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Abstract: Synchronous reactive formalisms form an appealing progrsag model
for embedded system and Systems-on-Chip (SoC) design. ofieglsynchronous
programs onto asynchronous distributed execution plaias an important issue, and
has been the topic of substantial research in the past. Tiheipthat signal/event ab-
sence in a reaction cannot be taken as granted because ofurdcation latencies. A
simple solution consists in systematically sending sigiakence notifications, but it is
unduly expensive at run-time. Sufficient properties havenh@roposed defining sub-
sets of synchronous programs where asynchronous evalusfaithful to their origi-
nal specification. In essence they aim at preserving stresnpatationmonotonicity
in the original formulation of Kahn Network principles, oonfluenceas coined by
R. Milner. Some of these criteria may become quite involvledthe current paper
we show a precise technical result: If equivalence betwbkersynchronous and the
asynchronous semantics is congruence with respect tolglazahstructors, then the
"good” criterion amounts to a single step "diamond closyvedperty, with indepen-
dent behaviors converging to the union of their effectshtiudd be remembered here
that thelocal individual behaviors of components may themselves corsianultane-
ous events, thereby allowing complex synchronous modeimiis lower layer.
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Execution deterministe de programmes synchrones
dans un environnement asynchrone

Une condition compositionnelle i@cessaire et suffisante

Résune : Les formalismes réactives synchrones fournissent unefecaapté a la
programmation de systemes embarqués et de systemeaaas. pl'implantation de
programmes synchrones sur plates-formes d’exécutionchsynes, potentiellement
distribuées, est donc un probleme important, qui a €&ja’objet d'importants ef-
forts de recherche. Sur de telles plates-formes, les latenon-bornées des commu-
nications font que I'absence d’un signal/événement damsréaction ne peut pas étre
testée. Pour simplement résoudre ce probléme, on pejouis envoyer les notifica-
tions d’absence, mais cela peut s’avérer tres colitenr. reilleure solution consiste
dans la définition de conditions assurant que I'évaluedi®ynchrone d’'un programme
synchrone préserve la semantique synchrone initialgpricipe, ces conditions suf-
fisantes visent a assureri@notoniede la fonction d’entrée/sortie de I'implantation
asynchrone (dans la formulation de G. Kahn) , oesafluencddans la formulation
de R. Miller). Dans cet article, nous proposons un réstattnique: Si I'équivalence
entre la sémantique synchrone et celle asynchrone eshigruwence par rapport aux
opérateurs de composition paralléle, alors un crit@eersaire et suffissant est donné
par une simple “propriété de losange” ou les comportémiadépendants convergent
vers l'union de leurs effets.

Mots-clés : spécification synchrone, implantation asynchrone, nmactliexécution,
déterminisme, principe de Kahn, monotonie, confluenesyd¢hronisation, condition
nécessaire et suffisante



Deterministic desynchronization 3

1 Introduction

Synchronous reactive formalisni$[8, 3] are modeling and@mming languages used
in the specification and analysis of safety-critical emleebislystems. They comprise
(synchronous) concurrency features, and are based on thly Mechine paradigm:
Input signals can occur from the environment, possibly #immeously, at the pace of a
givenglobal clock Output signals and state changes are then computed blefonext
clock tick, grouped as oretomic reaction Because common computation instants are
well-defined, so is the notion of signabsencet a given instant. Reaction to absence
is allowed,i.e,, a change can be caused by the absence of a signal on a new clock
tick. Since componentinputs may become local signals imgefeconcurrent system,
absentvalues may have to be computed and propagated, to impleroemicty the
synchronous semantics.

When an asynchronous implementation is meant, where ppsidtributed com-
ponents communicate via message passing, the expliciagadion of allabsentval-
ues may clog the system to a certain extent. A natural queatises:when can one
dispose of such "absent signal” communications?

Sufficient conditions, known gsveak) endochronf?, [7,[13], have been introduced
in the past to figure when thebsentvalues can be replaced in the implementation by
actual absence of messages without affectingatsectnessaand determinism Weak
endochrony determines that compound reactions that asremy synchronous can
be split into independent smaller reactions that are aspnctusly feasible in aonflu-
entway (as coined by R. MilnefT12]), so that the first one doesdistard the second.
This is also linked to the Kahn principles for networksl[Mhere only internal choice
is allowed to ensure that overall lack of confluence cannatéhesed by input signal
speed variations.

Contribution  We formally define a general execution machine for synchusmoo-
grams over an asynchronous environment. Execution is lmasét) transforming the
explicit “absent” values of the synchronous model into atabsence of messages in
the asynchronous environment and (2) triggering a syncusmeaction as soon as
enough inputs have arrived through the asynchronous comeation lines.

We then characterize the synchronous programs give mooasand deterministic
asynchronous systems (in the sense of the Kahn processrkejwdien run over our
execution machine.

Most important, we also determine that there exists a unigeatest sub-class of
such programs that is closed under synchronous compasiktom characterization is
given by a simple diamond closure property.

This simple characterization and the unicity result aredrtgnt, because they offer
a good basis for the development of similar criteria at threllef various synchronous
languages and formalisms (or the definition of languagesgibwhere some restricted
form of concurrency ensures this property by construction)

Our characterization is also important because it cormedpto a very general exe-
cution mechanism covering current practice in embedde@isydesign. Thus, it fixes
theoretical limits to current implementation techniques.

Outline The remainder of the paper is organized as follows: Selidefihes our
model of synchronous specification, the desired Kahn-l#ggmehronous implementa-
tions, gives a short motivation, and reviews related workct®n[3 defines our im-
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4 Potop, De Simone & Sorel

plementation technique, which includes a definition of theded execution machines,
with full detail. In Sectiof}# we specialize onto the choskss of implementations
the desired Kahn-like correctness properties. Seflionrivetethe main result of the
paper. We conclude in Sectibh Bue to space limitations, all proofs are grouped in
the appendix.

2 Basic Notions

In this section, we introduce the concepts and formal dedimst that will be used
throughout the paper, and we intuitively define our problem.

2.1 General notations

Given a setS, we denote withs* the set of all finite words ove$, and withS“ the set
of all finite and infinite words ove$§. We denote with the empty sequence, and with
h[i] the i*" value of a sequende, fori > 1 (instead of a single index we also allow
the use of aangel..n to identify a sub-sequence). Sequences are partially edder
by the prefix orde<. We say that two sequencks, ho € S“ are non-contradictory,
denotedh; < hy When one is a prefix of the other (in any order). We denote wijth
respectively\ the least upper bound and greatest lower bound operatarseddy=.
The concatenation of two sequenéasand i, is denotedh.hs (h; must be finite).
Whenh; < ho we denote withhs \ he the sequence such thiat.(he \ h1) = he. Any
increasing sequencé; )32, of S has a limitlim; . 5.

The prefix order on individua$;“ induces component-wise a prefix order on the
product se{];_, S;“. Similarly, thex relation, and the/, A, concatenation and limit
operators are extended component-wise on the product set.

2.2 Synchronous Mealy Machine

The various synchronous formalismi$ [8] are used to deveglepifications that can be
interpreted adinite-state incomplete synchronous Mealy machifiéss is the model

we use throughout the paper to represent synchropmggamsor hardware compo-

nents

In a synchronous Mealy machine, the transitions are labslddreactions An
execution (tracels a sequence of reactions indexed bydlabal clock

A reaction is a valuation of theput and output signalsf the synchronous ma-
chine. All signals are typed. We denote withy the domain of a signa$. Not all
signals need to have a value in a reaction, to model casegwhér parts of the mod-
ule compute. We will say that a signalpsesentin a reaction when it has a value in
Ds. Otherwise, we say that it isbsent Absence is simply represented with a new
value L, which is appended to all domaifi®; = Dg U { L }. With this convention, a
reaction is a valuation cll the signalsS of the module in their extended domaiRg .
When we are only interested in the presence or absence afia Sigwe use a special
domainD- that has only one valué (present).

We say that two reactiong andr, arenon-contradictorydenoted; < r5, when
there exists no signa that is present, but different in the two reactiangz r1(S) #
ro(S) # L. Thesupportof a reaction-, denotedsupp(r), is the set of present signals.
Given a set of signal¥’, we denote withR (X) the set of all reactions ovef. Given

INRIA



Deterministic desynchronization 5

r € R(X) and a set of signalX’, we denote with- |x the image of- throughX’
(which equals- on X N X’ and L on X'\ X).

To representreactions in a compact form, we usetdike notatiorand omit signals
with value L. For instance, the reaction associating 14t0T to B, and L to C is
represented withkc A =1,B =T >. The delimiters can be dropped if there is no
confusion. On non-contradictory reactions we define themiy), intersection (),
and difference\() operators, with their natural meanings from set theory.ifrstance,
<A=1,B=T>U<A=1,C=7T>=<A=1,B=T,C=17>.

When representing a reactioypwe shall usually separate the valuations of the input
and output signals = i/o, wherei is the restriction of- on input signals, and is the
restriction on output signals.

Definition 1 (incomplete Mealy machine) Anincomplete synchronous Mealy machine
isatupleX = (Z,0,S8,so,7), whereZ and O are the finite and disjoint sets of in-
put and output signalssS is the set of statessy € S is the initial state, andZl :

S X R(Z) —o— S x R(O) is the partial transition function.

Using partial transition functions is common in synchrossystem design, and amounts
to defining the admissible behaviors of both the system anehitironment. Note that
the functional definition of the transitions implideterminisrﬂ a property we require
for all synchronous modules throughout this paper.

We will write s L;> g ors e, s instead of7 (s,i) = (s', 0) to represent

system transitions. We denote withracess (s) C R(Z U O)“ the set of traces of the
synchronous modul® starting ins € S. The determinism of implies that for all
finite tracet € Tracesy (s) we can define the (unique) destination state, denotedn

this case we also writs —=> 5.t . We denoteRSS() = {so.t | t € Tracess(so)}-

A transition g i> s Is called aninput-less transitionf i = L. A Mealy ma-

chine carstutterin states if the loopbackstuttering transition g Il g assigningL

to all signals is defined. In this case, we will say thas a stuttering state We say
that a machine istuttering-invariantwhen it can stutter in any state. Such a machine
can spend time (reactions) in any state doing nothéng. (vaiting to synchronize with
other machines). Given a trate Tracesx(s), we shall denote with € Tracess(s)

its normal formwith no stuttering transitions.

To simplify subsequent definitions and proofs and focus ersyimchronous/asynchronous
interface, we shall restrict our investigation to Mealy imaesX. that have no infinite
sequence of input-less transitions different from thetstirtg ones. However, our re-
sults can be extended to deal with infinite sequences of {lgssttransitions.

2.3 Kahn process networks

In 1974, Gilles Kahn wrote his seminal pagder[10] on what iswn today a&ahn pro-
cess networks (KPNIHe introduced a simple language for defining distributesesys
of communicating sequential processes, and fully spedifiedinderlying communi-
cation and execution mechanisms.

In a KPN, interprocess communication is done throngéssage passinglong
channelgasynchronous lossless FIFOs). When reading a channelcagwis blocked

1At most one transition for given state and input. This regmient means that we cannot model sensors.
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6 Potop, De Simone & Sorel

until a message is available. There is no block on writingcé&sent, a message reaches
its destination in a finite (but unbounded) time. On the nemeénd, the message re-
mains on the channel until itis read. Any number of message$e sent before one is
read (the channels are unbounded). No other communicat&mehronization mech-
anism exists between processes (which run in parallel,casgnously). In particular,
time is not used to make decisions or trigger computations.

The simple model of the KPN proved to be an excellent basighfcompositional
modeling of deterministic systems that operate infiniteding limited resource$T11].
Variants or extensions of the original model are currenslydiin a variety of academic
and industrial settings.

2.3.1 Formalization

The formal analysis of a KPN is based on the representatiead process asstream
function convertinginput historiesinto output histories Formally, a Kahn process
network has a set of FIFO channélsand a set of processés

Given a channeat € C, its domainD. is the set of values that can be transmitted
as messages overGiven an execution of the KPN, théstory Hist(c) of a channet
is the sequence of all messages that are placeddoming the execution. For a finite
execution Hist(c) € D.”. For an infinite executiontist(c) € D.*.

Each procesg € P has zero or more input channejisjf € C1<j<nf
and zero or more output Channetz{ € C,1 < j < mf. Given an execution of,

the input history off is (Hist(cif));?il € H’;il D_.;* and theoutput history off is
N J
mf w
(Hist(col))7y € TTI2, D, 0%

Given thatf is sequentiétanddeterministicits behavior can be defined a$umc-
tion from input histories to output histories:

'ILf
f: H D,
j=1

We shall call this function thetream functiorof f, and denote it with the process
name.

<

m

‘ w N D ; w
. CO].
Jj=1

(S

2.3.2 The Kahn principle
All the stream functions associated with Kahn processes are

« Monotonousin the sense ok, meaning that giving more messages on the input
channels cannot result in less output messages.

« Continuousin the sense of the limit operator, meaning that for any eage of
. . . f
input historiesh, € ]_[;7:1 D,k > 1suchthatimy ... hy = h we also have
J

1im;€%00 f(hk) = f(h)

The main contribution of Kahn’s paper is thahn principle which states that the
monotony and continuity of the individual Kahn processeglies the monotony and
continuity of the stream function associated with the wipotecess network. Moreover,
the stream function associated with the KPN can be compw@didealeast fixed point
of the system of equations:

INRIA



Deterministic desynchronization 7

' = f((Hist(cil))nl,) forall f € P

Jj=

(Hist(cof))}’;

which can be computed iteratively. The Kahn principle thiveg the means for con-
structing in a compositional fashion deterministic system

2.4 Motivation

The notions of monotony and continuity are of particular artpnce for us, because
they are not restricted to the language defined by Kahn, needqoential programs.
Provided we ensure the monotony and continuity of an asymdus component, we
can apply the Kahn principle.

In this paper, we address the construction of determinggtibally asynchronous
systems starting from synchronous specificatidfe. focus on the problem of con-
structing one asynchronous process with monotonous and ctinuous stream func-
tion from one concurrent synchronous module The Kahn principle can then be used
to compose such asynchronous processes into a determgyistem.

This paper does not deal with global correctness propastiaahn process net-
work, such as the absence of overflows or deadlocks, nor hétkvalys of implement-
ing and ensuring the fairness of the underlying physical mating architecture. It
does not cover, either, the related problem of preserviagymchronous composition
semantics in the distributed implementation of a synchusrspecification. We only
focus here on the interface between the synchronous andyhetaonous domains of
a single process.

2.5 Related work

Our results are closest related to results on the implerientaf synchronous lan-

guages and formalisms for execution in an asynchronous@mient. The standard
simulators generated for Estef@l[4] and Lustre[9] take approach of reading and
sending the status of all inputs and outputs at all reactibhe same approach is taken
in the theory oflatency-insensitive systefBkto ensure that the initial synchronous
semantics is preserved after the synchronous commumiciaties are replaced with

FIFOs of unspecified latency.

The development of the Signal/Polychrony language has teax series of re-
sults on the (distributed) asynchronous implementati@syinchronous specifications.
Several criteria have been proposed to identify prograatgjiie monotonous and con-
tinuous implementations. We cite here (1) the first propaséerion endochron{?],
which did not allow concurrent systems and was non-comiposit, (2) the composi-
tional weak endochrorft3], which generalizes to a synchronous setting the daksi
theory of Mazurkiewicz traces, and (3) the easily-cheokabiteria derived to allow
the analysis of Signal/Polychrony prograrms| [15, 1].

Our work also seems closely related to results concerniegdésign of asyn-
chronous|[[B] and burst-modg16] circuits. Our monotonyaaans, in particular, can
be seen as a speed independence property guaranteeingreesseand determinism
regardless of the relative speeds of different computatiom communications.

3 GALS Implementation Technique

In this section we define our implementation technique: énntation structure, sig-
nal absence encoding, and ASAP execution policy.

RR n° 6656



8 Potop, De Simone & Sorel

synchronous

module
PaN
asynchronou T asynchronous
input output
clock

GALS wrapper = I/O control + clock synthesis

Figure 1: Desired GALS implementation structure. The syocsbus module can be
software (a reaction function) or hardware (a circuit).

3.1 Target implementation structure

We are targeting implementations having the structureategin Fig[1, which are best
described aglobally asynchronous, locally synchronous (GALS)the core stands
the synchronous module, which is driven byetecution machinéalso calledGALS
wrappel). The synchronous module can be a sequential reactionéum(@t software),
or a synchronous digital circuit (in hardware). The exemutnachine drives the syn-
chronous module in the asynchronous framework defined aipperforming:

» Reaction triggering. The successive reactions of the synchronous module are
triggered, using a clock generation mechanism (in synasusrhardware), or
successive calls of the reaction function (in software).

« 1/O handling. Drive the communication with both the asynchronous environ
ment (message passing) and the synchronous module (hasltaled memory,
synchronized with the reaction clock), and realize the sgaey transformations
between the twog.g.signal absence encoding, if any).

This general pattern covers a large class of implementtion

3.2 Signal absence encoding

The main issue in specifying asynchronous components ssinghronous specifica-
tions is the treatment afignal absenceln the synchronous model, the absence of a
signal in a given reaction can be sensed and tested in ordeake decisions. It is
a specialabsentvalue, denotedL.. In the considered asynchronous implementation
model, the absence of a message on a channel cannot be setessdah

When transforming the synchronous specification into aajlglasynchronous im-
plementation, the sequences of present and absent valiechrsignal are mapped
into sequences of messages sent or received on the asd@oiatmunication channels.
To simplify the problem, we assume one asynchronous FIF@retds associated with
each signal of the synchronous model.

We have to define the encoding of signal values with messagelsannels. When
a signalS has valuev # | during a reaction, the most natural encoding associates
one message carrying valueon the corresponding channel. The message is sent or
received, depending on wheth8ris an output or an input signal. We assume this
encoding throughout the paper.

Things are more complicated fabsen{(_L) values. The most natural solution is to
represent them with actual message absence (i.e. no medsalyeUnfortunately, for-

INRIA



Deterministic desynchronization 9

getting all absence information does not allow the constsaof deterministic glob-
ally asynchronous implementations for general synchrespecifications. Consider,
for instance, the Esterel program of Hig. 2. The program @war the arrival of at
least one of its two input signals. KX arrives alone, then the program terminates by
emitting B. If C arrives alone or ifA andC arrive at the same time, then the program
terminates by emittin@.

module PREEMPT:

. A/B
input A,C ; output B,D ;
abort /c/,x
await immediate A ; emit B /{_start ———done
when immediate C do emit D end W
end module

Figure 2: A small Esteréll4] program (left), and its Mealy chane representation
(right)

Assume thatA arrives in thestart state. Then, we need to know whetl@is
present or absent, to decide whichB®for D is emitted. We will say that the pro-
gramreacts to signal absencéecause the presence or absenc€ pfust be tested.
An asynchronous implementation BREEMPheeds absence information in order to
deterministically decide which transition to trigger imt&start. To generate deter-
ministic asynchronous implementations for synchronooggams such aBREEMPT
messages must be added to represent the necessary absemation. This can be
done either by transmittingbsent(_L) values through messages, or by adding other
synchronization messages on new or already existent comatiom channels.

In this paper, we determine which synchronous programsdgterministic imple-
mentations while encoding absent values with message edsen

3.3 ASAP reaction triggering

A second assumption we make is that the asynchronous wragugrs a synchronous
reaction as soon as its inputs are available on the inputnetsn

process NOABSENCE1=(?boolean A, B, C;
I event X, Y, Z)

(I X "= when A=true "= when B=true
| Y "= when B=false "= when C=false
| Z "= when A=false "= when C=true |)

A=false,C=true/Z=T
Y
o2 =
B=false,C=false/Y=T AQ

A=true,B=true/X=T

Figure 3: A small Signal/Polychrori\{[7] program (left), aitel Mealy machine repre-
sentation (right)

The ASAP reaction triggering policy means that a reactioncan be triggered

whenever the present valuesioére all available as messages on the corresponding
input FIFOs. Once this condition is met, the actual traosittan be triggered in a

RR n° 6656



10 Potop, De Simone & Sorel

variety of ways, without affecting the functionality andteleninism of the implemen-
tation: by some external clock (periodic or not), when eroirgput is available to
trigger a non-stuttering reaction, etc.

We exemplify on the program of Fifll 3. One possible asynabuerexecution is
given in Fig[A. It corresponds to the case where reactiangriggered by an external
clock. The input FIFO associated with sigr@is the first to deliver a value (false).

C=false B=true A=true A=false B=false
\ \ \ / \ \ / fime
reaction 1 reaction 2 reaction 3
A=true,B=true/X=T / B=false,C=false/YT

Figure 4: Incremental ASAP asynchronous execution of NOBRSE1

Then, new values arrive fd8 and A. When a reaction is triggered by the external
clock, the only non-stuttering fireable reactionds= true, B = true/X = T. This
reaction is performed is emitted, the first messages on FIF®andB are consumed
(new messages can arrive), but the message on ElRgains unconsumed. After a
new value arrives foA, a new reaction is triggered by the external clock. Given the
available inputs, the only fireable transition_is which changes nothing. The third
reaction isB = false,C' = false/Y = T.

A reaction is performed as soon as its inputs are availaldek activation time.
This choice is natural, as it minimizes the number of clockley needed to complete
a computation. We shall say that reactions are exeagewon as possible (ASAP)

We assume that no computation cycle is triggered when néioeds fireable given
the current input. This assumption can be satisfied eitheutgh constraints on the
synchronous modulee(g. stuttering-invariant modules always have the fireable stut
tering reaction), or by employing specific clock triggeripglicies, such apausible

clockind).

3.3.1 Non-determinism. Fairness.

The example above has the nice property that at most onetatiarsg reaction is
fireable at all instants, because the non-stuttering @axtre mutually contradictory.
Thus, no ambiguity exists as to which transition should lygared at clock activation
time.

However, simple Mealy machines do not satisfy this hypagheSonsider the ex-
ample of Fig[k. When values arrive for bathand B between two clock activations,

A=a,B=b/C=a,D=b
process PAR = (? boolean A, B ; m
! boolean C, D ;) Q

(C=A|D:=B) Bb/DbﬁAg

A=a/C=a

Figure 5: A simple parallel composition (left), and its Mgahachine representation
(right)

the 3 non-stuttering transitions become fireable. To coueh $ases, we allow the

INRIA



Deterministic desynchronization 11

non-deterministic triggering of any one of the fireable t@aws (including the stutter-
ing one).

Non-determinism implies the need ffairness to prevent starvation. We require
our ASAP execution machine to satisfy the following fairmesnstraint: A state can-

not be traversed infinitely many times during an executiath wansition s AN s
fireable, and without the transition being taken at leaseoiitis models the assump-
tion that choice between fireable transitions in a statendaoen (so that the probability
of taking a transition that is fireable infinitely many timesli.

The non-deterministic modeling of the execution machiressegalizes determinis-
tic execution rules, such as the onelafl[14] and imposes nsti@nt on the executed
synchronous module. The results we derive in this generdiefrao apply to the de-
terministic cases, too.

3.3.2 Causality.

Note that the execution machine we defined enforces thehratatl inputs must arrive
before all outputs in each reaction. This may restrict thechyonous causality of the
original synchronous program, but the approach corresptmexisting practice in
synchronous program implementation.

4 Implementation behavior and correctness

In this section we formally model the behavior of GALS implkemtations and special-
ize at their level the Kahn-like correctness properties wmeet. To take into account
the fairness hypothesis in a simple way, we cover here the aifinite executions.
After determining the needed criteria in the finite case, Weslow in Sectio 5K that
they also imply monotony and continuity in the case of inéirékecutions.

4.1 Desynchronization operator

Given the synchronous machite= (Z, 0, S, T), we will denote with[X] its GALS
implementation. In the absence of a time reference, we userhkds to model the
sequences of messages arriving to or emittethyrom/to the asynchronous environ-
ment.

The encoding of signal absence with actual absence of mesgagepresented us-
ing thedesynchronization operatdi ), which converts synchronous traces (sequences
of reactions) into asynchronous histories by forgettingalues. On individual sig-
nals/channels:

e,ifv=_1lorv=ce
5(): DE” = Ds®  S(v) =< wv,ifveDg
O(w)d(w), if v =nw

For a set of signals/channels §() : R(X)* — [[gcx Ds*, 6(t)(S) = d(t |{sy)-

4.2 Behavior

Consider the implementatioft] of X, a states € S, andx € [[¢.; Ds" a finite
input history. The fairness hypothesis considered on tleewion machine ensures
that [X] will not stutter indefinitely in a state when some other titims is fireable
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12 Potop, De Simone & Sorel

under available input. Also recall the hypothesis that rfmite sequence of input-
less transitions exists iR (modulo stuttering). We deduce that any fair execution of
[X] with finite input x will consume and produce all its inputs and outputs in a finite
number of transitions, leading the synchronous module tai@ svhere it can only
stutter (no transition allowing consumption of remaininguts, if any, or production
of new outputs).

Recall that executions gE] are traces oE. Then, we can represent the behavior
of [X] as:

X]: 8 x H Ds® — P (Tracess(s))
SeT

associating to each stateand finite inputy the set[X](x, s) of all finite tracest €
Tracess.(s) with §(t) |z= x which are maximal in their stuttering-free normal form
t when compared to the other traces feasible undefhis definition means that we
only represent maximal behaviors, and we also overlookiteffair traces obtained by
appending an infinite sequence of stuttering transitiorm®of[X](x, s).

4.3 Correctness

Our objective is to obtain implementatiofis] that are representable as monotonous
and continuous stream functions in the sense of Kahn. Tevakpresentation as a
stream function, all the behaviors of the implementatigar{sg in the initial state)
for given input history must read and produce the same immdsoutputs. Formally:

StreamFunc :Vs € RSS(X) : Vxz € H Ds*:3dx € H Dg* :Vt € [X](xz,5) : 0(t) = x
Sez SezUO

When this property is satisfied, we can define stream functiorof [X] in states €
RSS(X) by SFs .(xz) = X |o. Property StreamFunc also implies thaFs. () is
monotonous, as more input invariably results in more output

In addition to this, we will require our implementations te $tate deterministic
meaning that all traces ifX](xz, so) have the same destination state. Formally:

StateDeterm : Vs € RSS(X) : Vxz € H Ds™ : Vt1,ta € [Z](x, 8) : 8.t1 = s.ta.
Sez

We denote witiNonComphe class of synchronous machines satisfying Propertieai®t
Func and StateDeterm.

5 Criteria for correct implementation

Properties StreamFunc and StateDeterm charactddn€omgn a way that does not
offer good support to automated analysis (due to quaniificaver input histories). In
this section, we derive simpler, equivalent criteria.

5.1 Non-compositional criterion

To determine a first, non-compositional criterion, we gatize the reasoning of[14]
to cover the more general execution machine defined here.
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Deterministic desynchronization 13

Theorem 1 (Correctness criterion, non-compositional)The synchronous Mealy ma-
chineX satisfies Properties StreamFunc and StateDeterm if andibfdy all s € S

and s L% sp k= 1,2, if iy ba iy then there existg, € Tracess (sy) finite,

k = 1,2 with s1.t1 = S9.t9, 5((i1/01).t1) = 5((i2/02).t2), and5((i1/01).t1) |1'=
d(i1 U iz). In other words, we have confluence.

This theorem gives a simpler characterizatiohtmCompone that can be checked in
finite time for a finite Mealy machine. However, we are stitifitom a practical charac-

terization because the confluence occurs in an unspecifrabenof steps. Moreover,

we will see in the following sections that the property is praserved by composition,
which makes it less appealing for use with a practical (imeetal) systems construc-
tion methodology.

5.2 Synchronous composition

In defining synchronous composition, we introduce two latidns that allow us to re-
main focused on our synchronization-oriented asynchremmoplementation problem:
(1) We only consider acyclic networks of interconnectiarg] (2) We require that the
output sets of the composed systems must be disjoint, savthdbn’t need to enforce
the coherency of outputs (e.g., same value on the same signal

The first requirement allows us to avoid complex causalgyés without giving up
causality altogether, like in]£.L3]), or defining compleausality-related aspects that
do not fit this paper. We can remain at the chosen descripia, land the results can
be easily generalized for more complex composition mecnasii

Definition 2 (composability and composition) Consider two synchronous modules—=
(Z;, 0i, Si, Ti, 89), i = 1,2. We say thak; and ¥, are composablgin this order, if
1 N0y = PandO; N Oy = O (recall thatZ; N O; = 0, from the definition of
synchronous automata).

If ¥, and ¥, are composable, then their composition is the synchronauduie
5% = (I,O,S,T,SO) WithZ =77 U(Zo\ 01),0 = 02U 01, S = S1 X Sy,

. t/0 . . .
5" = (s9,59), and where the transition(sy, s2) SN (s},sh) exists if an only if
1 2
. . - ilz, /o1 01|z, Vilz, /olo
there exist (unique, due to determinismji - st s2 %ﬁ sl
1 2

with o = 01 |0 Uo2 |o.

5.3 Compositional criterion

Note that the correct implementation criteria of Theofgémmelreot preserved by com-
position. A simple example:

(s1,11)

NG Ve
Y1t S0 S4 Yot 1o tg 1 [ 22 (s0,0)
C/D\ . /A/BE D/O2 . /3/01 0/0\2752 )
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14 Potop, De Simone & Sorel

Now, we seek to determine large sub-classeBl@fiCompthat are closed under
synchronous composition. In doing so, it is important totbe¢ doing this is interest-
ing only when the new classes of modules includes meaniogies.

In particular, we consider such a sub-class must includelsisequential behav-
iors: finite sequences of transitions with stuttering titdmss in each state. These
synchronous machines have no choice, nor concurrencypfioité stuttering-free ex-
ecutions. We denote witBimplethis sub-class synchronous systems. All modules of
Simplesatisfy our correct implementation criteria, and so do afhpositions of such
modules.

In this section we prove that there exists a unique largastctass ofNonComp
including Simpleand closed under synchronous composition. Moreover, thssc
denotedComp has a simpler characterization.

Theorem 2 (characterization) Let ¥ = (Z, 0, S, s¢, —) be a synchronous module.
Assume oE € NonComp, and that any finite composition involvii@nd programs
of the Simple class is also in NonComp. Then, fogail RSS(X):
. . . - _
Stuttering: There exists a uniquesuch thats ————73 3 / (and there are
no other input-less transitions, due to determinism). Eistence result defines
a new operatok we use in the remainder of the paper.
Diamond: If 8L01>81 and s iong with iy >3 io, theno; <1 0o and there
exists a unique’ such that:

/

5 D) 9

//1 Y\n/w\olxm.(/)

s 5’@

/\ Dt %\ig/ol\oa(/)...(/)
_—

/
where(/) ... (/) denotes finite sequences of void transitions.

We denote withCompthe class of modules satisfying Properties Stuttering aiad D
mond. We prove&Compis the class we are looking for.
To do this, we only need to prove closure under synchronomnmposition.

Theorem 3 (compositionality) The class Comp is closed under synchronous compo-
sition.

These two theorems complete our construction, and we havillowing corol-
lary:

Corollary 1 (compositional criterion) The class Comp is the largest sub-class of NonComp
including Simple and closed under synchronous composition

INRIA



Deterministic desynchronization 15

Itis interesting to note that for arfly € Comp there exists one that gives the same
stream functions, yet has no void transition that is noteting. Such a synchronous
module is easily obtained by unifying each staten > with 5. The result of this
quotient operation, denotéd] can be seen as a normal formddand satisfies a simpler
“diamond closure” property, which is also compositionabvi¢ver, the non-stuttering
void transitions ofY2 may be useful to express best-case timing properties thet ob
max+ rules upon composition.

5.4 The infinite case

The only thing that remains to be done is to prove that thesfadcution of synchronous
modules ofCompgives monotonous and continuous stream functions (whidhdes
the analysis of the case of infinite input histories). To dovge prove the following
theorem.

Theorem 4 (Infinite case) Considery € Comp,s € RSS(X), andxz € [[gc7 Ds”.
Considert € Tracess(s) a maximalfair execution ofX] under inputyz. Then:

5(t) = lim  SFs(x%)
X7 = XT
X finite
This means that we can exteSd?; () to a function on all histories, finite and infinite,
that is monotonous and continuous.

6 Conclusion

We have defined a general execution machine for synchromogsgms over an asyn-
chronous environment. We determined which synchronougrpnos give monotonous
and deterministic asynchronous systems (in the sense dfahe process networks)
when run by our machine. We also determined that there exigtéque greatest sub-
class of such programs that is closed under synchronousasition.

The simple “diamond closure” characterization and theitynaf this class are im-
portant. First of all, they set the theoretical limits of @nt implementation techniques.
Second, they offer a good basis for the development of siroriteria at the level of
various synchronous languages and formalisms.

A first question is how to generate the synchronous machih€smpusing exist-
ing synchronous languages. Currently, this is not an eakftahe dual problem is
that of determining the sub-class@®mpcan be programmed in existing languages.

From a practical point of view, we are interested in effidigdietermining when a
synchronous program belongs@ompor some large sub-class. Maybe more interest-
ing from the developer point of view, we are interested inrdefj language sub-sets
where some restricted form of concurrency ensures thisgptppy construction.
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APPENDIX: Proofs and lemmas

To prove Theorerl1, we shall actually prove the followingiie®f which variant (A)
is the hypothesis and variant (C) is the conclusion of Thadle

Theorem 5 (Correctness criterion, non-compositional)Consider the synchronous mod-
ule X. Then, the following statements are equivalent:

A. X satisfies Properties StreamFunc and StateDeterm.

B. Forall s € RSS(X) andty,ta € Tracesx(s), finite, if §(¢t1 |7) > 0(¢1 |7), then
there exists] € Tracesx(s.t;) finite, i=1,2 with:

1. S.tl.tll = S.tg.tlz
2. §(t1.t)) = 3(ta.th)
3. 5(t1.t/1 |I) = 5(t1 |I) V(S(tg |I)

C. The same as (B), except thatandt, are quantified over single transitions (traces
of length 1).

Proof sketch A = C : Considert; = i;/0; € Tracess(s),j = 1,2 in the hypoth-
esis of (3). Letyz = d(t1 [z) V o(t2 7). Forj = 1,2 lett;.t}; be a stuttering-free
maximal execution ofx] under input historycz. Then, by applying the stream func-
tion hypothesis (Property StreamFunc), we obtdin.t}) = d(t2.t5). From the state
determinism hypothesis (Property StateDeterm) wesdett) = s.to.t5. Also, given
thaté(tj |I) = 5(t1.t/1 |I) =Xz = 5(t1 |I) V 5(t2 |I), 1 =1,2, we obtain the last
property.

C = B : Statement (B) is easily proved by induction over the numibeigmal valua-
tions in botht; andts.

B = A : The difficulty is the construction, for givenandyz, of xy ands’. To do this,
considerthe sef'(s, xz) ofallt € Tracess(s), stuttering-free, such that |7) < xz.
The set is finite. Say its elements dte. .., t,. Then, we can apply the hypothesis
successively to:

* t; andts, to obtaint] andt),
* to.t}, andts to obtaint, andt}

* t3.t4 andt, to obtainty andt)

* tn,—1.t,_, andt, to obtaint!!_, andt/,
Then,x = 6(t,.t),) ands’ := s.t,,.t/, satisfy our needs. o

Lemma 1 (composition) The composition of two synchronous Mealy machines is a
synchronous Mealy machine.

Proof sketch The non-trivial part of the proof is the determinism®f | | X2, which
is due to acyclicity and determinism of the composed machine o
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18 Potop, De Simone & Sorel

Proof sketch(of Theorem[@) Considers € RSS(X). Let so ——~ 5 be a trace
leading tos of minimal lengthn. We denote withs;, = s.t[1..k] for 1 < k < n.
Property StreamFunc: We define the synchronous machines(Z?, 0%, S¢, si, —%),
i =1,2with: ! = {A}, O =Z,7% = OU {4}, andO? = Qwith: A ¢ ZU O,
D4 = D~ and transition relations defined by:

A/(t[1)]2) A/l A/l

Bhosh st sk
) () )

/ / /

52, g2 AV(t[1]]0)/ ¥ AvtRllo)/  AV(tinllo)/ 2
() () )

/ / /

Then, the compositiol’ = X! | | ¥ | | X2 is defined.

Assume by absurd that has no transition labeled within states. Then, there is
no transition in the reachable stdt€,, s,,, s2) of X'.

Consider nows® = (73,03, 83, s3, —3) defined byZ® = {B}, ©* = (), non-
interferent with:’, and with the transition relation:

The compositior®’ | | 33 is defined and non-interferent, but according to our as-
sumption by absurd it does not satisfy Properties StreamBnd StateDeterm. This
is due to the fact that whex’ | | ¥2 reaches statés?, s,,, s2) on its component’,
execution is blocked. However, this may occur after varecutions of th&3 com-
ponent, meaning that various amountsiBignals are consumed, and confluence is
not possible.

Therefore X has a transition labeled within all statess. Along with determinism
and the condition that has no infinite sequence of input-less transitions, thidieap
condition (1).

Property StateDeterm: Considerﬂ s1 and s eloz s2 with 41 > i5. By ap-
plying Theorenfll, we obtain; < 0,. To prove the remaining property, we use the
same technique as for property (1).
We denote withA the symmetric difference operator, on sets and reactiews (
11 A1 = (il \22) V (ig \ 21)) ‘ ‘ o ‘
LetZ’ = I\ supp(i1Aiz) andO’ = O\supp(o1Qo09). LetEt = (I¢, 0", S, sf, ="
),i = 4,5bedefinedby* = {A},0* =T',7° = {A}UO', ©° = ), with A & TUO,
D4 = D+, and transition relations defined by:

A/(t[1]|pa) A/(t[2]|0a) A/@n]loa) A/irNiz 4

24 : Sé Sil U Sn Sp+1
(W, (W, () (W,
/ / / /
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55, gg AVUlen) o AV@RloN/  AVCRIeN! o Aviene)] o
(), (), , ()
/ / / /

By hypothesis, the composed systérh| | ¥ | | ° must satisfy Properties Stream-
Func and StateDeterm. This means that from the reachalés@ta, |, 51,55, ;) and
(s.1,s2,55 . 1) execution converges. But from the constructiortdfand 5 con-
vergence in th& component can only include signals frathand®’, so that we can
assume in Theorel 1 thatpp(t;) C supp(iiAiz) U supp(o1los),i = 1,2.

Let X' = (Z¢,0% 8%, sh,—"), i = 6,7,8,9 be defined byZ® = {A}, Of =
supp(ir \ i2), T = {B}, O7 = supp(iz \ i1), I® = {A} U supp(o1 \ 02), O° = 0,
7% = {B}Usupp(oz\ 01), 0° = O, with A, B ¢ TUO, Ds = DD+, and transition
relations defined by:

A/ ([l o6) A/(t[2]] o6 ) A/tnllos) A/ir\ia 6

26 : 88 8? T Sn Sp+1
v v U v
/ / / /
g7, gy PWen) o BICRlen | BlUler) | . Bl
v v U U
/ / / /
AV(t[1supp(or \og))/ AV (t[2)]supp(or\oz))/ AV (t[n]lsupp(or\og))/ AV(o1\o
8. 58 pp(o1\02) 851; pp(o1\o2) pp(o1\o2) Si V(o1\oz2)/ S%Jrl
() ) )
/ / / /
BV (t[1lsupp(og\or))/ BV(t[2]lsupp(oz\01))/ BV(t[n]lsupp(oz\o01))/ 02\o
9 . 58 pp(o2\01) 8? pp(o2\01) pp(o2\01) S?L BV (o2\o1)/ S%Jrl
v v ) ()
/ / / /

By hypothesis, the composed systény | | X7) | | £ | | (Zs | | X9) satisfies Proper-
ties StreamFunc and StateDeterm. But, from the previoysgptpwe deduce that the
only transition in the confluence of compon&hwithout label/ has labels \ i1 /03 \ 01
oriy \ i2/01 \ 02. This proves our result. o

To prove the limit result of TheoreRd 4, we prove the followthgorem:

Theorem 6 Considery = (Z,0,S, sp, —) a synchronous module of Comp, €
RSS(¥), andxz € [[gcz Ds”. Considert € Tracess(s) a maximalfair execu-
tion of [X] under inputyz. Then:

A. Forallfinite historyx’ < xz, there exists > 1 suchthatSFx s(x7) < d(¢[1..n]).

B. For all n > 1, there exists a finite history’} < xz such thaté(¢[1..n]) <
SFs s(x7)-

Proof sketchPoint (B) is simply proved by taking’/ = 6(¢[1..n]) |z.
We focus now on proving (A). The case of finite input tracesngeiovered by
previous results, we assume here thatc ([[g.7 Ds”) \ (I1gez Ps™)-
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Without losing generality, we shall assume thas stuttering-free. The case of
finite input histories and traces being covered by previbesitems, we can assume
throughout this proof that bothandyz are infinite.

LetthenZ’ C T be the set of alb such thatyz(S) is infinite. We can then find,
such thatupp(t[n]) C Z’ foralln > n.

Given thatX is finite state and infinite, there existsS’ C S that are traversed
infinitely many times by. We can also fine» such thatg.t[1..n] € S’ forall n > ns.

Assume (A) is not true, and lgt; < xz such thatSFs s(x7) £ d(t). Letthen
u € [X](X7, s0). We denote witht,, = ¢[1..n] andus = u[l..k].

Sinced(u) = SFx (x%) 2 0(t), there existan such thatd(u,,) < d(
O(tm—1) A 0(t). Given that (u,,) = 6(t), there existss such thav (w,,) < o0

Letng = max(ny,na, ng).

By applying Theorerll5(B) in statg for tracesu,,, andt,, for somen > ng, we
obtaint!, € Tracess:(so.t,,) andul, € Tracesx(so.u.,) such that:

and

t)
(tns)-

50.tn.th, = 80 Upm.ul, (.1)
§(tnet!) = S(um.u',) (.2)
5(tnt;1) |I: 5(t71) |I V(S(um) |I (3)

We denotes,, = s¢.t,,.t,,. Given that € Compwe can apply Property Stuttering and
assume tha,, is chosen such that, = 5,.

Given thatd (u.,,) =< 4(t), we deduce from Equatiénl .3 th&t/,) |z= ¢. Combined
with the determinism o and the fact that a transition with void label exists in every
state, we deduce thaft!) = e.

By applying Theorenlll2, it is easy to determine that; = s,.t[n + 1] for all
n > ng. This means that for alt > ng, u;, ,, = u;,.t[n + 1](/)..(/). We denote with
u’ the limit of the increasing sequence of trace$),, >, -

By applying Theorenil2 along the intermediate states in tleE@ion ofu’, we
obtain that in all the states,, n > n, there exists a transitiom,, , ; with

O(tp 1) = (tmy1) \ (6(um1) AS(uy,))

The sequenc@(uy,, . 1))n>n, is a decreasing one, meaning that it eventually stabilizes.
From the hypothesis that (A) is not true, it does not stadilize, but too(r) for some
non-void reaction label.

From the fairness hypothesis, given that a void label ttamsis fireable in all the
statessg.t,, n > ng, and given that there is only a finite set of such states, aesom
point the void label transition is taken in the executiort ofThis means that there
existsn’ > ng such thatsg.t,, = s, which implies that the remainder oftoincides
with the remainder of’.

This means that the reaction labeled with% L is fireable in all the states af
from some point on without it being taken, which contradimts fairness assumption.
Therefore (A) is true. o
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