
HAL Id: inria-00322563
https://hal.inria.fr/inria-00322563

Submitted on 18 Sep 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Deterministic execution of synchronous programs in an
asynchronous environment. A compositional necessary

and sufficient condition
Dumitru Potop-Butucaru, Robert De Simone, Yves Sorel

To cite this version:
Dumitru Potop-Butucaru, Robert De Simone, Yves Sorel. Deterministic execution of synchronous pro-
grams in an asynchronous environment. A compositional necessary and sufficient condition. [Research
Report] RR-6656, INRIA. 2008, pp.20. �inria-00322563�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/50225281?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00322563
https://hal.archives-ouvertes.fr

appor t
de recherche

IS
S

N
02

49
-6

39
9

IS
R

N
IN

R
IA

/R
R

--
66

56
--

F
R

+
E

N
G

Thème COM

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Deterministic execution of synchronous programs in
an asynchronous environment

A compositional necessary and sufficient condition

Dumitru Potop-Butucaru — Robert De Simone — Yves Sorel

N° 6656

Avril 2008

Centre de recherche INRIA Paris – Rocquencourt
Domaine de Voluceau, Rocquencourt, BP 105, 78153 Le ChesnayCedex

Téléphone : +33 1 39 63 55 11 — Télécopie : +33 1 39 63 53 30

Deterministic execution of synchronous programs in an
asynchronous environment

A compositional necessary and sufficient condition

Dumitru Potop-Butucaru , Robert De Simone∗ , Yves Sorel

Thème COM — Systèmes communicants
Équipe-Projet AOSTE

Rapport de recherche n° 6656 — Avril 2008 — 20 pages

Abstract: Synchronous reactive formalisms form an appealing programming model
for embedded system and Systems-on-Chip (SoC) design. Deploying synchronous
programs onto asynchronous distributed execution platforms is an important issue, and
has been the topic of substantial research in the past. The point is that signal/event ab-
sence in a reaction cannot be taken as granted because of communication latencies. A
simple solution consists in systematically sending signalabsence notifications, but it is
unduly expensive at run-time. Sufficient properties have been proposed defining sub-
sets of synchronous programs where asynchronous evaluation is faithful to their origi-
nal specification. In essence they aim at preserving stream computationmonotonicity,
in the original formulation of Kahn Network principles, orconfluence, as coined by
R. Milner. Some of these criteria may become quite involved.In the current paper
we show a precise technical result: If equivalence between the synchronous and the
asynchronous semantics is congruence with respect to parallel constructors, then the
”good” criterion amounts to a single step ”diamond closure”property, with indepen-
dent behaviors converging to the union of their effects. It should be remembered here
that thelocal individual behaviors of components may themselves containsimultane-
ous events, thereby allowing complex synchronous modelingon this lower layer.

Key-words: synchronous specification, asynchronous implementation,execution ma-
chine, determinism, Kahn principle, monotony, confluence,desynchronization, neces-
sary and sufficient condition

∗ UR de Sophia Antipolis-Méditerranée

Execution déterministe de programmes synchrones
dans un environnement asynchrone

Une condition compositionnelle ńecessaire et suffisante

Résuḿe : Les formalismes réactives synchrones fournissent un mod`ele adapté à la
programmation de systèmes embarqués et de systèmes sur puces. L’implantation de
programmes synchrones sur plates-formes d’exécution asynchrones, potentiellement
distribuées, est donc un problème important, qui a déjàfait l’objet d’importants ef-
forts de recherche. Sur de telles plates-formes, les latences non-bornées des commu-
nications font que l’absence d’un signal/événement dansune réaction ne peut pas être
testée. Pour simplement résoudre ce problème, on peut toujours envoyer les notifica-
tions d’absence, mais cela peut s’avérer très coûteux. Une meilleure solution consiste
dans la définition de conditions assurant que l’évaluation asynchrone d’un programme
synchrone préserve la sémantique synchrone initiale. Enprincipe, ces conditions suf-
fisantes visent à assurer lamonotoniede la fonction d’entrée/sortie de l’implantation
asynchrone (dans la formulation de G. Kahn) , ou saconfluence(dans la formulation
de R. Miller). Dans cet article, nous proposons un résultattechnique: Si l’équivalence
entre la sémantique synchrone et celle asynchrone est la congruence par rapport aux
opérateurs de composition parallèle, alors un critère nécessaire et suffissant est donné
par une simple “propriété de losange” où les comportements indépendants convergent
vers l’union de leurs effets.

Mots-clés : spécification synchrone, implantation asynchrone, machine d’exécution,
déterminisme, principe de Kahn, monotonie, confluence, d´esynchronisation, condition
nécessaire et suffisante

Deterministic desynchronization 3

1 Introduction

Synchronous reactive formalisms [8, 3] are modeling and programming languages used
in the specification and analysis of safety-critical embedded systems. They comprise
(synchronous) concurrency features, and are based on the Mealy machine paradigm:
Input signals can occur from the environment, possibly simultaneously, at the pace of a
givenglobal clock. Output signals and state changes are then computed before the next
clock tick, grouped as oneatomic reaction. Because common computation instants are
well-defined, so is the notion of signalabsenceat a given instant. Reaction to absence
is allowed, i.e., a change can be caused by the absence of a signal on a new clock
tick. Since component inputs may become local signals in a larger concurrent system,
absentvalues may have to be computed and propagated, to implement correctly the
synchronous semantics.

When an asynchronous implementation is meant, where possibly distributed com-
ponents communicate via message passing, the explicit propagation of allabsentval-
ues may clog the system to a certain extent. A natural question arises:when can one
dispose of such ”absent signal” communications?

Sufficient conditions, known as(weak) endochrony[2, 7, 13], have been introduced
in the past to figure when theabsentvalues can be replaced in the implementation by
actual absence of messages without affecting itscorrectnessanddeterminism. Weak
endochrony determines that compound reactions that are apparently synchronous can
be split into independent smaller reactions that are asynchronously feasible in aconflu-
entway (as coined by R. Milner [12]), so that the first one does notdiscard the second.
This is also linked to the Kahn principles for networks [10],where only internal choice
is allowed to ensure that overall lack of confluence cannot becaused by input signal
speed variations.

Contribution We formally define a general execution machine for synchronous pro-
grams over an asynchronous environment. Execution is basedon (1) transforming the
explicit “absent” values of the synchronous model into actual absence of messages in
the asynchronous environment and (2) triggering a synchronous reaction as soon as
enough inputs have arrived through the asynchronous communication lines.

We then characterize the synchronous programs give monotonous and deterministic
asynchronous systems (in the sense of the Kahn process networks) when run over our
execution machine.

Most important, we also determine that there exists a uniquegreatest sub-class of
such programs that is closed under synchronous composition. The characterization is
given by a simple diamond closure property.

This simple characterization and the unicity result are important, because they offer
a good basis for the development of similar criteria at the level of various synchronous
languages and formalisms (or the definition of language sub-sets where some restricted
form of concurrency ensures this property by construction).

Our characterization is also important because it corresponds to a very general exe-
cution mechanism covering current practice in embedded system design. Thus, it fixes
theoretical limits to current implementation techniques.

Outline The remainder of the paper is organized as follows: Section 2defines our
model of synchronous specification, the desired Kahn-like asynchronous implementa-
tions, gives a short motivation, and reviews related work. Section 3 defines our im-

RR n° 6656

4 Potop, De Simone & Sorel

plementation technique, which includes a definition of the needed execution machines,
with full detail. In Section 4 we specialize onto the chosen class of implementations
the desired Kahn-like correctness properties. Section 5 derives the main result of the
paper. We conclude in Section 6.Due to space limitations, all proofs are grouped in
the appendix.

2 Basic Notions

In this section, we introduce the concepts and formal definitions that will be used
throughout the paper, and we intuitively define our problem.

2.1 General notations

Given a setS, we denote withS∗ the set of all finite words overS, and withSω the set
of all finite and infinite words overS. We denote withǫ the empty sequence, and with
h[i] the ith value of a sequenceh, for i ≥ 1 (instead of a single index we also allow
the use of arange1..n to identify a sub-sequence). Sequences are partially ordered
by the prefix order�. We say that two sequencesh1, h2 ∈ Sω are non-contradictory,
denotedh1 ⊲⊳ h2 when one is a prefix of the other (in any order). We denote with∨,
respectively∧ the least upper bound and greatest lower bound operators induced by�.
The concatenation of two sequencesh1 andh2 is denotedh1.h2 (h1 must be finite).
Whenh1 � h2 we denote withh2 \h2 the sequence such thath1.(h2 \ h1) = h2. Any
increasing sequence(hj)

∞
j=1 of Sω has a limitlimj→∞ hj .

The prefix order on individualSi
ω induces component-wise a prefix order on the

product set
∏n

i=1 Si
ω. Similarly, the⊲⊳ relation, and the∨, ∧, concatenation and limit

operators are extended component-wise on the product set.

2.2 Synchronous Mealy Machine

The various synchronous formalisms [8] are used to develop specifications that can be
interpreted asfinite-state incomplete synchronous Mealy machines. This is the model
we use throughout the paper to represent synchronousprogramsor hardware compo-
nents.

In a synchronous Mealy machine, the transitions are labeledwith reactions. An
execution (trace)is a sequence of reactions indexed by theglobal clock.

A reaction is a valuation of theinput and output signalsof the synchronous ma-
chine. All signals are typed. We denote withDS the domain of a signalS. Not all
signals need to have a value in a reaction, to model cases where only parts of the mod-
ule compute. We will say that a signal ispresentin a reaction when it has a value in
DS . Otherwise, we say that it isabsent. Absence is simply represented with a new
value⊥, which is appended to all domainsD⊥

S = DS ∪ {⊥}. With this convention, a
reaction is a valuation ofall the signalsS of the module in their extended domainsD⊥

S .
When we are only interested in the presence or absence of a signalS, we use a special
domainD⊤ that has only one value⊤ (present).

We say that two reactionsr1 andr2 arenon-contradictory, denotedr1 ⊲⊳ r2, when
there exists no signalS that is present, but different in the two reactions⊥ 6= r1(S) 6=
r2(S) 6= ⊥. Thesupportof a reactionr, denotedsupp(r), is the set of present signals.
Given a set of signalsX , we denote withR(X) the set of all reactions overX . Given

INRIA

Deterministic desynchronization 5

r ∈ R(X) and a set of signalsX ′, we denote withr |X′ the image ofr throughX ′

(which equalsr onX ∩ X ′ and⊥ onX ′ \ X).
To represent reactions in a compact form, we use aset-like notationand omit signals

with value⊥. For instance, the reaction associating 1 toA, ⊤ to B, and⊥ to C is
represented with< A = 1, B = ⊤ >. The delimiters can be dropped if there is no
confusion. On non-contradictory reactions we define the union (∪), intersection (∩),
and difference (\) operators, with their natural meanings from set theory. For instance,
< A = 1, B = ⊤ > ∪ < A = 1, C = 7 >=< A = 1, B = ⊤, C = 7 >.

When representing a reactionr, we shall usually separate the valuations of the input
and output signalsr = i/o, wherei is the restriction ofr on input signals, ando is the
restriction on output signals.

Definition 1 (incomplete Mealy machine) An incomplete synchronous Mealy machine
is a tupleΣ = (I,O,S, s0, T), whereI andO are the finite and disjoint sets of in-
put and output signals,S is the set of states,s0 ∈ S is the initial state, andT :

S ×R(I) ◦ // S ×R(O) is the partial transition function.

Using partial transition functions is common in synchronous system design, and amounts
to defining the admissible behaviors of both the system and its environment. Note that
the functional definition of the transitions impliesdeterminism,1 a property we require
for all synchronous modules throughout this paper.

We will write s
i/o

Σ
// s′ or s

i/o // s′ instead ofT (s, i) = (s′, o) to represent

system transitions. We denote withTracesΣ(s) ⊆ R(I ∪ O)
ω the set of traces of the

synchronous moduleΣ starting ins ∈ S. The determinism ofΣ implies that for all
finite tracet ∈ TracesΣ(s) we can define the (unique) destination state, denoteds.t . In

this case we also writes t +3 s.t . We denoteRSS(Σ) = {s0.t | t ∈ TracesΣ(s0)}.

A transition s
i/o // s′ is called aninput-less transitionif i = ⊥. A Mealy ma-

chine canstutterin states if the loopbackstuttering transitions
/ // s assigning⊥

to all signals is defined. In this case, we will say thats is a stuttering state. We say
that a machine isstuttering-invariantwhen it can stutter in any state. Such a machine
can spend time (reactions) in any state doing nothing (e.g.waiting to synchronize with
other machines). Given a tracet ∈ TracesΣ(s), we shall denote witht ∈ TracesΣ(s)
its normal formwith no stuttering transitions.

To simplify subsequent definitions and proofs and focus on the synchronous/asynchronous
interface, we shall restrict our investigation to Mealy machinesΣ that have no infinite
sequence of input-less transitions different from the stuttering ones. However, our re-
sults can be extended to deal with infinite sequences of input-less transitions.

2.3 Kahn process networks

In 1974, Gilles Kahn wrote his seminal paper [10] on what is known today asKahn pro-
cess networks (KPN). He introduced a simple language for defining distributed systems
of communicating sequential processes, and fully specifiedthe underlying communi-
cation and execution mechanisms.

In a KPN, interprocess communication is done throughmessage passingalong
channels(asynchronous lossless FIFOs). When reading a channel, a process is blocked

1At most one transition for given state and input. This requirement means that we cannot model sensors.

RR n° 6656

6 Potop, De Simone & Sorel

until a message is available. There is no block on writing. Once sent, a message reaches
its destination in a finite (but unbounded) time. On the receiver end, the message re-
mains on the channel until it is read. Any number of messages can be sent before one is
read (the channels are unbounded). No other communication or synchronization mech-
anism exists between processes (which run in parallel, asynchronously). In particular,
time is not used to make decisions or trigger computations.

The simple model of the KPN proved to be an excellent basis forthecompositional
modeling of deterministic systems that operate infinitely using limited resources [11].
Variants or extensions of the original model are currently used in a variety of academic
and industrial settings.

2.3.1 Formalization

The formal analysis of a KPN is based on the representation ofeach process as astream
function convertinginput historiesinto output histories. Formally, a Kahn process
network has a set of FIFO channelsC and a set of processesP .

Given a channelc ∈ C, its domainDc is the set of values that can be transmitted
as messages overc. Given an execution of the KPN, thehistoryHist(c) of a channelc
is the sequence of all messages that are placed onc during the execution. For a finite
execution,Hist(c) ∈ Dc

∗. For an infinite execution,Hist(c) ∈ Dc
ω.

Each processf ∈ P has zero or more input channelscifj ∈ C, 1 ≤ j ≤ nf ,

and zero or more output channelscof
j ∈ C, 1 ≤ j ≤ mf . Given an execution off ,

the input history off is (Hist(cifj))nf

j=1 ∈
∏nf

j=1 Dcif

j

ω and theoutput history off is

(Hist(cof
j))mf

j=1 ∈
∏mf

j=1 Dcof

j

ω.

Given thatf is sequentialanddeterministic, its behavior can be defined as afunc-
tion from input histories to output histories:

f :

nf

∏

j=1

Dcif

j

ω →
mf

∏

j=1

Dcof

j

ω

We shall call this function thestream functionof f , and denote it with the process
name.

2.3.2 The Kahn principle

All the stream functions associated with Kahn processes are:

• Monotonous, in the sense of�, meaning that giving more messages on the input
channels cannot result in less output messages.

• Continuous, in the sense of the limit operator, meaning that for any sequence of

input historieshk ∈
∏nf

j=1 Dcif

j

ω, k ≥ 1 such thatlimk→∞ hk = h we also have

limk→∞ f(hk) = f(h).

The main contribution of Kahn’s paper is theKahn principle, which states that the
monotony and continuity of the individual Kahn processes implies the monotony and
continuity of the stream function associated with the wholeprocess network. Moreover,
the stream function associated with the KPN can be computed as the least fixed point
of the system of equations:

INRIA

Deterministic desynchronization 7

(Hist(cof
j))mf

j=1 = f((Hist(cifj))nf

j=1) for all f ∈ P

which can be computed iteratively. The Kahn principle thus gives the means for con-
structing in a compositional fashion deterministic systems.

2.4 Motivation

The notions of monotony and continuity are of particular importance for us, because
they are not restricted to the language defined by Kahn, nor tosequential programs.
Provided we ensure the monotony and continuity of an asynchronous component, we
can apply the Kahn principle.

In this paper, we address the construction of deterministicglobally asynchronous
systems starting from synchronous specifications.We focus on the problem of con-
structing one asynchronous process with monotonous and continuous stream func-
tion from one concurrent synchronous module. The Kahn principle can then be used
to compose such asynchronous processes into a deterministic system.

This paper does not deal with global correctness propertiesof a Kahn process net-
work, such as the absence of overflows or deadlocks, nor with the ways of implement-
ing and ensuring the fairness of the underlying physical computing architecture. It
does not cover, either, the related problem of preserving the synchronous composition
semantics in the distributed implementation of a synchronous specification. We only
focus here on the interface between the synchronous and the asynchronous domains of
a single process.

2.5 Related work

Our results are closest related to results on the implementation of synchronous lan-
guages and formalisms for execution in an asynchronous environment. The standard
simulators generated for Esterel[4] and Lustre[9] take theapproach of reading and
sending the status of all inputs and outputs at all reactions. The same approach is taken
in the theory oflatency-insensitive systems[5] to ensure that the initial synchronous
semantics is preserved after the synchronous communication lines are replaced with
FIFOs of unspecified latency.

The development of the Signal/Polychrony language has leadto a series of re-
sults on the (distributed) asynchronous implementation ofa synchronous specifications.
Several criteria have been proposed to identify programs that give monotonous and con-
tinuous implementations. We cite here (1) the first proposedcriterionendochrony[2],
which did not allow concurrent systems and was non-compositional, (2) the composi-
tional weak endochrony[13], which generalizes to a synchronous setting the classical
theory of Mazurkiewicz traces, and (3) the easily-checkable criteria derived to allow
the analysis of Signal/Polychrony programs [15, 1].

Our work also seems closely related to results concerning the design of asyn-
chronous [6] and burst-mode [16] circuits. Our monotony concerns, in particular, can
be seen as a speed independence property guaranteeing correctness and determinism
regardless of the relative speeds of different computations and communications.

3 GALS Implementation Technique

In this section we define our implementation technique: Implementation structure, sig-
nal absence encoding, and ASAP execution policy.

RR n° 6656

8 Potop, De Simone & Sorel

module
synchronous

asynchronous

GALS wrapper = I/O control + clock synthesis

clock

.

asynchronous
input output

Figure 1: Desired GALS implementation structure. The synchronous module can be
software (a reaction function) or hardware (a circuit).

3.1 Target implementation structure

We are targeting implementations having the structure depicted in Fig. 1, which are best
described asglobally asynchronous, locally synchronous (GALS). At the core stands
the synchronous module, which is driven by anexecution machine(also calledGALS
wrapper). The synchronous module can be a sequential reaction function (in software),
or a synchronous digital circuit (in hardware). The execution machine drives the syn-
chronous module in the asynchronous framework defined aboveby performing:

• Reaction triggering.The successive reactions of the synchronous module are
triggered, using a clock generation mechanism (in synchronous hardware), or
successive calls of the reaction function (in software).

• I/O handling. Drive the communication with both the asynchronous environ-
ment (message passing) and the synchronous module (basically shared memory,
synchronized with the reaction clock), and realize the necessary transformations
between the two (e.g.signal absence encoding, if any).

This general pattern covers a large class of implementations.

3.2 Signal absence encoding

The main issue in specifying asynchronous components usingsynchronous specifica-
tions is the treatment ofsignal absence. In the synchronous model, the absence of a
signal in a given reaction can be sensed and tested in order tomake decisions. It is
a specialabsentvalue, denoted⊥. In the considered asynchronous implementation
model, the absence of a message on a channel cannot be sensed or tested.

When transforming the synchronous specification into a globally asynchronous im-
plementation, the sequences of present and absent values oneach signal are mapped
into sequences of messages sent or received on the associated communication channels.
To simplify the problem, we assume one asynchronous FIFO channel is associated with
each signal of the synchronous model.

We have to define the encoding of signal values with messages on channels. When
a signalS has valuev 6= ⊥ during a reaction, the most natural encoding associates
one message carrying valuev on the corresponding channel. The message is sent or
received, depending on whetherS is an output or an input signal. We assume this
encoding throughout the paper.

Things are more complicated forabsent(⊥) values. The most natural solution is to
represent them with actual message absence (i.e. no messageat all). Unfortunately, for-

INRIA

Deterministic desynchronization 9

getting all absence information does not allow the construction of deterministic glob-
ally asynchronous implementations for general synchronous specifications. Consider,
for instance, the Esterel program of Fig. 2. The program awaits for the arrival of at
least one of its two input signals. IfA arrives alone, then the program terminates by
emittingB. If C arrives alone or ifA andC arrive at the same time, then the program
terminates by emittingD.

module PREEMPT:
input A,C ; output B,D ;

abort
await immediate A ; emit B

when immediate C do emit D end
end module

start/
''

A/B

!!C/D //

AC/D
==done

Figure 2: A small Esterel[4] program (left), and its Mealy machine representation
(right)

Assume thatA arrives in thestart state. Then, we need to know whetherC is
present or absent, to decide which ofB or D is emitted. We will say that the pro-
gramreacts to signal absence, because the presence or absence ofC must be tested.
An asynchronous implementation ofPREEMPTneeds absence information in order to
deterministically decide which transition to trigger in statestart. To generate deter-
ministic asynchronous implementations for synchronous programs such asPREEMPT,
messages must be added to represent the necessary absence information. This can be
done either by transmittingabsent(⊥) values through messages, or by adding other
synchronization messages on new or already existent communication channels.

In this paper, we determine which synchronous programs givedeterministic imple-
mentations while encoding absent values with message absence.

3.3 ASAP reaction triggering

A second assumption we make is that the asynchronous wrappertriggers a synchronous
reaction as soon as its inputs are available on the input channels.

process NOABSENCE1=(?boolean A, B, C;
! event X, Y, Z;)

(| X ˆ= when A=true ˆ= when B=true
| Y ˆ= when B=false ˆ= when C=false
| Z ˆ= when A=false ˆ= when C=true |)

•
/

pp

A=true,B=true/X=⊤

PP
B=false,C=false/Y =⊤

00

A=false,C=true/Z=⊤

��

Figure 3: A small Signal/Polychrony[7] program (left), andits Mealy machine repre-
sentation (right)

The ASAP reaction triggering policy means that a reactioni/o can be triggered
whenever the present values ofi are all available as messages on the corresponding
input FIFOs. Once this condition is met, the actual transition can be triggered in a

RR n° 6656

10 Potop, De Simone & Sorel

variety of ways, without affecting the functionality and determinism of the implemen-
tation: by some external clock (periodic or not), when enough input is available to
trigger a non-stuttering reaction, etc.

We exemplify on the program of Fig. 3. One possible asynchronous execution is
given in Fig. 4. It corresponds to the case where reactions are triggered by an external
clock. The input FIFO associated with signalC is the first to deliver a value (false).

A=true,B=true/X=⊤
reaction 3

time

B=true A=trueC=false A=false B=false

reaction 2reaction 1
/

X Y

B=false,C=false/Y=⊤

Figure 4: Incremental ASAP asynchronous execution of NOABSENCE1

Then, new values arrive forB and A. When a reaction is triggered by the external
clock, the only non-stuttering fireable reaction isA = true, B = true/X = ⊤. This
reaction is performed,X is emitted, the first messages on FIFOsA andB are consumed
(new messages can arrive), but the message on FIFOC remains unconsumed. After a
new value arrives forA, a new reaction is triggered by the external clock. Given the
available inputs, the only fireable transition is⊥, which changes nothing. The third
reaction isB = false, C = false/Y = ⊤.

A reaction is performed as soon as its inputs are available atclock activation time.
This choice is natural, as it minimizes the number of clock cycles needed to complete
a computation. We shall say that reactions are executedas soon as possible (ASAP).

We assume that no computation cycle is triggered when no reaction is fireable given
the current input. This assumption can be satisfied either through constraints on the
synchronous module (e.g. stuttering-invariant modules always have the fireable stut-
tering reaction), or by employing specific clock triggeringpolicies, such aspausible
clocking[17].

3.3.1 Non-determinism. Fairness.

The example above has the nice property that at most one non-stuttering reaction is
fireable at all instants, because the non-stuttering reactions are mutually contradictory.
Thus, no ambiguity exists as to which transition should be triggered at clock activation
time.

However, simple Mealy machines do not satisfy this hypothesis. Consider the ex-
ample of Fig. 5. When values arrive for bothA andB between two clock activations,

process PAR = (? boolean A, B ;
! boolean C, D ;)

(| C := A | D := B |)
•

/

pp

A=a/C=a

PP
B=b/D=b

00

A=a,B=b/C=a,D=b

��
.

Figure 5: A simple parallel composition (left), and its Mealy machine representation
(right)

the 3 non-stuttering transitions become fireable. To cover such cases, we allow the

INRIA

Deterministic desynchronization 11

non-deterministic triggering of any one of the fireable reactions (including the stutter-
ing one).

Non-determinism implies the need forfairness, to prevent starvation. We require
our ASAP execution machine to satisfy the following fairness constraint: A states can-

not be traversed infinitely many times during an execution with transition s
i/o // s′

fireable, and without the transition being taken at least once. This models the assump-
tion that choice between fireable transitions in a state is random (so that the probability
of taking a transition that is fireable infinitely many times is 1).

The non-deterministic modeling of the execution machines generalizes determinis-
tic execution rules, such as the one of [14] and imposes no constraint on the executed
synchronous module. The results we derive in this general model do apply to the de-
terministic cases, too.

3.3.2 Causality.

Note that the execution machine we defined enforces the rule that all inputs must arrive
before all outputs in each reaction. This may restrict the synchronous causality of the
original synchronous program, but the approach corresponds to existing practice in
synchronous program implementation.

4 Implementation behavior and correctness

In this section we formally model the behavior of GALS implementations and special-
ize at their level the Kahn-like correctness properties we expect. To take into account
the fairness hypothesis in a simple way, we cover here the case of finite executions.
After determining the needed criteria in the finite case, we will show in Section 5.4 that
they also imply monotony and continuity in the case of infinite executions.

4.1 Desynchronization operator

Given the synchronous machineΣ = (I,O,S, T), we will denote with[Σ] its GALS
implementation. In the absence of a time reference, we use histories to model the
sequences of messages arriving to or emitted by[Σ] from/to the asynchronous environ-
ment.

The encoding of signal absence with actual absence of messages is represented us-
ing thedesynchronization operatorδ(), which converts synchronous traces (sequences
of reactions) into asynchronous histories by forgetting⊥ values. On individual sig-
nals/channels:

δ() : D⊥
S

ω
→ DS

ω δ(v) =

ǫ, if v = ⊥ or v = ǫ
v, if v ∈ DS

δ(u)δ(w), if v = uw

For a set of signals/channelsX : δ() : R(X)ω →
∏

S∈X DS
ω, δ(t)(S) = δ(t |{S}).

4.2 Behavior

Consider the implementation[Σ] of Σ, a states ∈ S, andχ ∈
∏

S∈I DS
∗ a finite

input history. The fairness hypothesis considered on the execution machine ensures
that [Σ] will not stutter indefinitely in a state when some other transition is fireable

RR n° 6656

12 Potop, De Simone & Sorel

under available input. Also recall the hypothesis that no infinite sequence of input-
less transitions exists inΣ (modulo stuttering). We deduce that any fair execution of
[Σ] with finite inputχ will consume and produce all its inputs and outputs in a finite
number of transitions, leading the synchronous module to a state where it can only
stutter (no transition allowing consumption of remaining inputs, if any, or production
of new outputs).

Recall that executions of[Σ] are traces ofΣ. Then, we can represent the behavior
of [Σ] as:

[Σ] : S ×
∏

S∈I

DS
ω → P (TracesΣ(s))

associating to each states and finite inputχ the set[Σ](χ, s) of all finite tracest ∈
TracesΣ(s) with δ(t) |I� χ which are maximal in their stuttering-free normal form
t when compared to the other traces feasible underχ. This definition means that we
only represent maximal behaviors, and we also overlook infinite fair traces obtained by
appending an infinite sequence of stuttering transitions toone of[Σ](χ, s).

4.3 Correctness

Our objective is to obtain implementations[Σ] that are representable as monotonous
and continuous stream functions in the sense of Kahn. To allow representation as a
stream function, all the behaviors of the implementation (starting in the initial state)
for given input history must read and produce the same inputsand outputs. Formally:

StreamFunc :∀s ∈ RSS(Σ) : ∀χI ∈
∏

S∈I

DS
∗ : ∃χ ∈

∏

S∈I∪O

DS
∗ : ∀t ∈ [Σ](χI , s) : δ(t) = χ

When this property is satisfied, we can define thestream functionof [Σ] in states ∈
RSS(Σ) by SFΣ,s(χI) = χ |O. Property StreamFunc also implies thatSFΣ,s() is
monotonous, as more input invariably results in more output.

In addition to this, we will require our implementations to be state deterministic,
meaning that all traces in[Σ](χI , s0) have the same destination state. Formally:

StateDeterm : ∀s ∈ RSS(Σ) : ∀χI ∈
∏

S∈I

DS
∗ : ∀t1, t2 ∈ [Σ](χ, s) : s.t1 = s.t2.

We denote withNonCompthe class of synchronous machines satisfying Properties Stream-
Func and StateDeterm.

5 Criteria for correct implementation

Properties StreamFunc and StateDeterm characterizeNonCompin a way that does not
offer good support to automated analysis (due to quantification over input histories). In
this section, we derive simpler, equivalent criteria.

5.1 Non-compositional criterion

To determine a first, non-compositional criterion, we generalize the reasoning of [14]
to cover the more general execution machine defined here.

INRIA

Deterministic desynchronization 13

Theorem 1 (Correctness criterion, non-compositional)The synchronous Mealy ma-
chineΣ satisfies Properties StreamFunc and StateDeterm if and onlyif for all s ∈ S

and s
ik/ok // sk , k = 1, 2, if i1 ⊲⊳ i2 then there existstk ∈ TracesΣ(sk) finite,

k = 1, 2 with s1.t1 = s2.t2, δ((i1/o1).t1) = δ((i2/o2).t2), and δ((i1/o1).t1) |I=
δ(i1 ∪ i2). In other words, we have confluence.

This theorem gives a simpler characterization toNonComp, one that can be checked in
finite time for a finite Mealy machine. However, we are still far from a practical charac-
terization because the confluence occurs in an unspecified number of steps. Moreover,
we will see in the following sections that the property is notpreserved by composition,
which makes it less appealing for use with a practical (incremental) systems construc-
tion methodology.

5.2 Synchronous composition

In defining synchronous composition, we introduce two limitations that allow us to re-
main focused on our synchronization-oriented asynchronous implementation problem:
(1) We only consider acyclic networks of interconnections,and (2) We require that the
output sets of the composed systems must be disjoint, so thatwe don’t need to enforce
the coherency of outputs (e.g., same value on the same signal).

The first requirement allows us to avoid complex causality issues without giving up
causality altogether, like in [2, 13]), or defining complex causality-related aspects that
do not fit this paper. We can remain at the chosen description level, and the results can
be easily generalized for more complex composition mechanisms.

Definition 2 (composability and composition) Consider two synchronous modulesΣi =
(Ii,Oi,Si, Ti, s

0
i), i = 1, 2. We say thatΣ1 andΣ2 are composable, in this order, if

I1 ∩ O2 = ∅ andO1 ∩ O2 = ∅ (recall that Ii ∩ Oi = ∅, from the definition of
synchronous automata).

If Σ1 andΣ2 are composable, then their composition is the synchronous module
Σ1 | | Σ2 = (I,O,S, T , s0) with I = I1 ∪ (I2 \ O1), O = O2 ∪ O1, S = S1 × S2,

s0 = (s0
1, s

0
2), and where the transition(s1, s2)

i/o

Σ1| |Σ2

// (s′1, s
′
2) exists if an only if

there exist (unique, due to determinism):s1
i|I1/o1

Σ1

// s′1 , s2
o1|I2∪i|I2/o|O2

Σ2

// s′2

with o = o1 |O ∪o2 |O.

5.3 Compositional criterion

Note that the correct implementation criteria of Theorem 1 are not preserved by com-
position. A simple example:

Σ1 :

s1

C/DE

!!C
CC

CC

s0

A/B =={{{{{

C/D !!C
CC

CC
s4

s2

A/BE

=={{{{{

Σ2 :

t1
D/O2

 @
@@

@@

t0

B/O1
>>~~~~~

D/O2 @
@@

@@
t4

t2
B/O1

>>~~~~~

Σ1 | | Σ2 :

(s1, t1)

(s0, t0)

A/O1
99ssssss

C/O2 %%KK
KK

KK

(s2, t2)

RR n° 6656

14 Potop, De Simone & Sorel

Now, we seek to determine large sub-classes ofNonCompthat are closed under
synchronous composition. In doing so, it is important to seethat doing this is interest-
ing only when the new classes of modules includes meaningfulones.

In particular, we consider such a sub-class must include simple sequential behav-
iors: finite sequences of transitions with stuttering transitions in each state. These
synchronous machines have no choice, nor concurrency, nor infinite stuttering-free ex-
ecutions. We denote withSimplethis sub-class synchronous systems. All modules of
Simplesatisfy our correct implementation criteria, and so do all compositions of such
modules.

In this section we prove that there exists a unique largest sub-class ofNonComp
including Simpleand closed under synchronous composition. Moreover, this class,
denotedComp, has a simpler characterization.

Theorem 2 (characterization) Let Σ = (I,O,S, s0,→) be a synchronous module.
Assume ofΣ ∈ NonComp, and that any finite composition involvingΣ and programs
of the Simple class is also in NonComp. Then, for alls ∈ RSS(Σ):

Stuttering: There exists a uniques such that s
(/)...(/) +3 s /

zz
(and there are

no other input-less transitions, due to determinism). Thisexistence result defines
a new operators we use in the remainder of the paper.

Diamond: If s
i1/o1 // s1 and s

i2/o2 // s2 with i1 ⊲⊳ i2, theno1 ⊲⊳ o2 and there
exists a uniques′ such that:

s1
(/)...(/) +3 s1

/

��

(i2\i1/o2\o1)(/)...(/)

�#
@@

@@
@@

@

@@
@@

@@
@

s

i1/o1

??��������

i2/o2 ��>
>>

>>
>>

> s′ /
xx

s2
(/)...(/) +3 s2

/

RR

(i1\i2/o1\o2)(/)...(/)

;C
~~~~~~~

~~~~~~~

where(/) . . . (/) denotes finite sequences of void transitions.

We denote withCompthe class of modules satisfying Properties Stuttering and Dia-
mond. We proveCompis the class we are looking for.

To do this, we only need to prove closure under synchronous composition.

Theorem 3 (compositionality) The class Comp is closed under synchronous compo-
sition.

These two theorems complete our construction, and we have the following corol-
lary:

Corollary 1 (compositional criterion) The class Comp is the largest sub-class of NonComp
including Simple and closed under synchronous composition.

INRIA

Deterministic desynchronization 15

It is interesting to note that for anyΣ ∈ Comp, there exists one that gives the same
stream functions, yet has no void transition that is not stuttering. Such a synchronous
module is easily obtained by unifying each states in Σ with s. The result of this
quotient operation, denotedΣ, can be seen as a normal form ofΣ and satisfies a simpler
“diamond closure” property, which is also compositional. However, the non-stuttering
void transitions ofΣ may be useful to express best-case timing properties that obey
max+ rules upon composition.

5.4 The infinite case

The only thing that remains to be done is to prove that the fairexecution of synchronous
modules ofCompgives monotonous and continuous stream functions (which includes
the analysis of the case of infinite input histories). To do so, we prove the following
theorem.

Theorem 4 (Infinite case) ConsiderΣ ∈ Comp,s ∈ RSS(Σ), andχI ∈
∏

S∈I DS
ω.

Considert ∈ TracesΣ(s) a maximalfair execution of[Σ] under inputχI . Then:

δ(t) = lim
χ′
I → χI

χ′
I finite

SFΣ,s(χ
′
I)

This means that we can extendSFΣ,s() to a function on all histories, finite and infinite,
that is monotonous and continuous.

6 Conclusion

We have defined a general execution machine for synchronous programs over an asyn-
chronous environment. We determined which synchronous programs give monotonous
and deterministic asynchronous systems (in the sense of theKahn process networks)
when run by our machine. We also determined that there existsa unique greatest sub-
class of such programs that is closed under synchronous composition.

The simple “diamond closure” characterization and the unicity of this class are im-
portant. First of all, they set the theoretical limits of current implementation techniques.
Second, they offer a good basis for the development of similar criteria at the level of
various synchronous languages and formalisms.

A first question is how to generate the synchronous machines of Compusing exist-
ing synchronous languages. Currently, this is not an easy task.2 The dual problem is
that of determining the sub-class ofCompcan be programmed in existing languages.

From a practical point of view, we are interested in efficiently determining when a
synchronous program belongs toCompor some large sub-class. Maybe more interest-
ing from the developer point of view, we are interested in defining language sub-sets
where some restricted form of concurrency ensures this property by construction.

References
[1] P. Amagbégnon, L. Besnard, and P. L. Guernic. Implementation of the data-flow syn-

chronous language signal. InProceedings PLDI’95, La Jolla, CA, USA, June 1995.

2Esterel can’t define complex environment constraints, which are essential in defining complex incom-
plete automata. Signal/Polychrony does not have an implicit global clock (it must be explicitly declared and
related to all other signals).

RR n° 6656

16 Potop, De Simone & Sorel

[2] A. Benveniste, B. Caillaud, and P. L. Guernic. Compositionality in dataflow synchronous
languages: Specification and distributed code generation.Information and Computation,
163:125 – 171, 2000.

[3] A. Benveniste, P. Caspi, S. A. Edwards, N. Halbwachs, P. L. Guernic, and R. de Simone.
The synchronous languages 12 years later.Proceedings of the IEEE, 91(1):64–83, Jan.
2003.

[4] G. Berry. The foundations of Esterel. InProof, language, and interaction: essays in honour
of Robin Milner, Cambridge, MA, 2000. MIT Press.

[5] L. Carloni, K. McMillan, and A. Sangiovanni-Vincentelli. Theory of latency-insensitive
design.IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
20(9):18, Sep 2001.

[6] J. Cortadella, M. Kishinevsky, A. Kondratiev, L. Lavagno, and A. Yakovlev.Synthesis of
Asynchronous Controllers and Interfaces. Springer, 2002.

[7] P. L. Guernic, J.-P. Talpin, and J.-C. L. Lann. Polychrony for system design.Journal
for Circuits, Systems and Computers, April 2003. Special Issue on Application Specific
Hardware Design.

[8] N. Halbwachs. Synchronous Programming of Reactive Systems. Kluwer academic Pub-
lishers, 1993.

[9] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The synchronous dataflow program-
ming language Lustre.Proceedings of the IEEE, 79(9):1305–1320, 1991.

[10] G. Kahn. The semantics of a simple language for parallelprogramming. In J. Rosenfeld,
editor,Information Processing ’74, pages 471–475. North Holland, 1974.

[11] E. Lee and T. Park. Dataflow process networks. InProceedings of the IEEE, volume 83,
pages 773–799, 1995.

[12] R. Milner. Communication and Concurrency. Prentice Hall, 1989.

[13] D. Potop-Butucaru, B. Caillaud, and A. Benveniste. Concurrency in synchronous systems.
Formal Methods in System Design, 28(2):111–130, March 2006.

[14] D. Potop-Butucaru, R. de Simone, and Y. Sorel. Necessary and sufficient conditions for
deterministic desynchronization. InProceedings EMSOFT’07, Salzburg, Austria, October
2007.

[15] J.-P. Talpin, J. Ouy, L. Besnard, and P. L. Guernic. Compositional design of isochronous
systems. InProccedings DATE’08, Munich, Germany, 2008.

[16] K. Yun and D. Dill. Automatic synthesis of extended burst-mode circuits.IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits and Systems, 18(2):101–132, 1999.

[17] K. Y. Yun and R. P. Donohue. Pausible clocking: A first step toward heterogeneous systems.
In Proc. International Conf. Computer Design (ICCD), 1996.

INRIA

Deterministic desynchronization 17

APPENDIX: Proofs and lemmas

To prove Theorem 1, we shall actually prove the following result (of which variant (A)
is the hypothesis and variant (C) is the conclusion of Theorem 1.

Theorem 5 (Correctness criterion, non-compositional)Consider the synchronous mod-
uleΣ. Then, the following statements are equivalent:

A. Σ satisfies Properties StreamFunc and StateDeterm.

B. For all s ∈ RSS(Σ) and t1, t2 ∈ TracesΣ(s), finite, if δ(t1 |I) ⊲⊳ δ(t1 |I), then
there existst′i ∈ TracesΣ(s.ti) finite, i=1,2 with:

1. s.t1.t
′
1 = s.t2.t

′
2

2. δ(t1.t
′
1) = δ(t2.t

′
2)

3. δ(t1.t
′
1 |I) = δ(t1 |I) ∨ δ(t2 |I)

C. The same as (B), except thatt1 andt2 are quantified over single transitions (traces
of length 1).

Proof sketch: A ⇒ C : Considertj = ij/oj ∈ TracesΣ(s), j = 1, 2 in the hypoth-
esis of (3). LetχI = δ(t1 |I) ∨ δ(t2 |I). For j = 1, 2 let tj.t

′
j be a stuttering-free

maximal execution of[Σ] under input historyχI . Then, by applying the stream func-
tion hypothesis (Property StreamFunc), we obtainδ(t1.t

′
1) = δ(t2.t

′
2). From the state

determinism hypothesis (Property StateDeterm) we gets.t1.t
′
1 = s.t2.t

′
2. Also, given

that δ(tj |I) � δ(t1.t
′
1 |I) � χI = δ(t1 |I) ∨ δ(t2 |I), i = 1, 2, we obtain the last

property.
C ⇒ B : Statement (B) is easily proved by induction over the number of signal valua-
tions in botht1 andt2.
B ⇒ A : The difficulty is the construction, for givens andχI , of χ ands′. To do this,
consider the setT (s, χI) of all t ∈ TracesΣ(s), stuttering-free, such thatδ(t |I) � χI .
The set is finite. Say its elements aret1, . . . , tn. Then, we can apply the hypothesis
successively to:

• t1 andt2, to obtaint′1 andt′2

• t2.t
′
2 andt3 to obtaint′′2 andt′3

• t3.t
′
3 andt4 to obtaint′′3 andt′4

. . .

• tn−1.t
′
n−1 andtn to obtaint′′n−1 andt′n

Then,χ = δ(tn.t′n) ands′ := s.tn.t′n satisfy our needs. ⋄

Lemma 1 (composition) The composition of two synchronous Mealy machines is a
synchronous Mealy machine.

Proof sketch: The non-trivial part of the proof is the determinism ofΣ1 | | Σ2, which
is due to acyclicity and determinism of the composed machines. ⋄

RR n° 6656

18 Potop, De Simone & Sorel

Proof sketch:(of Theorem 2) Considers ∈ RSS(Σ). Let s0
t +3 s be a trace

leading tos of minimal lengthn. We denote withsk = s.t[1..k] for 1 ≤ k ≤ n.
Property StreamFunc: We define the synchronous machinesΣi = (Ii,Oi,Si, si

0,→
i),

i = 1, 2 with: I1 = {A}, O1 = I, I2 = O ∪ {A}, andO2 = ∅ with: A 6∈ I ∪ O,
DA = D⊤ and transition relations defined by:

Σ1 : s1
0

A/(t[1]|I) //

/

HH
s1
1

A/(t[2]|I) //

/

HH
. . .

A/(t[n]|I) // s1
n

/

GG

Σ2 : s2
0

A∨(t[1]|O)/ //

/

HH
s2
1

A∨(t[2]|O)/ //

/

HH
. . .

A∨(t[n]|O)/ // s2
n

/

GG

Then, the compositionΣ′ = Σ1 | | Σ | | Σ2 is defined.
Assume by absurd thatΣ has no transition labeled with/ in states. Then, there is

no transition in the reachable state(s1
n, sn, s2

n) of Σ′.
Consider nowΣ3 = (I3,O3,S3, s3

0,→
3) defined byI3 = {B}, O3 = ∅, non-

interferent withΣ′, and with the transition relation:

Σ3 : s3
0

B/

��

/

KK

The compositionΣ′ | | Σ3 is defined and non-interferent, but according to our as-
sumption by absurd it does not satisfy Properties StreamFunc and StateDeterm. This
is due to the fact that whenΣ′ | | Σ3 reaches state(s1

n, sn, s2
n) on its componentΣ′,

execution is blocked. However, this may occur after variousexecutions of theΣ3 com-
ponent, meaning that various amounts ofB signals are consumed, and confluence is
not possible.

Therefore,Σ has a transition labeled with/ in all statess. Along with determinism
and the condition thatΣ has no infinite sequence of input-less transitions, this implies
condition (1).

Property StateDeterm: Considers
i1/o1 // s1 and s

i2/o2 // s2 with i1 ⊲⊳ i2. By ap-
plying Theorem 1, we obtaino1 ⊲⊳ o2. To prove the remaining property, we use the
same technique as for property (1).

We denote with∆ the symmetric difference operator, on sets and reactions (e.g.
i1∆i2 = (i1 \ i2) ∨ (i2 \ i1)).

LetI ′ = I\supp(i1∆i2) andO′ = O\supp(o1∆o2). LetΣi = (Ii,Oi,Si, si
0,→

i

), i = 4, 5 be defined byI4 = {A},O4 = I ′, I5 = {A}∪O′,O5 = ∅, with A 6∈ I∪O,
DA = D⊤, and transition relations defined by:

Σ4 : s4
0

A/(t[1]|O4)
//

/

HH
s4
1

A/(t[2]|O4)
//

/

HH
. . .

A/(t[n]|O4)
// s4

n

A/i1∩i2 //

/

GG
s4

n+1

/

HH

INRIA

Deterministic desynchronization 19

Σ5 : s5
0

A∨(t[1]|O′)/ //

/

HH
s5
1

A∨(t[2]|O′)/ //

/

HH
. . .

A∨(t[n]|O′)/ // s5
n

A∨(o1∩o2)/ //

/

GG
s5

n+1

/

HH

By hypothesis, the composed systemΣ4 | | Σ | | Σ5 must satisfy Properties Stream-
Func and StateDeterm. This means that from the reachable states(s4

n+1, s1, s
5
n+1) and

(s4
n+1, s2, s

5
n+1) execution converges. But from the construction ofΣ4 andΣ5 con-

vergence in theΣ component can only include signals fromI ′ andO′, so that we can
assume in Theorem 1 thatsupp(ti) ⊆ supp(i1∆i2) ∪ supp(o1∆o2), i = 1, 2.

Let Σi = (Ii,Oi,Si, si
0,→

i), i = 6, 7, 8, 9 be defined byI6 = {A}, O6 =
supp(i1 \ i2), I7 = {B}, O7 = supp(i2 \ i1), I8 = {A} ∪ supp(o1 \ o2), O8 = ∅,
I9 = {B}∪ supp(o2 \ o1), O9 = ∅, with A, B 6∈ I ∪O, DA = DBD⊤, and transition
relations defined by:

Σ6 : s6
0

A/(t[1]|O6)
//

/

HH
s6
1

A/(t[2]|O6)
//

/

HH
. . .

A/(t[n]|O6)
// s6

n

A/i1\i2 //

/

GG
s6

n+1

/

HH

Σ7 : s7
0

B/(t[1]|O7)
//

/

HH
s7
1

B/(t[2]|O7)
//

/

HH
. . .

B/(t[n]|O7)
// s7

n

B/i2\i1 //

/

GG
s7

n+1

/

HH

Σ8 : s8
0

A∨(t[1]|supp(o1\o2))/ //

/

HH
s8
1

A∨(t[2]|supp(o1\o2))/ //

/

HH
. . .

A∨(t[n]|supp(o1\o2))/ // s8
n

A∨(o1\o2)/ //

/

GG
s8

n+1

/

HH

Σ9 : s9
0

B∨(t[1]|supp(o2\o1))/ //

/

HH
s9
1

B∨(t[2]|supp(o2\o1))/ //

/

HH
. . .

B∨(t[n]|supp(o2\o1))/ // s9
n

B∨(o2\o1)/ //

/

GG
s9

n+1

/

HH

By hypothesis, the composed system(Σ6 | | Σ7) | | Σ | | (Σ8 | | Σ9) satisfies Proper-
ties StreamFunc and StateDeterm. But, from the previous property we deduce that the
only transition in the confluence of componentΣ without label/ has labeli2 \ i1/o2 \ o1

or i1 \ i2/o1 \ o2. This proves our result. ⋄

To prove the limit result of Theorem 4, we prove the followingtheorem:

Theorem 6 ConsiderΣ = (I,O,S, s0,→) a synchronous module of Comp,s ∈
RSS(Σ), andχI ∈

∏

S∈I DS
ω. Considert ∈ TracesΣ(s) a maximalfair execu-

tion of [Σ] under inputχI . Then:

A. For all finite historyχ′
I � χI , there existsn ≥ 1 such thatSFΣ,s(χ

′
I) � δ(t[1..n]).

B. For all n ≥ 1, there exists a finite historyχ′′
I � χI such thatδ(t[1..n]) �

SFΣ,s(χ
′′
I).

Proof sketch: Point (B) is simply proved by takingχ′′
I = δ(t[1..n]) |I .

We focus now on proving (A). The case of finite input traces being covered by
previous results, we assume here thatχI ∈ (

∏

S∈I DS
ω) \ (

∏

S∈I DS
∗).

RR n° 6656

20 Potop, De Simone & Sorel

Without losing generality, we shall assume thatt is stuttering-free. The case of
finite input histories and traces being covered by previous theorems, we can assume
throughout this proof that botht andχI are infinite.

Let thenI ′ ⊆ I be the set of allS such thatχI(S) is infinite. We can then findn1

such thatsupp(t[n]) ⊆ I′ for all n ≥ n1.
Given thatΣ is finite state andt infinite, there existsS′ ⊆ S that are traversed

infinitely many times byt. We can also findn2 such thats0.t[1..n] ∈ S′ for all n ≥ n2.
Assume (A) is not true, and letχ′

I � χI such thatSFΣ,s(χ
′
I) 6� δ(t). Let then

u ∈ [Σ](χ′
I , s0). We denote withtn = t[1..n] anduk = u[1..k].

Sinceδ(u) = SFΣ,s(χ
′
I) 6� δ(t), there existsm such thatδ(um) � δ(t) and

δ(um+1) 6� δ(t). Given thatδ(um) � δ(t), there existsn3 such thatδ(um) � δ(tn3).
Let n0 = max(n1, n2, n3).
By applying Theorem 5(B) in states0 for tracesum andtn for somen ≥ n0, we

obtaint′n ∈ TracesΣ(s0.tn) andu′
n ∈ TracesΣ(s0.um) such that:

s0.tn.t′n = s0.um.u′
m (.1)

δ(tn.t′n) = δ(um.u′
m) (.2)

δ(tn.t′n) |I= δ(tn) |I ∨δ(um) |I (.3)

We denotesn = s0.tn.t′n. Given thatΣ ∈ Compwe can apply Property Stuttering and
assume thatsn is chosen such thatsn = sn.

Given thatδ(um) � δ(t), we deduce from Equation .3 thatδ(t′n) |I= ǫ. Combined
with the determinism ofΣ and the fact that a transition with void label exists in every
state, we deduce thatδ(t′n) = ǫ.

By applying Theorem 2, it is easy to determine thatsn+1 = sn.t[n + 1] for all
n ≥ n0. This means that for alln ≥ n0, u′

n+1 = u′
n.t[n + 1](/)..(/). We denote with

u′ the limit of the increasing sequence of traces(u′
n)n≥n0 .

By applying Theorem 2 along the intermediate states in the execution ofu′, we
obtain that in all the statessn, n ≥ n0 there exists a transitionun

m+1 with

δ(un
m+1) = δ(um+1) \ (δ(um+1) ∧ δ(u′

n))

The sequence(δ(un
m+1))n≥n0 is a decreasing one, meaning that it eventually stabilizes.

From the hypothesis that (A) is not true, it does not stabilize toǫ, but toδ(r) for some
non-void reaction labelr.

From the fairness hypothesis, given that a void label transition is fireable in all the
statess0.tn, n ≥ n0, and given that there is only a finite set of such states, at some
point the void label transition is taken in the execution oft. This means that there
existsn′ ≥ n0 such thats0.tn = sn, which implies that the remainder oft coincides
with the remainder ofu′.

This means that the reaction labeled withr 6= ⊥ is fireable in all the states oft
from some point on without it being taken, which contradictsour fairness assumption.
Therefore (A) is true. ⋄

INRIA

Centre de recherche INRIA Paris – Rocquencourt
Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le ChesnayCedex (France)

Centre de recherche INRIA Bordeaux – Sud Ouest : Domaine Universitaire - 351, cours de la Libération - 33405 Talence Cedex
Centre de recherche INRIA Grenoble – Rhône-Alpes : 655, avenue de l’Europe - 38334 Montbonnot Saint-Ismier

Centre de recherche INRIA Lille – Nord Europe : Parc Scientifique de la Haute Borne - 40, avenue Halley - 59650 Villeneuve d’Ascq
Centre de recherche INRIA Nancy – Grand Est : LORIA, Technopôle de Nancy-Brabois - Campus scientifique

615, rue du Jardin Botanique - BP 101 - 54602 Villers-lès-Nancy Cedex
Centre de recherche INRIA Rennes – Bretagne Atlantique : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex

Centre de recherche INRIA Saclay – Île-de-France : Parc Orsay Université - ZAC des Vignes : 4, rue Jacques Monod - 91893 Orsay Cedex
Centre de recherche INRIA Sophia Antipolis – Méditerranée :2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex

Éditeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)

http://www.inria.fr
ISSN 0249-6399

	Introduction
	Basic Notions
	General notations
	Synchronous Mealy Machine
	Kahn process networks
	Formalization
	The Kahn principle

	Motivation
	Related work

	GALS Implementation Technique
	Target implementation structure
	Signal absence encoding
	ASAP reaction triggering
	Non-determinism. Fairness.
	Causality.

	Implementation behavior and correctness
	Desynchronization operator
	Behavior
	Correctness

	Criteria for correct implementation
	Non-compositional criterion
	Synchronous composition
	Compositional criterion
	The infinite case

	Conclusion

