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Abstract: Model-based clustering consists of fitting a mixture model to data and identifying
each cluster with one of its components. Multivariate normal distributions are typically used.
The number of clusters is usually determined from the data, often using BIC. In practice, however,
individual clusters can be poorly fitted by Gaussian distributions, and in that case model-based
clustering tends to represent one non-Gaussian cluster by a mixture of two or more Gaussian
distributions. If the number of mixture components is interpreted as the number of clusters, this
can lead to overestimation of the number of clusters. This is because BIC selects the number
of mixture components needed to provide a good approximation to the density, rather than the
number of clusters as such. We propose first selecting the total number of Gaussian mixture
components, K, using BIC and then combining them hierarchically according to an entropy
criterion. This yields a unique soft clustering for each number of clusters less than or equal to
K; these clusterings can be compared on substantive grounds. We illustrate the method with
simulated data and a flow cytometry dataset.

Key-words: BIC, entropy, flow cytometry, mixture model, model-based clustering, multivari-
ate normal distribution.

∗ Université Paris-Sud
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Agréger des composantes d’un mélange pour la
classification non supervisée

Résumé : La classification non supervisée par les modèles de mélange consiste à ajuster un
modèle de mélange aux données, puis à identifier une classe à chacune des composantes obte-
nues. Le nombre de classes est habituellement choisi d’après les données, typiquement par le
critère BIC. Cependant, en pratique, certains groupes peuvent être mal approchés par une dis-
tribution gaussienne et cette démarche mène souvent à représenter un tel groupe par un mélange
de plusieurs composantes gaussiennes. Lorsque le nombre de composantes est effectivement in-
terprété comme le nombre de classes, ce dernier risque d’être surestimé. La cause en est que BIC
estime le nombre de composantes gaussiennes nécessaire pour que le mélange obtenu approche
correctement la densité des données, et pas le nombre de classes en tant que tel. Nous proposons
de sélectionner dans un premier temps le nombre total de composantes gaussiennes du mélange
à ajuster, K, par BIC, puis de combiner hiérarchiquement ces composantes d’après un critère
d’entropie. Nous obtenons ainsi une classification pour chaque nombre de classes inférieur ou
égal à K; la nature des données et les connaissances a priori les concernant peuvent alors per-
mettre de comparer ces différentes classifications. Nous illustrons cette méthode sur des données
simulées et par une application à des données de cytologie.

Mots-clés : BIC, entropie, cytologie, modèles de mélange pour la classification non supervisée,
distribution normale multivariée.
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1 INTRODUCTION

Model-based clustering is based on a finite mixture of distributions, in which each mixture com-
ponent is taken to correspond to a different group, cluster or subpopulation. For continuous
data, the most common component distribution is a multivariate Gaussian (or normal) distri-
bution. A standard methodology for model-based clustering consists of using the EM algorithm
to estimate the finite mixture models corresponding to each number of clusters considered and
using BIC to select the number of mixture components, taken to be equal to the number of
clusters (Fraley and Raftery 1998). The clustering is then done by assigning each observation to
the cluster to which it is most likely to belong a posteriori, conditionally on the selected model
and its estimated parameters. For reviews of model-based clustering, see McLachlan and Peel
(2000) and Fraley and Raftery (2002).

Biernacki, Celeux, and Govaert (2000) argued that the goal of clustering is not the same as
that of estimating the best approximating mixture model, and so BIC may not be the best way
of determining the number of clusters, even though it does perform well in selecting the number
of components in a mixture model. Instead they proposed the ICL criterion, whose purpose is
to assess the number of mixture components that leads to the best clustering. This turns out to
be equivalent to BIC penalized by the entropy of the corresponding clustering.

We argue here that the goal of selecting the number of mixture components for estimating
the underlying probability density is well met by BIC, but that the goal of selecting the number
of clusters may not be. Even when a multivariate Gaussian mixture model is used for clustering,
the number of mixture components is not necessarily the same as the number of clusters. This
is because a cluster may be better represented by a mixture of normals than by a single normal
distribution.

We propose a method for combining the points of view underlying BIC and ICL to achieve
the best of both worlds. BIC is used to select the number of components in the mixture model.
We then propose a sequence of possible solutions by hierarchical combination of the components
identified by BIC. The decision about which components to combine is based on the same entropy
criterion that ICL implicitly uses. In this way, we propose a way of interpreting the mixture
model in clustering terms by identifying a set of mixture components with each cluster. Finally,
ICL could be helpful for identifying the number of clusters among the solutions provided by the
designed hierarchy. This number of clusters can be different from the number of components
chosen with BIC.

Often the number of clusters identified by ICL is smaller than the number of components
selected by BIC, raising the question of whether BIC tends to overestimate the number of groups.
On the other hand, in almost all simulations based on assumed true mixture models, the number
of components selected by BIC does not overestimate the true number of components (Biernacki
et al. 2000; McLachlan and Peel 2000; Steele 2002). Our approach resolves this apparent paradox.

In Section 2 we provide background on model-based clustering, BIC and ICL, and in Section
3 we describe our proposed methodology. In Section 4 we give results for simulated data, and
in Section 5 we give results from the analysis of a flow cytometry dataset. There, one of the
sequence of solutions from our method is clearly indicated substantively, and seems better than
either the original BIC or ICL solutions. In Section 6 we discuss issues relevant to our method
and other methods that have been proposed.

RR n° 6644



4 Baudry, Raftery, Celeux, Lo & Gottardo

2 MODEL SELECTION IN MODEL-BASED CLUSTER-
ING

Model-based clustering assumes that observations x = (x1, . . . ,xn) in Rnd are a sample from a
finite mixture density

p(xi | K, θK) =
K∑

k=1

pkφ(xi | ak), (1)

where the pk’s are the mixing proportions (0 < pk < 1 for all k = 1, . . . ,K and
∑

k pk = 1),
φ(. | ak) denotes a parameterized density, and θK = (p1, . . . , pK−1,a1, . . . ,aK). When the data
are multivariate continuous observations, the component density is usually the d-dimensional
Gaussian density with parameter ak = (µk,Σk), µk being the mean and Σk the variance matrix
of component k.

For estimation purposes, the mixture model is often expressed in terms of complete data,
including the groups to which the data points belong. The complete data are

y = (y1, . . . ,yn) = ((x1, z1), . . . , (xn, zn)),

where the missing data are z = (z1, . . . , zn), with zi = (zi1, . . . , ziK) being binary vectors such
that zik = 1 if xi arises from group k. The zi’s define a partition P = (P1, . . . , PK) of the
observed data x with Pk = {xi such that zik = 1}.

From a Bayesian perspective, the selection of a mixture model can be based on the integrated
likelihood of the mixture model with K components (Kass and Raftery 1995), namely

p(x|K) =
∫

p(x|K, θK)π(θK)dθK , (2)

where π(θK) is the prior distribution of the parameter θK . Here we use the BIC approximation
of Schwarz (1978) to the log integrated likelihood, namely

BIC(K) = log p(x|K, θ̂K)− νK

2
log(n), (3)

where θ̂K is the maximum likelihood estimate of θK and νK is the number of free parameters of
the model with K components. (Keribin 2000) has shown that under certain regularity conditions
the BIC consistently estimates the number of mixture components, and numerical experiments
show that the BIC works well at a practical level (Fraley and Raftery 1998; Biernacki et al. 2000;
Steele 2002).

There is one problem with using this solution directly for clustering. Doing so is reasonable
if each mixture component corresponds to a separate cluster, but this may not be the case. In
particular, a cluster may be both cohesive and well separated from the other data (the usual
intuitive notion of a cluster), without its distribution being Gaussian. This cluster may be
represented by two or more mixture components, if its distribution is better approximated by a
mixture than by a single Gaussian component. Thus the number of clusters in the data may be
different from the number of components in the best approximating Gaussian mixture model.

To overcome this problem, Biernacki et al. (2000) proposed estimating the number of clus-
ters (as distinct from the number of mixture components) in model-based clustering using the
integrated complete likelihood (ICL), defined as the integrated likelihood of the complete data
(x, z). ICL is defined as

p(x, z | K) =
∫

ΘK

p(x, z | K, θ)π(θ | K)dθ, (4)

INRIA



Combining Mixture Components for Clustering 5

where

p(x, z | K, θ) =
n∏

i=1

p(xi, zi | K, θ)

with

p(xi, zi | K, θ) =
K∏

k=1

pzik

k [φ(xi | ak)]zik .

To approximate this integrated complete likelihood, Biernacki et al. (2000) proposed using a
BIC-like approximation, leading to the criterion

ICL(K) = log p(x, ẑ | K, θ̂K)− νK

2
log n, (5)

where the missing data have been replaced by their most probable values, given the parameter
estimate θ̂K .

Roughly speaking, ICL is equal to BIC penalized by the mean entropy

Ent(K) = −
K∑

k=1

n∑
i=1

tik(θ̂K) log tik(θ̂K) ≥ 0, (6)

where tik denotes the conditional probability that xi arises from the kth mixture component
(1 ≤ i ≤ n and 1 ≤ k ≤ K), namely

tik(θ̂K) =
p̂kφ(xi|âk)∑K
j=1 p̂jφ(xi|âj)

.

Thus the number of clusters, K ′, favored by ICL tends to be smaller than the number K favored
by BIC because of the additional entropy term. ICL aims to find the number of clusters rather
than the number of mixture components. However, if it is used to estimate the number of
mixture components it can underestimate it, particularly in data arising from mixtures with
poorly separated components. In that case, the fit is worsened.

Thus the user of model-based clustering faces a dilemma: do the mixture components really all
represent clusters, or do some subsets of them represent clusters with non-Gaussian distributions?
In the next section, we propose a methodology to help resolve this dilemma.

3 METHODOLOGY

The idea is to build a sequence of clusterings, starting from a mixture model that fits the data
well. Its number of components is chosen using BIC. We design a sequence of candidate soft
clusterings with K̂BIC, K̂BIC − 1,. . . ,1 clusters by successively merging the components in the
BIC solution.

At each stage, we choose the two mixture components to be merged so as to minimize the
entropy of the resulting clustering. Let us denote by tKi,1, . . . , t

K
i,K the conditional posterior

probabilities that xi arises from cluster 1, . . . ,K with respect to the K-cluster solution. If
clusters k and k′ from the K-cluster solution are combined, the ti,j ’s remain the same for every
j except for k and k′. The new cluster k ∪ k′ then has the following conditional probability:

tKi,k∪k′ = tKi,k + tKi,k′ .

RR n° 6644



6 Baudry, Raftery, Celeux, Lo & Gottardo

Then the resulting entropy is:

−
n∑

i=1

 ∑
j 6=k,k′

tKij log tKij + (tKik + tKik′) log (tKik + tKik′)

 . (7)

Thus, the two clusters k and k′ to be combined are those maximizing the criterion:

−
n∑

i=1

{tKik log(tKik) + tKik′ log(tKik′)}+
n∑

i=1

tKi k∪k′ log tKi k∪k′

among all possible pairs of clusters (k, k′). Then tK−1
i,k , i = 1, . . . , n, k = 1, . . . ,K − 1 can be

updated.
Any combined solution fits the data as well as the BIC solution, since it is based on the same

Gaussian mixture; the likelihood does not change. Only the number and definition of clusters
are different. Our method yields just one suggested set of clusters for each K, and the user can
choose between them on substantive grounds. our flow cytometry data example in Section 5
provides one instance of this.

If a more automated procedure is desired for choosing a single solution, one possibility is to
select, among the possible solutions, the solution providing the same number of clusters that ICL.
An alternative is to use an elbow rule on the graphic displaying the entropy variation against
the number of clusters. Both these strategies are illustrated in our examples.

The algorithm implementing the suggested procedure is given in the Appendix.

4 SIMULATED EXAMPLES

We first present some simulations to highlight the posssibilities of our methodology. They have
been chosen to illustrate cases where BIC and ICL do not select the same number of components.

4.1 Simulated Example with Overlapping Components

The data, shown in Figure 1(a), were simulated from a two-dimensional Gaussian mixture.
There are six components, four of which are axis-aligned with diagonal variance matrices (the
four components of the two “crosses”), and two of which are not axis-aligned, and so do not have
diagonal variance matrices. There were 600 points, with mixing proportions 1/5 for each non
axis-aligned component, 1/5 for each of the upper left cross components, and 1/10 for each of
the lower right cross components.

We fitted Gaussian mixture models to this simulated dataset. BIC selected a 6-component
mixture model, which was the correct model; this is shown in Figure 1(b). ICL selected a
4-cluster model, as shown in Figure 1(c). The four clusters found by ICL are well separated.

Starting from the BIC 6-component solution, we combined two components to get the 5-
cluster solution shown in Figure 1(d). To decide which two components to merge, each pair of
components was considered, and the entropy after combining these components into one cluster
was computed. The two components for which the resulting entropy was the smallest were
combined.

The same thing was done again to find a 4-cluster solution, shown in Figure 1(e). This is the
number of clusters identified by ICL. The entropies of the combined solutions are shown in Figure
2, together with the differences between successive entropy values. There seems to be an elbow
in the plot at K = 4, and so we focus on this solution. Note that there is no conventional formal

INRIA
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Figure 1: Simulated Example 1. (a) Simulated data from a 6-component 2-dimensional Gaussian
mixture. (b) BIC solution with 6 components. (c) ICL solution with 4 clusters. (d) Combined
solution with 5 clusters. (e) Combined solution with 4 clusters. (f) The true labels for a 4-cluster
solution. In (b) and (c) the entropy, ENT, is defined by equation (6) with respect to the the
maximum likelihood solution, and in (d) and (e) ENT is defined by equation (7).
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Figure 2: (a) Entropy values for the K-cluster Combined Solution, as defined by equation (7),
for Simulated Example 1. (b) Differences between successive entropy values.
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8 Baudry, Raftery, Celeux, Lo & Gottardo

statistical inferential basis for choosing between different numbers of clusters, as the likelihood
and the distribution of the observations are the same for all the numbers of clusters considered.

In the four-cluster solution, the clusters are no longer all Gaussian; now two of them are
modeled as mixtures of two Gaussians each. Note that this four-cluster solution is not the same
as the four-cluster solution identified by ICL: ICL identifies a mixture of four Gaussians, while
our method identifies four clusters of which two are not Gaussian. Figure 1(f) shows the true
classification. Only 3 of the 600 points were misclassified.

4.2 Simulated Example with Overlapping Components and Restric-
tive Models

We now consider the same data again, but this time with more restrictive models. Only Gaussian
mixture models with diagonal variance matrices are considered. This illustrates what happens
when the mixture model generating the data is not in the set of models considered.

BIC selects more components than before, namely ten (Figure 3a). This is because the
generating model is not considered, and so more components are needed to approximate the
true distribution. For example, the top right non-axis-aligned component cannot be represented
correctly by a single Gaussian with a diagonal variance matrix, and BIC selects three diagonal
Gaussians to represent it. ICL still selects four clusters (Figure 3b).

In the hierarchical merging process, the two components of one of the “crosses” were combined
first (Figure 3c), followed by the components of the other cross (Figure 3d). The nondiagonal
cluster on the lower left was optimally represented by three diagonal mixture components in the
BIC solution. In the next step, two of these three components were combined (Figure 3e). Next,
two of the three mixture components representing the upper right cluster were combined (Figure
3f). After the next step there were five clusters, and all three mixture components representing
the lower left cluster had been combined (Figure 3g).

The next step got us to four clusters, the number identified by ICL (Figure 3h). After this
last combination, all three mixture components representing the upper right cluster had been
combined. Note that this four-cluster solution is not the same as the four-cluster solution got
by optimizing ICL directly. Strikingly, this solution is almost identical to that obtained with the
less restrictive set of models considered in Section 4.1.

The plot of the combined solution entropies against the number of components in Figure 4
suggests an elbow at K = 8, with a possible second, less apparent one at K = 4. In the K = 8
solution the two crosses have been merged, and in the K = 4 solution all four visually apparent
clusters have been merged. Recall that the choice of the number of clusters is not based on
formal statistical inference, unlike the choice of the number of mixture components. Our method
generates a small set of possible solutions that can be compared on substantive grounds. The
entropy plot is an exploratory device that can help to assess separation between clusters, rather
than a formal inference tool.

4.3 Circle/Square Example

This example was presented by Biernacki et al. (2000). The data, shown in Figure 5(a), were
simulated from a mixture of a uniform distribution on a square and a spherical Gaussian distri-
bution. Here, for illustrative purposes, we restricted the models considered to Gaussian mixtures
with spherical variance matrices with the same determinant. Note that the true generating model
does not belong to this model class.

In the simulation results of Biernacki et al. (2000), BIC chose two components in only
60% of the simulated cases. Here we show one simulated dataset in which BIC approximated

INRIA
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Figure 3: Simulated Example 2. The data are the same as in Simulated Example 1, but
the model space is more restrictive, as only Gaussian mixture models with diagonal covariance
matrices are considered. See Fig.1 legends for explanations about ENT. (a) BIC solution with
10 mixture components. (b) ICL solution with 4 clusters. (c) Combined solution with 9 clusters.
(d) Combined solution with 8 clusters. (e) Combined solution with 7 clusters. (f) Combined
solution with 6 clusters. (g) Combined solution with 5 clusters. (h) Combined solution with 4
clusters. (i) True labels with 4 clusters.
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Figure 4: (a) Entropy values for the K-cluster Combined Solution, as defined by equation (7),
for Simulated Example 2. (b) Differences between successive entropy values.

the underlying non-Gaussian density using a mixture of five normals (Figure 5b). ICL always
selected two clusters (Figure 5c).

The progress of the combining algorithm is shown in Figure 5(d-f). The final two-cluster
solution, obtained by hierarchical merging starting from the BIC solution, is slightly different
from the clustering obtained by optimizing ICL directly. It also seems slightly better: ICL
classifies seven observations into the uniform cluster that clearly do not belong to it, while the
solution shown misclassifies only three observations in the same way. The true labels are shown
in Figure 5(g). The entropy plot in Figure 6 does not have a clear elbow.

5 FLOW CYTOMETRY EXAMPLE

We now apply our method to the GvHD data of Brinkman et al. (2007). Two samples of
this flow cytometry data have been used, one from a patient with the graft-versus-host disease
(GvHD), and the other from a control patient. GvHD occurs in allogeneic hematopoietic stem
cell transplant recipients when donor-immune cells in the graft attack the skin, gut, liver, and
other tissues of the recipient. GvHD is one of the most significant clinical problems in the field
of allogeneic blood and marrow transplantation.

The GvHD positive and control samples consist of 9,083 and 6,809 observations respectively.
Both samples include four biomarker variables, namely, CD4, CD8β, CD3 and CD8. The ob-
jective of the analysis is to identify CD3+ CD4+ CD8β+ cell sub-populations present in the
GvHD positive sample. In order to identify all cell sub-populations in the data, we use a Gaus-
sian mixture model with unrestricted covariance matrix. Adopting a similar strategy to that
described by Lo, Brinkman, and Gottardo (2008), for a given number of components, we locate
the CD3+ sub-populations by labeling components with means in the CD3 dimension above 270
CD3+. This threshold was based on a comparison with a negative control sample as explained
by Brinkman et al. (2007).

We analyze the positive sample first. A previous manual analysis of the positive sample
suggested that the CD3+ cells could be divided into approximately five to six CD3+ cell sub-
populations (Brinkman et al. 2007). ICL selected nine clusters, five of which correspond to the

INRIA
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Figure 5: Circle-Square Example. See Fig.1 legends for explanations about ENT. (a) Observed
data simulated from a mixture of a uniform distribution on a square and a spherical Gaussian
distribution. (b) The BIC solution, with 5 components. (c) The ICL solution with 2 clusters.
(d) The combined solution with 4 clusters. (e) The combined solution with 3 clusters. (f) The
final combined solution, with 2 clusters. (g) The true labels.
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Figure 6: (a) Entropy values for the K-cluster Combined Solution, as defined by equation (7),
for the Circle-Square Example. (b) Differences between successive entropy values.
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Figure 7: GvHD positive sample. Only components labeled CD3+ are shown. (a) BIC Solution
(K = 12). The combined solutions for K = 11 and K = 10 are almost identical for these CD3+

components. (b) ICL Solution (K=9). (c) Combined Solution (K=9).

CD3+ population (Figure 7(b)). Compared with the result shown in Lo et al. (2008), the CD4+

CD8β− region located at the bottom right of the graph is not represented.
BIC selected 12 components to provide a good fit to the positive sample, seven of which are

labeled CD3+ (Figure 7(a)). The CD4+ CD8β+ region seems to be encapsulated by the cyan,
blue, yellow and red components. Starting from this BIC solution, we repeatedly combined two
components causing maximal reduction in the entropy. The first two combinations all occurred
within those components originally labeled CD3−, and the CD4 vs CD8β projection of the CD3+

sub-populations remains unchanged.
However, when the number of clusters was reduced to nine, the purple cluster representing

the CD3+ CD4+ CD8β− population was combined with the big CD3− cluster, resulting in an
incomplete representation of the CD3+ population (Figure 7 (c)). Hence, the combined solution
with ten clusters, in which seven are labeled CD3+, seems to provide the most parsimonious view
of the positive sample whilst retaining the seven important CD3+ cell sub-populations. Note
that the entropy of the combined solution with nine clusters (1409) was smaller than that of the
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Figure 8: (a) Entropy values for the GvHD positive sample. (b) Differences between successive
entropy values.

ICL solution (3236). The entropy plot (Figure 8) suggests an elbow at K = 10 clusters, agreeing
with our more substantively-based conclusion.

Next we analyze the control sample. A satisfactory analysis would show an absence of the
CD3+ CD4+ CD8β+ cell sub-populations. ICL chose five clusters, two of which correspond to
the CD3+ population (Figure 9 (b)). The black cluster at the left of the graph represents the
CD4− region. The red cluster at the rigth of the graph represents the CD8− region. It seems
that it misses a part of this cluster near the black cluster. This suggests that the ICL solution
could be improved.

BIC selected 11 components, four of which are labeled CD3+ (Figure 9(a)). The black
component on the left side does not extend to the CD4+ region. However, contrary to previous
findings in which CD4+ CD8β+ cell sub-populations were found only in positive samples and
not in control samples, a green component is used to represent the observations scattered within
the CD4+ CD8β+ region.

Similar to the result for the positive sample, when we combined the components in the BIC
solution, the first few combinations took place within those components initially labeled CD3−.
When only six clusters remained, the blue and red components in Figure 9(a) combined, leaving
the CD3+ sub-populations to be represented by three clusters (Figure 9(c)).

After two more combinations (K=4), the green component merged with a big CD3− cluster.
Finally we had a “clean” representation of the CD3+ population with no observations from the
CD3+ CD4+ CD8β+ region. One last combination (K=3) merged the two remaining CD3−

clusters, resulting in the most parsimonious view of the control sample with only three clusters
but showing all the relevant features (Figure 9(d)). Once again, the entropy of the combined
solution (106) was much smaller than that of the ICL solution (496). Note that in this case
we ended up with a combined solution that has fewer clusters than the ICL solution. The plot
of the entropy of the combined solution against the number of clusters (Figure 10) suggests an
elbow at K = 7, but substantive considerations suggest that we can continue merging past this
number.
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Figure 9: GvHD control sample. Only components labeled CD3+ are shown. (a) BIC Solution
(K=11). (b) ICL Solution (K=5). (c) Combined Solution (K=6). (d) Combined Solution (K=3).
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Figure 10: (a) Entropy values for the K-cluster Combined Solution for the GvHD Control
Sample. (b) Differences between successive entropy values.
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6 DISCUSSION

We have proposed a way of addressing the dilemma of model-based clustering based on Gaussian
mixture models, namely that the number of mixture components selected is not necessarily
equal to the number of clusters. This arises when one or more of the clusters has a non-Gaussian
distribution, which is approximated by a mixture of several Gaussians.

Our strategy is as follows. We first fit a Gaussian mixture model to the data by maxi-
mum likelihood estimation, using BIC to select the number of Gaussian components. Then we
successively combine mixture components using the entropy of the conditional membership dis-
tribution to decide which components to merge at each stage. This yields a sequence of possible
solutions, one for each number of clusters, and in general we expect that users would consider
these solutions from a substantive point of view.

The underlying statistical model is the same for each member of this sequence of solutions,
in the sense that the likelihood and the modeled probability distribution of the data remain
unchanged. What changes is the interpretation of this model. Thus standard statistical testing
or model selection methods cannot be used to choose the preferred solution.

If a data-driven choice is required, however, we suggest inspecting the entropy plot and looking
for an elbow, or choosing the number of clusters selected by ICL. An inferential choice could be
made, for example using the gap statistic (Tibshirani, Walther, and Hastie 2001). However, the
null distribution underlying the resulting test does not belong to the class of models being tested,
so that it does not have a conventional statistical interpretation in the present context. It could
still possibly be used in a less formal sense to help guide the choice of number of clusters.

Our method preserves the advantages of Gaussian model-based clustering, notably a good fit
to the data, but it allows us to avoid the overestimation of the number of clusters that can occur
when some clusters are non-Gaussian. The mixture distribution selected by BIC allows us to
start the hierarchical procedure from a good summary of the data set. The resulting hierarchy
is easily interpreted in relation to the mixture components. We stress that the whole hierarchy
from K to 1 clusters might be informative. Note that our method can also be used when the
number of clusters K∗ is known, provided that the number of mixture components in the BIC
solution is at least as large as K∗.

One attractive feature of our method is that it is computationally efficient, as it uses only the
conditional membership probabilities. Thus it could be applied to any mixture model, and not
just to a Gaussian mixture model, effectively without modification. This includes latent class
analysis (Lazarsfeld 1950; Hagenaars and McCutcheon 2002), which is essentially model-based
clustering for discrete data.

Several other methods for joining Gaussian mixture components to form clusters have been
proposed. Walther (2002) considered the problem of deciding whether a univariate distribution
is better modeled by a mixture of normals or by a single, possibly non-Gaussian and asymmetric
distribution. To our knowledge, this idea has not yet been extended to more than one dimension,
and it seems difficult to do so. Our method seems to provide a simple alternative approach to
the problem addressed by Walther (2002), in arbitrary dimensions.

Wang and Raftery (2002, Section 4.5) considered the estimation of elongated features in a
spatial point pattern with noise, motivated by a minefield detection problem. They suggested
first clustering the points using Gaussian model-based clustering with equal spherical covariance
matrices for the components. This leads to the feature being covered by a set of “balls” (spherical
components), and these are then merged if their centers are close enough that the components
are likely to overlap. This works well for joining spherical components, but may not work well
if the components are not spherical, as it takes account of the component means but not their
shapes.
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Tantrum, Murua, and Stuetzle (2003) proposed a different method based on the hierarchical
model-based clustering method of Banfield and Raftery (1993). Hierarchical model-based clus-
tering is a “hard” clustering method, in which each data point is assigned to one group. At
each stage, two clusters are merged, with the likelihood used as the criterion for deciding which
clusters to merge. Tantrum et al. (2003) proposed using the dip test of Hartigan and Hartigan
(1985) to decide on the number of clusters. This method differs from ours in two main ways.
Ours is a probabilistic (“soft”) clustering method that merges mixture components (distribu-
tions), and while that of Tantrum et al. (2003) is a hard clustering method that merges groups
of data points. Secondly, the merging criterion is different.

Li (2005) assumed that the number of clusters K is known in advance, used BIC to estimate
the number of mixture components, and joined them using k-means clustering applied to their
means. This works well if the clusters are spherical, but may not work as well if they are
elongated, as the method is based on the means of the clusters but does not take account of
their shape. The underlying assumption that the number of clusters is known may also be
questionable in some applications. Jörnsten and Keleş (2008) extended Li’s method so as to
apply it to multifactor gene expression data, allowing clusters to share mixture components, and
relating the levels of the mixture to the experimental factors.

A Algorithm

Choose a family of mixture models: {MKmin , . . . ,MKmax}. Complete Gaussian mixture models
are suggested: MK contains any mixture with K Gaussian components. Here is the algorithm
we work with:

1. Compute MLE(K) for each model using the EM algorithm:

∀K ∈ {Kmin, . . . ,Kmax}, θ̂K = arg max
θK∈ΘK

log p(x | K, θK)

2. Compute the BIC solution:

K̂BIC = argmin
K∈{Kmin,...,Kmax}

{
− log p(x | K, θ̂K) +

νK

2
log n

}
3. Compute the density fK

k of each combined cluster k for each K from K̂BIC to Kmin:

∀k ∈ {1, . . . , K̂BIC}, f K̂BIC
k (·) = p̂K̂BIC

k φ

(
· | âK̂BIC

k

)
.

For K = K̂BIC, . . . , (Kmin + 1):

� Choose the clusters l and l′ to be combined at step K → K − 1 :

(l, l′) = argmax
(k,k′)∈{1,...,K}2, k 6=k′

{
−

∑n
i=1

{
tKik log(tKik) + tKik′ log(tKik′)

}
+

∑n
i=1(t

K
ik + tKi k′) log(tKik + tKi k′)

}
,

where tKik = fK
k (xi)PK

j=1 fK
j (xi)

is the conditional probablity of component k given the K-

cluster combined solution.
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� Define the densities of the combined clusters for the (K-1) clusters solution by com-
bining l and l′:
for k = 1, . . . , (l ∧ l′ − 1), (l ∧ l′ + 1), . . . , (l ∨ l′ − 1) {fK−1

k = fK
k }

fK−1
l∧l′ = fK

l + fK
l′

for k = l ∨ l′, . . . , (K − 1) {fK−1
k = fK

k+1}

4. To select the number of clusters through ICL:

K̂ICL = argmin
K∈{Kmin,...,Kmax}

{
− log p(x | K, θ̂K)−

n∑
i=1

K∑
k=1

tik(θ̂K) log tik(θ̂K) +
νK

2
log n

}
,

where tik(θ̂K) = p̂K
k φ(xi|âK

k )PK
j=1 p̂K

j φ(xi|âK
j )

. is the conditional probability of component k given the

MLE for the model with K Gaussian components.
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