# A unified FPT Algorithm for Width of Partition Functions 

Pascal Berthomé, Nicolas Nisse

## To cite this version:

Pascal Berthomé, Nicolas Nisse. A unified FPT Algorithm for Width of Partition Functions. [Research Report] RR-6646, INRIA. 2008, pp.36. inria-00321766

## HAL Id: inria-00321766

## https://hal.inria.fr/inria-00321766

Submitted on 15 Sep 2008

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

## A unified FPT Algorithm for Width of Partition Functions

Pascal Berthomé - Nicolas Nisse

## $\mathbf{N}^{\circ} 6646$

September 2008

Thème COM


# A unified FPT Algorithm for Width of Partition Functions 

Pascal Berthomé* ${ }^{\sqrt{*}}$, Nicolas Nisse ${ }^{\dagger}$<br>Thème COM - Systèmes communicants<br>Projets Mascotte<br>Rapport de recherche $\mathrm{n}^{\circ} 6646$ - September 2008 - 36 pages


#### Abstract

During the last decades, several polynomial-time algorithms have been designed that decide if a graph has treewidth (resp., pathwidth, branchwidth, etc.) at most $k$, where $k$ is a fixed parameter. Amini et al. (to appear in SIAM J. Discrete Maths.) use the notions of partitioning-trees and partition functions as a generalized view of classical decompositions of graphs, namely tree-decomposition, path-decomposition, branch-decomposition, etc. In this paper, we propose a set of simple sufficient conditions on a partition function $\Phi$, that ensures the existence of a linear-time explicit algorithm deciding if a set $A$ has $\Phi$-width at most $k$ ( $k$ fixed). In particular, the algorithm we propose unifies the existing algorithms for treewidth, pathwidth, linearwidth, branchwidth, carvingwidth and cutwidth. It also provides the first Fixed Parameter Tractable linear-time algorithm deciding if the $q$-branched treewidth, defined by Fomin et al. (Algorithmica 2007), of a graph is at most $k$ ( $k$ and $q$ are fixed). Our decision algorithm can be turned into a constructive one by following the ideas of Bodlaender and Kloks (J. of Alg. 1996).


Key-words: Tree-decomposition, FPT-algorithm, width-parameters, characteristics.

[^0]
## Algorithme FPT unifié pour le calcul des fonctions de partition

Résumé : Depuis une vingtaine d'annes, de nombreux algorithmes polynomiaux ont été conçu pour les problèmes consistant à décider si la largeur arborescente (resp., largeur linéaire, largeur en branche, etc.) d'un graphe est au plus $k$, où $k$ est un paramètre fixé. Amini et al. (à paraître dans SIAM J. Discrete Maths.) utilisent les notions d'arbre de partition et de fonctions de partition pour généraliser les décompositions "classiques" des graphes, comme par exemple la décomposition arborescente, la décomposition linéaire, la décomposition en branches, etc. Dans ce papier, nous proposons des conditions simples et suffisantes qui, si elles sont satisfaites par une fonction de partition $\Phi$, suffisent à assurer l'existence d'un algorithme linéaire qui décide si un ensemble $A$ possède une $\Phi$-largeur au plus $k$ ( $k$ étant fixé). En particulier, l'algorithme que nous proposons unifie les algorithmes existants pour la largeur arborescente, la largeur linéaire, la largeur en branche, etc. Notre algorithme est également le premier algorithme FPT décidant en temps linéaire si la largeur arborescente $q$-branchée, définie par Fomin et al. (à paraître dans Algorithmica), d'un graphe est au plus $k$ ( $k$ et $q$ étant fixés). Notre algorithme de décision peut être modifié en un algorithme constructif en utilisant les idées de Bodlaender and Kloks (J. of Alg. 1996).
Mots-clés : Décomposition arborescente, algorithme FPT, largeurs de graphes, caractéristique.

## 1 Introduction

The notion of treewidth is central in the theory of the Graph Minors developed by Robertson and Seymour [RS86]. Roughly, the treewidth of a graph measures how close a graph is to a tree. More formally, a tree-decomposition $(T, \mathcal{X})$ of a graph $G=(V, E)$ is a tree $T$ together with a family $\mathcal{X}=\left(X_{t}\right)_{t \in V(T)}$ of subsets of $V$, such that: (1) $\bigcup_{t \in V(T)} X_{t}=V$, (2) for any edge $e=\{u, v\} \in E$, there is $t \in V(T)$ such that $u, v \in X_{t}$, and (3) for any $v \in V$, the set of $t$ such that $v \in X_{t}$ induces a subtree of $T$. The width of $(T, \mathcal{X})$ is the maximum size of $X_{t}$ minus $1, t \in V(T)$, and the treewidth $t w(G)$ of a graph $G$ is the minimum width among its tree-decompositions. If $T$ is restricted to be a path, we get a path-decomposition of $G$, and the pathwidth $p w(G)$ of $G$ is the minimum width among its path-decompositions.

Both pathwidth and treewidth have a nice theoretical-game interpretation (see [Bie91, FT08] for surveys). Pathwidth can be described as a graph searching game where a team of searchers aims at capturing an invisible and arbitrary fast fugitive hidden on the vertices of the graph, whereas treewidth deals with the capture of a visible fugitive. In [FFN07], Fomin et al. introduce a variant of these games, called non-deterministic graph searching, that establishes a link between pathwidth and treewidth. Loosely speaking, in non-deterministic graph searching, the fugitive is invisible, but the searchers are allowed to query an oracle that possesses complete information about the position of the fugitive. However, the number of times the searchers can query the oracle is limited. The $q$-limited search number of a graph $G$, denoted by $s_{q}(G)$, is the smallest number of searchers required to capture an invisible fugitive in $G$, performing at most $q \geq 0$ queries to the oracle. Fomin et al. give the following interpretation of non-deterministic graph searching in terms of graph decomposition. A tree-decomposition $(T, \mathcal{X})$ is $q$-branched if $T$ can be rooted in such a way that any path from the root to a leaf contains at most $q \geq 0$ vertices with at least two children. $q \geq 0$ being fixed, the $q$-branched treewidth $t w_{q}(G)$ of a graph $G$ is the minimum width among its $q$ branched tree-decompositions $\left(t w_{\infty}(G)=t w(G)\right.$ and $\left.t w_{0}(G)=p w(G)\right)$. For any $q \geq 0$ and any graph $G, s_{q}(G)=t w_{q}(G)+1$ [FFN07, MN08]. Fomin et al. prove that deciding $s_{q}(G)$ is NP-complete for any $q \geq 0$, and design an algorithm that decides whether $s_{q}(G) \leq k$ in time $O\left(n^{k+1}\right)$ for any $n$-node graph $G$ [FFN07]. Prior to this work, no explicit Fixed Parameter Tractable (FPT) algorithm for this problem was known.

The notion of treewidth also plays an important role in the domain of algorithmic computational complexity. Indeed, many graph theoretical problems that are NP-complete in general are tractable when input graphs have bounded treewidth. Thus, an important challenge consists in computing optimal tree-decompositions of graphs. Much research has been done on the problem of finding an optimal tree-decomposition. This problem is NP-complete [ACP87] and special interest has been directed toward special graph classes [Bod93, BM93, BKK95]. The case of the class of graphs with bounded treewidth has been widely studied in the literature [ACP87, Ree92].

In their seminal work on Graph Minors [RS94, RS04], Robertson and Seymour give a non-constructive proof of the existence of a $O\left(n^{2}\right)$ decision algorithm for the problems of deciding whether a graph belongs to some minor-closed class of graphs. Given that, for any
$k$, the class of graphs of treewidth at most $k$ is minor-closed, an immediate consequence is the existence of a polynomial-time algorithm deciding whether a graph has treewidth at most $k$, where $k$ is a fixed parameter. In [BK96], Bodlaender and Kloks design a linear time algorithm for solving this problem. More precisely, $k$ and $k^{\prime}$ being fixed, given a $n$-node graph $G$ and a tree-decomposition of width at most $k^{\prime}$ of $G$, the Bodlaender and Kloks' algorithm decides if $t w(G) \leq k$ in time $O(n)$. The big-oh hides a constant more than exponential in $k$ and $k^{\prime}$. In the last decades, analogous algorithms have been designed for other width parameters of graphs like pathwidth [BK96], branchwidth [BT97], linearwidth [BT04], carvingwidth and cutwidth [TSB00]. These algorithms are mainly based on the notion of characteristic (see Section 4). This paper aims at unifying and generalizing these FPT algorithms. As a particular application, our algorithm decides in linear time if the $q$-limited search number of a graph $G$ is at most $k, q \geq 0$ and $k \geq 1$ fixed.

In order to generalize the algorithm of [BK96], we use the notions of partition function and partitioning-tree defined in [AMNT07]. Given a finite set $A$, a partition function $\Phi$ is a function from the set of partitions of $A$ into the integers. A partitioning-tree of $A$ is a tree $T$ together with a one-to-one mapping between $A$ and the leaves of $T$. The $\Phi$-width of $T$ is the maximum $\Phi(\mathcal{P})$, for any partition $\mathcal{P}$ of $A$ defined by the internal vertices of $T$, and the $\Phi$-width of $A$ is the minimum $\Phi$-width of its partitioning-trees. Partition functions are a unified view for a large class of width parameters like treewidth, pathwidth, branchwidth, etc. In [AMNT07] is given a simple sufficient property that a partition function over $A$ must satisfy to ensure that either $A$ admits a partitioning-tree of width at most $k \geq 1$, or there exists a $k$-bramble (a dual structure).

In this paper, we extend the definition of $\Phi$-width to the one of $q$-branched $\Phi$-width of a set $A$. Then, we use the framework of [BK96] applied to the notions of partition functions and partitioning-tree in order to design a unified linear-time algorithm that decides if a finite set has $q$-branched $\Phi$-width at most $k$. Again, $q \geq 0$ and $k \geq 1$ are fixed parameters.
Our results: We propose a simple set of sufficient properties and an algorithm such that, for any $k$ and $q$ fixed parameters, and any partition function $\Phi$ satisfying the properties, our algorithm decides in time $O(|A|)$ if a finite set $A$ has $q$-branched $\Phi$-width at most $k$ (Theorem 1). Since treewidth, pathwidth, branchwidth, cutwidth, linearwidth, and carvingwidth can be defined in terms of $\Phi$-width for some particular partition functions $\Phi$ that satisfy our properties (Theorem 2), our algorithm unifies the works in [BK96, BT97, TSB00, BT04]. Moreover, our algorithm generalizes the previous algorithms since it is not restricted to width-parameters of graphs but works as well for any partition function (not restricted to graphs) satisfying some simple properties. Finally, it provides the first explicit linear-time algorithm that decides if a graph $G$ can be searched in a non-deterministic way by $k$ searchers performing at most $q$ queries, for any $k \geq 1, q \geq 0$ fixed. Due to lack of space, most of the proofs are omitted and can be found in the Appendices.

## 2 Main theorem.

### 2.1 Partition function and partitioning-tree.

Let $A$ be a finite set. Let $\mathcal{P}=\left\{A_{1}, \cdots, A_{r}\right\}$ and $\mathcal{Q}=\left\{B_{1}, \cdots, B_{p}\right\}$ be two partitions of $A$. For any subset $A^{\prime} \subseteq A$, the restriction $\mathcal{P} \cap A^{\prime}$ of $\mathcal{P}$ to $A^{\prime}$ is the partition $\left\{A_{1} \cap A^{\prime}, \cdots, A_{r} \cap A^{\prime}\right\}$ of $A^{\prime}$ (where the empty parts have been removed). $\mathcal{Q}$ is a subdivision of $\mathcal{P}$ if, for any $j \leq p$, there exists $i \leq r$ with $B_{j} \subseteq A_{i}$.

A partition function $\Phi_{A}$ over $A$ is a function from the set of partitions of $A$ into the integers. $\Phi_{A}$ is monotone if, for any subdivision $\mathcal{Q}$ of a partition $\mathcal{P}$ of $A, \Phi_{A}(\mathcal{P}) \leq \Phi_{A}(\mathcal{Q})$. A (monotone) partition function $\Phi$ is a function that associates a (monotone) partition function $\Phi_{A}$ over $A$ to any finite set $A$. A partition function $\Phi$ is closed under taking subset if, for any $A^{\prime} \subseteq A$ and any partition $\mathcal{P}$ of $A, \Phi_{A^{\prime}}\left(\mathcal{P} \cap A^{\prime}\right) \leq \Phi_{A}(\mathcal{P})$.

A partitioning-tree $(T, \sigma)$ of $A$ is a tree $T$ together with a one-to-one mapping $\sigma$ between $A$ and the leaves of $T$. If $T$ is rooted in $r \in V(T)$, the partitioning-tree is denoted by $(T, r, \sigma)$. Any internal vertex $v \in V(T)$ corresponds to a partition $\mathcal{T}_{v}$ of $A$, defined by the sets of leaves of the connected components of $T \backslash v$. Similarly, any edge $e \in E(T)$ defines a bi-partition $\mathcal{T}_{e}$ of $A$. The $\Phi_{A}$-width of $(T, \sigma)$ is the maximum of $\Phi_{A}\left(\mathcal{T}_{v}\right)$ over the internal (i.e., non leaf) vertices $v$ of $T$. The $\Phi$-width of $A$ is the minimum $\Phi_{A}$-width of its partitioning-trees (cf. Figure 1 in Appendix A).

A branching node of a rooted tree $(T, r)$ is either the root or a vertex of $T$ with at least two children. A tree $T$ is $q$-branched if there exists a root $r \in V(T)$ such that any path from $r$ to a leaf contains at most $q \geq 0$ branching nodes. For instance, $T$ is 0 -branched if and only if $T$ is a path. The corpse $c p(T)$ of a tree $T$ denotes the rooted tree obtained from $T$ by removing all its leaves. A partitioning tree $(T, \sigma)$ is $q$-branched if the corpse $c p(T)$ of $T$ is $q$-branched. For instance, a partitioning-tree $(T, \sigma)$ is 0 -branched if and only if $T$ is a caterpillar. The $q$-branched $\Phi$-width of $A$ is the minimum $\Phi_{A}$-width of its $q$-branched partitioning-trees.

### 2.2 Sufficient conditions for a linear time algorithm.

A nice decomposition $(D, \mathcal{X})$ of a finite set $A$ is a $O(|A|)$-node rooted tree $D$, together with a familly $\mathcal{X}=\left(X_{t}\right)_{t \in V(D)}$ of subsets of $A$ such that, $\cup_{t \in V(D)} X_{t}=A$, and for any $v \in V(D)$ : (a) start node: $v$ is a leaf, or (b) introduce-node: $v$ has a unique child $u, X_{u} \subset X_{v}$ and $\left|X_{v}\right|=\left|X_{u}\right|+1$, or (c) forget-node: $v$ has a unique child $u, X_{v} \subset X_{u}$ and $\left|X_{u}\right|=\left|X_{v}\right|+1$, or (d) join-node: $v$ has exactly 2 children $u$ and $w$, and $X_{v}=X_{u}=X_{w}$.

For any $v \in V(D)$, let $D_{v}$ denote the subtree of $D$ rooted in $v$, and $A_{v}=\cup_{t \in V\left(D_{v}\right)} X_{t}$.
Let $\Phi$ be a partition function. A nice decomposition $(D, \mathcal{X})$ for $A$ is compatible with $\Phi$ if

- it exists a function $F_{\Phi}$ that associates an integer $F_{\Phi}(x, \mathcal{P}, e)$ to any integer $x$, partition $\mathcal{P}$ of some subset of $A$ and element $e$ of $A$, such that, $F$ is strictly increasing in its first coordinate, and, for any introduce node $v \in V(D)$ with child $u$, any partition $\mathcal{P}$ of $A_{v}$,

$$
\Phi_{A_{v}}(\mathcal{P})=F_{\Phi}\left(\Phi_{A_{u}}\left(\mathcal{P} \cap A_{u}\right), \mathcal{P} \cap X_{v}, A_{v} \backslash A_{u}\right)
$$

- it exists a function $H_{\Phi}$ that associates an integer $H_{\Phi}(x, y, \mathcal{P})$ to any pair of integers $x, y$, and partition $\mathcal{P}$ of some subset of $A$, such that, $F$ is strictly increasing in its first and second coordinates, and, for any join node $v \in V(D)$ with children $u$ and $w$, any partition $\mathcal{P}$ of $A_{v}$,

$$
\Phi_{A_{v}}(\mathcal{P})=H_{\Phi}\left(\Phi_{A_{u}}\left(\mathcal{P} \cap A_{u}\right), \Phi_{A_{w}}\left(\mathcal{P} \cap A_{w}\right), \mathcal{P} \cap X_{v}\right)
$$

Intuitively, the existence of $F_{\Phi}$ and $H_{\Phi}$ means that it is possible to compute the $\Phi$-width of some partitions $\mathcal{P}$ without knowing explicitly $\mathcal{P}$, but only knowing a restriction of $\mathcal{P}$ and the $\Phi$-width of some restrictions of $\mathcal{P}$, these restriction being defined by the decomposition $(D, \mathcal{X})$.

Theorem 1. Let $\Phi$ be a monotone partition function that is closed under taking subgraph. Let $k, k^{\prime} \geq 1$ and $q \geq 0$ be three fixed integers ( $q$ may be $\infty$ ). There exists an algorithm that solves the following problem in time linear in the size of the input set:
input: a finite set $A$, and a nice decomposition $(D, \mathcal{X})$ for $A$ that is compatible with $\Phi$, and $\max _{t \in V(D)}\left|X_{t}\right| \leq k^{\prime}$, output: decide if the $q$-branched $\Phi$-width of $A$ is at most $k$.

## Guideline of the algorithm.

In the following, we define the notion of characteristic, $\operatorname{Char}((T, r, \sigma), X)$, of a partitioningtree $(T, r, \sigma)$ of $A$ restricted to $X \subseteq A$ (Section 4). Roughly, characteristics are a compact data structure encoding the information necessary to build partitioning-trees. Following the framework in [BK96], we prove that the number of characteristics of $q$-branched partitioningtrees with $\Phi$-width at most $k$, restricted to $X$, is bounded by a function of $q, k$ and $|X|$ (this function does not depend on $q$ when $q=\infty)$. Then, we prove that the size of such characteristics is also bounded (Lemma 6). Finally, we define an ordering $\preceq$ on the characteristics that allows us to consider only some specific characteristics. More precisely, given $v \in V(D)$, a set of characteristics $\operatorname{Set}(v)$ is a set of characteristics of $q$-branched partitioning-trees of $A_{v}$ with $\Phi$-width at most $k$, restricted to $X_{v}$. This set is said full if, roughly, all minimal such characteristics belong to it (see Section 4). By definition, there is a non empty full set of characteristics FullSet $(v)$ if and only if the $q$-branched $\Phi$-width of $A_{v}$ is at most $k$.

The algorithm proceeds by performing a dynamic programming. First, it computes a full set of characteristics $\operatorname{FullSet}(v)$ for any start node (i.e., leaf) $v \in V(D)$. Then, for any $v \in V(D)$, a full set of characteristics FullSet $(v)$ is computed in constant time, starting from the full sets of characteristics of the children of $v$. This is the role of Procedures IntroduceNode (Section 5.1.2), ForgetNode (Section 5.2) and JoinNode (Section 5.3). Therefore, in time $|V(D)|=O(|A|)$, our algorithm computes a full set of characteristics FullSet $\left(r_{D}\right)$ of the root of $D$. Since $A_{r_{D}}=A$, the $q$-branched $\Phi$-width of $A_{v}$ is at most $k$ if and only if $\operatorname{FullSet}\left(r_{D}\right) \neq \emptyset$.

In Sections 4 and 5, we present the main tools used in the design of our algorithm. First, in the next section, we present an important application of this theorem to the graphs.

## 3 Tractability of width-parameters of graphs.

This section is devoted to present an application of Theorem 1 in terms of graph's parameters. We first recall the definition of some graph's parameters, and establish their relationship with partition functions [AMNT07].

Let $G=(V, E)$ be a connected graph. Let $\Delta$ be the function that assigns, to any partition $\mathcal{X}=\left\{E_{1}, \cdots, E_{r}\right\}$ of $E$, the set of the vertices of $G$ that are incident to edges in $E_{i}$ and $E_{j}$, with $i \neq j$. Let $\delta$ be the partition function that assigns $|\Delta(\mathcal{X})|$ to any partition $\mathcal{X}$ of $E$.
Treewidth [RS86]: The treewidth of $G$ is at most $k \geq 1$ if and only if there is a partitioningtree of $E$ with $\delta$-width at most $k+1$. Indeed, let $(T, \sigma)$ be a partitioning-tree of $E$, then $\left(c p(T),\left(X_{t}\right)_{t \in V(c p(T))}\right)$, with $X_{t}=\Delta\left(\mathcal{T}_{t}\right)$, is a tree-decomposition of $G$. Conversely, let $(T, \mathcal{X})$ be a tree-decomposition of $G$ with width at most $k$. Then, for any edge $\{x, y\} \in E$, let us choose an arbitrary bag $X_{t}$ that contains both $x$ and $y$, add a leaf $f$ adjacent to $t$ in $T$, and let $\sigma(f)=\{x, y\}$. Finally, let $S$ be the minimal subtree spanning all such leaves. The resulting tree $(S, \sigma)$ is a partitioning-tree of $E$ with $\delta$-width at most $k+1$ and $T=c p(S)$ [AMNT07].
Pathwidth [RS83]: The pathwidth of $G$ is at most $k \geq 1$ if and only if there is a partitioning-tree $(T, \sigma)$ of $E$ with $\delta$-width at most $k+1$ and such that $(T, \sigma)$ is 0 -branched.
q-branched treewidth [FFN07]: More generally, the $q$-branched treewidth of $G$ is at most $k \geq 1$ if and only if there is a $q$-branched partitioning-tree $(T, \sigma)$ of $E$ with $\delta$-width at most $k+1$. Recall that a partitioning-tree $(T, \sigma)$ is $q$-branched if $c p(T)$ is $q$-branched.

Other partition functions defining branchwidth (br), linearwidth (lw), carvingwidth (carw), and cutwidth (cw) are described in Appendix F. The remaining part of this section is devoted to prove the Theorem 2 that is an important interpretation of Theorem 1 when width-parameters of graphs are concerned. We first need some lemmata. The following lemma is straightforward and its proof is thus omitted.

Lemma 1. Aforementioned partition functions are monotone and closed under taking subset.

Lemma 2. Let $G$ be a graph with maximum degree deg. Given a nice tree-decomposition $(T, \mathcal{Y})$ of $G$ with width at most $k^{\prime} \geq 1$, a nice decomposition $(D, \mathcal{X})$ of $E$, compatible with the partition functions corresponding to treewidth (resp., branchwidth), $q \geq 0$, and with $\max _{t \in V(D)}\left|X_{t}\right| \leq k^{\prime}$. deg can be computed in linear time.

Proof. Due to lack of space, we only prove the lemma for the partition function corresponding to treewidth. First, it is easy to obtain a nice decomposition $(D, \mathcal{X})$ of $E$ from $(T, \mathcal{Y})$. For any $v \in V(T)$, let $T_{v}$ denote the subtree of $T$ rooted in $v$, and $A_{v}=\cup_{t \in V\left(T_{v}\right)} Y_{t}$, and let $E_{v}$ be the set of edges belonging to the subgraph induced by the vertices contained in $A_{v}$ that are incident to a vertex in $Y_{v}$. Any start node, resp., join node, $Y_{t}$ of $(T, \mathcal{Y})$ corresponds to a start node, resp., join node, $E_{t}$ of $(D, \mathcal{X})$. For any introduce node $Y_{t}$ of $(T, \mathcal{Y})$, let $x \in V$ be the vertex such that $Y_{t}=Y_{t^{\prime}} \cup\{x\}$, where $t^{\prime}$ is the single child of $t$ in $T$. Let $e_{1}, \cdots, e_{r}$ be the edges that are incident to $x$ and to some vertex in $Y_{t^{\prime}}$. Then, $Y_{t}$ is modified into a
path of introduce nodes $E\left(G\left[Y_{t^{\prime}}\right]\right) \cup\left\{e_{1}\right\}, E\left(G\left[Y_{t^{\prime}}\right]\right) \cup\left\{e_{1}, e_{2}\right\}, \cdots, E\left(G\left[Y_{t^{\prime}}\right]\right) \cup\left\{e_{1}, e_{2}, \cdots, e_{r}\right\}$ in $(D, \mathcal{X})$. Finally, any forget node $Y_{t}$ of $(T, \mathcal{Y})$ is modified into a path of forget nodes $E\left(G\left[Y_{t^{\prime}}\right]\right) \backslash\left\{e_{1}\right\}, E\left(G\left[Y_{t^{\prime}}\right]\right) \backslash\left\{e_{1}, e_{2}\right\}, \cdots, E\left(G\left[Y_{t^{\prime}}\right]\right) \backslash\left\{e_{1}, e_{2}, \cdots, e_{r}\right\}$ in $(D, \mathcal{X})$, where $t^{\prime}$ is the unique child of $t$ in $T$, and $e_{1}, \cdots, e_{r}$ are the edges that are incident to $x=Y_{t^{\prime}} \backslash Y_{t}$ and to no other vertex in $Y_{t}$. The obtained decomposition of $E$ is a nice decomposition and its width (i.e., the maximum number of edges in each bag) is at most the width of the tree-decomposition $(T, \mathcal{Y})$ times the maximum degree of $G$.

It remains to prove that $(D, \mathcal{X})$ is compatible with $\delta$. Let $F_{\delta}$ be defined as follows.
Definition 1. Let $x$ be an integer, $\mathcal{P}$ be a partition of a subset $E^{\prime}$ of $E$ and an edge $e \in E^{\prime}$. Then, $F_{\delta}(x, \mathcal{P}, e)=x+\left|\left\{v \in e \mid v \in \Delta(\mathcal{P}) \backslash \Delta\left(\mathcal{P} \cap\left(E^{\prime} \backslash\{e\}\right)\right)\right\}\right|$.

That is, $F_{\delta}$ adds to $x$ the number of vertices incident to $e$ that contribute to the border of the partition $\mathcal{P}$ because they are incident to $e . F_{\delta}$ is obviously strictly increasing in its first coordinate. Moreover, it can be computed in constant time when $\left|E^{\prime}\right|$ is bounded by a constant.

For any $v \in V(D)$, let $D_{v}$ denote the subtree of $D$ rooted in $v$, and $A_{v}=\cup_{t \in V\left(D_{v}\right)} X_{t}$.
Let $v \in V(D)$ be an introduce node with child $u$, and let $\{e\}=X_{v} \backslash X_{u}$. Let $\mathcal{P}$ be a partition of $A_{v}$. We need to prove that $\delta_{A_{v}}(\mathcal{P})=F_{\delta}\left(\delta_{A_{u}}\left(\mathcal{P} \cap A_{u}\right), \mathcal{P} \cap X_{v}, e\right)$. In other words, let us prove that $\delta_{A_{v}}(\mathcal{P})=\delta_{A_{u}}\left(\mathcal{P} \cap A_{u}\right)+\left|\left\{v \in e \mid v \in \Delta\left(\mathcal{P} \cap X_{v}\right) \backslash \Delta\left(\mathcal{P} \cap X_{v} \cap\left(X_{v} \backslash\{e\}\right)\right)\right\}\right|$.
$\delta_{A_{v}}(\mathcal{P})$ is the number of vertices in the subgraph induced by the set of edges $A_{v}$, that are incident to edges in different parts of $\mathcal{P}$. This set of vertices can be divided into two disjoint sets: (1) the set $S_{1}$ of vertices that are incident to two edges $f$ and $h$ that are different from $e$ and that belong to different parts of $\mathcal{P}$, and (2) the set $S_{2}$ of vertices $x$ incident to $e$ and such that all other edges (different from $e$ ) incident to $x$ belong to the same part of $\mathcal{P}$ that is not the part of $e . S_{1}$ is exactly the set of vertices belonging to $\Delta_{A_{u}}\left(\mathcal{P} \cap A_{u}\right)$, therefore $\left|S_{1}\right|=\delta_{A_{u}}\left(\mathcal{P} \cap A_{u}\right)$.

By definition of $(D, \mathcal{X})$ (because it has been built from a tree-decomposition), any edge of $A_{u}=A_{v} \backslash\{e\}$ that has a common end with $e$ belongs to $X_{v}$. Therefore, any vertex in $S_{2}$ belongs to $\Delta\left(\mathcal{P} \cap X_{v}\right)$. It is easy to conclude that $\left|S_{2}\right|=\mid\left\{v \in e \mid v \in \Delta\left(\mathcal{P} \cap X_{v}\right) \backslash \Delta(\mathcal{P} \cap\right.$ $\left.\left.X_{v} \cap\left(X_{v} \backslash\{e\}\right)\right)\right\} \mid$.

Therefore, the function $F_{\delta}$ satisfies the desired properties. Let $H_{\delta}$ be defined as follows.
Definition 2. Let $x$ and $y$ be two integers, and let $\mathcal{P}$ be a partition of a subset $E^{\prime}$ of $E$. Then, $H_{\delta}(x, y, \mathcal{P})=x+y-\delta(\mathcal{P})$.
$H_{\delta}$ is obviously strictly increasing in its first and second coordinates. Moreover, it can be computed in constant time when $\left|E^{\prime}\right|$ is bounded by a constant.

Let $v \in V(D)$ be a join node with children $u$ and $w$, and let $\mathcal{P}$ be a partition of $A_{v}$, we must prove that $\delta_{A_{v}}(\mathcal{P})=H_{\delta}\left(\delta_{A_{u}}\left(\mathcal{P} \cap A_{u}\right), \delta_{A_{w}}\left(\mathcal{P} \cap A_{w}\right), \mathcal{P} \cap X_{v}\right)$. That is, we prove that $\delta_{A_{v}}(\mathcal{P})=\delta_{A_{u}}\left(\mathcal{P} \cap A_{u}\right)+\delta_{A_{w}}\left(\mathcal{P} \cap A_{w}\right)-\delta_{X_{v}}\left(\mathcal{P} \cap X_{v}\right)$.

First, note that $\Delta_{A_{u}}\left(\mathcal{P} \cap A_{u}\right) \cup \Delta_{A_{w}}\left(\mathcal{P} \cap A_{w}\right) \subseteq \Delta_{A_{v}}(\mathcal{P})$. Moreover, by definition of the nice decomposition $(D, \mathcal{X})$, an edge of $A_{u} \backslash X_{v}$ and an edge of $A_{w} \backslash X_{v}$ cannot be incident.

Indeed, $X_{v}$ has been built by taking all edges incident to a vertex in a bag $Y$ of the treedecomposition $(T, \mathcal{Y})$. By the connectivity property of a tree-decomposition, if a vertex $x$ would have been incident to an edge in $A_{u} \backslash A_{w}$ and to an edge in $A_{w} \backslash A_{u}$, then $x \in Y$ which would have implied that both these edges belong to $X_{v}=A_{u} \cap A_{w}$, a contradiction. Therefore, $\Delta_{A_{v}}(\mathcal{P}) \subseteq \Delta_{A_{u}}\left(\mathcal{P} \cap A_{u}\right) \cup \Delta_{A_{w}}\left(\mathcal{P} \cap A_{w}\right)$. To conclude, it is sufficient to observe that $\Delta_{A_{u}}\left(\mathcal{P} \cap A_{u}\right) \cap \Delta_{A_{w}}\left(\mathcal{P} \cap A_{w}\right)=\Delta_{X_{v}}\left(\mathcal{P} \cap X_{v}\right)$.

Due to lack of space the proof of the following lemma is omitted and can be found in Appendix F.2.

Lemma 3. Any nice tree-decomposition $(T, \mathcal{Y})$ of $G$ is a nice decomposition of $V$ that is compatible with the partition functions corresponding to carwingwidth (resp., cutwidth).

Bodlaender designs a linear-time algorithm that decides if the treewidth of a graph $G$ is at most $k$, and, if $t w(G) \leq k$ returns a tree-decomposition of width at most $O(k)$ [Bod96]. Moreover, a nice tree-decomposition of $G$ can be computed in linear time from any treedecomposition of $G$, and without increasing its width [BK96]. Finally, for any graph $G$ and any $q \geq 0, t w(G) \leq t w_{q}(G) \leq p w(G)$ (By definition), $t w(G) \leq \frac{3}{2} b w(G)$ [RS91], $p w(G) \leq$ $c w(G)$ [TSB00], $t w(G) \leq 3 \operatorname{carw}(G)$ [TSB00] and $p w(G) \leq l w(G)$ [BT04]. Therefore, as an application of Theorem 1, Lemmata 1,2 and 3 lead to:

Theorem 2. Let $k$ and $q$ be two fixed parameters. There exists an algorithm that solves the following problem in time linear in the size of the input.
input: A graph $G$ with degree bounded as a function of $q$ and $k$, output: Decide if $G$ has $q$-branched treewidth, resp., branchwidth, linearwidth, carvingwidth or cutwidth at most $k$.

## 4 Characteristics of partitioning-trees.

This section is devoted to define the characteristic of any rooted partitioning-tree of some finite set $A$ when we "restrict" it to a subset $B \subseteq A$. Let $\Phi$ be a monotone partition function.

### 4.1 Contraction of labeled path

One of the main tool that we use is the contraction of labeled paths. A labeled path is a path the vertices and edges of which are labeled by integers. In the following, any path of a partitioning tree of $A$ will be considered as a labeled path, the vertices and edges being labeled by the $\Phi_{A}$-width of the partition they correspond to. Note that, because $\Phi$ is monotone, the label of any edge is at most the minimum label of its ends.

Let $P=\left\{v_{0}, v_{1}, \cdots, v_{n}\right\}$ be a path where any vertex $v_{i}$ is labeled with an integer $\ell\left(v_{i}\right)$, and any edge $e_{i}=\left\{v_{i-1}, v_{i}\right\}$ with an integer $\ell\left(e_{i}\right)$. To define the contraction of $P$, we revisit the notion of typical sequence of a sequence of integers [BK96] (see Appendix B.1). Roughly, the goal of the following operation is to contract some edges and vertices of $P$ that are not "necessary" to remember the variations of the sequence $\left(\ell\left(v_{0}\right), \ell\left(e_{1}\right), \ell\left(v_{1}\right), \cdots, \ell\left(e_{n}\right), \ell\left(v_{n}\right)\right)$.

The contraction Contr $(P)$ is the path obtained from $P$, with same ends, by contracting some edges and vertices obtained by the following procedure. Start with one integral variable $m=1$. While $m \neq n$, do the following. Let $i, m \leq i \leq n-1$, be the greatest index such that, for any $\left.m \leq j \leq i, \ell\left(e_{m}\right) \leq \ell\left(e_{j}\right)\right) \leq \ell\left(v_{i}\right)$ and $\left.\ell\left(e_{m}\right) \leq \ell\left(v_{j}\right)\right) \leq \ell\left(v_{i}\right)$. Contract all vertices and edges between $e$ and $v_{i}$. Then, set $m$ to the greatest index such that, for any $i<j \leq m, \ell\left(v_{i}\right) \geq \ell\left(e_{j}\right) \geq \ell\left(e_{m}\right)$ and $\ell\left(v_{i}\right) \geq \ell\left(v_{j}\right) \geq \ell\left(e_{m}\right)$. Contract all vertices and edges between $v_{i}$ and $e_{m}$. Edges and vertices of $\operatorname{Contr}(P)$ keep their initial label (cf. Figure 2 in Appendix (A).

The crucial property of $\operatorname{Contr}(P)=\left\{v_{0}=v_{0}^{\prime}, v_{1}^{\prime}, \cdots, v_{p-1}^{\prime}, v_{p}^{\prime}=v_{n}\right\}$ is that the sequence $S^{\prime}=\left(\ell\left(e_{1}^{\prime}\right), \ell\left(v_{1}^{\prime}\right), \cdots, \ell\left(e_{p-1}^{\prime}\right), \ell\left(v_{p-1}^{\prime}\right), \ell\left(e_{p}^{\prime}\right)\right)$ (where $\left.e_{i}^{\prime}=\left\{v_{i-1}^{\prime}, v_{i}^{\prime}\right\}\right)$ is "almost" the typical sequence of the sequence $S=\left(\ell\left(e_{1}\right), \ell\left(v_{1}\right), \cdots, \ell\left(e_{n}\right)\right)$. More precisely, if $\ell\left(e_{1}^{\prime}\right) \neq \ell\left(v_{1}^{\prime}\right)$, then $S^{\prime}=\tau(S)$, otherwise $\left(\ell\left(v_{1}^{\prime}\right), \ell\left(e_{2}^{\prime}\right), \cdots, \ell\left(v_{p-1}^{\prime}\right), \ell\left(e_{p}^{\prime}\right)\right)=\tau(S)(\tau(S)$ denotes the typical sequence of $S$ ). Moreover, it is important to note that any $v \in V(\operatorname{Contr}(P))(e \in$ $E(\operatorname{Contr}(P)))$ represents a unique $v^{*} \in V(P)\left(e^{*} \in E(P)\right)$.

We define $\max (P)$ as the maximum integer labeling an edge or a vertex of a labeled path $P$. Similarly, we define $\min (P)$. The following lemma is straightforward when using the fact that the number of different typical sequences of integers in $\{0,1, \cdots, k\}$ is at most $\frac{8}{3} 2^{2 k}$ [BK96].

Lemma 4. Let $P$ be a labeled path.

1. $\min (\operatorname{Contr}(P))=\min (P)$ and $\max (\operatorname{Contr}(P))=\max (P)$.
2. The number of contractions of paths $P$ with $\max (P) \leq k$ is bounded by a function of $k$.

In the following, we need to order the labeled paths. An extension of a labeled path $P$ is any path obtained by subdividing some edges of $P$ an arbitrary number of times. Both edges and the vertex resulting from the subdivision of an edge $e$ are labeled with $\ell(e)$. Given two labeled paths $P$ and $Q$, we say that $P \preceq Q$ if there is an extension $P^{*}=\left\{p_{1}, \cdots, p_{r}\right\}$ of $P$ and an extension $Q^{*}=\left\{q_{1}, \cdots, q_{r}\right\}$ of $Q$ with same length, and such that $\ell\left(p_{i}\right) \leq \ell\left(q_{i}\right)$ and $\ell\left(\left\{p_{i}, p_{i+1}\right\}\right) \leq \ell\left(\left\{q_{i}, q_{i+1}\right\}\right)$ for any $i \leq r$.

### 4.2 Restriction of a partitioning-tree

Let $(T, r, \sigma)$ be a partitioning-tree of $A$. Any internal vertex $v \in V(T)$ is labeled by $\ell(v)=$ $\Phi_{A}\left(\mathcal{T}_{v}\right)$ and any edge $e \in E(T)$ is labeled by $\ell(e)=\Phi_{A}\left(\mathcal{T}_{e}\right)$. To avoid technicality, we assume that $T$ is not restricted to an edge, and $r$ is not a leaf of $T$. Therefore, the corpse $c p(T)$ ( $T$ without its leaves) can be rooted in $r$. The restriction Char $((T, r, \sigma), B)$ of $(T, r, \sigma)$ to $B$ is a rooted partitioning-tree $\left(T^{*}, r^{*}, \sigma^{*}\right)$ of $B$, together with a labeling function $\ell^{*}$ : $V\left(c p\left(T^{*}\right)\right) \cup E\left(T^{*}\right) \rightarrow \mathbb{N}$, an integer dist*, a subset $K^{*}$ of vertices of $T^{*}$ such that any $v \in K^{*}$ has extra label $\left(\right.$ out $\left.^{*}(v), \operatorname{branch}^{*}(v)\right) \in \mathbb{N} \times\{0,1\}$. $\operatorname{Char}((T, r, \sigma), B)$ is computed as follows.

1. Let $T^{*}$ be the smallest subtree spanning the leaves of $T$ that map elements of $B$. Let $r^{*}$ be the vertex of $T^{*}$ that is closest to $r$ in $T$. From now on, $T^{*}$ is rooted in $r^{*}$. For any leaf $f$ of $T^{*}$, let $\sigma^{*}(f)=\sigma(f)$.
2. dist* is set to the number of branching nodes, in $c p(T)$, on the path between $r$ and $r^{*}$ (including $r$, and excluding $r^{*}$ ).
3. Let $K^{*}$ be the set of vertices of $T^{*}$ that are either a leaf of $T^{*}$, or the parent of a leaf of $T^{*}$, or a branching node of $\left(T^{*}, r^{*}\right)$, or a branching node of $c p(T)$ in $V\left(T^{*}\right)$ (rooted in $r$ ).
4. For any vertex $v$ of $K^{*}$, $\operatorname{branch}^{*}(v)=1$ if $v$ is a branching node of $c p(T)$, and branch $^{*}(v)=0$ otherwise. out ${ }^{*}(v)$ is set to the maximum number of branching nodes on any path between $v$ and a leaf in $A \backslash B$ all internal vertices of which are different from $r^{*}$ and in $T \backslash T^{*}$.
5. Any internal vertex $v \in V\left(T^{*}\right)$ (resp., any edge $e \in E\left(T^{*}\right)$ ) keeps the same label than in $T: \ell^{*}(v)=\Phi_{A}\left(\mathcal{T}_{v}\right)\left(\right.$ resp., $\left.\ell^{*}(e)=\Phi_{A}\left(\mathcal{T}_{e}\right)\right)$.
6. Then, for any two vertices $v, w$ in $K^{*}$ such that no internal vertices of the path $P$ between $v$ and $w$ are in $K^{*}$, replace $P$ by $C o n t r(P)$.

An example is illustrated in Figure 3 in Appendix A.
The key point for the understanding of the relationship between the partitioning-tree $(T, r, \sigma)$ of $A$ and its restriction $\left(\left(T^{*}, r^{*}, \sigma^{*}\right), \ell^{*}, K^{*}, d i s t^{*}, o u t^{*}, b r a n c h^{*}\right)$ to $B$ is based on the following. Any vertex of $K^{*}$ represents a specific vertex of $T$ that is either a leaf of $T$ that maps an element of $B$, or the parent of such a leaf in $T$, or a branching node of $c p(T)$ or a vertex of $T$ that defines a partition of $B$ with at least three part. Any path $P$ between two vertices $v, w$ in $K^{*}$ such that no internal vertices of $P$ between $v$ and $w$ are in $K^{*}$, represents a path $P(v, w)$ in $T$ the internal vertices of which have degree two in $T$. Moreover, by definition of the operation $P=\operatorname{Contr}(P(v, w))$, any vertex (resp., edge) of $P$ represents a specific vertex (resp., edge) of $T$. Beside, by Lemma 4, the maximum (minimum) label over the vertices and edges of $T^{*}$ is the maximum (minimum) label over the vertices and edges of $T$. In particular, $\ell^{*}(v) \leq k$ and $\ell^{*}(e) \leq k$ for any $v \in V\left(T^{*}\right)$ and $e \in E\left(T^{*}\right)$ if and only if $(T, r, \sigma)$ has $\Phi$-width at most $k$.

Finally, the labels out and branch are sufficient to remember if $(T, r, \sigma)$ is $q$-branched. Indeed, let the br-height of $v$, denoted by brheight $(v)$, in $c p(T)$ be the maximum number of branching nodes in a path from $v$ to a leaf of the subtree of $c p(T)$ rooted in $v$. With this definition, $(T, r, \sigma)$ is $q$-branched if and only if the br-height of $r$ is at most $q$. If $v$ is a leaf of $T^{*}$, it is a leaf of $T$, then $\operatorname{brheight}(v)=0$. Otherwise, the br-height of $v$ can be computed recursively by $\max \{o u t(v)$, height $\}+\operatorname{branch}(v)$, where height is the maximum of the br-height among the children of $v$. In particular, if $(T, r, \sigma)$ is $q$ branched, out ${ }^{*}(v) \leq q$ for any $v \in K^{*}$. Finally, the br-height of $r$ equals the br-height of $r^{*}$ plus dist*.

### 4.3 Characteristic of $A$ restricted to $B$

Let $\left(\left(T^{*}, r^{*}, \sigma^{*}\right), \ell^{*}, K^{*}\right.$, dist $^{*}$, out $^{*}$, branch $\left.^{*}\right)$ be such that $\left(T^{*}, r^{*}, \sigma^{*}\right)$ is a rooted partitioningtree of $B \subseteq A, \ell^{*}: V\left(c p\left(T^{*}\right)\right) \cup E\left(T^{*}\right) \rightarrow \mathbb{N}, K^{*} \subseteq V\left(T^{*}\right)$ that contains at least all leaves, parents of leaves, the root and vertices with degree at least three of $T^{*}$, dist* $\in \mathbb{N}$, out $^{*}: K^{*} \rightarrow \mathbb{N}$, branch ${ }^{*}: K^{*} \rightarrow\{0,1\}$, and for any $v, w \in K^{*}$ such that no internal vertices of the path $P$ between $v$ and $w$ are in $K^{*}, P=\operatorname{Contr}(Q)$ (i.e., $P$ results from some contraction).

Definition 3. $\left(\left(T^{*}, r^{*}, \sigma^{*}\right), \ell^{*}, K^{*}\right.$, dist $^{*}$, out $^{*}$, branch $\left.^{*}\right)$ is a characteristic of $A$ restricted to $B$ if it exists a partitioning-tree $(T, r, \sigma)$ of $A$, such that $\left(\left(T^{*}, r^{*}, \sigma^{*}\right), \ell^{*}, K^{*}\right.$, dist $^{*}$, out ${ }^{*}$, branch $\left.{ }^{*}\right)=$ Charac $((T, r, \sigma), B) .\left(\left(T^{*}, r^{*}, \sigma^{*}\right), \ell^{*}, K^{*}\right.$, dist $^{*}$, out $^{*}$, branch $\left.^{*}\right)$ is a $(k, q)$-characteristic of $A$ restricted to $B$ if, moreover, $\ell^{*}: V\left(T^{*}\right) \cup E\left(T^{*}\right) \rightarrow[0, k]$, and dist ${ }^{*}+$ brheight $\left(r^{*}\right) \leq q$. Note that the latter assumption implies that out* $: K^{*} \rightarrow[0, q]$.

Lemma 5. $\left(\left(T^{*}, r^{*}, \sigma^{*}\right), \ell^{*}, K^{*}, d i s t^{*}\right.$, out $^{*}$, branch $\left.^{*}\right)$ is a $(k, q)$-characteristic of $A$ restricted to $B$ if and only it exists a q-branched partitioning-tree $(T, r, \sigma)$ of $A$ with $\Phi$-width at most $k$, such that $\left(\left(T^{*}, r^{*}, \sigma^{*}\right), \ell^{*}, K^{*}\right.$, dist $^{*}$, out $^{*}$, branch $\left.^{*}\right)=\operatorname{Charac}((T, r, \sigma), B)$.

Lemma 6. The number of $(k, q)$-characteristic of $A$ restricted to $B$ is bounded by $f(k, q,|B|)$.
Proof. Let $\left(\left(T^{*}, r^{*}, \sigma^{*}\right), \ell^{*}, K^{*}, d i s t^{*}\right.$, out $t^{*}$, branch $\left.^{*}\right)$ be a $(k, q)$-characteristic of $A$ restricted to $B . T^{*}$ is a tree with $|B|$ leaves, $\left|K^{*}\right| \leq k q+2 k$, any path between two vertices in $K^{*}$ has length at most $2 k+1$ (Lemma 4 and [BK96]), dist* $\leq q$, and for any vertex $v \in V\left(c p\left(T^{*}\right)\right)$ and edge $e \in E\left(T^{*}\right), \ell^{*}(v) \leq k, \ell^{*}(e) \leq k$, and $\operatorname{out}(v) \leq q$.

Case $q=\infty$. Note that, if $q$ is unbounded, the number of characteristics of $(k, \infty)$ characteristic of $B$ is bounded by a function $k$ and $|B|$. Indeed, if $q$ is unbounded, we don't need to take the variables dist*, out* and branch* into account. More precisely, the items 2 and 4 of the previous procedure can be removed and $K^{*}$ must be the set of vertices of $T^{*}$ that are either a leaf of $T^{*}$, or a branching node of $\left(T^{*}, r^{*}\right)$.

The skeleton $S k(C)$ of $C=\left(\left(T^{*}, r^{*}, \sigma^{*}\right), \ell^{*}, K^{*}, d i s t^{*}, o u t^{*}\right.$, branch $\left.^{*}\right)$ is the tree obtained from $T^{*}$ by contracting all vertices that are not in $K^{*}$ (these vertices have degree two, thus the notion of contraction is well defined). Therefore, $V(S k(C))=K^{*}$. Two partitioningtrees $(T, r, \sigma)$ and $\left(T^{\prime}, r^{\prime}, \sigma^{\prime}\right)$ are isomorphic if there is an one-to-one function $\varphi: V(T) \rightarrow$ $V\left(T^{\prime}\right)$ preserving the edges, such that $\varphi(r)=r^{\prime}$, and moreover, $\sigma^{\prime}(\varphi(f))=\sigma(f)$ for any leaf $f$ of $T$.

Definition 4. Given two characteristics $C^{*}=\left(\left(T^{*}, r^{*}, \sigma^{*}\right), \ell^{*}, K^{*}\right.$, dist $^{*}$, out ${ }^{*}$, branch $\left.{ }^{*}\right)$ and $C=\left((T, r, \sigma), \ell, K\right.$, dist, out, branch) of $A$ restricted to $B, C^{*} \preceq C$ if $S k\left(C^{*}\right)$ and $S k(C)$ are isomorphic, dist* $\leq$ dist, for any $v, w \in K^{*}=K$, out $(v) \leq \operatorname{out}(v)$, branch $^{*}(v) \leq$ $\operatorname{branch}(v), \ell^{*}(v) \preceq \ell(v)$, and $P^{*}(v, w) \preceq P(v, w)$ where $P^{*}(v, w)$ is the path between $v$ and $w$ in $T^{*}$, and $P(v, w)$ is the path between $v$ and $w$ in $T$.

Definition 5. A set $F$ of $(k, q)$-characteristics of $A$ restricted to $B$ is full if for any $q$ branched partitioning-tree $(T, r, \sigma)$ of $A$ with $\Phi$-width at most $k$, there is a $q$-branched partitioning-tree $(S, u, \mu)$ of $A$, such that $\operatorname{Char}((S, u, \mu), B) \preceq \operatorname{Charac}((T, r, \sigma), B)$ and $\operatorname{Char}((S, u, \mu), B) \in F$.

## 5 Decision algorithm.

This section is devoted to the presentation of Procedures used in our main algorithm. Notations are those defined in Section 2 for Theorem 1. Let $(D, \mathcal{X})$ be a nice decomposition
for $A$ that is compatible with $\Phi$ a monotone partition function, and $\max _{t \in V(D)}\left|X_{t}\right| \leq k^{\prime}$. This section presents procedures that compute a full set $F S C(t)$ of $(k, q)$-characteristics of $A_{t}$ restricted to $X_{t}$, for any $t \in V(T)$. recall that, our algorithm proceeds by dynamic programming from the leaves of $D$ to its root. Due to lack of space, the proofs of Lemmata 7,8, and 9 are omitted and can be found in Appendix C, D and E.

If $v$ is a leaf, i.e., a start node of $D, A_{v}=X_{v}$, and $\left|X_{v}\right| \leq k^{\prime} . F S C(v)$ consists of all $(k, q)$-characteristics of $X_{v}$. By Lemma 6, $|F S C(v)|$ is bounded by a function of $k^{\prime}, k$ and $q$. It can be computed in constant time.

### 5.1 Case of an introduce node.

We first explain how any labeled partitioning-tree $(T, r, \sigma)$ of $A$ can be turned into a partitioning-tree of $A \cup\{a\}, a \notin A$. The following procedure (cf. Figure 4 in Appendix A) will be useful for a better understanding of Procedure IntroduceNode, and will be used in the proof of its correctness.

### 5.1.1 Insertion of a new element in a partitioning-tree.

1. Let us choose either an internal vertex $v \in V(T)$ (Case 1) or an edge $e \in E(T)$ (Case 2) . In Case 1, we add a new leaf $f$ adjacent to $v, f$ mapping $a$ and set $\ell(\{f, v\})=\Phi(A,\{a\})$. In Case 2, let us subdivide $e$ into two edges, both new edges and the new vertex $w$ receive label $\ell(e)$. Then, add a new leaf $f$ adjacent to $w, f$ mapping $a$ and set $\ell(\{f, w\})=\Phi(A,\{a\})$. Let $\left(T^{*}, r^{*}, \sigma^{*}\right)$ be the partitioning-tree of $A \cup\{a\}$ obtained in this way.
2. For any internal vertex $v \in V\left(T^{*}\right)$, let $\mathcal{T}_{v}$ be the partition of $A \cup\{a\}$ defined by $v$. At this step, note that $\ell(v)=\Phi\left(\mathcal{T}_{v} \cap A\right)$. We modify this label to $\ell(v)=\Phi\left(\mathcal{T}_{v}\right)$.
Similarly, for any edge $e \in E\left(T^{*}\right)$ but the edge incident to $f, \ell(e)=\Phi\left(\mathcal{T}_{e} \cap A\right)$. We modify this label to $\ell(v)=\Phi\left(\mathcal{T}_{e}\right)$.
3. In Case $1, c p(T)=c p\left(T^{*}\right)$, therefore, the branching nodes and the br-height of the vertices of $c p(T)$ do not change. In Case 2, let $e=\{x, y\}$ be the chosen edge, and $x$ the parent of $y$. Obviously, all branching nodes of $c p(T)$ are branching nodes of $c p\left(T^{*}\right)$. Moreover, $x$ is the single vertex of $c p\left(T^{*}\right)$ that may be a branching node of $c p\left(T^{*}\right)$ while it was not a branching node of $c p(T)$. This occurs iff $y$ is a leaf and $x$ has exactly one non-leaf child in $T$.

### 5.1.2 Procedure Introduce Node.

Let $v$ be an introduce node of $D, u$ its child, and $\{a\}=X_{v} \backslash X_{u}$. Let $F S C(u)$ a full set of $(k, q)$-characteristics of $A_{u}$ restricted to $X_{u}$. For any characteristic $C=$ $((T, r, \sigma), \ell, K, d i s t$, out, branch $) \in F S C(u)$, Procedure IntroduceNode proceeds as follows, repeating the five steps below, for any possible execution of Step 1. Roughly, it tries all possible ways to insert $a$ in $C$.

## 1. Update of $T$ :

There are two ways of inserting $a$ in $C$. Either choose an internal vertex $v_{a t t}$ of $V(T)$, add a leaf $v_{\text {leaf }}$ adjacent to $v_{\text {att }}$ (Case 1), or choose an edge $f=\left\{v_{t o p}, v_{\text {bottom }}\right\}$ (with $v_{\text {top }}$ closer to the root than $v_{\text {bottom }}$ ), subdivide it into $e_{\text {top }}=\left\{v_{\text {top }}, v_{a t t}\right\}$ and $e_{\text {bottom }}=\left\{v_{\text {att }}, v_{\text {bottom }}\right\}$ and add a new leaf $v_{\text {leaf }}$ adjacent to $v_{\text {att }}$ (Case 2). In both cases, set $\sigma\left(v_{\text {leaf }}\right)=a$ and let $K \leftarrow K \cup\left\{v_{a t t}, v_{\text {leaf }}\right\}$. Note that, now, $T$ is a partitioning-tree of $X_{v}$.
2. Labels of the new vertex (vertices) and edge(s):

First, $e_{\text {new }}=\left\{v_{\text {leaf }}, v_{\text {att }}\right\}$ receives label $\ell\left(e_{\text {new }}\right)=\Phi_{A_{v}}\left(\left\{A_{u},\{a\}\right\}\right)$.
In Case $2, \ell\left(v_{a t t}\right)=\ell\left(e_{t o p}\right)=\ell\left(e_{\text {bottom }}\right)=\ell(f)$, and out $\left(v_{a t t}\right)=\operatorname{branch}\left(v_{a t t}\right)=0$.
3. Update of labels $\ell(e)$ and $\ell(v)$ :
$\forall e \in E(T), e \neq e_{\text {new }}$, let $\mathcal{T}_{e}$ be the partition of $X_{v}$ defined by $e . \ell(e) \leftarrow F_{\Phi}\left(\ell(e), \mathcal{T}_{e}, a\right)$. $\forall t \in V(T)$, let $\mathcal{T}_{t}$ be the partition of $X_{v}$ defined by $t$. $\ell(t) \leftarrow F_{\Phi}\left(\ell(t), \mathcal{T}_{t}, a\right)$.
$\forall x, y \in K$ with no internal vertices of the path $P$ between $x$ and $y$ are in $K, P \leftarrow$ Contr ( $P$ ).
4. Creation of a new branching node:

The variable dist and the variables out $(v)$ and $\operatorname{branch}(v)(v \in K)$ are not modified.
If initially $v_{b o t t o m}$ is a leaf of $T, \operatorname{branch}\left(v_{t o p}\right)=0$ and $v_{t o p}$ has a child $x \neq v_{b o t t o m}$ in $T$ such that $x$ is not a leaf of $T$. Then, $\operatorname{branch}\left(v_{t o p}\right)=1$. (this condition must be understood in contrast with the last item of the procedure of insertion of an element in a partitioning-tree).
5. Update of $\mathbf{F S C}(\mathbf{v})$ : Let height be the br-height of $r$ (computable thanks to the variables out and branch). If dist + height $\leq q$ and $\ell(v) \leq k$ for any internal vertex $v \in V(T)$, and $\ell(e) \leq k$ for any edge $e \in E(T)$, then $F S C(v) \leftarrow F S C(v) \cup\{C\}$.

Lemma 7. IntroduceNode computes a full set of $(k, q)$-characteristics of $A_{v}$ restricted to $X_{v}$.

### 5.2 Procedure ForgetNode

Let $v$ be a forget node of $D, u$ its child and $F S C(u)$ a full set of $(k, q)$-characteristics of $A_{u}$ restricted to $X_{u}$. For any characteristic $C=((T, r, \sigma), \ell, K$, dist, out, branch $) \in F S C(u)$, Procedure Forget Node proceeds as follows. Roughly, it restricts $C$ to $X_{v}=X_{u} \backslash\{a\}$.

1. Let $v_{\text {leaf }}$ be the leaf of $T$ that maps $\{a\}$, let $v_{a t t}$ be the vertex of $T$ with degree at least three that is closest to $v_{l e a f}$ (if no such a vertex exists, $T$ is a path and $v_{a t t}$ is set to the other leaf). Let $w$ be the neighbour of $v_{a t t}$ in the path between $v_{l e a f}$ and $v_{a t t}$, and let height $(w)$ be the br-height of $w$. Let $p$ be the number of vertex $v \in V(T)$ with $\operatorname{branch}(v)=1$ in the path between $v_{\text {att }}$ and $r$ (excluding $\left.v_{a t t}\right)$.
2. Remove the path between $v_{\text {leaf }}$ and $v_{a t t}$ (but the vertex $v_{a t t)}$ from $T$ and $K$.

If $r \neq v_{\text {att }}$ and $r$ is belongs to the path $P$ between $v_{\text {leaf }}$ and $v_{\text {att }}, r \leftarrow v_{\text {att }}$ and dist $\leftarrow$ dist $+p$. Otherwise, i.e., $r=v_{a t t}$ or $r$ does not belong to $P$, out $\left(v_{a t t}\right) \leftarrow$ $\max \left\{\right.$ out $\left(v_{\text {att }}\right)$, height $\left.(w)\right\}$.
3. If $v_{\text {att }}$ has degree 2 (after the removal), and $v_{a t t}$ is not the parent of a leaf neither the root in the current tree, and $\operatorname{branch}\left(v_{a t t}\right)=0$, then $K \leftarrow K \backslash\left\{v_{a t t}\right\}$. Let $w_{1}, w_{2} \in K$ be such that no internal vertices of the path $P$ between $w_{1}$ and $w_{2}$ are in $K$ and $v_{\text {att }} \in V(P)$. Then, $P \leftarrow \operatorname{Contr}(P)$.
4. Add $C$ to $F S C(v)$.

Lemma 8. ForgetNode computes a full set of $(k, q)$-characteristics of $A_{v}$ restricted to $X_{v}$.

### 5.3 Case of an join node.

We first explain how a labeled partitioning-tree $(T, r, \sigma)$ of $A \cup B$ and a labeled partitioningtree ( $S, r_{S}, \sigma_{S}$ ) of $A \cup C$ can be turned into a partitioning-tree of $A \cup B \cup C, A, B$ and $C$ being three pairwise disjoint sets. The procedure merging two partitioning-trees (cf. Figure 5 in Appendix (A) will be useful for a better understanding of Procedure JoinNode, and will be used in the proof of its correctness.

### 5.3.1 Merging of two labeled paths.

First, we present an operation that merges two labeled paths $P=\left\{v_{1}, \cdots, v_{n}\right\}$ and $Q=\left\{w_{1}, w_{2}, \cdots, w_{m}\right\}$ with common ends, i.e., $v_{1}=w_{1}$ and $w_{m}=v_{n}$, and vertex-disjoint otherwise. For any $i<n, e_{i}=\left\{v_{i}, v_{i+1}\right\}$, and for any $i<m, f_{i}=\left\{w_{i}, w_{i+1}\right\}$. Let $F: \mathbb{N} \times$ $\mathbb{N} \rightarrow \mathbb{N}$. Let $P^{*}=\left\{p_{1}, \cdots, p_{h}\right\}$ be an extension of $P$ and $Q^{*}=\left\{q_{1}, \cdots, q_{h}\right\}$ be an extension of $Q$ with same length. A merging of $P$ and $Q$ using $F$ is the labeled path $\left\{r_{1}, \cdots, r_{h}\right\}$, where $r_{i}$ is labeled by $F\left(\ell\left(p_{i}\right), \ell\left(q_{i}\right)\right)$ and $\left\{r_{i}, r_{i+1}\right\}$ is labeled by $F\left(\ell\left(\left\{p_{i}, p_{i+1}\right\}\right), \ell\left(\left\{q_{i}, q_{i+1}\right\}\right)\right)$ (cf. Figure 2 in Appendix A).

### 5.3.2 Merging of two partitioning-trees.

The key point in the operation of merging is that $T$ and $S$ must have some structure in common. More precisely, let $\left(T^{\prime}, r^{\prime}, \sigma^{\prime}\right)$ (resp., $\left(S^{\prime}, r_{S}^{\prime}, \sigma_{S}^{\prime}\right)$ ) be the partitioning-tree of $A$ obtained by taking the smallest subtree spanning the leaves of $T$ (resp., $S$ ) that map the elements of $A$ and contracting all vertices of which with degree two and different from the root ( $T^{\prime}$, resp., $S^{\prime}$, is rooted in its vertex that is closest to $r$, resp., $r_{S}$ ). We impose that $\left(T^{\prime}, r^{\prime}, \sigma^{\prime}\right)$ and $\left(S^{\prime}, r_{S}^{\prime}, \sigma_{S}^{\prime}\right)$ are isomorphic and that $r_{S}^{\prime}=r_{S}$.

Any $\left(T^{*}, r^{*}, \sigma^{*}\right)$ built by the following procedure is a merging of $(T, r, \sigma)$ and $\left(S, r_{S}, \sigma_{S}\right)$ in $A$. $\left(T^{*}, r^{*}, \sigma^{*}\right)$ is built as follows. Start with a copy of $(T, r, \sigma)$ and a copy of $\left(S, r_{S}, \sigma_{S}\right)$. For any vertex $v \in V\left(T^{\prime}\right)=V\left(S^{\prime}\right)$, let $v_{1}$ be the corresponding vertex in $T$, and $v_{2}$ be the corresponding vertex in $S$. Identify $v_{1}$ and $v_{2}$, that is, replace both these vertices by a new one $v^{*} \in V\left(T^{*}\right)$ adjacent to the neighbours of $v_{1}$ and $v_{2}$. For any $\{v, w\} \in E\left(T^{\prime}\right)$, let $v^{*}$ and $w^{*}$ be the vertices built as above. Currently in $T^{*}$, there are two paths $P_{T}$ (initially a path of $T$ ) and $P_{S}$ (initially a path of $S$ ) between $v^{*}$ and $w^{*}$ and that are vertex-disjoint but in
$v^{*}$ and $w^{*}$. Compute a merging of $P_{T}$ and $P_{S}$. Any vertex, resp., edge, of the resulting path defines a partition $\mathcal{P}$ of $A \cup B \cup C$, label it with $\Phi_{A \cup B \cup C}(\mathcal{P})$. Let $r^{*}$ be the vertex that results from $r^{\prime}$. Note that, a vertex $v \in V\left(T^{*}\right)$ is a branching node in $c p\left(T^{*}\right)$ if and only if $v$ has been obtained from a branching node of $c p(T)$ or $c p(S)$, or $v$ has been obtained from a vertex of $T$ with one non-leaf child and from a vertex of $S$ with one non-leaf child.

### 5.3.3 Procedure JoinNode.

Let $v$ be a join node of $D$, let $u, w$ be its children, let $F S C(u)$ be a full set of characteristics of $A_{u}$ restricted to $X_{u}$, and $F S C(w)$ a full set of characteristics of $A_{w}$ restricted to $X_{w}$.

The structure $S t r u c t(C)$ of a tree $C$ is the tree obtained from $S k(C)$ by contracting all its vertices with degree two, different from $r^{*}$. For any characteristic $C=((T, r, \sigma), \ell, K$, dist, out, branch $) \in$ $F S C(u)$ and $C_{S}=\left(\left(S, r_{S}, \sigma_{S}\right), \ell_{S}, K_{S}\right.$, dist $_{S}$, out $_{S}$, branch $\left._{S}\right) \in F S C(w)$, with isomorphic structures and dist $S_{S}=0$, Procedure JoinNode proceeds as follows. Roughly, it merges $C$ and $C_{S}$ to obtain $C^{*}=\left(\left(T^{*}, r^{*}, \sigma^{*}\right), \ell^{*}, K^{*}\right.$, dist $^{*}$, out $^{*}$, branch $\left.^{*}\right)$.

1 Identifying the structures: For any vertex $t \in V(\operatorname{Struct}(T))=V(\operatorname{Struct}(S))$, let $t_{1}$ be the corresponding vertex in $T$, and $t_{2}$ be the corresponding vertex in $S$. Identify $t_{1}$ and $t_{2}$, let $t^{*}$ be the resulting vertex. Note that $r$ and $r_{S}$ are identified, let $r^{*}$ be the resulting vertex. Let dist ${ }^{*}=$ dist.

2 Merging the paths: For any $\{x, y\} \in E(\operatorname{Struct}(T))$, let $x^{*}$ and $y^{*}$ be the vertices built as above. Currently in $T^{*}$, there are two paths $P_{T}$ (initially a path of $T$ ) and $P_{S}$ (initially a path of $S$ ) between $x^{*}$ and $y^{*}$ and that are vertex-disjoint but in $x^{*}$ and $y^{*}$. Any internal vertex, resp., edge, of both these paths defines the same partition $\mathcal{P}$ of $A$. Compute a merging of $P_{T}$ and $P_{S}$ using the function $F:(i, j) \rightarrow H_{\Phi}(i, j, \mathcal{P})$.

3 Updating of $K^{*}$ : Any vertex $x^{*}$ in $T^{*}$ results from $x_{1} \in V(T)$ and $x_{2} \in V(S)$. Let $K^{*}$ be the set of vertices that result from $x_{1} \in V(T)$ and $x_{2} \in V(S)$ with, either $x_{1} \in K$ or $x_{2} \in K_{S}$. For any $x^{*} \in K^{*}, \operatorname{branch}^{*}\left(x^{*}\right)=\operatorname{branch}\left(x_{1}\right)$ or $\operatorname{branch}_{S}\left(x_{2}\right)$ or $\left(\operatorname{out}\left(x_{1}\right)>\right.$ $0 \&$ out $\left._{S}\left(x_{2}\right)>0\right)$ and out ${ }^{*}\left(x^{*}\right)=\max \left\{o u t\left(x_{1}\right)\right.$, out $\left.{ }_{S}\left(x_{2}\right)\right\}$.

4 Contracting the paths: $\forall x, y \in K^{*}$ with no internal vertices of the path $P$ between $x$ and $y$ are in $K^{*}, P \leftarrow \operatorname{Contr}(P)$.

5 Update of FSC(v): Let height be the br-height of $r^{*}$ (computable thanks to the variables out* and branch ${ }^{*}$ ). If dist* + height $\leq q$ and $\ell^{*}(v) \leq k$ for any internal vertex $v \in V(T)$, and $\ell^{*}(e) \leq k$ for any edge $e \in E(T)$, then $F S C(v) \leftarrow F S C(v) \cup\left\{C^{*}\right\}$.

Lemma 9. $F S C(v)$ is a full set of $(k, q)$-characteristics of $A_{v}=A_{u} \cup A_{w}$ restricted to $X_{v}$.

## References

[ACP87] Stefan Arnborg, Derek G. Corneil, and Andrzej Proskurowski. Complexity of finding embeddings in a k-tree. SIAM J. Algebraic Discrete Methods, 8(2):277-284, 1987.
[AMNT07] Omid Amini, Frédéric Mazoit, Nicolas Nisse, and Stéphan Thomassé. Submodular partition functions. Accepted in SIAM J. discrete Maths. Tech. Report, LABRI RR-1427-07, Univ. Bordeaux, Apr., 2007.
[Bie91] Daniel Bienstock. Graph searching, path-width, tree-width and related problems (a survey). DIMACS Ser. in Discrete Mathematics and Theoretical Computer Science, 5:33-49, 1991.
[BK96] Hans L. Bodlaender and Ton Kloks. Efficient and constructive algorithms for the pathwidth and treewidth of graphs. J. Algorithms, 21(2):358-402, 1996.
[BKK95] Hans L. Bodlaender, Ton Kloks, and Dieter Kratsch. Treewidth and pathwidth of permutation graphs. SIAM J. Discrete Math., 8(4):606-616, 1995.
[BM93] Hans L. Bodlaender and Rolf H. Möhring. The pathwidth and treewidth of cographs. SIAM J. Discrete Math., 6(2):181-188, 1993.
[Bod93] Hans L. Bodlaender. A linear time algorithm for finding tree-decompositions of small treewidth. In STOC, pages 226-234, 1993.
[Bod96] Hans L. Bodlaender. A linear-time algorithm for finding tree-decompositions of small treewidth. SIAM J. Comput., 25(6):1305-1317, 1996.
[BT97] Hans L. Bodlaender and Dimitrios M. Thilikos. Constructive linear time algorithms for branchwidth. In ICALP, pages 627-637, 1997.
[BT04] Hans L. Bodlaender and Dimitrios M. Thilikos. Computing small search numbers in linear time. In IWPEC, pages 37-48, 2004.
[FFN07] Fedor V. Fomin, Pierre Fraigniaud, and Nicolas Nisse. Nondeterministic graph searching: From pathwidth to treewidth. Algorithmica, 2007. http://dx.doi.org/10.1007/s00453-007-9041-6.
[FT08] Fedor V. Fomin and Dimitrios M. Thilikos. An annotated bibliography on guaranteed graph searching. Theor. Comput. Sci., 399(3):236-245, 2008.
[MN08] Frédéric Mazoit and Nicolas Nisse. Monotonicity of non-deterministic graph searching. Theoretical Computer Science, 399(3):169-178, 2008.
[Ree92] Bruce A. Reed. Finding approximate separators and computing tree width quickly. In STOC, pages 221-228. ACM, 1992.
[RS83] Neil Robertson and Paul D. Seymour. Graph minors. i. excluding a forest. J. Comb. Theory, Ser. B, 35(1):39-61, 1983.
[RS86] Neil Robertson and Paul D. Seymour. Graph minors. ii. algorithmic aspects of treewidth. J. Algorithms, 7(3):309-322, 1986.
[RS91] Neil Robertson and Paul D. Seymour. Graph minors. x. obstructions to treedecomposition. J. Comb. Theory, Ser. B, 52(2):153-190, 1991.
[RS94] Neil Robertson and Paul D. Seymour. Graph minors. xi. circuits on a surface. J. Comb. Theory, Ser. B, 60(1):72-106, 1994.
[RS04] Neil Robertson and Paul D. Seymour. Graph minors. xx. wagner's conjecture. J. Comb. Theory, Ser. B, 92(2):325-357, 2004.
[ST94] P. D. Seymour and R. Thomas. Call routing and the ratcatcher. Combinatorica, 14(2):217-241, 1994.
[TSB00] Dimitrios M. Thilikos, Maria J. Serna, and Hans L. Bodlaender. Constructive linear time algorithms for small cutwidth and carving-width. In ISAAC, pages 192-203, 2000.

## APPENDIX

## A Figures

- In Figure 1, a 2-branched partitioning-tree $(T, R, \sigma)$ of the set $\{a, b, \cdots, k, l\}$ is represented. The vertex $V \in V(T)$ defines the partition $\mathcal{T}_{V}=\{a b f g h i j k l, c, d e\}, R \in V(T)$ defines $\mathcal{I}_{R}=\{a b c d e, f g, h i j k l\}$, and the edge $E \in E(T)$ defines the bi-partition $\mathcal{T}_{E}=\{a b$, cdefghijkl $\}$. The black vertices are the branching nodes of $c p(T)$.



Figure 1: Partitioning-tree of $\{a, b, \cdots, k, l\}$ (left) and its corpse (right).

- In Figure 2, we illustrate two labeled paths $P$ and $Q$. The black vertices and bold edges of $P$ and $Q$ are those that are represented in $\operatorname{Contr}(P)$ and $\operatorname{Contr}(Q)$. The vertices of $\operatorname{Contr}(P)$ and $\operatorname{Contr}(Q)$ are named as the vertices they represent in $P$ and $Q$. We also illustrate an extension $P^{*}$ of $P$ and an extension $Q^{*}$ of $Q$. The black vertices and bold edges of $P^{*}$ and $Q^{*}$ are those in $\operatorname{Init}\left(P^{*}\right)$ and $\operatorname{Init}\left(Q^{*}\right)$. Finally, we represent a merging of $P$ and $Q$ using the function $F:(x, y) \rightarrow x+y$. When merging $P$ and $Q$, we assume they have same ends, i.e., $a=a^{\prime}$ and $h=e^{\prime}$. The black vertices and bold edges the merging $R$ are those in Matching $(R)$.
- In Figure 3, we illustrate the building of the restriction of a partitioning-tree $(T, R, \sigma)$ of $A=\{a b c d e f g h i j k l\}$ to $B=\{b c f\}$. $T$ is represented to the left of Figure 3. The black vertices are the branching nodes of $c p(T)$. We omit the labels of edges for a better readability.
The top-right figure represents the smallest subtree spanning the leaves of $T$ that map elements of $B$ (Step 1 of the building of $\operatorname{Char}((T, R, \sigma), B)$ ). At Step 2, dist* $=1$. The vertices represented by a square are the vertices of $K^{*}$ (Step 3). During Step 4, we set $\operatorname{branch}^{*}(Y)=\operatorname{branch}^{*}(Z)=1$ and $\operatorname{branch}^{*}\left(R^{*}\right)=\operatorname{branch}^{*}(X)=\operatorname{branch}^{*}(W)=0$, and out $^{*}(Z)=1$ and out ${ }^{*}\left(R^{*}\right)=$ out $^{*}(Y)=$ out $^{*}(X)=$ out $^{*}(W)=0$.
Finally, during Step 6 , any path $P$ between two vertices in $K^{*}$, and with no internal vertex in $K^{*}$ is replaced by Contr$(P)$. The bottom-right figure represents the final result $\operatorname{Char}((T, R, \sigma), B)$.


Figure 2: Labeled paths: contraction, extension and merging.



Figure 3: Partitioning-tree $(T, R, \sigma)$ of $\{a b c d e f g h i j k l\}$ (left) and $\operatorname{Char}((T, R, \sigma), B)$, its characteristic restricted to $\{b c f\}$ (bottom-right).

- Figure 4 (left) illustrates the procedure of insertion that turns the partitioning-tree $(T, R, \sigma)$ (Figure 3 left) into a partitioning-tree $\left(S, R_{S}, \sigma_{S}\right)$ of $A \cup\{m\}$. We choose to illustrate the case when the insertion is performed by subdividing an edge $E=$ $\{x, y\} \in E(T)(x$ is the parent of $y)$. The bold edges are the new edges. Moreover, we are in the case when $y$ is a leaf and $x$ has exactly one non-leaf child in $T$. Therefore, $x$ becomes a branching node of $c p(S)$ in the new partitioning-tree.

Figure 4 (right) illustrates the same operation in $\operatorname{Char}((T, R, \sigma), B)$ (Figure 3 bottomright). That is, Figure 4 (right) illustrates Procedure IntroduceNode executed on an introduce node $v$ of a nice decomposition $D$, such that, $v$ has one child $u, X_{v}=$ $\{b c f m\}=X_{u} \cup\{m\}$ and $A_{v}=\{a b c d e f g h i j k l m\}=A_{u} \cup\{m\}$.



Figure 4: Insertion of $\{m\}$ in $(T, R, \sigma)$ by subdividing $E$ (left). Same operation in $\operatorname{Char}((T, R, \sigma), B)$ (right).

- Figure 5 represents the merging of a partitioning-tree $(T, R, \sigma)$ of $A \cup B=\{$ abcdefghijkl\} (top-left) and a partitioning-tree $\left(S, R_{S}, \sigma_{S}\right)$ of $A \cup C=\{b c f g m n o p q r s t\}$ (top-right), with $A=\{b c f g\}$. The bold edges are the edges of the smallest subtrees $T^{\prime}$ and $S^{\prime}$ (of $T$ and $S$ ) spanning the leaves that map elements of $A$. The black vertices are the vertices of the common structure Struct of $T$ and $S$ obtained by contracting all degree- 2 vertices of $T^{\prime}$ and $S^{\prime}$. Recall we also impose that $R_{S} \in V\left(T^{\prime}\right)$.
The graph in the middle results of the identifying of the vertices in this common structure. Now, any edge in Struct corresponds to two paths in the current graph. We compute a merging of these paths. A possible result is illustrated Figure 5 (bottom).


## B On labeled paths.

Let $\Phi$ be a monotone partition function. Any partitioning-tree $(T, \sigma)$ can be viewed as a labeled graph, where any $v \in V(T)$ is labeled with $\Phi\left(\mathcal{T}_{v}\right)$ and any $e \in E(T)$ is labeled with $\Phi\left(\mathcal{T}_{e}\right)$. Because $\Phi$ is monotone, the label of an edge is at most the label of its ends. In this section, we detail operations over labeled paths, that will serve as subroutine in the forthcoming sections.

## B. 1 Labeled paths.

A labeled path $P$ is a path $\left\{v_{0}, v_{1}, \cdots, v_{n}\right\}$ where any vertex $v_{i}$ is labeled with an integer $\ell\left(v_{i}\right)$, and any edge $e_{i}=\left\{v_{i-1}, v_{i}\right\}$ with an integer $\ell\left(e_{i}\right)$. We assume moreover that the label of any edge is at most the minimum label of its ends.

A vertex $v_{i} \in V(P)$ or an edge $\left\{v_{i}, v_{i+1}\right\}$ is smallest than $v_{j} \in V(P)$ if $i<j$. Similarly $v_{i}$ (resp., $\left\{v_{i}, v_{i+1}\right\}$ ) is smallest than $\left\{v_{j}, v_{j+1}\right\}$ if $i<j$. We define $\max (P)$ as the maximum integer labeling an edge or a vertex of $P$. Similarly, we define $\min (P)$. An extension of a labeled path $P$ is any path obtained by subdividing some edges of $P$ an arbitrary number of times. Both edges and the vertex resulting from the subdivision of an edge $e$ are labeled with $\ell(e)$. Let $P^{*}$ be an extension of $P$. The initial elements $\operatorname{Init}\left(P^{*}\right) \subseteq V\left(P^{*}\right) \cup E\left(P^{*}\right)$ of $P^{*}$ are




Figure 5: Merging of a partitioning-tree $(T, R, \sigma)$ of $A \cup C=\{a b c d e f g h i j k l\}$ and a partitioning-tree $\left(S, R_{S}, \sigma_{S}\right)$ of $B \cup C=\{b c f g m n o p q r s t\}$, with $C=\{b c f g\}$.
the vertices of $P^{*}$ that do not result from the subdivision of an edge in $P$, and the edges of $P^{*}$ the smallest end of which are in $\operatorname{Init}\left(P^{*}\right)$. Given two labeled paths $P$ and $Q$, we say that $P \preceq Q$ if there is an extension $P^{*}=\left\{p_{1}, \cdots, p_{r}\right\}$ of $P$ and an extension $Q^{*}=\left\{q_{1}, \cdots, q_{r}\right\}$ of $Q$ with same length, and such that $\ell\left(p_{i}\right) \leq \ell\left(q_{i}\right)$ and $\ell\left(\left\{p_{i}, p_{i+1}\right\}\right) \leq \ell\left(\left\{q_{i}, q_{i+1}\right\}\right)$ for any $i \leq r$. For any function $F: \mathbb{N} \rightarrow \mathbb{N}$, let $F(P)$ denote the path $\left\{v_{0}, v_{1}, \cdots, v_{n}, v_{n+1}\right\}$ where any label $\ell$ has been replaced by $F(\ell)$. If $P=\left\{v_{1}, \cdots, v_{n}\right\}$ and $Q=\left\{w_{1}, \cdots, w_{m}\right\}$ are two labeled paths with a common end $v_{n}=w_{1}$ and vertex disjoint otherwise, their concatenation $P \odot Q$ is the labeled path $\left\{v_{1}, \cdots, v_{n}, w_{2}, \cdots, w_{m}\right\}$.

## B. 2 Contraction of a labeled path.

In this section, we define an operation on labeled paths that will be widely used in the next sections. For this purpose, we revisit the notion of typical sequence of a sequence of integers [BK96]. Roughly, the goal of the following operation is to contract some edges and vertices of $P$ that are not "necessary" to remember the variations of the sequence $\left(\ell\left(v_{0}\right), \ell\left(e_{1}\right), \ell\left(v_{1}\right), \cdots, \ell\left(e_{n}\right), \ell\left(v_{n}\right)\right)$.

First, let us recall the definition of the typical sequence of a sequence of integers [BK96]. Let $S=\left(s_{i}\right)_{i \leq 2 n-1}$ be a sequence of integers. Its typical sequence $\tau(S)$ is obtained by iterating the following operations while it is possible: (1) if there is $i<|S|$ such that $s_{i}=s_{i+1}$, remove $s_{i+1}$ from $S$, and (2) if there are $i<j-1<|S|$, and either, for any $i \leq k \leq j, s_{i} \leq s_{k} \leq s_{j}$, or, for any $i \leq k \leq j, s_{i} \geq s_{k} \geq s_{j}$, remove $s_{k}$ from $S$ for any $i<k<j$. Note that the order in which the operations are executed is not relevant, therefore $\tau(S)$ is uniquely defined.

The contraction Contr $(P)$ is the path obtained from $P$, with same ends, by contracting some edges and vertices obtained by the following procedure. Start with one integral variable $m=1$. While $m \neq n$, do the following. Let $i, m \leq i \leq n-1$, be the greatest index such that, for any $\left.m \leq j \leq i, \ell\left(e_{m}\right) \leq \ell\left(e_{j}\right)\right) \leq \ell\left(v_{i}\right)$ and $\left.\ell\left(e_{m}\right) \leq \ell\left(v_{j}\right)\right) \leq \ell\left(v_{i}\right)$. Contract all vertices and edges between $e$ and $v_{i}$. Then, set $m$ to the greatest index such that, for any $i<j \leq m, \ell\left(v_{i}\right) \geq \ell\left(e_{j}\right) \geq \ell\left(e_{m}\right)$ and $\ell\left(v_{i}\right) \geq \ell\left(v_{j}\right) \geq \ell\left(e_{m}\right)$. Contract all vertices and edges between $v_{i}$ and $e_{m}$. Edges and vertices of $\operatorname{Contr}(P)$ keep their initial label (cf. Figure 2 in Appendix A).

The crucial property of $\operatorname{Contr}(P)=\left\{v_{0}=v_{0}^{\prime}, v_{1}^{\prime}, \cdots, v_{p-1}^{\prime}, v_{p}^{\prime}=v_{n}\right\}$ is that the sequence $S^{\prime}=\left(\ell\left(e_{1}^{\prime}\right), \ell\left(v_{1}^{\prime}\right), \cdots, \ell\left(e_{p-1}^{\prime}\right), \ell\left(v_{p-1}^{\prime}\right), \ell\left(e_{p}^{\prime}\right)\right)$ (where $\left.e_{i}^{\prime}=\left\{v_{i-1}^{\prime}, v_{i}^{\prime}\right\}\right)$ is "almost" the typical sequence of the sequence $S=\left(\ell\left(e_{1}\right), \ell\left(v_{1}\right), \cdots, \ell\left(e_{n}\right)\right)$. More precisely, if $\ell\left(e_{1}^{\prime}\right) \neq \ell\left(v_{1}^{\prime}\right)$, then $S^{\prime}=\tau(S)$, otherwise $\left(\ell\left(v_{1}^{\prime}\right), \ell\left(e_{2}^{\prime}\right), \cdots, \ell\left(v_{p-1}^{\prime}\right), \ell\left(e_{p}^{\prime}\right)\right)=\tau(S)(\tau(S)$ denotes the typical sequence of $S$ ). Moreover, it is important to note that any $v \in V(\operatorname{Contr}(P))(e \in$ $E(\operatorname{Contr}(P)))$ represents a unique $v^{*} \in V(P)\left(e^{*} \in E(P)\right)$.

Lemma 1. Let $P$ and $Q$ be two labeled paths. Let $P^{*}$ be an extension of $P$.

1. Contr $\left(P^{*}\right)=\operatorname{Contr}(P)=\operatorname{Contr}(\operatorname{Contr}(P))$.
2. Let $F: \mathbb{N} \rightarrow \mathbb{N}$ be any strictly increasing function. Contr $(F(\operatorname{Contr}(P)))=C \operatorname{Contr}(F(P))$.
3. If $P \preceq Q$, then $\operatorname{Contr}(P) \preceq \operatorname{Contr}(Q)$.
4. Contr $(P \odot Q)=\operatorname{Contr}(\operatorname{Contr}(P) \odot \operatorname{Contr}(Q))$

Lemma 2. Let $P=\left\{v_{0}, \cdots, v_{n}\right\}$ be a labeled path and Contr $(P)=\left\{w_{0}, \cdots, w_{p}\right\}$. Let $i \leq p$. Let Contr ${ }^{\prime}(P)=\left\{w_{0}, \cdots, w_{i}, x, w_{i+1}, \cdots, w_{p}\right\}$ be the extension of Contr $(P)$ obtained by subdividing once $e_{i}=\left\{w_{i}, w_{i+1}\right\}$. Let $e_{i}^{*}=\left\{v_{j}, v_{j+1}\right\}$ be the edge of $P$ represented by $e_{i}$, and $P^{\prime}=\left\{v_{0}, \cdots, v_{j}, y, v_{j+1}, \cdots, v_{n}\right\}$ be the extension of $P$ obtained by subdividing once $e_{i}^{*}$. Let $Q_{1}=\left\{w_{0}, \cdots, x\right\}, Q_{2}=\left\{x, \cdots, w_{p}\right\}, P_{1}^{\prime}=\left\{v_{0}, \cdots, y\right\}$ and $P_{2}^{\prime}=\left\{y, \cdots, v_{n}\right\}$.

Then Contr $\left(P_{1}^{\prime}\right)=\operatorname{Contr}\left(Q_{1}\right)$ and Contr $\left(P_{2}^{\prime}\right)=\operatorname{Contr}\left(Q_{2}\right)$.

## B. 3 Merging of labeled paths.

Now, we present an operation that merges two labeled paths $P=\left\{v_{1}, \cdots, v_{n}\right\}$ and $Q=$ $\left\{w_{1}, w_{2}, \cdots, w_{m}\right\}$ with common ends (i.e., $v_{1}=w_{1}$ and $w_{m}=v_{n}$ ) and vertex-disjoint otherwise. For any $i<n, e_{i}=\left\{v_{i}, v_{i+1}\right\}$, and for any $i<m, f_{i}=\left\{w_{i}, w_{i+1}\right\}$. Let $F: \mathbb{N} \times$ $\mathbb{N} \rightarrow \mathbb{N}$. Let $P^{*}=\left\{p_{1}, \cdots, p_{h}\right\}$ be an extension of $P$ and $Q^{*}=\left\{q_{1}, \cdots, q_{h}\right\}$ be an extension of $Q$ with same length. A merging $R$ of $P$ and $Q$ using $F$ is the labeled path $\left\{r_{1}, \cdots, r_{h}\right\}$, where $r_{i}$ is labeled $F\left(\ell\left(p_{i}\right), \ell\left(q_{i}\right)\right)$ and $\left\{r_{i}, r_{i+1}\right\}$ is labeled $F\left(\ell\left(\left\{p_{i}, p_{i+1}\right\}\right), \ell\left(\left\{q_{i}, q_{i+1}\right\}\right)\right)$. We say that $r_{i}$ matches $p_{i}=\operatorname{Peer}\left(q_{i}\right) \in V\left(P^{*}\right)$ and $q_{i}=\operatorname{Peer}\left(p_{i}\right) \in V\left(Q^{*}\right)$, and $\left\{r_{i}, r_{i+1}\right\}$ matches $\left\{p_{i}, p_{i+1}\right\}=\operatorname{Peer}\left(\left\{q_{i}, q_{i+1}\right\}\right) \in E\left(P^{*}\right)$ and $\left\{q_{i}, q_{i+1}\right\}=\operatorname{Peer}\left(\left\{p_{i}, p_{i+1}\right\}\right) \in E\left(Q^{*}\right)$. Let $\operatorname{Matching}(R)$ be the set of pairs $\left(p_{i}, q_{i}\right)$ such that $p_{i} \in \operatorname{Init}\left(P^{*}\right)$ or $q_{i} \in \operatorname{Init}\left(Q^{*}\right)$, and the pairs $\left(\left\{p_{i}, p_{i+1}\right\},\left\{q_{i}, q_{i+1}\right\}\right)$ such that $\left\{p_{i}, p_{i+1}\right\} \in \operatorname{Init}\left(P^{*}\right)$ or $\left\{q_{i}, q_{i+1}\right\} \in \operatorname{Init}\left(Q^{*}\right)$.

Let $R^{*}$ be a merging of $\operatorname{Contr}(P)$ and $\operatorname{Contr}(Q)$ using $F$. We say that a merging $R$ of $P$ and $Q$ respects $R^{*}$ if, for any $(a, b) \in \operatorname{Matching}\left(R^{*}\right),\left(a^{\prime}, b^{\prime}\right) \in \operatorname{Matching}(R)$ where $a^{\prime}$ is the element of $P$ represented by $a$ in $\operatorname{Contr}(P)$, and $b^{\prime}$ is the element of $Q$ represented by $b$ in $\operatorname{Contr}(P)$.

Let us assume $P=P_{1} \odot P_{2} \odot \cdots \odot P_{r}$, i.e., $P=\left\{v_{1}, \cdots, v_{n}\right\}, 1=t_{1}<t_{2}<\cdots<t_{r}=n$ are $r$ integers, and $P_{i}=\left\{v_{t_{i}}, \cdots, v_{t_{i+1}}\right\}, i<r$. Moreover, $Q=Q_{1} \odot Q_{2} \odot \cdots \odot Q_{q}$, that is, $Q=\left\{w_{1}, \cdots, w_{m}\right\}, 1=t_{1}^{\prime}<t_{2}^{\prime}<\cdots<t_{q}^{\prime}=m$ are $q$ integers, and $Q_{i}=\left\{w_{t_{i}^{\prime}}, \cdots, w_{t_{i+1}^{\prime}}\right\}$, $i<q$. Any merging $M$ of $P$ and $Q$ will be noted $M=M_{1} \odot M_{2} \odot \cdots \odot M_{r}$, where $M=\left\{y_{1}, \cdots, y_{k}\right\}, k_{1}<\cdots<k_{r}$ are the indexes such $y_{k_{i}}$ matches a vertex $v_{t_{j}}, j \leq r$, with $\operatorname{Peer}\left(v_{t_{j}}\right)$, or $y_{k_{i}}$ matches a vertex $w_{t_{j}^{\prime}}, j \leq q$, with $\operatorname{Peer}\left(w_{t_{j}^{\prime}}\right)$, and $M_{i}=\left\{y_{k_{i}}, \cdots, y_{k_{i+1}}\right\}$ for any $i<u$.
Lemma 3. Let $F: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$ strictly increasing on both coordinates. Let $P=P_{1} \odot P_{2} \odot$ $\cdots \odot P_{r}$ and $P^{\prime}=\operatorname{Contr}\left(P_{1}\right) \odot \operatorname{Contr}\left(P_{2}\right) \odot \cdots \odot \operatorname{Contr}\left(P_{r}\right)$. Let $Q=Q_{1} \odot Q_{2} \odot \cdots \odot Q_{q}$ and $Q^{\prime}=\operatorname{Contr}\left(Q_{1}\right) \odot \operatorname{Contr}\left(Q_{2}\right) \odot \cdots \odot \operatorname{Contr}\left(Q_{q}\right)$. Let $M^{\prime}=M_{1}^{\prime} \odot M_{2}^{\prime} \odot \cdots \odot M_{r}^{\prime}$ be a merging of $P^{\prime}$ and $Q^{\prime}$ using $F$, and let $M=M_{1} \odot M_{2} \odot \cdots \odot M_{r}$ be a merging of $P$ and $Q$ using $F$ that respects $M^{\prime}$. Then, Contr $\left(M_{1}^{\prime}\right) \odot \cdots \odot \operatorname{Contr}\left(M_{r}^{\prime}\right)=\operatorname{Contr}\left(M_{1}\right) \odot \cdots \odot \operatorname{Contr}\left(M_{r}\right)$.

Moreover, if $P^{\prime \prime}=P_{1}^{\prime \prime} \odot P_{2}^{\prime \prime} \odot \cdots \odot P_{r}^{\prime \prime}$, with $P_{i}^{\prime \prime} \preceq \operatorname{Contr}\left(P_{i}\right)$ for any $i \leq r$, and $Q^{\prime \prime}=Q_{1}^{\prime \prime} \odot Q_{2}^{\prime \prime} \odot \cdots \odot Q_{q}^{\prime \prime}$, with $Q_{i}^{\prime \prime} \preceq \operatorname{Contr}\left(Q_{i}\right)$ for any $i \leq q$. Then, there is a merging $M^{\prime \prime}=M_{1}^{\prime \prime} \odot \cdots \odot M_{r}^{\prime \prime}$ of $P^{\prime \prime}$ and $Q^{\prime \prime}$ using $F$, such that $M_{i}^{\prime \prime} \preceq \operatorname{Contr}\left(M_{i}^{\prime}\right)$ for any $i \leq r$.

## C Proof of Lemma 7: Introduce node

Since $\Phi$ is closed under taking subset, $A_{v}$ admits a $q$-branched partitioning-tree with $\Phi$-width at most $k$ only if $A_{u}$ does. Therefore, we can assume that $F S C(u) \neq \emptyset$, otherwise, $A_{v}$ does not admit a $q$-branched partitioning-tree with $\Phi$-width at most $k$, and $F S C(v)=\emptyset$. The proof is twofold. We first prove that the set $F S C(v)$ returned by Procedure IntroduceNode is a set of characteristics of $A_{v}$ restricted to $X_{v}$, then we prove it is full. The proof is illustrated in Figure 6.


Figure 6: Proof of correctness of Procedure IntroduceNode

## C. $1 F S C(v)$ is a set of characteristics of $A_{v}$ restricted to $X_{v}$

Let $C_{1}^{*}=\left(\left(T_{1}^{*}, r_{1}^{*}, \sigma_{1}^{*}\right), \ell_{1}^{*}, K_{1}^{*}\right.$, dist $_{1}^{*}$, out $_{1}^{*}$, branch $\left._{1}^{*}\right) \in F S C(v)$.
Let $C_{1}=\left(\left(T_{1}, r_{1}, \sigma_{1}\right), \ell_{1}, K_{1}\right.$, dist $_{1}$, out $_{1}$, branch $\left._{1}\right) \in F S C(u)$ be the characteristic transformed by procedure IntroduceNode to compute $C_{1}^{*}$. Since $C_{1} \in F S C(u)$, it is the characteristic of a partitioning-tree $\left(T^{0}, r^{0}, \sigma^{0}\right)$ of $A_{u}$ restricted to $X_{u}$. We prove that $C_{1}^{*}$ is the characteristic of the partitioning-tree $\left(S^{0}, r_{S}^{0}, \sigma_{S}^{0}\right)$ of $A_{v}$ restricted to $X_{v}$, where $\left(S^{0}, r_{S}^{0}, \sigma_{S}^{0}\right)$ is obtained from $\left(T^{0}, r^{0}, \sigma^{0}\right)$ by inserting $\{a\}=X_{v} \backslash X_{u}$.

We assume that $C_{1}^{*}$ is obtained from $C_{1}$ by inserting $\{a\}$ in the edge $f=\left\{v_{\text {top }}, v_{\text {bottom }}\right\}$. This corresponds to Case 2 of Step 1 of Procedure IntroduceNode. Case 1 can be proved in a similar way, and then we omit the proof here.
$f \in E\left(T_{1}\right)$, therefore, by definition of a characteristic, it represents an edge $f^{0} \in E\left(T^{0}\right)$. Let $\left(S^{0}, r_{S}^{0}, \sigma_{S}^{0}\right)=\operatorname{ins}\left(\left(T^{0}, r^{0}, \sigma^{0}\right), f^{0}, a\right)$, and let $C_{S}=\left(\left(T_{S}, r_{S}, \sigma_{S}\right), \ell_{S}, K_{S}\right.$, dist $_{S}$, out $_{S}$, branch $\left._{S}\right)=$ $\operatorname{Char}\left(\left(S^{0}, r_{S}^{0}, \sigma_{S}^{0}\right), X_{v}\right)$ be its characteristic restricted to $X_{v}$. We prove that $C_{1}^{*}=C_{S}$.

We first prove that $K_{1}^{*}=K_{S}$. Indeed, let $S^{\prime}$ be the smallest subtree of $S^{0}$ the leaves of which map $X_{v}$, and let $r_{S}^{\prime}$ be the vertex in $S^{\prime}$ that is closest to $r_{S}^{0}$. $K_{S}$ is the set of vertices that are leaves in $\left(S^{\prime}, r_{S}^{\prime}\right)$, parents of leaves, branching nodes of $\left(S^{\prime}, r_{S}^{\prime}\right)$ or branching nodes of $c p\left(S^{0}\right)$ in $V\left(S^{\prime}\right)$. Moreover, let $T^{\prime}$ be the smallest subtree of $T^{0}$ the leaves of which map $X_{u}$, and let $r^{\prime}$ be the vertex in $T^{\prime}$ that is closest to $r^{0}$. Since $S^{0}$ is obtained from $T^{0}$ by subdividing $f^{0}$ and adding a new leaf $v_{\text {leaf }}$ adjacent to the new vertex $v_{a t t}$, and moreover, $v_{l e a f}$ maps $\{a\}, S^{\prime}$ is obtained from $T^{\prime}$ by subdividing $f^{0}$. Therefore, $K_{S}$ is the set of vertices that are leaves in $\left(T^{\prime}, r^{\prime}\right)$, or parents of leaves, or branching nodes of $\left(T^{\prime}, r^{\prime}\right)$ or branching nodes of $c p\left(T^{0}\right)$ in $V\left(T^{\prime}\right)$, or $v_{\text {att }}$ or $v_{\text {leaf }}$. In other words, $K_{S}=K_{1} \cup\left\{v_{\text {att }}, v_{\text {leaf }}\right\}=K_{1}^{*}$ (Step 1 of Procedure IntroduceNode).

Then, we prove that $T_{1}^{*}=T_{S}$ and $\ell_{1}^{*}=\ell_{S}$. $T_{S}$ is obtained in the following way. Any $t \in V\left(S^{0}\right)$ defines a partition $\mathcal{S}_{t}^{0}$ of $A_{v}$ and receives label $\ell^{0}(t)=\Phi_{A_{v}}\left(\mathcal{S}_{t}^{0}\right)$. Similarly, any $e \in E\left(S^{0}\right)$ defines a partition $\mathcal{S}_{e}^{0}$ of $A_{v}$ and receives label $\ell^{0}(e)=\Phi_{A_{v}}\left(\mathcal{S}_{e}^{0}\right)$. Then, $T_{S}$ is obtained from $T_{S}^{\prime}$ by replacing any path $P(x, y)$ between two vertices $x, y \in K_{S}$ by $\operatorname{Contr}(P(x, y))$. Because $K_{S}=K_{1}^{*}, x, y \in K_{1}^{*}$. Let us describe the path $P_{1}^{*}(x, y)$ between $x$ and $y$ in $T_{1}^{*}$. We prove that $P_{1}^{*}(x, y)=\operatorname{Contr}(P(x, y))$.

If $P(x, y)=\left\{v_{a t t}, v_{l e a f}\right\}$, the result is obvious by Step 2 of Procedure IntroduceNode. Now, let us assume that $P(x, y) \neq\left\{v_{a t t}, v_{l e a f}\right\}$ and $v_{\text {att }} \notin\{x, y\}$. Then, $P(x, y)$ represents a path $P$ in $T^{0}$, and more precisely in $T^{\prime}$. Any $t \in V(P)$ defines a partition $\mathcal{T}_{t}^{0}$ of $A_{u}$ and receives label $\ell_{1}(t)=\Phi_{A_{u}}\left(\mathcal{T}_{t}^{0}\right)=\Phi_{A_{v}}\left(\mathcal{S}_{t}^{0}\right) \cap A_{u}$. Similarly, any $e \in$ $E(P)$ defines a partition $\mathcal{T}_{e}^{0}$ of $A_{u}$ and receives label $\ell_{1}(e)=\Phi_{A_{u}}\left(\mathcal{T}_{e}^{0}\right)=\Phi_{A_{v}}\left(\mathcal{S}_{e}^{0}\right) \cap$ $A_{u}$. When computing $\operatorname{Char}\left(\left(T^{0}, r^{0}, \sigma^{0}\right), X_{u}\right), P$ is replaced by $\operatorname{Contr}(P)$. The key point is that any internal vertex and edge of $\operatorname{Contr}(P)$ defines the same partition $\mathcal{P}$ of $X_{v}$. Then, Procedure IntroduceNode modifies the labels of edges and vertices of Contr $(P)$ by applying the strictly increasing function $F_{\Phi, \mathcal{P}}: x \rightarrow F_{\Phi}(x, \mathcal{P}, a)$ (Step 3 of Procedure IntroduceNode). Let $F_{\Phi, \mathcal{P}}(\operatorname{Contr}(P))$ be the path obtained in this way. Finally, Procedure IntroduceNode replaces $F_{\Phi, \mathcal{P}}(\operatorname{Contr}(P))$ by $\operatorname{Contr}\left(F_{\Phi, \mathcal{P}}(\operatorname{Contr}(P))\right)$. By definition of $F_{\Phi}$, $F_{\Phi}\left(\Phi_{A_{u}}\left(\mathcal{T}_{t}^{0}\right), \mathcal{P}, a\right)=F_{\Phi}\left(\Phi_{A_{u}}\left(\mathcal{S}_{t}^{0} \cap A_{u}\right), \mathcal{S}_{t}^{0} \cap X_{v}, a\right)=\Phi_{A_{v}}\left(\mathcal{S}_{t}^{0}\right)$ and $F_{\Phi}\left(\Phi_{A_{u}}\left(\mathcal{T}_{e}^{0}\right), \mathcal{P}, a\right)=$ $F_{\Phi}\left(\Phi_{A_{u}}\left(\mathcal{S}_{e}^{0} \cap A_{u}\right), \mathcal{S}_{e}^{0} \cap X_{v}, a\right)=\Phi_{A_{v}}\left(\mathcal{S}_{e}^{0}\right)$ for any vertex $v \in V(P)$ and edge $e \in V(P)$. Therefore, $F_{\Phi, \mathcal{P}}(P)=P(x, y)$ By Item 2 of Lemma 1, $P_{1}^{*}(x, y)=\operatorname{Contr}\left(F_{\Phi}(\operatorname{Contr}(P))\right)=$ $\operatorname{Contr}\left(F_{\Phi, \mathcal{P}}(P)\right)=\operatorname{Contr}(P(x, y))$.

Let $x$ and $y$ be the vertices in $K_{1}$ such that the path $P$ of $T^{0}$ between $x$ and $y$ contains the edge $f^{0}$. It remains to prove that $P_{1}^{*}\left(x, v_{a t t}\right)=\operatorname{Contr}\left(P\left(x, v_{a t t}\right)\right)$ and $P_{1}^{*}\left(v_{a t t}, y\right)=$ $\operatorname{Contr}\left(P\left(v_{a t t}, y\right)\right)$. In $S^{0}$, the edge $f^{0}$ is subdivided in $P$. Let $R$ be the obtained path between $x$ and $y$ and containing $v_{a t t} . R=P\left(x, v_{a t t}\right) \odot P\left(v_{a t t}, y\right)$. By computing $\operatorname{Char}\left(\left(S^{0}, r_{S}^{0}, \sigma_{S}^{0}\right), X_{v}\right)$, $P\left(x, v_{a t t}\right)$ is replaced by $\operatorname{Contr}\left(P\left(x, v_{a t t}\right)\right)$ and $P\left(v_{a t t}, y\right)$ is replaced by $\operatorname{Contr}\left(P\left(v_{a t t}, y\right)\right)$. By computing $\operatorname{Char}\left(\left(T^{0}, r^{0}, \sigma^{0}\right), X_{u}\right)$, the vertices $t$ (resp., edges $e$ ) of $P$ that defines are labeled with $\Phi_{A_{u}}\left(\mathcal{P}_{t}\right)$ (resp., $\Phi_{A_{u}}\left(\mathcal{P}_{e}\right)$ ). In $T^{0}$, let $J$ be the path obtained from $P$ by subdividing $f^{0}$. Let $J_{1}$ be the subpath of $R$ between $x$ and $v_{\text {att }}$, and let $J_{2}$ be the subpath of $R$ between $v_{a t t}$ and $y$. Then, $P$ is replaced by $\operatorname{Contr}(P)$. By Procedure IntroduceNode, the edge $f$ (that represents $f^{0}$ in $\left.\operatorname{Contr}(P)\right)$ is subdivided (inserting the new vertex $v_{\text {att }}$ ). Let $Q$ be the obtained path between $x$ and $y$ and containing $v_{a t t}$. Let $Q_{1}$ be the subpath of $Q$ between $x$ and $v_{a t t}$, and let $Q_{2}$ be the subpath of $Q$ between $v_{\text {att }}$ and $y . Q=Q_{1} \odot Q_{2}$. By Lemma 2, $\operatorname{Contr}\left(J_{1}\right)=\operatorname{Contr}\left(Q_{1}\right)$ and $\operatorname{Contr}\left(J_{2}\right)=\operatorname{Contr}\left(Q_{2}\right)$. Let $\mathcal{P}$ be the partition of $X_{v}$ defines by the vertices and edges of $Q_{1}$, and let $\mathcal{P}^{\prime}$ be the partition of $X_{v}$ defines by the vertices and edges of $Q_{2}$. Procedure IntroduceNode then replaces $Q_{1}$ by $P_{1}^{*}\left(x, v_{a t t}\right)=\operatorname{Contr}\left(F_{\Phi, \mathcal{P}}\left(Q_{1}\right)\right)$ and $Q_{2}$ by $P_{1}^{*}\left(v_{a t t}, y\right)=\operatorname{Contr}\left(F_{\Phi, \mathcal{P}}\left(Q_{2}\right)\right)$. By Item 2 of Lemma 1 and by definition of $F_{\Phi, \mathcal{P}}, \operatorname{Contr}\left(F_{\Phi, \mathcal{P}}\left(Q_{1}\right)\right)=\operatorname{Contr}\left(F_{\Phi, \mathcal{P}}\left(\operatorname{Contr}\left(Q_{1}\right)\right)\right)=$ $\operatorname{Contr}\left(F_{\Phi, \mathcal{P}}\left(\operatorname{Contr}\left(J_{1}\right)\right)\right)=\operatorname{Contr}\left(F_{\Phi, \mathcal{P}}\left(J_{1}\right)\right)=\operatorname{Contr}\left(P\left(x, v_{\text {att }}\right)\right)$. Therefore, $P_{1}^{*}\left(x, v_{\text {att }}\right)=$ $\operatorname{Contr}\left(P\left(x, v_{a t t}\right)\right)$. Similarly, $P_{1}^{*}\left(v_{a t t}, y\right)=\operatorname{Contr}\left(P\left(v_{a t t}, y\right)\right)$.

Since $K_{1}^{*}=K_{S}$, and for any $x, y \in K_{S}, P_{1}^{*}(x, y)=\operatorname{Contr}(P(x, y))$, we get that $T_{1}^{*}=T_{S}$ and $\ell_{1}^{*}=\ell_{S}$. It remains to prove that $\left(\right.$ dist $_{1}^{*}$, branch $_{1}^{*}$, out $\left.{ }_{1}^{*}\right)=\left(\right.$ dist $_{S}$, branch $_{S}$, out $\left._{S}\right)$. Recall that $S^{\prime}$ (resp., $T^{\prime}$ ) is the smallest subtree of $S^{0}$ (resp., $T^{0}$ ) the leaves of which map $X_{v}$ (resp., $X_{u}$ ), and $r_{S}^{\prime}\left(\right.$ resp., $\left.r^{\prime}\right)$ is the vertex in $S^{\prime}$ (resp., $T^{\prime}$ ) that is closest to $r_{S}^{0}$ (resp., $r^{0}$ ).

By procedure IntroduceNode, dist* $=$ dist $_{1}$, i.e., the number of branching nodes in $T^{0}$ between $r^{0}$ and $r^{\prime}$ which is the number of branching nodes in $S^{0}$ between $r_{S}^{0}$ and $r_{S}^{\prime}$, i.e., dist $_{S}$. Now, for any vertex $t$ in $K_{1}^{*}$, out $t_{1}^{*}(t)$ is the maximum number of branching nodes on a path between $t$ and a leaf in $A_{u} \backslash X_{u}$ every internal vertices of which are different from
$r^{0}$ and in $T^{\prime} \backslash T^{0}$. It is also the maximum number of branching nodes on a path between $t$ and a leaf in $A_{v} \backslash X_{v}=A_{u} \backslash X_{u}$ every internal vertices of which are different from $r_{S}^{0}$ and in $S^{\prime} \backslash S^{0}$, i.e., out ${ }_{S}(t)$. For any vertex $t$ in $K_{1}^{*}$, $\operatorname{branch}_{1}^{*}(t)=1$ if and only if $\operatorname{branch}_{1}(t)=1$ or $t$ is the parent-end of $f$, has exactly one non-leaf child that is not the other end of $f$ (Step 4 of Procedure IntroduceNode). That is, $\operatorname{branch}_{1}^{*}(t)=1$ if and only if $t$ is a branching node of $c p\left(S^{0}\right)$, i.e., $\operatorname{branch}_{1}^{*}(t)=\operatorname{branch}_{S}(t)$.

Therefore, we proved that $C_{1}^{*}=\operatorname{Char}\left(\left(S^{0}, r_{S}^{0}, \sigma_{S}^{0}\right), X_{v}\right)$. By Step 5 of Procedure IntroduceNode, dist + height $\leq q$ (where height is the br-height of $r_{1}^{*}$ ) and $\ell(v) \leq k$ for any internal vertex $v \in V(T)$, and $\ell(e) \leq k$ for any edge $e \in E(T)$. Therefore, by Lemma 5, $\left(S^{0}, r_{S}^{0}, \sigma_{S}^{0}\right)$ is a $q$-branched partitioning-tree with $\Phi$-width at most $k$.

## C. $2 F S C(v)$ is full

Let $\left(S^{0}, r_{S}^{0}, \sigma_{S}^{0}\right)$ be a $q$-branched partitioning-tree of $A_{v}$ restricted to $X_{v}$ with $\Phi$-width at most $k$. Let $v_{l e a f}$ be the leaf of $S^{0}$ that maps $\{a\}=X_{v} \backslash X_{u}$. Let $v_{\text {att }}$ be the parent of $v_{\text {leaf }}$. Let $\left(T_{1}, r_{1}, \sigma_{1}\right)$ be the partitioning-tree of $A_{u}$ restricted to $X_{u}$ such that $\left(S^{0}, r_{S}^{0}, \sigma_{S}^{0}\right)=$ $\operatorname{ins}\left(\left(T^{0}, r^{0}, \sigma^{0}\right), v_{a t t}, a\right)$.

Because $F S C(u)$ is a full set of characteristic of $A_{u}$ restricted to $X_{u}$, there is $C \in$ $F S C(u)$ such that $C \preceq C_{1}=\operatorname{Char}\left(\left(T^{0}, r^{0}, \sigma^{0}\right), X_{u}\right)$. In the previous subsection, we proved that there is an execution of Procedure IntroduceNode on $C_{1}$ that computes $C_{1}^{*}=$ $\operatorname{Char}\left(\left(S^{0}, r_{S}^{0}, \sigma_{S}^{0}\right), X_{v}\right)$. We prove that a similar execution of Procedure IntroduceNode on $C$ computes $C^{*} \preceq C_{1}^{*}$.

Let $C_{1}=\left(\left(T_{1}, r_{1}, \sigma_{1}\right), \ell_{1}, K_{1}\right.$, dist $_{1}$, out $_{1}$, branch $\left._{1}\right)$ and $C=((T, r, \sigma), \ell, K$, dist, out, branch $)$. By definition of the ordering over the characteristics, $\left(T_{1}, r_{1}, \sigma_{1}\right)$ and $(T, r, \sigma)$ are isomorphic and $K_{1}=K$. Let us assume that $C_{1}^{*}$ is obtained from $C_{1}$ by subdividing an edge $f$. For any $x, y \in K_{1}$ such that the path $P^{\prime}(x, y)$ does not contain $f$, let $P(x, y)$ be the path between $x$ and $y$ in $C$. Let $\mathcal{P}$ be the partition of $X_{v}$ defined by the vertices and edges of $P(x, y)$. The same partition is defined by the internal vertices and edges of $P^{\prime}(x, y)$. By definition of the ordering, $P(x, y) \preceq P^{\prime}(x, y)$. Procedure IntroduceNode replaces $P(x, y)$ by $\operatorname{Contr}\left(F_{\Phi, \mathcal{P}}(P(x, y))\right)$ and $P^{\prime}(x, y)$ by $\operatorname{Contr}\left(F_{\Phi, \mathcal{P}}\left(P^{\prime}(x, y)\right)\right)$. By Item 3 of Lemma 1 and because $F_{\Phi, \mathcal{P}}$ is strictly increasing, $\operatorname{Contr}\left(F_{\Phi, \mathcal{P}}(P(x, y))\right) \preceq \operatorname{Contr}\left(F_{\Phi, \mathcal{P}}\left(P^{\prime}(x, y)\right)\right)$. Now, let $x, y \in K$ be the vertices such that $P^{\prime}(x, y)$ does contain $f$, and let $P(x, y)$ be the corresponding path in $C$. By definition of the ordering, there is an extension $\left\{v_{1}, \cdots, v_{n}\right\}$ of $P(x, y)$ and an extension $\left\{v_{1}^{\prime}, \cdots, v_{n}^{\prime}\right\}$ of $P^{\prime}(x, y)$ with $\ell\left(\left\{v_{i}, v_{i+1}\right\}\right) \leq \ell_{1}\left(\left\{v_{i}^{\prime}, v_{i+1}^{\prime}\right\}\right)$ for any $i \leq n$. Let $i \leq n$ such that $\left\{v_{i}^{\prime}, v_{i+1}^{\prime}\right\}=f$, and let $f^{\prime}$ be the edge of $P(x, y)$ corresponding to $\left\{v_{i}, v_{i+1}\right\}$. We consider the execution of IntroduceNode that inserts $a$ in $C$ by subdividing $f^{\prime}$. In $C_{1}$, by subdividing $f$, Procedure IntroduceNode divides $P^{\prime}(x, y)$ into two paths $P_{1}^{\prime}$ and $P_{2}^{\prime}$. In $C$, by subdividing $f^{\prime}$, Procedure IntroduceNode divides $P(x, y)$ into two paths $P_{1} \preceq P_{1}^{\prime}$ and $P_{2} \preceq P_{1}^{\prime}$. Then, Procedure IntroduceNode applies the function $F_{\Phi}$ on each of these paths and contracts them. By Item 3 of Lemma 1 and because $F_{\Phi, \mathcal{P}}$ is strictly increasing, we get the result.

The fact that dist* $\leq \operatorname{dist}_{1}^{*}$ and out $^{*}(t) \leq o u t_{1}^{*}(t)$ and $\operatorname{branch}^{*}(t) \leq \operatorname{branch}_{1}^{*}(t)$ for any $t \in K$ holds trivially. Therefore, $C^{*} \preceq C_{1}^{*}$.


Figure 7: Proof of correctness of Procedure ForgetNode

## D Proof of Lemma 8: Forget node

Since $A_{v}=A_{u}, A_{v}$ admits a $q$-branched partitioning-tree with $\Phi$-width at most $k$ only if $A_{u}$ does. Therefore, we can assume that $F S C(u) \neq \emptyset$, otherwise, $A_{v}$ does not admit a $q$-branched partitioning-tree with $\Phi$-width at most $k$, and $F S C(v)=\emptyset$. The proof is twofold. We first prove that the set $F S C(v)$ returned by Procedure ForgetNode is a set of characteristics of $A_{v}$ restricted to $X_{v}$, then we prove it is full. The proof is illustrated in Figure 7.

## D. $1 F S C(v)$ is a set of characteristics of $A_{v}$ restricted to $X_{v}$

Let $C_{1}^{*}=\left(\left(T_{1}^{*}, r_{1}^{*}, \sigma_{1}^{*}\right), \ell_{1}^{*}, K_{1}^{*}\right.$, dist $_{1}^{*}$, out $_{1}^{*}$, branch $\left._{1}^{*}\right) \in F S C(v)$.
Let $C_{1}=\left(\left(T_{1}, r_{1}, \sigma_{1}\right), \ell_{1}, K_{1}\right.$, dist $_{1}$, out $_{1}$, branch $\left._{1}\right) \in F S C(u)$ be the characteristic transformed by Procedure ForgetNode to compute $C_{1}^{*}$. Since $C_{1} \in F S C(u)$, it is the characteristic of a partitioning-tree $\left(T^{0}, r^{0}, \sigma^{0}\right)$ of $A_{u}$ restricted to $X_{u}$. We prove that $C_{1}^{*}$ is the characteristic of $\left(T^{0}, r^{0}, \sigma^{0}\right)$ of $A_{v}=A_{u}$ restricted to $X_{v}=X_{u} \backslash\{a\}$.

Let $C_{S}=\operatorname{Char}\left(\left(T^{0}, r^{0}, \sigma^{0}\right), X_{v}\right)=\left(\left(T_{S}, r_{S}, \sigma_{S}\right), \ell_{S}, K_{S}\right.$, dist $_{S}$, out $_{S}$, branch $\left._{S}\right)$. Let us show that $C_{S}=C_{1}^{*}$.

Let $R$ be the smallest subtree of $T^{0}$ the leaves of which map $X_{u}$, and let $r_{R}$ be the vertex in $R$ that is closest to $r^{0}$. $K_{1}$ is the set of vertices that are leaves in $\left(R, r_{R}\right)$, parents of leaves, branching nodes of $\left(R, r_{R}\right)$ or branching nodes of $c p\left(T^{0}\right)$ in $V(R) . C_{1}$ is obtained by replacing any path $P(x, y)\left(x, y \in K_{1}\right)$ by $\operatorname{Contr}(P(x, y))$.

Let $T^{\prime}$ be the smallest subtree of $T^{0}$ the leaves of which map the elements of $X_{v}$. Let $r^{\prime}$ be the vertex of $T^{\prime}$ that is closest to $r^{0}$. Let $v_{a t t}^{0}$ be the vertex of $T^{\prime}$ that is closest to the leaf $v_{\text {leaf }}^{0}$ that maps $\{a\}=X_{u} \backslash X_{v}$. Let $P^{0}$ be the path between these two vertices. Note that, $v_{a t t}^{0}$ has degree at least two in $T^{\prime}$ or $T^{\prime}=\left\{v_{a t t}^{0}\right\}$. In the latter case, $T_{1}^{*}$ and $T_{S}$ are reduced to a single vertex $r_{S}=r_{1}^{*}$ representing $v_{\text {att }}^{0}$ and with same labels. Let us assume that $v_{a t t}^{0}$ has degree at least two in $T^{\prime}$. Note that $T^{\prime}=R \backslash\left(P \backslash v_{a t t}^{0}\right)$.

There are three cases to be considered. In any case, there is a vertex $v_{\text {att }}$ of $T_{1}$ that represents $v_{a t t}^{0}$ (this is because $v_{a t t}^{0}$ has degree at least three in the smallest subtree of $T^{0}$ the leaves of which map the elements of $X_{u}$ ), and a path $P$ between $v_{a t t}$ and $v_{l e a f}$ (the vertex that maps $\{a\}$ in $T_{1}$ ) representing $P^{0}$.

- First assume that $v_{a t t}^{0}$ has degree at least three in $T^{\prime}$ or is a branching node of $c p\left(T^{0}\right)$, or is the parent of a leaf in $T^{\prime}$, and $r^{0}$ does not belong to the subtree $W$ obtained from $T^{0}$ by removing $v_{\text {att }}^{0}$ and that contains $v_{l e a f}^{0}$. In this case, $r$ does not belong to $P \backslash v_{a t t}, v_{a t t}$ has degree at least three in $T_{1}$, or $\operatorname{branch}\left(v_{a t t}\right)=1$ or $v_{a t t}$ is the root of $T_{1}$.
By the definition of a characteristic, $K_{S}$ is the set of vertices that are leaves in $\left(T^{\prime}, r^{\prime}\right)$, parents of leaves, branching nodes of $\left(T^{\prime}, r^{\prime}\right)$ or branching nodes of $c p\left(T^{0}\right)$ in $V\left(T^{\prime}\right)$. Note that $v_{a t t} \in K_{S}$. That is, $K_{S}=K_{1} \backslash\left(P \backslash v_{a t t}\right)$. Therefore, $T_{S}$ is obtained from $T_{1}$ by removing the path $P \backslash v_{a t t}$. No labels are modified but out $t_{S}\left(v_{a t t}\right)$ that is set to the maximum number of branching nodes on a path between $v_{a t t}$ and a leaf in $A_{v} \backslash X_{v}$ every internal vertices of which are different from $r^{0}$ and in $T^{0} \backslash T^{\prime}$.
Now, Procedure ForgetNode does the same: $T_{1}^{*}$ is obtained from $T_{1}$ by removing $P \backslash v_{a t t}$, and $K_{1}^{*}=K_{1} \backslash\left(P \backslash v_{a t t}\right)$. Moreover, Procedure ForgetNode set out ${ }_{1}^{*}\left(v_{a t t}\right)$ to $\max \left\{\right.$ out $_{1}\left(v_{\text {att }}\right)$, height $\left.(w)\right\}$, where $w$ is the neighbour of $v_{\text {att }}$ in $P$. To conclude the proof, it is sufficient to remark that this value is exactly the maximum number of branching nodes on a path, not containing $r^{0}$, between $v_{\text {att }}$ and a leaf in $A_{v} \backslash X_{v}$ every internal vertices of which are in $T^{0} \backslash T^{\prime}$.
- Assume that $r^{0}$ belongs to the subtree $W$ obtained from $T^{0}$ by removing $v_{a t t}^{0}$ and that contains $v_{l e a f}^{0}$. In this case, $r_{1}$ belongs to $P$ and $v_{\text {att }}$ has degree at least three in $T$.
By the definition of a characteristic, $T_{S}$ can be obtained from $T_{1}$ by removing the path $P \backslash v_{a t t}$. Moreover, the root of $T_{S}$ is set to $v_{\text {att }}$. Again, $K_{S}=K_{1} \backslash\left(P \backslash v_{a t t}\right)$, and no labels are modified, because the partitioning-tree $\left(T^{0}, r^{0}, \sigma^{0}\right)$ that we consider remains unchanged.
Again, Procedure ForgetNode does the same: $T_{1}^{*}$ is obtained from $T_{1}$ by removing $P \backslash v_{\text {att }}$ and setting $v_{\text {att }}$ as the new root and $K_{1}^{*}=K_{1} \backslash\left(P \backslash v_{a t t}\right)$. Moreover, Procedure ForgetNode set dist* to dist ${ }_{1}^{*}=$ dist $_{1}+p$, with $p$ being the number of nodes of $T_{1}$ in the path between $v_{a t t}$ and $r_{1}$ (excluding $\left.v_{a t t}\right)$. Therefore, dist ${ }_{1}^{*}$ is set to the number of branching nodes between $v_{a t t}^{0}$ and $r^{0}$ (excluding $v_{a t t}^{0}$ ).
out $t_{1}^{*}\left(v_{a t t}\right)$ is set to $\max \left\{\right.$ out $_{1}\left(v_{\text {att }}\right)$, height $\left.(w)\right\}$, where $w$ is the neighbour of $v_{\text {att }}$ in $P$. To conclude the proof, it is sufficient to remark that this value is exactly the maximum number of branching nodes on a path, not containing $r^{0}$, between $v_{a t t}^{0}$ and a leaf in $A_{v} \backslash X_{v}$ every internal vertices of which are in $T^{0} \backslash T^{\prime}$.
- Finally, let us assume that $v_{a t t}^{0}$ has degree exactly two in $T^{\prime}, v_{a t t}^{0}$ is not a branching node of $c p\left(T^{0}\right)$, nor the parent of a leaf in $T^{\prime}$, and $r^{0}$ does not belong to the subtree
$W$ obtained from $T^{0}$ by removing $v_{a t t}^{0}$ and that contains $v_{\text {leaf }}^{0}$. In this case, $v_{a t t} \notin K_{S}$, that is, $K_{S}=K_{1} \backslash P$. Therefore, $T_{S}$ is obtained from $T^{\prime}$, by replacing any path $P(x, y)$ $\left(x, y \in K_{S}\right)$ by $\operatorname{Contr}(P(x, y))$.
Let $w_{1}, w_{2} \in K_{S}$ such that $v_{\text {att }} \in P\left(w_{1}, w_{2}\right)$. The key point is that, in $C_{1}$, there are two paths $P\left(w_{1}, v_{a t t}\right)$ and $P\left(v_{a t t}, w_{2}\right)$ that are replaced by $\operatorname{Contr}\left(P\left(w_{1}, v_{a t t}\right)\right)$ and $\operatorname{Contr}\left(P\left(v_{a t t}, w_{2}\right)\right)$, whereas in $C_{S}, P\left(w_{1}, w_{2}\right)$ is replaced by $\operatorname{Contr}\left(P\left(w_{1}, w_{2}\right)\right)$.
In this case, Procedure ForgetNode proceeds as follow. $T_{1}^{*}$ is obtained from $T_{1}$ by removing $P \backslash v_{\text {att }}$ and replacing the paths $\operatorname{Contr}\left(P\left(w_{1}, v_{\text {att }}\right)\right) \odot \operatorname{Contr}\left(P\left(v_{\text {att }}, w_{2}\right)\right)$ by $\operatorname{Contr}\left(\operatorname{Contr}\left(P\left(w_{1}, v_{a t t}\right)\right) \odot \operatorname{Contr}\left(P\left(v_{a t t}, w_{2}\right)\right)\right)$. By Item 4 of Lemma 1, this is exactly $\operatorname{Contr}\left(P\left(w_{1}, w_{2}\right)\right)$.


## D. $2 \quad F S C(v)$ is full

Let $\left(T^{0}, r^{0}, \sigma^{0}\right)$ be a $q$-branched partitioning-tree of $A_{v}$ with $\Phi$-width at most $k$. We need to prove that there is a characteristic $C^{*} \in F S C(v)$ such that $C^{*}=\left(\left(T^{*}, r^{*}, \sigma^{*}\right), \ell^{*}, K^{*}\right.$, dist $^{*}$, out $^{*}$, branch $\left.^{*}\right) \preceq$ $\operatorname{Char}\left(\left(T^{0}, r^{0}, \sigma^{0}\right), X_{u}\right)$.

Because $\operatorname{FSC}(u)$ is a full set of characteristic of $A_{u}$ restricted to $X_{u}$, there is $C \in F S C(u)$ such that $C \preceq C_{1}=\operatorname{Char}\left(\left(T^{0}, r^{0}, \sigma^{0}\right), X_{u}\right)$. In the previous subsection, we proved that the execution of Procedure Forget Node on $C_{1}$ computes $C_{1}^{*}=\operatorname{Char}\left(\left(T^{0}, r^{0}, \sigma^{0}\right), X_{v}\right)$. We prove that the execution of Procedure ForgetNode on $C$ computes $C^{*} \preceq C_{1}^{*}$.

Let $C_{1}=\left(\left(T_{1}, r_{1}, \sigma_{1}\right), \ell_{1}, K_{1}\right.$, dist $_{1}$, out $_{1}$, branch $\left._{1}\right)$ and $C=((T, r, \sigma), \ell, K$, dist, out, branch $)$.
By considering the process of the execution of Procedure ForgetNode, that we have detailed in the previous section, $\left(T^{*}, r^{*}, \sigma^{*}\right)$ and $\left(T_{1}^{*}, r_{1}^{*}, \sigma_{1}^{*}\right)$ are isomorphic.

The only labels that are modified (when $C$ is transformed in $C^{*}$, and $C_{1}$ is transformed in $\left.C_{1}^{*}\right)$ are the variable out of $v_{a t t}$, and possibly (last case considered in the previous subsection) the paths $\operatorname{Contr}\left(P\left(w_{1}, v_{a t t}\right)\right)$ and $\operatorname{Contr}\left(P\left(v_{a t t}, w_{2}\right)\right)$ in $C$ (resp., Contr $\left(P_{1}\left(w_{1}, v_{a t t}\right)\right)$ and $\operatorname{Contr}\left(P_{1}\left(v_{\text {att }}, w_{2}\right)\right)$ in $\left.C_{1}\right)$ are contracted into Contr $\left(\operatorname{Contr}\left(P\left(w_{1}, v_{\text {att }}\right)\right) \odot \operatorname{Contr}\left(P\left(v_{\text {att }}, w_{2}\right)\right)\right)$ (resp., Contr $\left.\left(\operatorname{Contr}\left(P_{1}\left(w_{1}, v_{a t t}\right)\right) \odot \operatorname{Contr}\left(P_{1}\left(v_{a t t}, w_{2}\right)\right)\right)\right)$. Note that, because $\left(T^{*}, r^{*}, \sigma^{*}\right)$ and $\left(T_{1}^{*}, r_{1}^{*}, \sigma_{1}^{*}\right)$ are isomorphic, if this latter transformation is executed, it is executed in both $C$ and $C_{1}$.

Because $C \preceq C_{1}$, we get that out ${ }^{*}\left(v_{\text {att }}\right)=\max \left\{o u t\left(v_{\text {att }}\right), \operatorname{height}(w)\right\} \leq$ out $_{1}^{*}\left(v_{\text {att }}\right)=$ $\max \left\{\right.$ out $_{1}\left(v_{\text {att }}\right)$, height $\left._{1}(w)\right\}$. Moreover, $\operatorname{Contr}\left(P\left(w_{1}, v_{a t t}\right)\right) \preceq \operatorname{Contr}\left(P_{1}\left(w_{1}, v_{a t t}\right)\right)$ and $\operatorname{Contr}\left(P\left(v_{a t t}, w_{2}\right)\right) \preceq$ $\operatorname{Contr}\left(P_{1}\left(v_{a t t}, w_{2}\right)\right)$, therefore $\operatorname{Contr}\left(\operatorname{Contr}\left(P\left(w_{1}, v_{\text {att }}\right)\right) \odot \operatorname{Contr}\left(P\left(v_{a t t}, w_{2}\right)\right)\right) \preceq \operatorname{Contr}\left(\operatorname{Contr}\left(P_{1}\left(w_{1}, v_{a t t}\right)\right) \odot\right.$ $\left.\operatorname{Contr}\left(P_{1}\left(v_{a t t}, w_{2}\right)\right)\right)$. Then, $C^{*} \preceq C_{1}^{*}$, which concludes the proof.

## E Proof of Lemma 9: Join node

Since $A_{v}=A_{u} \cup A_{w}, A_{v}$ admits a $q$-branched partitioning-tree with $\Phi$-width at most $k$ only if $A_{u}$ and $A_{w}$ do. Therefore, we can assume that $F S C(u) \neq \emptyset$ and $F S C(w) \neq \emptyset$, otherwise, $A_{v}$ does not admit a $q$-branched partitioning-tree with $\Phi$-width at most $k$, and $F S C(v)=\emptyset$. The proof is twofold. We first prove that the set $F S C(v)$ returned by Procedure JoinNode


Figure 8: Proof of correctness of Procedure JoinNode
is a set of characteristics of $A_{v}$ restricted to $X_{v}$, then we prove it is full. The proof is illustrated in Figure 8 .

## E. $1 F S C(v)$ is a set of characteristics of $A_{v}$ restricted to $X_{v}$

Let $C_{1}=\left(\left(T_{1}, r_{1}, \sigma_{1}\right), \ell_{1}, K_{1}\right.$, dist $_{1}$, out $_{1}$, branch $\left._{1}\right) \in F S C(u)$, and let $C_{1}^{*}=\left(\left(T_{2}, r_{2}, \sigma_{2}\right), \ell_{2}, K_{2}\right.$, dist ${ }_{2}$, out ${ }_{2}$, branch $\left.{ }_{2}\right)$ $F S C(w)$, such that $\operatorname{Struct}\left(C_{1}\right)$ and $\operatorname{Struct}\left(C_{2}\right)$ are isomorphic, and dist $_{2}=0$.

By definition of $F S C(u)$ and $F S C(w), C_{1}=\operatorname{Char}\left(\left(T^{0}, r^{0}, \sigma^{0}\right), X_{u}\right)$ and $C_{2}=\operatorname{Char}\left(\left(R^{0}, r_{R}^{0}, \sigma_{R}^{0}\right), X_{u}\right)$ where $\left(T^{0}, r^{0}, \sigma^{0}\right)$ is a $q$-branched partitioning-tree of $A_{u}$, and $\left(R^{0}, r_{R}^{0}, \sigma_{R}^{0}\right)$ is a $q$-branched partitioning-tree of $A_{w}$

Let $C^{*}=\left(\left(T_{1}^{*}, r_{1}^{*}, \sigma_{1}^{*}\right), \ell_{1}^{*}, K_{1}^{*}\right.$, dist $_{1}^{*}$, out ${ }_{1}^{*}$, branch $\left._{1}^{*}\right) \in F S C(v)$ be the result of an execution of the Procedure JoinNode on $C_{1}$ and $C_{2}$.

Our purpose here is to build a partitioning-tree $\left(S^{0}, r_{S}^{0}, \sigma_{S}^{0}\right)$ of $A_{v}=A_{u} \cup A_{w}$ obtained by merging $\left(T^{0}, r^{0}, \sigma^{0}\right)$ and $\left(R^{0}, r_{R}^{0}, \sigma_{R}^{0}\right)$ in a particular way, such that $\operatorname{Char}\left(\left(S^{0}, r_{S}^{0}, \sigma_{S}^{0}\right), X_{v}\right)=$ $C^{*}$. Roughly, we want to merge $\left(T^{0}, r^{0}, \sigma^{0}\right)$ and $\left(R^{0}, r_{R}^{0}, \sigma_{R}^{0}\right)$ respecting the way $C^{1}$ and $C^{2}$ are merged by Procedure JoinNode.

- Let $T_{1}^{\prime}$ be the smallest subtree of $T^{0}$ mapping the elements of $X_{v}$ with $r_{1}^{\prime}$ being the vertex of $T_{1}^{\prime}$ that is closest to $r^{0}$, and $T_{2}^{\prime}$ is the smallest subtree of $R^{0}$ mapping the elements of $X_{v}$ with $r_{2}^{\prime}$ being the vertex of $T_{2}^{\prime}$ that is closest to $r_{R}^{0}$ (note that, by definition of a characteristic, and because dist ${ }_{2}=0, r_{2}^{\prime}=r_{R}^{0}$ ).
By definition of a characteristic, $K_{1}$ is the set of vertices that are a leaf, the parent of a leaf in $\left(T_{1}^{\prime}, r_{1}^{\prime}\right)$, a branching node of $T_{1}^{\prime}$, or a branching node of $c p\left(T^{0}\right)$ in $T_{1}^{\prime}$. Moreover, $\operatorname{Struct}\left(C_{1}\right)$ is the tree $T_{1}^{\prime \prime}$ obtained by contracting all vertices of degree 2 in $T_{1}^{\prime}$. By definition, $V\left(\operatorname{Struct}\left(C_{1}\right)\right)$ is a subset of $K_{1}$. Similarly, $K_{2}$ is the set of vertices that are a leaf, the parent of a leaf in $\left(T_{2}^{\prime}, r_{2}^{\prime}\right)$, a branching node of $T_{2}^{\prime}$, or a branching
node of $c p\left(R^{0}\right)$ in $T_{2}^{\prime}$. Moreover, $\operatorname{Struct}\left(C_{2}\right)$ is the tree $T_{2}^{\prime \prime}$ obtained by contracting all vertices of degree 2 in $T_{2}^{\prime}$, and $V\left(\operatorname{Struct}\left(C_{2}\right)\right)$ is a subset of $K_{2}$.
Since $\operatorname{Struct}\left(C_{1}\right)$ and $\operatorname{Struct}\left(C_{2}\right)$ are isomorphic, $T_{1}^{\prime \prime}$ and $T_{2}^{\prime \prime}$ are isomorphic, and the operation of merging $\left(T^{0}, r^{0}, \sigma^{0}\right)$ and $\left(R^{0}, r_{R}^{0}, \sigma_{R}^{0}\right)$ is well defined.
Step 1 of Procedure JoinNode first identify the vertices of $V\left(\operatorname{Struct}\left(C_{1}\right)\right)$ in $C_{1}$ and $V\left(\operatorname{Struct}\left(C_{2}\right)\right)$ in $C_{2}$ and set $r_{1}^{*}$ to $r_{1}$. Let $G$ be the resulting graph.
The merging of $\left(T^{0}, r^{0}, \sigma^{0}\right)$ and $\left(R^{0}, r_{R}^{0}, \sigma_{R}^{0}\right)$ starts by identifying the vertices of $V\left(T_{1}^{\prime \prime}\right)=$ $V\left(\operatorname{Struct}\left(C_{1}\right)\right)$ in $T^{0}$ and $V\left(T_{2}^{\prime \prime}\right)=V\left(\operatorname{Struct}\left(C_{2}\right)\right)$ in $R^{0}$ and set $r_{S}^{0}$ to $r^{0}$. Let $H$ be the resulting graph. For any $x_{1} \in V\left(\operatorname{Struct}\left(C_{1}\right)\right)$ and $x_{2} \in V\left(\operatorname{Struct}\left(C_{2}\right)\right)$ that are identified, let $x^{*}$ be the result given by identifying $x_{1}$ and $x_{2}$.
- Let $x^{*}, y^{*} \in V(G)$ such that $\left\{x_{1}, y_{1}\right\} \in E\left(\operatorname{Struct}\left(C_{1}\right)\right)$ (hence, $\left\{x_{2}, y_{2}\right\} \in E\left(\operatorname{Struct}\left(C_{2}\right)\right)$ by isomorphism). In $G$, there are two paths between $x^{*}$ and $y^{*}$ that are vertexdisjoint (but in their ends): $P_{1}\left(x^{*}, y^{*}\right)$ that results from the path $P_{1}\left(x_{1}, y_{1}\right) \in T_{1}$, and $P_{2}\left(x^{*}, y^{*}\right)$ that results from the path $P_{2}\left(x_{2}, y_{2}\right) \in T_{2}$.
Because $\left\{x_{1}, y_{1}\right\} \in E\left(\operatorname{Struct}\left(C_{1}\right)\right)$, any internal vertex of $P_{1}\left(x_{1}, y_{1}\right)$ has degree 2 in $T_{1}$, which implies that any internal vertex or edge in $P_{1}\left(x_{1}, y_{1}\right)$ defines the same partition $\mathcal{P}$ of $X_{v}$. Similarly, any internal vertex or edge in $P_{2}\left(x_{2}, y_{2}\right)$ defines the partition $\mathcal{P}$. Step 2 of Procedure JoinNode merges $P_{1}\left(x^{*}, y^{*}\right)=P_{1}\left(x_{1}, y_{1}\right)$ and $P_{2}\left(x^{*}, y^{*}\right)=$ $P_{2}\left(x_{2}, y_{2}\right)$ using the strictly increasing (for both coordinates) function $H_{\Phi, \mathcal{P}}: x, y \rightarrow$ $H_{\Phi}(x, y, \mathcal{P})$. Let $P\left(x^{*}, y^{*}\right)$ be the resulting path.
By definition of a characteristic, the path $P_{1}\left(x_{1}, y_{1}\right) \in T_{1}$ represents a path $P_{1}^{0}\left(x_{1}, y_{1}\right) \in$ $T^{0}$, the internal vertices of which have degree 2 in $T_{1}^{\prime}$. Note that some internal vertices of $P_{1}^{0}\left(x_{1}, y_{1}\right)$ may be branching nodes in $c p\left(T^{0}\right)$. We set $P_{1}^{0}\left(x_{1}, y_{1}\right)=Q_{1}^{0} \odot Q_{p}^{0}$ such that the common ends between $Q_{i}^{0}$ and $Q_{i+1}^{0}$ are the branching nodes of $c p\left(T^{0}\right)$ in $P_{1}^{0}\left(x_{1}, y_{1}\right)$. By definition of a characteristic, $P_{1}\left(x_{1}, y_{1}\right)=\operatorname{Contr}\left(Q_{1}^{0}\right) \odot \operatorname{Contr}\left(Q_{p}^{0}\right)$. Similarly, we define the path $P_{2}^{0}\left(x_{2}, y_{2}\right) \in R^{0}$, and set $P_{2}^{0}\left(x_{2}, y_{2}\right)=Q_{1}^{\prime 0} \odot Q_{p^{\prime}}^{\prime 0}$, where $P_{2}\left(x_{2}, y_{2}\right)=\operatorname{Contr}\left(Q_{1}^{\prime 0}\right) \odot \operatorname{Contr}\left(Q_{p^{\prime}}^{\prime 0}\right)$.
We choose a merging of $P_{1}^{0}\left(x_{1}, y_{1}\right)$ and $P_{2}^{0}\left(x_{2}, y_{2}\right)$ using $H_{\Phi, \mathcal{P}}$ that respects the merging of $P_{1}\left(x^{*}, y^{*}\right)=P_{1}\left(x_{1}, y_{1}\right)$ and $P_{2}\left(x^{*}, y^{*}\right)=P_{2}\left(x_{2}, y_{2}\right)$.
- It is easy to see that after the merging of all paths $P_{1}^{0}\left(x_{1}, y_{1}\right)$ and $P_{2}^{0}\left(x_{2}, y_{2}\right)$, for any $x^{*}, y^{*}$ such that $\left\{x_{1}, y_{1}\right\} \in E\left(\operatorname{Struct}\left(C_{1}\right)\right)$, and $\left\{x_{2}, y_{2}\right\} \in E\left(\operatorname{Struct}\left(C_{2}\right)\right)$ by isomorphism, then $H$ is a tree, the leaves of which maps $A_{u} \cup A_{w}$.
We prove it is a partitioning-tree $\left(S^{0}, r_{S}^{0}, \sigma_{S}^{0}\right)$ of $A_{v}=A_{u} \cup A_{w}$. Especially, we prove that the labels of its edges and vertices are the $\Phi$-width of the partitions they define.
Any vertex $t^{*}$ of the resulting path merges a vertex or an edge $t$ of $P_{1}^{0}\left(x_{1}, y_{1}\right)$, that defines a partition $\mathcal{P}_{t}$ of $A_{u}$ in $T^{0}$, and a vertex or an edge $t^{\prime}$ of $P_{2}^{0}\left(x_{2}, y_{2}\right)$, that defines a partition $\mathcal{P}_{t^{\prime}}$ of $A_{w}$ in $R^{0}$. Moreover, $t^{*}$ defines a partition $\mathcal{P}_{t^{*}}$ of $A_{v}=A_{u} \cup A_{w}$ in $S^{0}$. The key point is that: $\mathcal{P}_{t}=\mathcal{P}_{t^{*}} \cap A_{u}, \mathcal{P}_{t^{\prime}}=\mathcal{P}_{t^{*}} \cap A_{w}$ and $\mathcal{P}=\mathcal{P}_{t^{*}} \cap X_{v}$. By definition of
$H_{\Phi}$, it results that $t^{*}$ is labeled with $\Phi_{A_{v}}\left(\mathcal{P}_{t^{*}}\right)=H_{\Phi}\left(\Phi_{A_{u}}\left(\mathcal{P}_{t}\right), \Phi_{A_{w}}\left(\mathcal{P}_{t^{\prime}}\right), \mathcal{P}\right)$. Similarly, we prove that the labels of the edges in $\left(S^{0}, r_{S}^{0}, \sigma_{S}^{0}\right)$ are those wanted.
It remains to show that $C_{1}^{*}=C_{S}$.
- $K_{S}$ is the set of the leaves in $T_{S}$ (which are exactly the leaves of $T_{1}^{\prime}$, i.e., the leaves of $T_{2}^{\prime}$ ), parents of leaves, branching nodes of $T_{S}$, or branching nodes of $c p\left(S^{0}\right)$ in $T_{S}$. By definition of the merging of two trees, a vertex $x^{*}$ belongs to $K_{S}$ if it merges $x_{1}$ in $T^{0}$ and $x_{2} \in R^{0}$ where $x_{1}$ or $x_{2}$ is a leaf in $T_{1}^{\prime}$ (i.e., a leaf of $T_{2}^{\prime}$ ), the parents of leaves in $T_{1}^{\prime}$ or $T_{2}^{\prime}$, a branching node in $T_{1}^{\prime}$ or $T_{2}^{\prime}$, or a branching node of $c p\left(T^{0}\right)$ in $T_{1}^{\prime}$ or of $c p\left(R^{0}\right)$ in $T_{2}^{\prime}$. That is $K_{S}$ is the set of vertices that match $x_{1}$ in $T^{0}$ and $x_{2} \in R^{0}$, where $x_{1} \in K_{1}$ or $x_{2} \in K_{2}$.
By Step 3 of Procedure JoinNode, $K_{S}=K_{1}^{*}$.
- For any $x^{*}, y^{*}$ such that we have merged $P_{1}^{0}\left(x_{1}, y_{1}\right)$ and $P_{2}^{0}\left(x_{2}, y_{2}\right)$ in a path $J\left(x^{*}, y^{*}\right)$ in $S^{0}$, respecting the merging of $P_{1}\left(x^{*}, y^{*}\right)=P_{1}\left(x_{1}, y_{1}\right)$ and $P_{2}\left(x^{*}, y^{*}\right)=P_{2}\left(x_{2}, y_{2}\right)$ in a path $J^{\prime}\left(x^{*}, y^{*}\right)$ in $C_{1}^{*}$.
$J\left(x^{*}, y^{*}\right)=J_{1} \odot J_{h}$ such that the common ends between $J_{i}$ and $J_{i+1}$ are the vertices of $K_{S}$ in $J\left(x^{*}, y^{*}\right)$. By definition of a characteristic, to obtain $C_{S}, J\left(x^{*}, y^{*}\right)$ is replaced by $\operatorname{Contr}\left(J_{1}\right) \odot \operatorname{Contr}\left(J_{h}\right)$.
Let $J^{\prime}\left(x^{*}, y^{*}\right)=J_{1}^{\prime} \odot J_{h^{\prime}}^{\prime}$ such that the common ends between $J_{i}^{\prime}$ and $J_{i+1}^{\prime}$ are the vertices of $K_{1}^{*}$ in $J^{\prime}\left(x^{*}, y^{*}\right)$. Because, $J\left(x^{*}, y^{*}\right)$ has been built with respect to $J^{\prime}\left(x^{*}, y^{*}\right)$ and $K_{S}=K_{1}^{*}$, we have that $h=h^{\prime}$ and $J_{i}$ is the merging between two subpaths of $P_{1}^{0}\left(x_{1}, y_{1}\right)$ and $P_{2}^{0}\left(x_{2}, y_{2}\right)$ that is realized with respect to $J_{i}^{\prime}$.
By Step 4 of Procedure JoinNode replaces $J^{\prime}\left(x^{*}, y^{*}\right)$ by $\operatorname{Contr}\left(J_{1}^{\prime}\right) \odot \operatorname{Contr}\left(J_{h}^{\prime}\right)$.
Now let us put the pieces together. In $C_{1}^{*}, P_{1}\left(x_{1}, y_{1}\right)=\operatorname{Contr}\left(Q_{1}^{0}\right) \odot \operatorname{Contr}\left(Q_{p}^{0}\right)$ is merged with $P_{2}\left(x_{2}, y_{2}\right)=\operatorname{Contr}\left(Q_{1}^{\prime 0}\right) \odot \operatorname{Contr}\left(Q_{p^{\prime}}^{\prime 0}\right)$ using $H_{\Phi, \mathcal{P}}$ a function that is strictly increasing in both its coordinates, and the resulting path is $J^{\prime}\left(x^{*}, y^{*}\right)=J_{1}^{\prime} \odot J_{h}^{\prime}$. In $C_{S}, P_{1}^{0}\left(x_{1}, y_{1}\right)=Q_{1}^{0} \odot Q_{p}^{0}$ is merged with $P_{2}^{0}\left(x_{2}, y_{2}\right)=Q_{1}^{\prime 0} \odot Q_{p^{\prime}}^{\prime 0}$ using $H_{\Phi, \mathcal{P}}$ with respect to the merging between $P_{1}\left(x_{1}, y_{1}\right)$ and $P_{2}\left(x_{2}, y_{2}\right)$, and the resulting path is $J\left(x^{*}, y^{*}\right)=J_{1} \odot J_{h}$. By Lemma 3, Contr $\left(J_{1}^{\prime}\right) \odot \operatorname{Contr}\left(J_{h}^{\prime}\right)=\operatorname{Contr}\left(J_{1}\right) \odot \operatorname{Contr}\left(J_{h}\right)$. Therefore, $\left(\left(T_{1}^{*}, r_{1}^{*}, \sigma_{1}^{*}\right), \ell_{1}^{*}\right)=\left(\left(T_{S}, r_{S}, \sigma_{S}\right), \ell_{S}\right)$.
- It is easy to conclude by proving that dist $_{1}^{*}=\operatorname{dist}_{S}=\operatorname{dist}_{1}$, and that $\operatorname{branch}_{1}^{*}(t)=$ branch $_{S}(t)$ and out ${ }_{1}^{*}(t)=$ out $_{S}(t)$ for any $t \in K_{S}=K_{1}^{*}$ (because of Step 3 of Procedure JoinNode).


## E. $2 \quad F S C(v)$ is full

Let $\left(S^{0}, r_{S}^{0}, \sigma_{S}^{0}\right)$ be a $q$-branched partitioning-tree of $A_{v}=A_{u} \cup A_{w}$ with $\Phi$-width at most $k$. We need to prove that there is a characteristic $C^{*} \in F S C(v)$ such that $C^{*} \preceq$ $\operatorname{Char}\left(\left(S^{0}, r_{S}^{0}, \sigma_{S}^{0}\right), X_{v}\right)$.

Let $T^{0}$ be the subtree of $S^{0}$ the leaves of which map $A_{u}$ and $r^{0}$ be the vertex of $T^{0}$ that is closest to the root $r_{S}^{0}$. Let $R^{0}$ be the subtree of $S^{0}$ the leaves of which map $A_{w}$, and $r_{R}^{0}$ be the vertex of $R^{0}$ that is closest to the root $r_{S}^{0}$.

Note that either the distance between $r^{0}$ and $r_{S}^{0}$ is null, or the distance between $r_{R}^{0}$ and $r_{S}^{0}$ equals 0. W.l.o.g., we choose $r_{R}^{0}=r_{S}^{0}$. Moreover, the intersection between $T^{0}$ and $R^{0}$ is $S^{\prime}$ the subtree of $S^{0}$ the leaves of which map $X_{v}=A_{u} \cap A_{w}$. Therefore, $\left(S^{0}, r_{S}^{0}, \sigma_{S}^{0}\right)$ is a possible merging of $\left(T^{0}, r^{0}, \sigma^{0}\right)$ and $\left(R^{0}, r_{R}^{0}, \sigma_{R}^{0}\right)$ in $X_{v}$.

Because $F S C(u)$ is a full set of characteristics, there is $C \in F S C(u)$ with $C \preceq C_{1}=$ $\operatorname{Char}\left(\left(T^{0}, r^{0}, \sigma^{0}\right), X_{u}\right)$. Similarly, there is $C^{\prime} \in F S C(w)$ with $C^{\prime} \preceq C_{2}=\operatorname{Char}\left(\left(R^{0}, r_{R}^{0}, \sigma_{R}^{0}\right), X_{w}\right)$.

In the previous subsection, we proved that there is an execution of Procedure JoinNode on $C_{1}$ and $C_{2}$ that computes $C_{1}^{*}=\operatorname{Char}\left(\left(S^{0}, r_{S}^{0}, \sigma_{S}^{0}\right), X_{v}\right)$. We prove that the corresponding execution of Procedure JoinNode on $C$ and $C^{\prime}$ (i.e., an execution of Procedure JoinNode that respects the matchings between $C_{1}$ and $C_{2}$ ) computes $C^{*} \preceq C_{1}^{*}$.

Then, the result essentially follows Lemma 3.

## F Partition functions and Width parameters

In this section, we first derive several width-parameters in terms of partition functions. Then, we prove that these partition functions satisfy Lemmata 1 and 2. Together with Theorem 1, this allow to prove Theorem 2.

## F. 1 The considered parameters

Recall that in Section 3, we already define the treewidth (resp., pathwidth and $q$-branched treewidth) in terms of the partition function $\delta$ that associates to any partition $\mathcal{X}=\left\{E_{1}, \cdots, E_{r}\right\}$ of $E$, the number of the vertices of $G$ that are incident to edges in $E_{i}$ and $E_{j}$, with $i \neq j$.

The partition function $\max \delta$-width is the function that assigns $\max _{i \leq n} \delta\left(E_{i}, E \backslash E_{i}\right)$ to any partition $\left(E_{1}, \cdots, E_{n}\right)$ of $E$. The branchwidth and the linear-width of a graph may be expressed in terms of this partition function:

- branchwidth [BT97]: By definition, the branchwidth of $G$, denoted by $b w(G)$, is at most $k \geq 1$ if and only if there is a partitioning-tree $(T, \sigma)$ of $E$ with $\max \delta$-width at most $k$ and such that the internal vertices of $T$ have degree three.
- linearwidth [BT04]: The linear-width of $G$, denoted by $l w(G)$ is defined as the smallest integer $k$ such that $E$ can be arranged in a linear ordering $\left(e_{1}, \cdots, e_{m}\right)$ such that for every $i=1, \cdots, m-1$ there are at most $k$ vertices both incident to an edge that belongs to $\left\{e_{1}, \cdots, e_{i}\right\}$ and to an edge in $\left\{e_{i+1}, \cdots, e_{m}\right\}$. The linearwidth of $G$ is at most $k \geq 2$ if and only if there is a partitioning-tree $(T, \sigma)$ of $E$ with max $\delta$ width at most $k$, such that the internal vertices of $T$ have degree three, and $(T, \sigma)$ is 0 -branched. This result easily follows from the trivial correspondence between such a partitioning-tree of $E$ and an ordering of $E$.

Let $E d g e \delta$ be the function that assigns, for any partition $\mathcal{X}=\left\{V_{1}, \cdots, V_{r}\right\}$ of $V$, the cardinal of the set of the edges of $G$ that are incident to vertices in $V_{i}$ and $V_{j}$, with $i \neq j$. The partition function $\max E d g e \delta$-width is the function that assigns $\max _{i \leq n} \operatorname{Edge} \delta\left(V_{i}, V \backslash V_{i}\right)$ to any partition $\left(V_{1}, \cdots, V_{n}\right)$ of $V$. The partition function 3-maxEdge $\delta$-width is the function that assigns $\max \left\{\operatorname{Edge} \delta\left(V_{1}, V \backslash V_{1}\right), \operatorname{Edge} \delta\left(V_{2}, V \backslash V_{2}\right)\right\}$ to any partition $\left(V_{1}, V_{2}, V_{3}\right)$ of $V$, with $\left|V_{3}\right|=1$. The carvingwidth and the cutwidth of a graph may be expressed in terms of these partition functions:

- carvingwidth [ST94, TSB00]: By definition, the carwingwidth of $G, \operatorname{carw}(G)$, is at most $k \geq 1$ if and only if there is a partitioning-tree of $V$ with maxEdge $\delta$-width at most $k$, and such that the internal vertices of $T$ have degree three.
- cutwidth [TSB00]: The cutwidth of $G$, denoted by $c w(G)$, is defined as the smallest integer $k$ such that $V$ can be arranged in a linear ordering $\left(v_{1}, \cdots, v_{n}\right)$ such that for every $i=1, \cdots, n-1$ there are at most $k$ edges both incident to a vertex that belongs to $\left\{v_{1}, \cdots, v_{i}\right\}$ and to a vertex in $\left\{v_{i+1}, \cdots, v_{n}\right\}$. The cutwidth of $G$ is at most $k \geq 1$ if and only if there is a partitioning-tree $(T, \sigma)$ of $V$ with 3 -max Edge $\delta$-width at most $k$, and $(T, \sigma)$ is 0 -branched. This result easily follows from the trivial correspondence between such a partitioning-tree of $V$ and an ordering of $V$.


## F. 2 Compatibility of the partition functions

In this section, we present some ideas in order to show the compatibility of the above mentioned partition functions with the nice tree decomposition.

## F.2.1 Partition functions Edge $\delta$ and maxEdge $\delta$

It is easy to see that the partition function Edge $\delta$ behaves as the $\delta$ function but the role of vertices and edges being reversed. In the following, $E d g e \Delta$ is the function that assigns, for any partition $\mathcal{X}=\left\{V_{1}, \cdots, V_{r}\right\}$ of $V$, the set of the edges of $G$ that are incident to vertices in $V_{i}$ and $V_{j}$, with $i \neq j$.

First note that any nice tree-decomposition $(T, \mathcal{Y})$ of $G$ is a nice decomposition of $V$. To prove that $(T, \mathcal{Y})$ is compatible with the partition function $E d g e \delta$, we follow the proof of Lemma 2 in Section 3. For this purpose, the functions $F_{E d g e \delta}$ and $H_{E d g e \delta}$ are defined as follows.

- Let $x$ be an integer, $\mathcal{P}$ be a partition of a subset $V^{\prime}$ of $V$ and a vertex $v \in V^{\prime}$. Then, $F_{E d g e \delta}(x, \mathcal{P}, v)=x+\mid\left\{e \in E \mid v \in e\right.$ and $\left.e \in \operatorname{Edge} \Delta(\mathcal{P}) \backslash \operatorname{Edge} \Delta\left(\mathcal{P} \cap\left(V^{\prime} \backslash\{v\}\right)\right)\right\} \mid$.
- Let $x$ and $y$ be two integers, and let $\mathcal{P}$ be a partition of a subset $V^{\prime}$ of $V$. Then, $H_{E d g e \delta}(x, y, \mathcal{P})=x+y-\operatorname{Edge} \delta(\mathcal{P})$.

Therefore, the partition function Edge $\delta$ is compatible with any nice tree-decomposition. To prove the compatibilty of the partition function $\max E d g e \delta$ with any nice tree-decomposition, we use the framework described below.

## F.2.2 Partition function $\max f$ of a compatible partition function $f$

In this section we prove that, for any partition function $f$ compatible with a nice decomposition of some set $A$, the partition function $\max f$ defined as follows is also compatible. For technicality, we however need to slightly modify Procedures IntroduceNode and JoinNode in this case. In particular, this section allows to prove that Theorem 2 is valid for the branchwidth, linearwidth, carwingwidth and cutwidth of a graph.

Let $f$ be any partition function and let max $f$ be the partition function that associates $\max _{i \leq n} f\left(A_{i}, E \backslash A_{i}\right)$ to any partition $\left(A_{1}, \cdots, A_{n}\right)$ of $A$. Because $f$ is compatible with any nice decomposition of $A$, there exist two function $F_{f}$ and $H_{f}$ that satisfy the properties defining the notion of compatibility. With the notation of Section, we must have

$$
\begin{aligned}
& f_{A_{v}}(\mathcal{P})=F_{f}\left(f_{A_{u}}\left(\mathcal{P} \cap A_{u}\right), \mathcal{P} \cap X_{v}, A_{v} \backslash A_{u}\right), \text { and } \\
& f_{A_{v}}(\mathcal{P})=H_{f}\left(f_{A_{u}}\left(\mathcal{P} \cap A_{u}\right), f_{A_{w}}\left(\mathcal{P} \cap A_{w}\right), \mathcal{P} \cap X_{v}\right) .
\end{aligned}
$$

The key point is that if $\mathcal{P}$ is a bipartition of some set $A$, then $f_{A}(\mathcal{P})=\max f_{A}(\mathcal{P})$. Therefore, when considering a bipartition, the functions $F_{\operatorname{maxf}}$ and $H_{\text {maxf }}$ can be defined similarly to $F_{f}$ and $H_{f}$.

Now, let us consider Step 3 of Procedure Introduce Node. The first instruction consists in updating the weight of the edges of the characteristic of $A_{v}$. Since an edge of a characteristic of $A_{v}$ corresponds to a bipartition of $A_{v}$, by the remark above, we can use the function $F_{f}$. Then, the second instruction consists in updating the weight of the internal vertices of the characteristic of $A_{v}$. It is easy to see that, for any vertex $x$ of the characteristic, it is sufficient to set the weight of $x$ to the maximum of its current weight (the weight it had in the characteristic of $A_{u}$ ) and the weight of its incident edges.

In Step 2 of Procedure JoinNode, we proceed similarly. When two edges of the paths $P_{T}$ and $P_{S}$ are merged together, they correspond to a bipartition of $A_{v}$ and the function $H_{f}$ can be used. When, the procedure merges a vertex with weight $x$ of one path with an edge of the other path, the weight of the resulting vertex is set to the maximum between $x$ and the weight of the incident edges. Finally, when the procedure merges a vertex with weight $x$ of $P_{T}$ with a vertex with weight $y$ of $P_{S}$, the weight of the resulting vertex is set to the maximum between $x, y$ and the weight of the incident edges.

Unité de recherche INRIA Sophia Antipolis
2004, route des Lucioles - BP 93-06902 Sophia Antipolis Cedex (France)
Unité de recherche INRIA Futurs : Parc Club Orsay Université - ZAC des Vignes
4, rue Jacques Monod - 91893 ORSAY Cedex (France)
Unité de recherche INRIA Lorraine : LORIA, Technopôle de Nancy-Brabois - Campus scientifique 615, rue du Jardin Botanique - BP 101-54602 Villers-lès-Nancy Cedex (France)
Unité de recherche INRIA Rennes : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex (France)
Unité de recherche INRIA Rhône-Alpes : 655, avenue de l'Europe - 38334 Montbonnot Saint-Ismier (France) Unité de recherche INRIA Rocquencourt : Domaine de Voluceau - Rocquencourt - BP 105-78153 Le Chesnay Cedex (France)


[^0]:    This work was partially funded by the support of CONICYT via Anillo en Redes ACT08, and of the European projects 1ST FET AEOLUS and COST 293 GRAAL.

    * LIFO, ENSI-Bourges, Université d'Orléans, Bourges, France. \{pascal.berthome@ensi-bourges.fr@sophia.inria.fr
    $\dagger$ MASCOTTE, INRIA, I3S, CNRS, UNS, Sophia Antipolis, France. \{nicolas.nisse@sophia.inria.fr

