–56, 2006.

A. D’Aspremont. Smooth Optimization with Approximate Gradient. SIAM Journal on
Optimization, To appear, 2008.

D. DeCoste and K. Wagstaff. Alpha seeding for support vector machines. In International
Conference on Knowledge Discovery and Data Mining, 2000.

K. Duan and S. Keerthi. Which Is the Best Multiclass SVM Method? An Empirical Study.
In Multiple Classifier Systems, pages 278–285, 2005. URL http://www.keerthis.com/

multiclass.html.

B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani. Least angle regression (with discus-
sion). Annals of statistics, 32(2):407–499, 2004.

G. Fung, M. Dundar, J. Bi, and B. Rao. a fast iterative algorithm for Fisher discriminant
using heterogeneous kernels. In Proceeedins of the 21th International Conference on
Machine Learning, 2004.

Y. Grandvalet. Least absolute shrinkage is equivalent to quadratic penalization. In L. Niklas-
son, M. Bodén, and T. Ziemske, editors, ICANN’98, volume 1 of Perspectives in Neural
Computing, pages 201–206. Springer, 1998.

Y. Grandvalet and S. Canu. Adaptive scaling for feature selection in svms. In Advances in
Neural Information Processing Systems, volume 15. MIT Press, 2003.

Y. Grandvalet and S. Canu. Outcomes of the equivalence of adaptive ridge with least absolute
shrinkage. MIT Press, 1999.

31

Rakotomamonjy et al.

Z. Harchaoui and F. Bach. Image classification with segmentation graph kernels. In IEEE
Computer Society Conference on Computer Vision and Pattern Recognition, 2007.

T. Hastie, S. Rosset, R. Tibshirani, and J. Zhu. The entire regularization path for the
support vector machine. Journal of Machine Learning Research, 5:1391–1415, 2004.

C.-W. Hsu and C.-J. Lin. A comparison of methods for multi-class support vector machines.
IEEE Transactions on Neural Networks, 13:415–425, 2002.

T. Joachims. Making large-scale SVM learning practical. In B. Scholkopf, C. Burges, and
A. Smola, editors, Advanced in Kernel Methods - Support Vector Learning, pages 169–184.
MIT Press, 1999.

S.-J. Kim, A. Magnani, and S. Boyd. Optimal kernel selection in kernel Fisher discrimi-
nant analysis. In Proceedings of the 23rd International Conference on Machine Learning
(ICML), 2006.

K. Koh, S.-J. Kim, and S. Boyd. An interior-point method for large-scale ℓ1-regularized
logistic regression. Journal of Machine Learning Research, 8:1519–1555, 2007.

G. Lanckriet, T. De Bie, N. Cristianini, M. Jordan, and W. Noble. A statistical framework
for genomic data fusion. Bioinformatics, 20:2626–2635, 2004a.

G. Lanckriet, N. Cristianini, L. El Ghaoui, P. Bartlett, and M. Jordan. Learning the kernel
matrix with semi-definite programming. Journal of Machine Learning Research, 5:27–72,
2004b.

C. Lemaréchal and C. Sagastizabal. Practical aspects of moreau-yosida regularization :
theoretical preliminaries. SIAM Journal of Optimization, 7:867–895, 1997.

G. Loosli and S. Canu. Comments on the ”Core Vector Machines: Fast SVM Training
on Very Large Data Sets”. Journal of Machine Learning Research, 8:291–301, February
2007.

G. Loosli, S. Canu, S. Vishwanathan, A. Smola, and M. Chattopadhyay. Bôıte à outils
SVM simple et rapide. Revue d’Intelligence Artificielle, 19(4-5):741–767, 2005.

D. Luenberger. Linear and Nonlinear Programming. Addison-Wesley, 1984.

C. Micchelli and M. Pontil. Learning the kernel function via regularization. Journal of
Machine Learning Research, 6:1099–1125, 2005.

A. Rakotomamonjy and S. Canu. Frames, reproducing kernels, regularization and learning.
Journal of Machine Learning Research, 6:1485–1515, 2005.

A. Rakotomamonjy, X. Mary, and S. Canu. Non parametric regression with wavelet kernels.
Applied Stochastics Model for Business and Industry, 21(2):153–163, 2005.

A. Rakotomamonjy, F. Bach, S. Canu, and Y. Grandvalet. More efficiency in multiple kernel
learning. In Zoubin Ghahramani, editor, Proceedings of the 24th Annual International
Conference on Machine Learning (ICML 2007), pages 775–782. Omnipress, 2007.

32

SimpleMKL

R. Rifkin and A. Klautau. In Defense of One-Vs-All Classification. Journal of Machine
Learning Research, 5:101–141, 2004.

S. Rosset. Tracking Curved Regularized Optimization Solution Paths. In Advances in
Neural Information Processing Systems, 2004.

B. Schölkopf and A. Smola. Learning with Kernels. MIT Press, 2001.

S. Sonnenburg, G. Rätsch, and C. Schäfer. A general and efficient algorithm for multiple
kernel learning. In Advances in Neural Information Processing Systems, volume 17, pages
1–8, 2005.

S. Sonnenburg, G. Rätsch, C. Schäfer, and B. Schölkopf. Large scale multiple kernel learning.
Journal of Machine Learning Research, 7(1):1531–1565, 2006.

I. Tsochantaridis, T. Joachims, T. Hofmann, and Y. Altun. Large Margin Methods for
Structured and Interdependent Output Variables. Journal of Machine Learning Research,
6:1453–1484, 2005.

V. Vapnik, S. Golowich, and A. Smola. Support Vector Method for function estimation,
Regression estimation and Signal processing, volume Vol. 9. MIT Press, Cambridge, MA,
neural information processing systems, edition, 1997.

S. V. N. Vishwanathan, A. J. Smola, and M. Murty. SimpleSVM. In International Confer-
ence on Machine Learning, 2003.

G. Wahba. Spline Models for Observational Data. Series in Applied Mathematics, Vol. 59,
SIAM, 1990.

J. Weston and C. Watkins. Multiclass support vector machines. In Proceedings of ESANN99,
Brussels. D. Facto Press, 1999.

A. Zien and C.S. Ong. Multiclass Multiple Kernel Learning. In Proceedings of the 24th
International Conference on Machine Learning (ICML 2007), pages 1191–1198, 2007.

Appendix

Proof of convexity of the weighted squared norm MKL formulation

The convexity of the MKL problem (2) introduced in section 2.2 will be established if
we prove the convexity of

J(f, t) =
1

t
〈f, f〉H where f ∈ H and t ∈ R

∗+

Since J(f, t) is differentiable with respects to its arguments, we only have to make sure
that the first order conditions for convexity are verified. As the convexity of the domain of
J is trivial, we verify that, for any (f, t) and (g, s) ∈ H × R

∗+, the following holds:

J(g, s) ≥ J(f, t) + 〈∇fJ, g − f〉H + (s− t)∇tJ .

33

Rakotomamonjy et al.

As ∇fJ = 2
t f and ∇tJ = − 1

t2 〈f, f〉H, this inequality can be written as

1

s
〈g, g〉H ≥

2

t
〈f, g〉H −

s

t2
〈f, f〉H ,

⇔ 〈t g − s f, t g − s f〉H ≥ 0 ,

where we used that s and t are positive. The above inequality holds since the scalar product
on the left-hand-side is a norm. Hence problem (2) minimizes the sum of convex functions
on a convex set; it is thus convex. Note that whenH is a finite dimension space, the function
J(f, t) is known as the perspective of f , whose convexity is proven in textbooks (Boyd and
Vandenberghe, 2004).

Differentiability of optimal value function

The algorithm we propose for solving the MKL problem heavily relies on the differ-
entiability of the optimal value of the primal SVM objective function. For the sake of
self-containedness, we reproduce here a theorem due to Bonnans and Shapiro (1998) that
allows us to compute the derivatives of J(d) defined in (10).

Theorem 1 (Bonnans and Shapiro, 1998) Let X be a metric space and U be a normed
space. Suppose that for all x ∈ X the function f(x, ·) is differentiable, that f(x, u) and
Duf(x, u) the derivative of f(x, ·) are continuous on X × U and let Φ be a compact subset
of X. Let define the optimal value function as v(u) = infx∈Φ f(x, u). The optimal value
function is directionally differentiable. Furthermore, if for u0 ∈ U , f(·, u0) has a unique
minimizer x0 over Φ then v(u) is differentiable at u0 and Dv(u0) = Duf(x0, u0).

34

