
HAL Id: inria-00319159
https://hal.inria.fr/inria-00319159v2

Submitted on 9 Sep 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Component-based Models Going Generic : the MARTE
Case-Study

César Olavo de Moura Filho, Anne Etien, Julien Taillard, Cedric Dumoulin,
Frédéric Guyomarc’H

To cite this version:
César Olavo de Moura Filho, Anne Etien, Julien Taillard, Cedric Dumoulin, Frédéric Guyomarc’H.
Component-based Models Going Generic : the MARTE Case-Study. [Research Report] RR-6632,
INRIA. 2008. �inria-00319159v2�

https://hal.inria.fr/inria-00319159v2
https://hal.archives-ouvertes.fr

appor t
de r ech er ch e

IS
S

N
02

49
-6

39
9

IS
R

N
IN

R
IA

/R
R

--
66

32
--

F
R

+
E

N
G

Thème COM

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Component-based Models Going Generic:
the MARTE Case-Study

César Olavo de Moura Filho — Anne Etien — Julien Taillard — Cédric Dumoulin —

Frédéric Guyomarc’h

N° 6632

September 2008

Centre de recherche INRIA Futurs
Parc Orsay Université, ZAC des Vignes,

4, rue Jacques Monod, 91893 Orsay Cedex
Téléphone : +33 1 72 92 59 00

Component-based Models Going Generi:the MARTE Case-StudyCésar Olavo de Moura Filho∗ , Anne Etien† , Julien Taillard‡ ,Cédri Dumoulin§ , Frédéri Guyomar'h¶Thème COM � Systèmes ommuniantsÉquipes-Projets DaRTRapport de reherhe n° 6632 � September 2008 � 15 pagesAbstrat: One of the reasons for using omponent-based modeling is to im-prove on reusability. However, there are ases where a whole omponent annotbe reused just beause one element from its internal struture does not presentthe required features (e.g., type, multipliity, et). In this paper, we propose theuse of parameterized omponents as a way to address this problem - and thus toget a further boost on reusability. The UML spei�ation provides support toparameterization via templates. However, when it omes to omponent-basedmodeling, UML is but the �rst metamodel in sometimes long hains of trans-formations, omprising other domain metamodels. So, in order to keep param-eters deeper down the transformation hains, we introdue generi omponentsin those metamodels. However, instead of hanging the target metamodel, wedeided to reate an independent metamodel with the additional onepts re-quired by parameterization, so it an be attahed to any target metamodel. Themost obvious advantage of this approah is that we do not have to touh thetarget metamodel. We also demonstrate how existing transformations an beeasily adapted to aept the parameter-related onepts. To illustrate our ideas,we used OMG's MARTE metamodel for real-time and embedded systems. Theapproah has been validated through transformations written in QVT.Key-words: Model Driven Engineering, Component-based Modeling, ModelTransformation, QVT, UML, MARTE standard pro�le
∗ esar.demoura@inria.fr
† anne.etien�li�.fr
‡ julien.taillard�li�.fr
§ edri.dumoulin�li�.fr
¶ frederi.guyomarh�li�.fr

Vers la génériité des modèles orientésomposants : le as d'étude MARTERésumé : L'un des avantages prinipal de la modélisation orientée omposantest d'améliorer la réutilisabilité. Cependant, il existe des as où un omposantne peut pas être réutilisé dans sa globalité uniquement pare qu'un élément desa struture interne ne satisfait pas les aratéristiques attendues (par exemplele type, la multipliité, et.) Dans e rapport, nous proposons d'utiliser desomposants paramétrés a�n de résoudre e problème - et don d'améliorer laréutilisabilité. La spéi�ation UML propose le méanisme de template ommesupport à la paramétrisation. Cependant, UML n'est parfois que le premiermétamodèle d'une longue haîne de transformations omprenant d'autre méta-modèles de domaine. Ainsi, a�n de garder les paramètres plus profondémentdans la haîne de transformation, nous introduisons des omposants génériquesdans es métamodèles. Cependant, au lieu de hanger le métamodèle ible,nous avons réé un métamodèle indépendant ave les onepts néessaires à laparamétrisation a�n qu'il puisse être attahé à n'importe quel métamodèle. Leprinipal avantage de ette approhe réside dans le fait qu'il n'est pas néessairede modi�er le métamodèle ible. Nous démontrons aussi omment les transfor-mations existantes peuvent être failement adaptées pour supporter les oneptsliés à la paramétrisation. Pour illustrer es idées, nous avons utilisé le métamo-dèle MARTE de l'OMG pour les systèmes temps réel embarqué. L'approhe aété validée par des transformations érite en QVT.Mots-lés : ingénierie dirige par les modèles, pro�l standard MARTE, para-mètres, Modélisation orientée omposant, Génériités,

Component-based Models Going Generi: the MARTE Case-Study 31 IntrodutionModel Driven Engineering (MDE) proposes doing away with ontemplativemodels by turning them into produtive artifats sitting right at the beginningof a proess that �nishes with exeutable ode. Being models more abstratthan programming ode, hanges an be more easily operated on them, whilemodel transformations assure that suh hanges will be rippled to the �nal ode,thus inurring in lower development time and osts.Component-based modeling an also bene�t from the MDE main rationale.However, in pratie, we regularly ome aross situations in whih omponent-based models are not abstrat enough so as to be reused in di�erent ontexts.Sometimes a previously designed omponent just annot be reused as is, evenif most of its spei�ation orresponds to the designer's needs. For example,one may rule out an otherwise perfetly suitable omponent just beause themultipliity of one of its ports is not adequate. In this ase, �reuse� boils down,in pratie, to making a opy of the omponent and to manually performingthe required hanges. This proedure, in addition to being error-prone, inursin extra work - a work that risks to be repeated anytime a given omponentannot be reused exatly as is.A solution to this problem an be the use of parameterizable omponents,that is, omponents whose spei�ation is inomplete, omprising plaeholdersthat an be later replaed by atual model elements. More spei�ally, param-eterizable omponents are not fully spei�ed in the moment they are spei�ed,leaving some �blanks� (i.e., the parameters) to be �lled out later on, one weknow their atual values. Parameterization has been widely used in di�erentprograming languages (like C++ templates and Java generis [Bat04℄), and inmodeling languages, like EMF generis [Bru07℄ and UML templates [Obj07℄ -this one, of speial interest for this report.With UML templates, parameterization an be introdued from the outsetof the modeling proess. However, the generiity ahieved with the introdutionof templates is eventually lost one parameters get their values - something doneby the model designer, muh too early in the development proess. Consideringthat UML models are sometimes used in hains of transformation as the primaryartifat, out of whih other models - and eventually programming ode - arederived, we would like to be able to ontinue with generi omponents in thederived models as well � as opposed to resolving parameters right after we leaveUML.So, if we somehow manage to push the assignment of values further downa transformation hain1, parameters ould alternatively have their values pro-grammatially assigned by optimization/refatoring algorithms, alled from in-ner transformations. We also reap some bene�ts of bringing parameters up tothe generated ode, sine this would allow us to produe generi ode - whihan be distributed as a library and reused many times over, without ever havingto revisit the transformation hain.A way of ahieving this goal is by enrihing domain metamodels with supportto parameterization and having parameters propagate through the suessivemetamodels until they reah the one that will e�etively make use of them -1Transformation hain orresponds to suessive transformations in whih the target meta-model of one transformation is the soure of the following one.RR n° 6632

4 Moura, Etien, Taillard, Dumoulin & Guyomar'hultimately up to the generated ode. In this report, we propose a solution to theparameterization of metamodels. Although this solution an be general enoughto �t any metamodel, we explore here only omponent-based metamodels.The rest of this report is organized as follows. In setion 2, we desribethe UML solution for parameterization. In setion 3, we disuss an examplethat illustrates our needs in terms of parameterization. Setion 4 presents oursolution to parameterize existing metamodels. Setion 5 explains how to applyour approah to the OMG MARTE metamodel. The �nal setion draws theonlusions and suggests future work.2 Parameterizing UML ModelsThis setion desribes the UML solution to parameterization. Additionally, itraises some issues relative to its usage and proposes solutions to them.UML onepts. Parameterization has been introdued in the UML spei�-ation through the use of Templates. The UML templating mehanism is basedon two main elements: the TemplateableElement and the ParameterableElement.The former, referred to simply as template, is the 'generi' element, whih hasparameters and an have its inner parts exposed (to use UML jargon) by theparameters. UML elements that an play the role of TemplateableElement arelassi�ers, pakages, operations and even string expressions. In turn, Param-eterableElement represents the template's inner elements than an be exposed-i.e. the ones whih will be replaed by the atual values. Classi�ers, features(properties and operations) and value spei�ations are some UML elementsthat an at as ParameterableElement.
(a) A templatedlass (b) The binding operationFigure 1: Delaration and binding of a parameter in UMLFigure 1.a illustrates a templated lass (List). Graphially, a templated lassis expressed through the small dashed retangle superimposed to the symbol ofthe lass, while its parameters are listed inside the retangle ('E', in this spei�ase). One de�ned, templates an be used by other elements of the model. Thisis ahieved by means of an operation alled binding, in whih atual value(s) aresubstituted for the parameter(s) (Figure 1.b). A binding is expressed throughthe templateBinding relationship, a direted relationship going from the boundelement to the template and labeled with the �bind� stereotype. In our example,
ListOfString is obtained from List by replaing E (in reality, by replaing theParameterableElement pointed at by E - not shown in the �gure) by a Stringlass.Issues related to UML templates and their implementation inUML tools. In our urrent pratie, a few situations have been detetedINRIA

Component-based Models Going Generi: the MARTE Case-Study 5that annot be properly modeled with the UML template solution, raising someissues, due to both a faulty UML spei�ation and to inomplete UML tools.One of these issues onerns the fat that the UML spei�ation does notallow one given parameter to expose more than one parameterable element.Unfortunately, this happens to be a very harsh onstraint that prevents us frommodeling some useful situations frequently found in our pratie. For example,the simple lass illustrated in Figure 2 annot be properly spei�ed with theUML templating mehanism. In this example, lass A has two parameters, T(of type Class) and n (Integer) and two properties (prop1 and prop2), whihare both arrays of type T and size n. While this on�guration works well withthe parameter T (i.e. both properties an have the same type: the lass thatwill be bound to T) it fails with the parameter n (i.e. two multipliities annotbe spei�ed by the same parameter). A quik analysis of the UML spei�ationshows us that the referenes between a property and its type and between aproperty and its upper and lower bounds present di�erent natures, the �rstbeing a simple referene and the seond, an aggregation. This issue has beenreported to the OMG and, hopefully, it will be orreted in the next versionsof the spei�ation. In the meantime, we have to make do with a home-brewedsolution - though further explanation is beyond the sope of this report.
Figure 2: A parameterized lass that an not be designedExepting this issue - the only serious threat to our modeling e�orts - theUML template spei�ation provides all the mehanisms neessary to expressgeneriity. Some of them are, however, too heavyweight and lumsy to be usedfor our purposes. An example of suh lumsiness - and this onstitutes the se-ond type of problem, hinted at above - is the graphial representation of thebinding, with its additional box and arrow, whih tends to lutter even more theusually rammed up omponent diagrams. We deided to address this problemby making use of the anonymous binding feature. Barely mentioned in the UMLspei�ation, the anonymous binding is used to enode the parameter substitu-tion information diretly in the bound lass name, dispensing with the expliitbinding. With anonymous binding, the ListOfString lass of Figure 1 would beobtained just by writing2: List<T→String> .This handy notation will ertainly spare us some preious spae from ouromponent diagrams. In the next setion we will provide an example modelthat uses both UML templates and omponent-based elements.2 Due to the fat that anonymous binding is ompletely ignored by existing tools, we hadto perform a slightly adaption in the o�ial UML notation: myListOfString<T→String>:ListRR n° 6632

6 Moura, Etien, Taillard, Dumoulin & Guyomar'h3 Designing a Component-based Model with Pa-rametersIn this setion, we desribe an appliation for sienti� omputing as an exampleto larify our omponent model. Sine a full-�edged parallel solver is far beyondthe sope of this artile, we provide just a streamlined example, but that inludesall the onepts we need. All these onepts are desribed in details in theMARTE pro�le for UML [Obj07a℄, though a some of them are further detailedin the Setion 5 of this report.

Figure 3: De�nition of a parameterized omponent with UML templatesThe �rst onept used in our models is the omponent itself. Here, in �gure3, the DAXPY omponent represents vetor omputations ([LHKK79℄). Dataare exhanged through �ow ports stereotyped as in or out. Here the inputsare two vetors X , Y and a salar alpha; the output is the linear ombination
alpha∗X+Y . All these ports have a shape whih represents the size of the datagoing through it, and this shape an be multidimensional. To avoid re-design themodel whenever we need to hange the shape, a parameter (N : Integer) wasintrodued. This omponent an then be used to perform atual omputation:here it appears as a part ofMyComputations omponent, whih an be regardedas the main program. This omponent is also parameterized with the size ofthe data hunk it an deal with per operation. We also wanted to be able tohange the atual implementation of the DAXPY omponent itself. One anthink of this example as if we had a very optimized funtion but whih anonly run on a few proessors (like, for example, the Intel Math Kernel Library[Int℄,optimized for the Intel proessors). If we wanted to run the program onanother arhiteture, a di�erent implementation would be needed. Figure 4illustrates this situation.Figure 4 depits two omponents that implement DAXPY(NetLib_Referene_DAXPY and MKL_DAXPY), and they are usedby two di�erent programs. Program1 uses the non optimized funtionINRIA

Component-based Models Going Generi: the MARTE Case-Study 7

Figure 4: Instaniation of the parameterized omponentNetLib_Referene_DAXPY with data size of 5 (i.e. K = 5) , whereasProgram2 uses the Intel optimized funtion MKL_DAXPY with bigger datahunks (K = 18). Likewise, the type of the C parameter is assigned toNetLib_Referene_DAXPY and MKL_DAXPY, respetively.Despite its simpliity, this example represents well the kind of generiitywe need in our models. In the next setion, we present a way of extendingthe support to parameters to beyond UML, so we an preserve the generiityillustrated in this example in the derived models.4 Parameterizing omponent-based metamodels4.1 OverviewIn this setion, we desribe our solution for adding parameterization apabil-ities to a omponent-based metamodel. Sine the metamodel is expressed inEore, the �rst solution that rosses our minds is to make use of the EMF sup-port of generis. However, this hasty onlusion turns out to be a bad hoie,sine, like Java generis, EMF generis is a purely type-based parameterizationmehanism. That is, ontrary to UML, parameters an only expose types intyped elements (something that roughly orresponds to UML's Classi�erTem-plateParameter), whereas one of our main interests in using parameterization isto expose bounds of multipliity elements (i.e. upperValue and lowerValue). So,we promptly ruled out any solution based on the EMF generis. Another pointto be onsidered is that, sine there already exist muh ongoing work based onthe MARTE metamodel, the proposed solution ould not be too disruptive, inpartiular to the existing transformations.RR n° 6632

8 Moura, Etien, Taillard, Dumoulin & Guyomar'hReapitulating what has been disussed so far in terms of requirements forour parameterization needs, we look for a solution that:� does not overload diagrams with parameter-related notation� allows parameters to expose more than one element� is independent of any partiular metamodelTo meet the �rst two items, we had to overome the problems pointed atin the previous setions, namely the impossibility of a same parameter to ex-pose more than one parameterable element and the limitation of existing UMLtools, whih do not implement the anonymous binding feature. Granted, theseare temporary solutions waiting for the enhanement of UML spei�ation andtools.In addition to the MARTE metamodel, we use in our researh work othermore spei� metamodels for embedded systems. It is important, then, that oursolution for adding parameterization apabilities to MARTE an be reapplied tothe other metamodels - loated downstream the transformation hain - withouttoo muh e�ort. So, in order to meet the last requirement above, instead ofmodifying every metamodel we use so as to aommodate the additional on-epts related to parameterization, the adopted approah was to reate a new,ompletely independent metamodel with suh onepts, but that sits on top ofthe target metamodel. This metamodel has to be generi enough, making noassumption about the target metamodel it will hang up to. Nevertheless, forthe example desribed in this report, we will - somewhat arti�ially - onstrainit to omponent-based models.We will now give a glimpse of the proposed metamodel. For the sake oflarity, we will break it down into two parts: the �rst part, onerning thespei�ation of the generi omponent and the seond part, regrouping theonepts related to the binding proess.

BoundComponent GenericComponent

ParameteredElement
FormalParameter

ActualArgument

ComponentParameter

ValueSpecification

ComponentArgument

ValueParameter

ValueArgument
-multiplicity

0..1

-component

1

-type

0..1

-/elements0..*

-arguments

0..*

-value

-parameter0..*Figure 5: Parameter Metamodel
INRIA

Component-based Models Going Generi: the MARTE Case-Study 94.2 Generi Metamodel DesriptionThe right part of Figure 5 highlights the onepts involved in the de�nitionof a generi omponent. It omprises the entral element, GeneriComponent,whih is the element that will be parameterized. In turn, GeneriComponentontains one or more FormalParameters and one or more ParameterizedEle-ments. These three elements are diretly obtained from the orresponding UMLelements, respetively TemplateableElement, TemplateParameter and Parame-terableElement. Moreover, a FormalParameter is further subdivided into Val-ueParameter and ComponentParameter, thus re�eting our need of exposing,respetively, values (e.g. the multipliity of a port from a omponent) and types(e.g. the type of a omponent's part) from the omponent's internal struture.The left part of the metamodel refers to the binding proess: it is onstitutedof a BoundComponent, whih may ontain one or more arguments (AtualArgu-ment). Mirroring FormalParameter, AtualArgument is further sublassed intoValueArgument and ComponentArgument, thus taking aount of both typesof elements that an replae parameters. BoundComponent is the element thatrepresents a GeneriComponent whose parameters have been given values. Con-trary to the other elements desribed so far, it does not have a diret ounterpartin the UML templating model, and, onsequently, annot be generated diretlyfrom a UML onept.4.3 Assigning values to parametersThe ruial part of the binding proess is the assignment of values to the formalparameters. Before it, we have two would-be omponents, one, GeneriCom-ponent, ontaining the struture of a full-�edged omponent (i.e., ports, parts,onnetors, et.), but laking some values for a omplete spei�ation; and theother, the BoundComponent, ontaining nothing but the needed values (referredto by the AtualArguments). So, in this step, a brand new StruturedComponentis reated that has the struture of the GeneriComponent but that replaes allFormalParameters by the value referened by the mathing AtualArgument.In the next setion we apply the metamodel here desribed to the OMGMARTE metamodel, so as to make it parameter-aware.5 Parameterizing the MARTE MetamodelIn this setion, we desribe our solution to enrihing the MARTE (Modelingand Analysis of Real-Time and Embedded systems) metamodel with the sup-port to parameterization. This metamodel has been de�ned in the ontext ofthe MARTE pro�le spei�ation. The primary aim of this standard pro�le pro-posed by the Objet Management Group (OMG) is to add apabilities to UMLfor the model-driven development of real-time and embedded systems. The on-epts introdued in this pro�le signi�antly improve the usual way of modelingsoftware and hardware platforms. Further extensions are provided to failitateperformane and sheduling analysis and to model platform servies (e.g. ser-vies of an operating system). It is worth noting that, if MARTE de�nes aseries of onepts to desribe embedded systems, it relies on the UML spei�-ation to model the appliations that will run on top of these systems. Finally,RR n° 6632

10 Moura, Etien, Taillard, Dumoulin & Guyomar'hMARTE de�nes the onepts to model the deployment of the appliations ontothe systems.5.1 Gaspard Modeling ProessBeing a very generi spei�ation for embedded and real-time systems, MARTEan be used in a multitude of manners. The use we make of MARTE is muhmore onstrained, though, lying within the sope of the Gaspard Modeling Pro-ess [DGE+08℄. The Gaspard Modeling Proess is dediated to intensive signalomputation and allows the system-on-hip o-design. It takes in high-levelUML models respeting the MARTE pro�le - in fat, these are the only inputby users - and hurns out ode in di�erent tehnologies: synhronous languagesfor formal validation, SystemC for simulation, OpenMP Fortran for exeutionof sienti� omputation and VHDL for iruitry synthesis. For this to be pos-sible, the Gaspard2 framework provides di�erent transformation hains, one foreah target language. Presently, the transformations o�er no support to param-eterization. The idea is then to extend this support to beyond the UML-basedinput model and onserve generi omponents as long as needed within thetransformation hains.5.2 Overview of MARTE MetamodelAlthough MARTE is primarily implemented in the form of extensions to UML,the UML pro�le for MARTE, the spei�ation also inludes a metamodel thatde�nes MARTE onepts in a UML-independent fashion. In this report, we dealmainly with MARTE's General Component Model (GCM), the spei� pakagethat enompasses the omponent-based onepts.Figure 6 represents the MARTE GeneralComponentModel pakage. A Stru-turedComponent speializes BehavioredClassi�er to de�ne a self-ontained en-tity of a system, whih may enapsulate strutured data and behavior. Similarlyto a UML Classi�er, it owns properties, whih an be attributes, or memberends of an assoiation. A Property has a multipliity - spei�ed in terms ofupper and lower bounds-, an aggregation kind and a type. The internal stru-ture of a StruturedComponent an furthermore be referened using the partsassoiation, whih points to AssemblyParts. InterationPorts are a speial kindof property owned by a strutured omponent. An interation port de�nes anexpliit interation point of the omponent with external elements. Two portsmay be onneted through an AssemblyConnetor.5.3 Extending the MARTE MetamodelIn this setion we are going to explain how to onnet our metamodel toMARTE. All we have to do is to indiate the elements that we want to "generi-ize" (i.e. elements that are allowed to reeive parameters) and whih elementswe want to parameterize (i.e. elements allowed to have any feature referring toa parameter). This indiation is ahieved through inheritane relationships, asindiated in Figure 7. In this ase, we would have:� Elements that an be parameterized: StruturedComponent and its sub-lasses; INRIA

Component-based Models Going Generi: the MARTE Case-Study 11
AssemblyPart

Property

StructuredComponent

AssemblyConnector

InteractionPort

BehavioredClassifier

-endPort

*

-ownedPorts

* -owner

1
-/parts

*

0..1

-ownedConnectors
*

1

Figure 6: The Generi Component Modeling pakage of the MARTE metamodel� Elements that an be exposed as parameters: Properties and their sub-lasses, InterationPort and AssemblyPart;

GenericComponent

BehavioredClassifier

AssemblyPart

AssemblyConnector

StructuredComponent

InteractionPort

ComponentParameter

ComponentArgument

ActualArgument

ValueArgument

ValueParameter

ValueSpecification

FormalParameter
ParameteredElement

BoundComponent

Property
-component

-multiplicity

0..1

-endPart

*

-/elements

0..*

-component

1

-endPort

*

-/parts

*

0..1

-type

0..1

-ownedPorts

*

-owner
1

-ownedConnectors
*

1

-arguments

0..*

-value

-parameter0..*

Figure 7: The Generi Component Modeling pakage of the MARTE metamodelafter introdution of generiity5.4 The TransformationsOne we have established the inheritane relationships shown in Figure 7, wealso have to hange our transformations aordingly. The idea is to make mini-mal hanges to the existing transformations. Thus, the resulting transformationis, in fat, a two-step transformation hain (as shown in Figure 8). The �rsttransformation takes in models in UML extended by the MARTE pro�le andRR n° 6632

12 Moura, Etien, Taillard, Dumoulin & Guyomar'hgenerates objets from the Parameterized MARTE metamodel (obtained fromthe omposition of the MARTE metamodel and the Generis metamodel, asshown in Figure 7), whih we will all PM3. That is why a seond transfor-mation is needed, serving to substitute atual values for parameters and thusto remove all referenes to the Generis metamodel. This seond transforma-tion will be detailed further on. All transformations3 mentioned in this reporthave been formalized with the OMG Query, View and Transformations spe-i�ation [Obj07b℄ and implemented with the QVT-O tool [Bor07℄, from theEMF/M2M projet. QVT-O is ompliant with the Operational QVT spei�a-tion.

Figure 8: The new transformationsAs a rule, elements from the UML template pakage will ause the transfor-mation to reate elements from the Generis metamodel. For example, a UMLComponent with aUML::TemplateSignature will give rise to aGeneris::Generi-Component and aUML::TemplateParameter will give rise to aGeneris::Formal-Parameter.Now we would like to use the MARTE example to illustrate the impat of theparameterization proess on existing transformations. Suppose there is alreadya transformation from UML to MARTE and we want to adapt it to take aountof parameterization. After having set up the inheritane relationships betweenthe Generis metamodel and MARTE, as illustrated in Figure 7, the existingtransformation rules (i.e. QVT mappings) an be hanged without too muhe�ort. For example, let's say we have the following mapping to onvert regularUML Ports into MARTE Flowports :mapping UML::Port::oldToFlowport():GCM::FlowPort{ -- whatever mappings needed} All we have to do is to reate a wrapping mapping that enompasses boththe old mapping and the mapping to onvert parameterized UML ports. TheQVT 'disjunts' feature will help us out with this task, as we see in the odebelow (note that the only modi�ation to the old mapping is the introdutionof the 'when' lause, responsible for �ltering out parameterized UML ports):abstrat mapping UML::Port::newToFlowport():GCM::FlowPortdisjunts UML::Port::oldToFlowport, UML::Port::generisFlowport3The transformations an be obtained from http://www2.lifl.fr/west/gaspard/ INRIA

http://www2.lifl.fr/west/gaspard/

Component-based Models Going Generi: the MARTE Case-Study 13{}mapping UML::Port::oldToFlowport():GCM::FlowPort -- the existing mapping-- no template parameter, so regular Portwhen{ self.type.olAsType(Class).templateParameter.olIsUnde�ned() }{ -- whatever mappings needed}mapping UML::Port::generisFlowport():Template::ParameteredElement-- speifies a template parameter, so a parameterized Portwhen{ not self.type.olAsType(Class).templateParameter.olIsUnde�ned() }{ -- parameter related mappings} Thus, the resulting mapping will take are of separating regular ports fromparameterized ports and generating the adequate output elements. And thisstruture an be repliated to the other elements, though sometimes some adap-tation might be required. With UML parts, for example (a part is a UMLProperty that is not a Port), things get slightly more ompliated, sine nowthere are three possible paths to follow in the transformation. If it is a param-eterized part (i.e. one of its features refers to a TemplateParameter), then aGeneris::ParameteredElement is generated and if it is a regular part, a simpleMARTE::AssemblyPart will be reated - exatly like the FlowPort example.However, a third alternative is required that addresses the ase when the partname enodes an anonymous binding (i.e. something like a<k→1,T→T1>). Inthis ase, two new elements will be generated: a Generis::BoundComponentand a MARTE::AssemblyPart. Figure 9 shows the resulting elements from ap-plying this transformation to the model example taken from setion 3.

Figure 9: Transformation of the MARTE Pro�le to the PM3RR n° 6632

14 Moura, Etien, Taillard, Dumoulin & Guyomar'hThe seond transformation is responsible for generating the �nalMARTE model. Its main job is quite straight: it simply re-ates the �nal MARTE::StruturedComponent elements out of the Gener-is::BoundComponent elements - and the Generis::GeneriComponent theyrefer to (through the omponent referene). It is in this part that all parame-ters are replaed by the atual values, as previously mentioned in subsetion 4.3.To wrap up, all old referenes to Generis elements are updated and danglingobjets are removed. Figure 10 displays the �nal MARTE model, obtained afterapplying this transformation to the example taken from setion 3.

Figure 10: PM3 to MARTE6 ConlusionThis report presented our studies onerning the parameterization of metamod-els. We foused our attention on omponent-based metamodels. Three mainadvantages of parameterizing metamodels have been pointed at: onstitutinglibraries of generi omponents, programmatially �ne-tuning generi ompo-nents and generating generi ode. We proposed an approah based on a om-pletely generi metamodel de�ning parameter-related onepts, whih is takento extend the metamodel to be 'generiized'. Suh approah avoids touhingtarget metamodels.Moreover, we suggested a way of adapting existing transformations to takeaount of the newly added parameter-related onepts. As a ase study, weapplied our approah to the OMG MARTE metamodel for embedded and real-INRIA

Component-based Models Going Generi: the MARTE Case-Study 15time systems. The transformations have been written in QVT, using the QVTOtool.The next step in this work will be to de�ne high-order transformations(HOT) that an be used to automatially adapt existing transformations totake aount of parameters. Sine the adapted transformations are onstitutedof the �xed- (or boilerplate-) mappings dealing with the parameters-related on-epts and of the old existing mappings, we think this follow-up work is highlyviable.Referenes[Bat04℄ V. Batov. Java generis and C++ templates. C/C++ Users Journal,22(7):16�21, 2004.[Bor07℄ Borland. Qvt - o, 2007. http://www.elipse.org/m2m/qvto/do.[Bru07℄ James Bruk. De�ning generis with uml templates. 2007.[DGE+08℄ Jean-Lu Dekeyser, Abdoulaye Gamatié, Anne Etien, Rabie BenAtitallah, and Pierre Boulet. Using the UML Pro�le for MARTE toMPSoC Co-Design. In First International Conferene on EmbeddedSystems & Critial Appliations (ICESCA'08), Tunis, Tunisia, 2008.[Int℄ Intel. Math kernel library. http://developer.intel.om/software/produts/mkl/.[LHKK79℄ C. L. Lawson, R. J. Hanson, D. R. Kinaid, and F. T. Krogh. BasiLinear Algebra Subprograms for Fortran usage. ACM Transationson Mathematial Software, 5(3):308�323, September 1979.[Obj07a℄ Objet Management Group. A UML pro�le for MARTE, 2007.http://www.omgmarte.org.[Obj07b℄ Objet Management Group, In. MOF Query / Views / Transfor-mations. http://www.omg.org/dos/pt/07-07-07.pdf, July 2007.OMG paper.[Obj07℄ Objet Management Group, In. Uni�ed modeling language (UML)2.1.2. http://www.omg.org/gi-bin/do?formal/07-11-02,November 2007.

RR n° 6632

http://www.eclipse.org/m2m/qvto/doc
http://developer.intel.com/software/products/mkl/
http://www.omgmarte.org
http://www.omg.org/docs/ptc/07-07-07.pdf
http://www.omg.org/cgi-bin/doc?formal/07-11-02

Centre de recherche INRIA Bordeaux – Sud Ouest
Domaine Universitaire - 351, cours de la Libération - 33405 Talence Cedex (France)

Centre de recherche INRIA Grenoble – Rhône-Alpes : 655, avenue de l’Europe - 38334 Montbonnot Saint-Ismier
Centre de recherche INRIA Lille – Nord Europe : Parc Scientifique de la Haute Borne - 40, avenue Halley - 59650 Villeneuve d’Ascq

Centre de recherche INRIA Nancy – Grand Est : LORIA, Technopôle de Nancy-Brabois - Campus scientifique
615, rue du Jardin Botanique - BP 101 - 54602 Villers-lès-Nancy Cedex

Centre de recherche INRIA Paris – Rocquencourt : Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex
Centre de recherche INRIA Rennes – Bretagne Atlantique : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex

Centre de recherche INRIA Saclay – Île-de-France : Parc Orsay Université - ZAC des Vignes : 4, rue Jacques Monod - 91893 Orsay Cedex
Centre de recherche INRIA Sophia Antipolis – Méditerranée :2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex

Éditeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)http://www.inria.fr

ISSN 0249-6399

	Introduction
	Parameterizing UML Models
	Designing a Component-based Model with Parameters
	Parameterizing component-based metamodels
	Overview
	Generic Metamodel Description
	Assigning values to parameters

	Parameterizing the MARTE Metamodel
	Gaspard Modeling Process
	Overview of MARTE Metamodel
	Extending the MARTE Metamodel
	The Transformations

	Conclusion

