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Abstract: Evolutionary approaches to molecular docking typically use a real-
value encoding with standard genetic operators. Mutation is usually based on
Gaussian and Cauchy distributions whereas for crossover no special considera-
tions are made. The choice of operators is important for an efficient algorithm
for this problem. We investigate their effect by performing a locality, heritability
and heuristic bias analysis.

Our investigation focus on encoding properties and how the different vari-
ation operators affect them. It is important to understand the behavior and
influence of these components in order to design new and more efficient evolu-
tionary algorithms for the molecular docking problem.

Results confirm that high locality is important and explain the behavior of
different crossover and mutation operators. In addition, the heritability and
heuristic bias study provides some insights in how the different crossover oper-
ators perform. Optimization runs in different instances of the problem support
the analysis findings. The performance and behavior of the variation operators
are consistent on several molecules.

Key-words: representation, genetic operators, locality, heritability, heuristic
bias, mutation, crossover, molecular docking, optimization.
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Résumé : Evolutionary approaches to molecular docking typically use a real-
value encoding with standard genetic operators. Mutation is usually based on
Gaussian and Cauchy distributions whereas for crossover no special considera-
tions are made. The choice of operators is important for an efficient algorithm
for this problem. We investigate their effect by performing a locality, heritability
and heuristic bias analysis.

Our investigation focus on encoding properties and how the different vari-
ation operators affect them. It is important to understand the behavior and
influence of these components in order to design new and more efficient evolu-
tionary algorithms for the molecular docking problem.

Results confirm that high locality is important and explain the behavior of
different crossover and mutation operators. In addition, the heritability and
heuristic bias study provides some insights in how the different crossover oper-
ators perform. Optimization runs in different instances of the problem support
the analysis findings. The performance and behavior of the variation operators
are consistent on several molecules.

Mots-clés : representation, genetic operators, locality, heritability, heuristic
bias, mutation, crossover, molecular docking, optimization.
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4 Tavares et al.

1 Introduction

The aim of molecular docking [1] is to design pharmaceuticals by identifying
potential drug candidates targeted against proteins. In general, the effect of a
drug is dependent on the formation of a complex between a small molecule, the
ligand, and a macromolecule, the protein, whose malfunction is resulting in a
disease. The biological function of a protein is connected to its three-dimensional
structure. As such, altering the structure modifies the protein functionality. The
design of new pharmaceuticals must correctly predict and optimize the specific
interactions between both molecules of the formed complex. This process is
very expensive and time-consuming. The potential drug candidates can be
found by using a docking algorithm. The algorithm will try to identify the
bound conformation of the ligand to the active site of a protein. The active site
is the region where the natural substrate binds, i.e., the specific molecule an
enzyme acts upon. The structure and the spatial arrangement of the atoms at
the active site, complements the shape and properties of the substrate. In this
way, it catalyzes a particular reaction. Therefore, drug discovery aims to find
ligands which bind stronger to a given protein target than the natural substrate.

Molecular docking is an energy minimization search problem with the aim
to find the best ligand conformation and orientation relative to the active site of
a target protein [2]. The docking problem can be very difficult since the relative
orientation and conformations of two molecules must be considered. Typically,
the receptor (usually a protein) is fixed in a three-dimensional coordinate sys-
tem. By contrast, the ligand can be repositioned and rotated. In case that both
receptor and ligand are allowed to be flexible, the problem difficulty increases.
As such, the problem is classified, by increasing complexity, into the ensuing
categories: rigid-structure docking (both molecules are rigid); rigid protein and
flexible ligand; flexible protein and rigid ligand; and, both molecules are flex-
ible. With both molecules flexible, usually the active site of the protein and
the ligand, the problem becomes harder. In fact, a higher degree of flexibility
implies a considerable increase of the search space size.

For the past years, numerous molecular docking methods have been proposed
using different techniques, e.g., incremental construction algorithms, stochastic
algorithms and molecular dynamics. For more detailed descriptions, we refer
the reader to several review studies [3, 2]. Evolutionary algorithms have recently
become one of the dominant search techniques for docking methods and proved
to be very successful [2]. Although several applications exist, no comprehen-
sive set of studies could be found to understand why these algorithms and their
components are successful. To the best of our knowledge, the only attempt was
made in [4] where several parameters (e.g., population size) and some genetic op-
erators are empirically investigated. When designing an evolutionary approach
for this problem, to make it efficient is important to understand its components
behavior and effects. Locality is an important requisite to ensure the efficiency
of search and it has been widely studied by the evolutionary computation com-
munity [5, 6, 7]. In general terms, this property indicates that small variations
in the genotype space, usually originated by mutation, imply small variations in
the phenotype space [5]. A locally strong search algorithm is able to efficiently
explore the neighborhood of the current solutions. When this condition is not
satisfied, the exploration performed by the algorithm is inefficient and, in a
worse case scenario, tends to resemble random search. Heritability refers to the
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interaction between a representation and a crossover operator [7, 8]. A crossover
operator should be able to combine meaningful substructures from the parents
in order to produce descendants. This kind of behavior allows the exploitation
of successful substructures from the parents. Moreover, it should mix the par-
ents’ phenotypic properties to generate new phenotypes in a creative manner. A
useful crossover operator must have enough heritability to not cripple the evo-
lutionary search process. Heuristic bias is the property related to the mapping
between a genotype and a phenotype [9]. An evolutionary algorithm explores a
search space defined by its representation and genetic operators. Usually this
space is indirectly connected to the phenotype space and thus, the efficiency of
the process is influenced by the mapping between the elements of both spaces.
The use of heuristics or other means of problem knowledge can affect the dis-
tribution of phenotypes, introducing, or not, a bias towards fitter phenotypes.

The main objective of this paper is to perform an empirical analysis on the
representation and variation operators using the evolutionary algorithm model
[10, 2] that is usually adopted for molecular docking optimization. Locality,
heritability and heuristic bias measures are adopted from the framework pro-
posed by [7] and extended by [11] to deal with real-valued encodings. One
distance measure suitable for the selected representation phenotype is applied.
The present study concentrates on the questions: do Gaussian and Cauchy mu-
tation operators have a different effect on phenotypes? Which type of mutation
and crossover operator is more suitable for evolutionary approaches to molecular
docking? Can we explain results from optimization according to the encoding
properties? What is the impact of different genetic operators in a representa-
tion? Our main research focus is the study of representation properties and the
effects of variation operators. We expect to answer these questions by investi-
gating the influence of the operators on locality, heritability and heuristic bias.
The presented work, to the best of our knowledge, is the first wider study that
includes an analysis of representation and operators in the context of molecular
docking. Some of our initial results concerning locality and mutation operators
can be found here [12].

Results in this paper allow us to gain some insights about the degree of
locality, heritability induced by different mutation operators and their heuristic
bias. The search space is highly multimodal and its shape is influenced by
the size, shape and topology of the ligand and the active site being docked
[4]. As a consequence of this, even small modifications performed by genetic
operators in the structure of an individual lead to large phenotypic changes.
An evolutionary algorithm operating on its own is unable to deal with these
difficulties. Thus, it is important to know how encoding properties relate to
mutation and crossover operators commonly used in evolutionary algorithms
for molecular docking. Furthermore, understanding the role played by each
algorithm’s component may provide useful insights for future applications of
evolutionary algorithms to this problem.

The rest of the paper is structured as follows. Section 2 contains an overview
of the evolutionary algorithms’ components used in our experimentation. Next,
in section 3 we present the framework used in our analysis. In section 4 we
present the empirical analysis on the influence of genetic operators and respec-
tive discussion. Finally, in section 5 the main conclusions of our work are de-
scribed.

RR n° 6660



6 Tavares et al.

2 Evolutionary Algorithms for Molecular Dock-

ing Optimization

Evolutionary algorithms applied to molecular docking can be found since 1993
[13]. This first initial approach used a simple genetic algorithm. A binary
encoding was used to represent the torsion angles for rotatable bonds in the
ligand. Later, similar attempts were made using simple genetic algorithms with
binary representations [14, 15]. The first approach with a real-value encoding
was proposed by [16]. The algorithm employed was based on Evolutionary
Programming and used a self-adaptive scheme to evolve the variance used in the
mutation operator. Several evolutionary algorithms using real-valued encodings
were proposed. The approaches based on this type of encoding were shown
to achieve better results, being more efficient and accurate. A comprehensive
review of these efforts, including an outline state-of-the art applications, can be
found in [17, 2].

One of the most important approaches to molecular docking is the software
suite referred to as AutoDock. It started by using simulated annealing as its
search method but later on it moved to evolutionary algorithms [10]. This
approach is a conformational search method which uses an approximate phys-
ical model to evaluate possible protein-ligand conformations. It incorporates
flexibility by allowing the ligand to change its conformation during the docking
simulation. In addition, pairwise interactions between atoms are pre-calculated,
considerably speeding up the docking simulation. To search the space of possi-
ble protein-ligand conformations, the approach uses an evolutionary algorithm
with a local search method. When this method is applied, the genotype of the
individuals is replaced with the new best solution found. This process is usually
referred to as Lamarckian evolution.

2.1 Representation and Evaluation

During the docking process the protein remains rigid whilst the ligand is flexible.
In this case, an individual represents only the ligand. A genotype of a candi-
date solution is encoded by a vector of real-valued numbers which represent the
ligand’s translation, orientation and torsion angles [10]. Cartesian coordinates
represent the ligand translation, three variables in the vector, whereas four vari-
ables defining a quaternion represent the ligand orientation. A quaternion can
be considered to be a vector (x, y, z) which specifies an axis of rotation with an
angle θ of rotation for this axis. For each flexible torsion angle one variable is
used. The phenotype of a candidate solution is composed of the atomic coordi-
nates that represent the three-dimensional structure of the ligand. Therefore,
the representation is indirect since the atomic structure of the ligand is built
from the translation and orientation coordinates in the ligand crystal structure
with the application of the torsion angles. In this work, besides the real-valued
encoding we also use a binary one. The semantic of the representation is the
same as before. The only difference is that the real-valued numbers are encoded
in a binary string. This representation is used only for comparative purposes in
some parts of our analysis.

To evaluate each individual an energy evaluation function is used. The fitness
for each candidate solution is given by the sum of the intermolecular interaction
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energy between the ligand and the protein, and the intramolecular energy that
arises from the ligand itself [10]. An empirical free energy potential composed
of five terms is used. The first three terms are pairwise interatomic potentials
that account for weal long-range attractive forces and short-range electrostatic
repulsive forces. The fourth term measures the unfavorable entropy of a ligand
binding due to the restriction of conformational degrees of freedom. The fifth
and last term uses a desolvation measure. Further details of the energy terms
and how the potential is derived can be found in [10].

2.2 Genetic Operators

Common crossover and mutation operators are applied on the population. In
AutoDock a standard two-point crossover is used. Cut points only occur be-
tween related genes, i.e., separating translational values, orientation values and
rotation torsion angles into separate blocks. This is done to avoid disruption
of useful parts of the solution [10]. However, for real-valued encodings it is rec-
ommend that operators designed to deal with this type of encoding are used.
In this work, we analyze several common crossover operators, such as Simple
Arithmetical crossover, Whole Arithmetical crossover, Discrete crossover, Sim-
ulated Binary Crossover and Blend-α crossover. Since these are typical genetic
operators, we refer the reader to the following literature for a description of
their operation [18, 19, 20]. In the case of binary encoding, we use the classic
1-Point and Uniform crossover [18].

Since the encoding is a real-valued vector, mutation is performed by using
evolutionary strategies based operators. The genetic operator acts in the follow-
ing way: when undergoing mutation, the new value for a gene x′ is obtained from
the old value x by adding a random real number sampled from a distribution
U(0, 1):

x′ = x + σ × U(0, 1) (1)

The common distribution used for U(0, 1) is the standard Gaussian distri-
bution, N(0, 1). In spite of that, the AutoDock approach replaces the Gaussian
distribution with a Cauchy distribution:

C(x, α, β) =
β

πβ2 + (x − α)2
(2)

where α ≤ 0, β > 0,−∞ < x < +∞ (α and β are parameters that control the
mean and spread of the distribution). The Cauchy distribution has a bias toward
small variations. However, unlike the Gaussian distribution, it has thick tails
which allows larger variations more frequently. Some evolutionary approaches
use both distributions for mutation operators [4].

One important aspect is the value for the parameter σ. If it is set too low,
exploitation overcomes exploration and if set too high vice versa. The value can
be fixed or self-adapted (e.g., if an evolutionary strategy approach is used). In
[4] are proposed annealing schemes to control σ as a function of time, i.e., the
number of generations, scaled with 0.1:

A1 : σ(t) =
1

1 + t
(3)
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8 Tavares et al.

A2 : σ(t) =
1√

1 + t
(4)

Only a fixed σ and the annealing schemes are considered for analysis. The
parameter σ is set to a value of 0.1 which previous studies in computational
chemistry problems have shown to be a good value [11]. In addition, preliminary
tests in this problem with other values also helped us to pick this value. We
also include in the analysis the simple uniform mutation operator. It works
in the following way: when applied to a gene, it assigns a new random value
according to the gene bounds, sampled from a standard uniform distribution.
This operator serves as a comparison baseline. The mutation used with the
binary representation is the typical bit-flip operator [18].

For our analysis, we adopt an experimental model which uses the main
components from [10], since AutoDock serves as a basis for the large majority
of evolutionary-inspired approaches, e.g.,[2, 21].

INRIA
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3 Analysis Framework

3.1 Related Work

Several techniques have been proposed to estimate and study the behavior of
evolutionary algorithms and their components. In the literature we can find
some studies related to the properties of locality, heritability and heuristic bias,
as well as the relationships between the different spaces that characterize evo-
lutionary search. In this section, we highlight the most relevant ones.

Evolutionary search can be represented by three spaces: the search space,
the phenotype space and the fitness space. The fitness space reflects the solution
quality whilst the search space is made of the candidate solutions. The set of
all possible genotypes is denominated genotype space and it is equivalent to
the search space. This equivalence is possible because variation operators work
in the genotype space and an evolutionary algorithm searches for genotypes
that decode into phenotypes with high fitness. In [22], correlation coefficients
for the fitness values of solutions were studied in between the application of
variation operators. Locality in this investigation was characterized by the
relation between the search space and the fitness space. It was concluded that
a dependency between the correlation coefficients and performance existed and
was strong.

The concept of fitness landscape, introduced by [23] to demonstrate the dy-
namics of biological evolutionary optimization, has been useful for the analysis
and understanding of evolutionary algorithm’s behavior. Several measures have
been proposed for this task. In [24, 25], fitness distance correlation is presented
as a way to determine the relation between fitness and distance to the optimum.
If fitness values increase as the distance to the optimum decreases, then search
is expected to be easy. An evolutionary algorithm can be seen as navigating a
landscape in order to find the highest peak. Higher points in the search space
correspond to solutions with higher fitness1.

An alternative way to analyze the fitness landscape is to determine its
ruggedness. In [26], it is proposed the adoption of autocorrelation functions
to measure the correlation of all points in the search space at a given distance.
The structure of a fitness landscape can be examined by measuring the degree of
correlation between points on the landscape. The degree of correlation depends
on the difference between the fitness values of the points. Smoother landscapes
are highly correlated, making the search for an evolutionary algorithm easier.
This is the result of similar fitness values. If the difference of fitness values is
higher, the landscape is less correlated, which implies a rugged landscape, thus
being harder to search in it. In [27, 28] is described how fitness landscapes can
be useful in the design of memetic algorithms. In [29, 30] the role of represen-
tation and heuristics in combinatorial optimization problems is investigated by
means of fitness landscape analysis.

Conditions for strong causality are studied in [5]. A search process is said
to be locally strong causal if small variations in the genotype space imply small
variations in the phenotype space. Fitness variation is used to access distances in
the phenotype space. A probabilistic causality condition is proposed and studied
in two different optimization situations. The research leads to the conclusion
that strong causality is essential, as it allows the control of small steps in the

1In a maximization problem. It is also trivial to apply to minimization problems.
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10 Tavares et al.

phenotype space by small steps performed in the genotype space. In the above-
mentioned investigation only mutation was used in the study.

In [31], the impact of representation on the search complexity is studied and
three elements are identified as important to build a general theory of repre-
sentations: redundancy, scaling of building blocks and distance distortion. A
framework is described that uses these three elements as the basis for represen-
tations analysis and performance prediction for evolutionary algorithms. The
performance of an evolutionary algorithm is determined by the expected quality
of the solutions and the necessary time to achieve them. The framework theo-
retically describes how different types of encodings can affect the behavior and
performance of an evolutionary algorithm by building a model that allows the
prediction of how a specific representation can perform on different problems.

Raidl and Gottlieb [7] proposed an empirical framework to study locality,
heritability and heuristic bias. The analysis of these properties is based on static
measures which are applied to randomly generated individuals. The measures
help to quantify the distance between genotypes and how they are related in
similarity to their corresponding phenotypes. This model is useful to study
how a representation and associated variation operators are related and how
their relationship affects the performance of the evolutionary algorithm. The
framework can also be used to dynamically analyze these properties during
the optimization runs of an algorithm. Moreover, the authors claim that the
results provided by these measures can provide a reliable basis for accessing the
efficiency of representations and genetic operators.

In this work, we will use the above mentioned framework [7] to conduct our
analysis of representations and genetic operators to the problem of molecular
docking.

3.2 Definitions

3.2.1 Distance Measures

Investigations with an evolutionary framework usually means considering only
two spaces: the genotype space Φg and the phenotype space Φp. Genetic op-
erators are applied on Φg while the fitness function, f , is applied to solutions
from the phenotype space: f : Φp → ℜ.

To establish the similarity between two individuals from Φp a phenotypic
distance has to be defined. This measure captures the semantic difference be-
tween two solutions and is directly related to the problem being solved. The
phenotypic distance can be determined with a structural distance measure. To
evaluate a final ligand conformation we compare it with the experimental struc-
tures using the standard Cartesian root-mean-square deviation (RMSD):

RMSDlig =

√

∑n

i=1
dx2

i + dy2

i + dz2

i

n
(5)

where n is the number of atoms in the comparison and dx2

i , dy2

i and dz2

i are
the deviations between the crystallographic structure and the corresponding
coordinates from the predicted structure lig on Cartesian coordinate i. RMSD
values below or near 2.0�A can be considered to be a success criterion. Thus,
lower values mean that the observed and the predicted structures are similar.

INRIA
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Therefore, our structural distance measure determines the difference between
RMSD values of two phenotypes:

dstruct(A, B) = |RMSDA − RMSDB | (6)

Another possibility is to use a fitness-based distance where the fitness dis-
tance between two phenotypes A, B is determined. In this case, it calculates
the difference between energies values of two candidate solutions

dfit(A, B) = |f(A) − f(B)| (7)

However, the use of this type of distance function can be considered less ac-
curate when the main goal is to study the internal behavior of an evolutionary
algorithm. The structural distance is able to reflect the structural differences
found in the phenotypes, while the fitness differences can only reflect the scalar
solution quality. For instance, a phenotypic distance of zero implies the same
fitness values whereas the contrary is not true. In our analysis, several experi-
ments were performed using both distance functions. The structural distance,
for most cases, showed to be more accurate than the fitness-based distance. Be-
fore concluding, it should be noticed that fitness-based distances can be useful
if the definition of a structural distance is difficult to define.

3.2.2 Locality Measures

We adopt the Mutation Innovation (MI) measure [7] to study the effect of mu-
tation on locality. To predict the effect of applying this operator we use the
distance between individuals in a mutation step. Let X be a solution and Xm

the result of applying m mutation steps to X, then the mutation innovation is
given by:

MI = dist(X,Xm) (8)

MI illustrates how much innovation the mutation operator introduces, i.e.,
it aims to determine how much this operator modifies the semantic properties
of an individual. Locality is directly related to this measure. The application
of a locally strong operator implies a small modification in the phenotype of an
individual. The distance between the two solutions is small. On the other hand,
operators with weak locality allow large jumps on the search space.

To evaluate MI, 1000 random individuals are generated. Afterwards, a se-
quence of mutation steps is applied to each one of them and the distance between
the original individual and the new solution is measured. In our experimenta-
tion, we start by applying a single mutation step. Later, we repeat the experi-
ment with k successive mutation steps, with k ∈ {2, 4, 8, 16, 32, 64, 128, 256, 512}.

To analyze the effect of crossover we use the Crossover Innovation (CI) mea-
sure [7]. This measure evaluates the ability of this type of operator to create
offspring which are different from their parents. In other words, it quantifies
the ability of the genetic operator mixing of the parent’s phenotypic properties.
Let C be a child resulting from the crossover application to parents P1 and P2,
the innovation CI can be measured as follows:

CI = min{dist(C, P1), dist(C, P2)} (9)

RR n° 6660



12 Tavares et al.

According to the previous equation, CI determines the phenotypic distance
between a child and its phenotypically closer parent. Normally, the distance be-
tween parents involved in a crossover operation is expected to be directly related
to CI. This means that similar parents have a tendency to create closer descen-
dants while dissimilar parents have a propensity to generate distant offspring,
i.e., with larger crossover innovations.

It is important to notice that when different operators are applied to the
same individuals, i.e., under the same circumstances, the operators might in-
duce distinct levels of innovation. This reflects on how the genetic material is
combined. For a good exploration of the search space, a moderately high value
of CI might be desired for crossover operators since usually they have the role
of exploration. In addition, it helps to preserve some diversity in the population
and ensures that a proper search space exploration is performed. However, a
very high value of CI could be prejudicial since it will be difficult to preserve
and combine the useful features inherited from the parents.

We study the value of CI for different crossover operators. To see how
the parental distance affects crossover innovation, the following procedure is
adopted: parent P1 is randomly generated and kept unchanged while parent P2

is derived from P1 via k > 0 consecutively applied mutations. In our experi-
ments, CI is measured after k successive mutation steps, in a similar way to MI,
with k ∈ {1, 2, 4, 8, 16, 32, 64, 128, 256, 512}.

3.2.3 Heritability Measure

Heritability is a measure of the interaction between an encoding and a crossover
operator. A meaningful operator should be able to create descendants mostly
from inherited substructures from either of the parents phenotypes. Crossover
Loss (CL) evaluates how this condition is violated, i.e., the total size of newly
introduced phenotypic substructures in a child. According to [7] and based on
the definition of the structural distance, CL can be expressed as:

CL =
1

2
(dist(C, P1) + dist(C, P2) − dist(P1, P2)) (10)

From the definition of CL, it should be noted that a value of zero for CI also
implies a zero value for CL. However, the opposite is not true.

3.2.4 Heuristic Bias

The exploration of the search space by an evolutionary algorithm is performed
by iteratively applying selection and variation operators. This process is unbi-
ased if each element of the phenotype space has the same probability of being
represented by either being generated from variation operators or, by random
selection from the search space. In this situation, selection is the sole respon-
sible to conduct the search towards fitter individuals. However, additional bias
which favor phenotypes near optimal solutions, can be introduced into the pro-
cess. This changes the probabilities for certain individuals of being sampled and
could benefit the evolutionary search since the expected average fitness of the
solutions population is higher. These type of bias can be induced by heuristics
in the genotype-phenotype mapping function or by genetic operators, mainly

INRIA
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problem-specific variation operators. As a natural consequence of Heuristic
Bias is a loss in diversity.

In our investigation, problem-specific operators are not examined since in
the context of molecular docking, the typical variation operators used during
the search process are standard operators. Even so, it is important to examine
the heuristic bias of the operators. Since the operators, mainly mutation, use
different distributions and methods to control them, it is important to establish
if these differences (e.g., the adaptive variance schemes) have impact on the
probabilities for phenotypes being represented.

To analyze the effect of heuristic bias in the representations and the opera-
tors, we do the following. Bias in the encodings is examined without reference
to the effect of genetic operators. For each encoding, we randomly generated
1000 individuals and perform a statistical analysis. Bias in the operators is
investigated by running a simple evolutionary algorithm with 100 individuals
without selection, for each operator to be tested. The population structural dis-
tance average to the optimal solution is then analyzed. Biased operators should
show an approximation to the optimal solution whilst unbiased ones must show
a constant line.

RR n° 6660



14 Tavares et al.

4 Empirical Analysis and Discussion

We selected several instances from the AutoDock test suite to perform the anal-
ysis. Due to space limitations, we will only present results obtained with the
HIV-1 protease/XK 263 protein-ligand complex. It has 10 rotatable bounds
with 8 torsional degrees of freedom and is one of the largest complexes in the
suite. Results obtained with other instances (e.g., β-Trypsin/benzamidine) fol-
low the same trend.

4.1 Locality Analysis

4.1.1 Mutation

Table 1 shows the characteristic values for MI with a single mutation step (k =
1). P (MI = 0) represents the percentage of cases for which MI = 0. E(MI)
and σ(MI) show the empirically obtained mean values and standard deviations
of MI when MI > 0. They act as estimations for the expected values. Max(MI)
gives the maximum value for MI.

P (MI = 0) E(MI) σ(MI) Max(MI)

Flip (BR) 0.6 1.17 1.54 7.50
Uniform 0.3 1.28 1.71 7.49
Gaussian 7.3 0.04 0.10 1.19
Gaussian A1 10.7 0.02 0.05 0.73
Gaussian A2 9.1 0.03 0.07 0.75
Cauchy 4.7 0.15 0.52 5.94
Cauchy A1 7.6 0.08 0.30 4.56
Cauchy A2 7.4 0.11 0.39 5.54

Table 1: Characteristic values for Mutation Innovation with k = 1.

We start by considering the case where mutation does not affect the phe-
notype, MI = 0 (occurring with probability P (MI = 0)). A large value of
P (MI = 0) indicates that mutation does not make often moves in the search
space. In alternative, it may also be an evidence of redundancy or strong heuris-
tic bias since many elements could map to the same phenotype. Table 1 shows
that this is not the case. The probability of MI = 0 is low for every operator.
The major observable difference is detected between the first two operators, Flip
mutation (which is used with binary encoding) and Uniform mutation, and the
remaining mutation operators (based on Gaussian and Cauchy distributions).
The first two operators present values close to 0%. Uniform mutation displays
the lowest value 0.30, and Flip mutation is close by with 0.60. Since these oper-
ators replace a complete gene in opposition to performing a small modification,
this modification is enough to produce a new phenotype. This is an indication
for a possible highly disruptive behavior for these two types of operators. For
Gaussian and Cauchy operators the P (MI = 0) values are considerable larger,
ranging between 4.7% and 10.7%. However, in overall terms, these numbers
are still small. The modifications operated by these distributions will produce
different phenotypes although the probability of generating a number that is
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small enough to induce the same individual is slightly larger. The small dif-
ferences between Cauchy and Gaussian mutation, when comparing directly the
operators, are explained by the thick tails of the Cauchy distribution. These
allow larger variations more frequently than with Gaussian distribution and as
such, lower its P (MI = 0). Another important difference found is the pres-
ence of annealing schemes. Using an annealing scheme will increase the value
of P (MI = 0). Whilst for Gaussian-based operators the differences are not
very large (7.3% for the simple operator and 10.7% and 9.1% for the annealing
ones), for Cauchy-based operators it’s large (4.7% for the normal operator and
7.6% and 7.4% with annealing schemes). This indicates that the presence of
an annealing scheme may help lessen the behavior produced by a Cauchy-based
operator whilst for the Gaussian case, that is not so evident.

Moving on to E(MI|MI > 0), σ(MI|MI > 0) and Max(MI), in general,
small values indicate high locality. A single mutation changes the phenotype
only a little and thus, should be aspired [7]. Although lower values are good
signs for a good locality, it should be noted that larger values for the standard
deviation and for Max of MI may not necessarily be a bad indication. In our
case, both distributions show low values for the locality measures. However,
Cauchy mutation operators present larger values. For example, E(MI|MI > 0)
displays 0.15, 0.08 and 0.11 in comparison to 0.04, 0.02 and 0.03. The same
pattern is observed for the remaining measures. For example, the maximum in-
novation introduced by a Gaussian operator is always much lesser than a Cauchy
operator. The magnitude of innovation given by a Gaussian mutation ranges
between 0.73 and 1.19 while Cauchy mutation is between 4.56 and 5.94. The
degree of innovation induced by Cauchy-based operators is considerable higher
than Gaussian ones. This means that the first application of a mutation op-
erator, Gaussian mutation operators preserve more locality than their Cauchy
counterparts. Comparing to Flip and Uniform mutation the differences are even
larger. Both operators have mean and deviation values superior to 1.0 and the
maximum values of MI are around 7.50. It is interesting to see that the maxi-
mum MI values are not very far from the ones obtained from Cauchy mutation,
although in terms of E(MI|MI > 0) and σ(MI|MI > 0) the differences are
considerable larger. This means that Cauchy mutation is able to introduce oc-
casionally large steps, hence the high values for Max(MI), while keeping a good
locality. The same effect does not happen with Flip and Uniform mutation.

Gss A1 Gss A2 Chy Chy A1 Chy A2

Gss ≈ 0.0 0.0963 ≈ 0.0 0.6685 0.0056

Gss A1 0.0033 ≈ 0.0 ≈ 0.0 ≈ 0.0

Gss A2 ≈ 0.0 0.0389 ≈ 0.0

Chy ≈ 0.0 0.0113
Chy A1 0.0276

Table 2: P-values for the Wilcoxon rank sum test, with significance α = 0.01,
for Gaussian (Gss) and Cauchy (Chy) operators.

To establish if these differences are statistically significant, we performed the
Wilcoxon rank sum test with significance value α = 0.01. As expected, there
are no significant differences between Flip mutation and Uniform mutation. In
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Figure 1: E(MI|MI > 0), σ(MI|MI > 0) and P (MI = 0) over the k ≥ 1
number of mutations.

addition, significant differences can be found between these operators and all the
other mutation operators. In what concerns mutation operators with Gaussian
and Cauchy distributions, we found significant differences between Gaussian
and Cauchy mutation operators, although some of them are not strong. Table 2
shows the p-value obtained for each test. Results in bold indicated a statistically
significant difference. In each column, the distributions are designated as Gss
(Gaussian) and Chy (Cauchy).

From the table we can establish that between simple Cauchy mutation and
any variant of Gaussian mutation we have significant differences for all cases.
Moreover, Between Cauchy variants, there is also a significant difference between
the fixed variance operator and the operator with the first annealing scheme.
For the second annealing scheme there is no significant differences, as well as
between both Cauchy variants with the non-fixed variance. These two variants
also present differences with their Gaussian counterparts. The exception is
between Gaussian with scheme A2 and Cauchy with scheme A1. In regards to
the Gaussian operators, among themselves there are no differences between the
fixed variance operator and with the second annealing scheme. Although we can
find a statistically significant difference between annealing schemes, the p-value
shows that the difference is not very large. From this table we can deduce that,
in general, there are significant differences between the two groups of operators.
However, the presence of an annealing scheme might change the behavior a
little. For example, Cauchy with the first annealing scheme approximates to
the Gaussian variants since this scheme provides a faster convergence to smaller
values.

A Gaussian operator displays better locality properties but, how does the
distribution of mutation innovation changes when considering k > 1 mutations?
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We will now consider the case for k ∈ {1, 2, 4, 8, 16, 32, 64, 128, 256, 512}. Figure
1 plots the empirically obtained values for E(MI|MI > 0), σ(MI|MI > 0) and
P (MI = 0) over the number of mutations k.

A perusal of the E(MI|MI > 0) plot reveals three distinct patterns. The
first one is the behavior of Flip and Uniform mutation. Although with different
encodings, these two operators operate in a identical way, inducing the same
degree of locality. From k = 1 to k = 64 mutation steps, Flip and Uniform
mutation have a considerable increase of innovation, from values below 2 to
18. After k = 64 stabilization occurs. This clearly shows that these operators
induce a very low locality. The second pattern is the opposite of the first:
operators with a very high locality. Belonging to this group we have both
Gaussian operators with annealing schemes and Cauchy mutation with the first
annealing scheme. The graph shows for all k mutation steps the same behavior,
presenting almost a straight line with low innovation values. In fact, the induced
locality is so strong that we might consider it as excessive. Nevertheless, for
larger values of k, these two operators start to display a small E(MI|MI > 0)
increase. The third and final pattern is displayed by the remaining operators,
although in this case, we can also distinguish two trends. Gaussian mutation
and Cauchy with the second annealing scheme show an increase of innovation
values starting around k = {16, 32}. The same is valid for the simple Cauchy
operator. However, the magnitude of the innovation growth is much larger when
compared to the other two operators. In fact, whilst Gaussian mutation and
Cauchy with A2 give indications of strong locality, the simple Cauchy operator is
closer to the behavior of Flip and Uniform mutation, thus showing weak locality.
This is interesting to see the difference between distributions and the effect of
adding annealing schemes. Without them, Gaussian mutation is able to induce
a good locality but Cauchy not. Cauchy-based operators require the annealing
schemes in order to be strong local operators and this difference in behavior
is very strong. As for the Gaussian operators, the addition of an annealing
scheme helps to induce an even higher locality. In this case, it could prove to
be excessive.

Regarding σ(MI|MI > 0) the pattern is similar but some remarks must
be made. As expected, the most stable operator are the Gaussian operators
with annealing schemes and Cauchy mutation with the first annealing scheme
whereas the most unstable are Flip and Uniform mutation. Simple Cauchy
mutation and with scheme A2 show a large values increase, followed by Gaussian
mutation. The Cauchy operator starts with low standard deviation values but
steadily increases its growth even passing Flip and Uniform mutation around
k = 128. By this point, Flip and Uniform mutation show a descending trend
after reaching a peak at k = 16. This is consistent with the mean values since
by this time, both operators have stabilized, although the distance between
the mutated individuals and the originals is very large. At this point there
is no semantic relation between the individuals. While Cauchy mutation is
still far from a stabilizing point and as such, the deviations are still increasing.
Nevertheless, on k = 512, Cauchy shows some signs of a loss in innovation
variance. This indicates that the operator is stabilizing although on a point
where it induces low locality. Gaussian mutation and the Cauchy operator
with the second annealing scheme present a parallel evolution of innovation.
Nonetheless, the simple Gaussian mutation shows smaller values. In fact, until
k = 64 the line is below the steadier behavior of Cauchy mutation with the first
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annealing scheme only approaching the variant with the A2 scheme on k = 512.
The loss of semantic relationship occurs later in the process in contrast with the
Cauchy-based operator.

Although not shown, the evolution of the maximum innovation value, Max(MI),
supports the previous analysis. The same fundamental patterns are the same.
The evolution of P (MI = 0) over the k number of mutations is seen in the last
graphic of figure 1. It shows a fast convergence to zero for all operators. As
expected, it is faster for the Flip and Uniform mutation.

Grouping the distances between the original solution and the successive mu-
tants allow us to observe the different types of changes operated by mutation
for E(MI|MI > 0). Given a structural distance dstruct between two pheno-
types, the set Gi to which dstruct is assigned is determined the following way:
{G0 : 0 ≤ dstruct < 0.1; G1 : 0.1 ≤ dstruct < 0.5;G2 : 0.5 ≤ dstruct < 1; G3 : 1 ≤
dstruct < 2;G4 : 2 ≤ dstruct < 3;G5 : 3 ≤ dstruct < 5;G6 : 5 ≤ dstruct < 10;G7 :
10 ≤ dstruct < 25;G8 : 25 ≤ dstruct < 50;G9 : 50 ≤ dstruct}. The specific values
that were selected to determine intervals are arbitrary. The relevant information
is the distribution of the structural distances through the sets. Low order sets
(i.e., small variations) suggest that locality is strong.

The charts in figure 2 show the distribution of structural distances for 1000
individuals, for all operators variants, with each column representing a mutation
step. We include on the top right corner a chart for a random operator. This
gives a comparative idea of how locality is affected by the different operators.
Furthermore, it is possible to see if over the k mutation steps, the mutated
individuals reach the condition of random search. Important differences can
be observed. Gaussian operators with annealing schemes exhibit high locality.
With scheme A1 more than 80% of the individuals belong to the first group
with the huge majority of the remaining ones belonging in the second group.
With the second annealing scheme, ≥ 50% of the distances belong to the first
group until k = 32. From k = 32 to k = 512, the percentage of distances in
the first groups stabilizes around 35%. Moreover, the majority of the remain-
ing distances are within the lower three groups. This pattern is not observed
elsewhere. This shows that this operator preserves the semantic properties of
the individuals subject to mutation very well. It is also important to state that
scheme A1 with this distribution completely removes the innovation capacity
required on a mutation operator. For the second scheme, the operator is ca-
pable of producing some innovation yet it could not be enough. Comparing
with the Cauchy variants, the observed patterns are similar to Gaussian with
the second annealing scheme. The main difference is that Cauchy has more
individuals distributed in higher groups. Thus, it is capable of producing more
innovation. Whilst Cauchy with the first scheme presents a good balance be-
tween high locality and innovation capability, Cauchy with the second scheme
does not. In fact, with k ≥ 128 mutation steps, the number of individuals in
the higher groups is significant.

Looking at the simple variant of Cauchy mutation, the loss of the seman-
tic properties can clearly be seen from the last four columns (representing
the mutation steps for large k). Here the amount of individuals belonging to
the last groups is considerable. This supports our previous plots analysis of
E(MI|MI > 0) and σ(MI|MI > 0). Gaussian mutation displays the same
pattern as Cauchy mutation with scheme A2. Finally, the individuals distribu-
tion of Flip and Uniform mutation show the inefficiency of these operators. The
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Figure 2: Distribution of structural distances for k ≥ 1 mutations, with all
mutation operators, for 1000 individuals.
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induced locality is low and quickly lost. From a very early state, with k ≈ 16,
the behavior is very close to a random state, as it can be observed from the
random chart.

This analysis leads us to conclude that for a mutation operator has a real
influence on the degree of locality. Gaussian-based operators tend to be more
stable and very locally strong. Cauchy-based operators can be more disruptive
but with a good variance control scheme, it is also possible to achieve an operator
which is locally strong. Therefore, on a distribution-based operator, the method
that controls the variance is very important. Fixed variances can be on the long
term less prone to help the operator in inducing a good locality. The simple
Cauchy mutation is a good example. Flip and Uniform mutation act in the
same manner. These two operators can be considered equivalent in spite of the
different encoding. Their behavior is highly disruptive and very locally weak
operators.

4.1.2 Crossover

To investigate locality using crossover it is essential to consider the issue of
parental distance. As explained in 3.2.2, the first parent is randomly generated
and kept unchanged while the second parent is derived from the first one by
applying consecutively mutations steps. Therefore, the choice of the mutation
operator to derive the second parent is important. Since it is not possible to
present a full study considering all the mutation operators already discussed,
we will focus the locality study for crossover (an later for heritability) on two
operators: one Gaussian-based and another with a Cauchy distribution. We
decided to use the variants with the second annealing scheme. This will allow
us to see possible differences (or not) resulting from two different distributions
without the interference of another variable (in this case, the annealing scheme).
The simple versions of these operators are not used since with the annealing
scheme we have the following: 1) an operator which induces a high locality, i.e., it
will generate closer parents; 2) one operator which provides more innovation, i.e.,
parents with a larger parental distance but with semantically related. For binary
representation only Flip mutation is used. Table 3 shows the characteristic
values for CI with a single mutation step (k = 1). P (CI = 0) represents the
percentage of cases for which CI = 0. E(CI) and σ(CI) show the empirically
obtained mean values and standard deviations of CI when CI > 0. They act
as estimations for the expected values. Max(CI) gives the maximum value for
CI.
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Flip / Gaussian P2 generation Cauchy P2 generation
P (CI = 0) E(CI) σ(CI) Max(CI) P (CI = 0) E(CI) σ(CI) Max(CI)

1-Point (BR) 100.00 0.00 0.00 0.00 - - - -
Uniform (BR) 100.00 0.00 0.00 0.00 - - - -
Simple Arithmetical 56.40 0.02 0.03 0.44 54.70 0.03 0.06 0.76
Whole Arithmetical 12.70 0.02 0.05 0.68 12.60 0.04 0.11 1.55
Discrete 100.00 0.00 0.00 0.00 100.00 0.00 0.00 0.00
Simulated Binary 26.40 0.01 0.05 1.16 22.30 0.03 0.10 1.87
Blend-α 20.40 0.02 0.03 0.34 19.00 0.03 0.08 1.05

Table 3: Characteristic values for Crossover Innovation with k = 1. Gaussian and Cauchy mutation with the second annealing scheme
are used for the 2nd parent generation. Binary encoding (BR) uses Flip mutation.
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Examining table 3 and observing the values for both crossover operators used
with binary representation, an interesting effect is detected. Both operators are
unable to produce a new offspring which is different from the parents. At first,
this result could be interpreted as odd or even incorrect, however, this is the
expected behavior. The individuals subject to crossover are binary encoded
and the second parent, P2, derived from the first parent, was subject to a
single step of Flip mutation. The operator altered a single bit and as such,
the genetic material available is not enough to produce an offspring different
from the parents. In this case, binary encoding is the cause for the absence of
innovation.

Moving on to the real-valued encoding and respective operators, we observe
from table 3 important differences. Considering P (CI = 0), Discrete crossover
presents the same behavior as the crossover operators for binary encoding. This
contrasts with the remaining real-valued operators. For example, Simulated Bi-
nary and Blend-α have values around 20% (26.4% and 20.4%) whilst Simple and
Whole Arithmetical crossover show a percentage of 56.4 and 12.7 respectively,
for a Gaussian P2 generation (the same pattern exists the Cauchy derivation).
The remaining characteristic values of CI show zero values for E(CI|CI > 0),
σ(CI|CI > 0) and Max(CI) for Discrete crossover. Looking at E(CI|CI > 0),
all operators show values close to but not zero. As for σ(CI|CI > 0) and
Max(CI), the same trend occurs: maximum innovation values are small (be-
tween 0.34 and 1.87) for every crossover except Discrete crossover which is null.
The reason for this reported behavior lies with the functioning of this genetic
operator. The operator resembles the classic Uniform crossover for binary rep-
resentation in the sense that offspring are built from interchanging genes with a
given probability. Although this is a real-valued encoding, for a single mutation
step only a single gene differs the second parent from the first, thus the crossover
operation will always produce as offspring the same individuals, i.e., the parents,
introducing no innovation. However, with multiple mutation steps, the the sec-
ond parent will become considerably different and the large interaction between
the genes might induce a disruptive behavior which will benefit the generation
of different phenotypes. In this way, the operator could introduce large values of
innovation. Moreover, this could also mean that the operator might inefficiently
explore the search space if the induced locality becomes weak.

Considering the remaining crossover operators, differences in the character-
istic values are more subtle, or inexistent, with the exception of P (CI = 0).
The arithmetical operators show E(CI|CI > 0) values of 0.02, for Gaussian
generation, and of 0.03 and 0.04, for Cauchy derivation. σ(CI|CI > 0) also
presents low and close values. With Simulated Binary and Blend-α crossover
the pattern is similar. The conclusion to be drawn is that the operators present
similar levels of high locality and thus, all of them should be local-strong oper-
ators. In spite of that, the single application of mutation is not enough to draw
stronger conclusions. The analysis of the application of multiple mutation steps
is essential to understand their behavior.

To establish if these differences are statistically significant, we performed the
Wilcoxon rank sum test with significance value α = 0.01. Table 4 shows the p-

value obtained for each test. Results in bold indicated a statistically significant
difference. The diagonal shows the differences between both mutation operators
used to generate the second parents, the upper triangle presents the differences
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Simple Whole Discrete SBX Blend-α

Simple 0.02 ≈ 0.0 ≈ 0.0 ≈ 0.0 ≈ 0.0

Whole ≈ 0.0 ≈ 0.0 ≈ 0.0 ≈ 0.0 0.03
Discrete ≈ 0.0 ≈ 0.0 - ≈ 0.0 ≈ 0.0

SBX ≈ 0.0 ≈ 0.0 ≈ 0.0 ≈ 0.0 ≈ 0.0

Blend-α ≈ 0.0 0.12 ≈ 0.0 ≈ 0.0 ≈ 0.0

Table 4: P-values for the Wilcoxon rank sum test, with significance α = 0.01,
for Crossover operators.

between different crossover operators using the Gaussian operator while the
lower triangle shows the differences by using the Cauchy operator.

Binary representation operators are not included. A significant difference
is always present. As expected, there are significant differences between all
crossover operators with the exception of Whole Arithmetical and Blend-α, re-
gardless of the type of mutation operator used for the second parent generation.
For all other combinations, the p-value is always very close to zero. When we
look at the differences between the same crossover operators but with a differ-
ent parental generation, only Simple Arithmetical and Discrete crossover do not
show significant differences. Although some of the values present in table 3 are
very similar, statistically they are different.

Figure 3 plots the empirically obtained values for E(CI|CI > 0), σ(CI|CI >

0) and P (CI = 0), applying k ∈ {1, 2, 4, 8, 16, 32, 64, 128, 256, 512} number of
mutations. This figure 3 contains two rows of charts. The top row refers to the
data collected by using the Gaussian operator for the 2nd parent’s derivation
while the bottom row refers to the Cauchy operator. The binary encoding oper-
ators are included on all charts for comparative and scaling purposes purposes.

Lets start the crossover analysis with the Gaussian parental derivation and
binary representation. The examination of the E(CI|CI > 0) plot reveals some
interesting patterns. The difference between operators with binary and real-
valued encodings are very large. CI increases considerable until k = 64, from
values close to zero to 3.5 and 5.5 (1-Point and Uniform crossover respectively)
and stabilizes around these values from the remainder of the k mutations. These
CI values contrast with the maximum obtained by all other operators, which are
below 1.0. Uniform crossover shows a larger innovation than 1-Point crossover
although their behavior is very similar. However, the disruption caused by the
way Uniform crossover operates justifies this difference. Uniform crossover is
promoting several cut points and changes on the genotype which will result
in several changes on the coordinates, after the genotype-phenotype mapping.
With 1-Point crossover the changes will be smaller since in the worst case,
only 50% of the genotype will be different. And even in this situation, the
different half-part is still related inducing lesser innovation. Nevertheless, these
variations are always superior to the ones produced by real-valued operators.
In what concerns crossover for the real-valued encoding the type of behavior
is similar for all operators. The values for CI are very low starting to slowly
increase around k = 32. For the larger values of k, CI is close to 1.0 for
Whole Arithmetical, approximately 0.5 for the remaining operators. These five
operators exhibit a high locality. Since Discrete crossover is similar in behavior
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Figure 3: E(CI|CI > 0), σ(CI|CI > 0) and P (CI = 0), top, middle and bot-
tom rows respectively, over the k ≥ 1 number of mutations (left, middle and
right chart respectively). The left column displays the data using the Gaus-
sian operator for the 2nd parent’s derivation while the right columns uses the
Cauchy operator. The binary encoding operators are included on all charts for
comparative purposes.

to Uniform crossover for binary encodings, the expected result would be a higher
curve. However, this is not observed which indicates that the representation
in this case is the leading reason for this difference. Moreover, the observed
local strong operators generate offspring in ways that do not promote large
variations on the genotypes. This might also indicate that the exploratory role is
weaker in the real-valued operators. However, if this high locality correlates with
good optimization results from evolutionary algorithms, then the exploration
provided by these crossover operators is enough. Otherwise, the induced locality
should be lower but not to the levels where no relationships between parents
and offspring exist. The relation between locality and the search dynamics are
analyzed in section 4.4.

Looking at the evolution of σ(CI|CI > 0), we see a similar trend to E(CI|CI >

0). The crossover operators for binary representation have the same kind of re-
sponse as before: a fast increase to k = 32 and subsequent stabilization. The
main difference relies on the proximity of the innovation deviation values. Re-
garding the real-valued operators, the same applies. From k = 32 onwards the
deviation values start to increase, in a steady and slowly manner, and by k = 512
it is possible to distinguish the values between obtained by the different opera-
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tors. σ(CI|CI > 0) supports the identification of the two groups of operators,
identified by their representation. The binary group which is characterized by
some locality at the beginning but quickly displays a very weak locality. And the
group of real-valued encoding, which shows high locality although it may also
indicate that they can induce some excessive locality, lessening the exploratory
role of crossover. However, the observation of the chart related to the evolu-
tion of P (CI = 0) might indicated this effect could not be a problem. With
the exception of the Simple Arithmetical crossover, which even performs worse
than Uniform crossover, all the other real-valued operators quickly reach the
zero probability. Comparing to the binary operators, the time to reach CI = 0
is long and 1-Point crossover does not even reach it. Nevertheless, this is just
an indication; in section 4.4 we will discuss this issue.

Before concluding, we need to take a look at the data which relates to the
generation of the 2nd parent by means of Cauchy-based mutation. A brief
examination of the corresponding plots, the bottom row of figure 3, we can
conclude the pattern is the same for all crossover operators. In terms of the
identification of the groups, it is possible to see the same information. As
such, we could conclude that the choice of a mutation operator to produce the
2nd parent, in order to have meaningful parental distances, is not important.
However, this is not entirely correct. The plots also show a small difference
between the two mutation operators used. The locally strong operators present
a faster increase of innovations levels and Discrete crossover loses stability at
the end. Although the pattern is similar to Gaussian-based mutation, the total
amount of innovation is larger. Discrete crossover almost displays, with k =
512, the same amount of CI as 1-Point crossover. Looking at the σ(CI|CI >

0) graphic, this trend is even more perceptible. What happens is that the
Cauchy operator produces, for the same amount of mutation steps, parents
more distant from each other. Taking into account this effect, it is natural that
CI values increase to larger values. And since a Cauchy-based operator reaches
a state where the semantics between the original individual and the mutated one
disappear faster, this explains the observed difference. However, the important
behavior of the operators remain. We also tested this hypothesis by analyzing
CI using Uniform mutation for the parental derivation. Results (not shown
here) confirm it: CI values increase due to the larger parental differences but
the main patterns between crossover operators remain.

The charts in figure 4 show the distribution of structural distances for 1000
individuals, for all operators variants, with each column representing a mutation
step. We group the distances between the original solution and the successive
mutants in the same manner as before. As before, the important information
is the distribution of the structural distances through the sets. Low order sets
(i.e., small variations) suggest that locality is strong. The charts support our
previous analysis. The genetic operators used with binary representation only
provide high locality values for small values of k. For k ≥ 16 mutation steps, the
amount of individuals close to a random configuration is large. This is especially
evident for Uniform crossover with more than 50% of the individuals in higher
distance groups.

The real-valued crossover operators display in their graphics the induced
high locality. Whole Arithmetical and Blend-α crossovers show a very similar
group distribution with Gaussian mutation. The majority of the individuals
are in the first distance group and with the increasing number of mutation
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Figure 4: Distribution of structural distances for k ≥ 1 mutations, with all
mutation operators, for 1000 individuals.

steps, there is a transfer of these individuals to groups which are also close in
distance. Simple Arithmetical and Simulated Binary crossovers reinforce this
behavior. In fact, they appear to be the operators which induced the highest
locality. This alters when we consider Cauchy-based mutation since for a higher
k, the individuals are more evenly distributed to groups with larger distances.
The plots are similar for all operators with the exception of Simple Arithmetical
crossover, where the induced high locality is still visible.

The study of locality with crossover reinforces how important is the choice
of representation and associated operators. In this case, crossover with binary
encoding is expected not to perform well. It is confirmed by high locality val-
ues with parents very close to each other and moves to low values when the
parental distance becomes larger. For real-valued crossover, operators have a
more similar effect on locality. In fact, operators who promote subtler changes
will be more locally strong, as expected. To conclude, the choice of crossover
for molecular docking must be made taking into consideration the fact that this
operator has a exploration role. Therefore, it is important to provide some level
of innovation. Additionally, this should be balanced with a good degree of lo-
cality. However, in an evolutionary algorithm it is the dynamics of crossover
and mutation together that are important.
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4.2 Heritability Analysis

Empirical estimations of CL were calculated from the experiments described
in the previous section, using equation 10. Figure 5 shows the estimated
E(CL|CL > 0) and σ(CL|CL > 0) plotted over k number of mutations. In
these plots, the second parent is generated using the Gaussian-based operator.
Plots with the estimations but using the Cauchy operator follow the same pat-
tern and as such, they are not displayed. Binary representation and associated
operators are also presented in the graphics.

Figure 5: E(CL|CL > 0) and σ(CL|CL > 0) over the k ≥ 1 number of muta-
tions, left and right chart respectively, using the Gaussian operator for the 2nd

parent’s derivation (with Cauchy operator the pattern is similar). The binary
encoding operators are also included.

From the observation of the plots, the general tendency is for all operators
to exhibit small values of expected crossover loss with a slight increase towards
larger values of k, i.e., when the distance between parents becomes larger, her-
itability becomes less strong. This is particularly visible for Blend-α crossover,
nevertheless, the values are still reasonable. In contrast, Simple Arithmeti-
cal crossover shows the lower CL values and has the stronger heritability. In
the other extreme lies Discrete crossover. The values for E(CL|CL > 0) and
σ(CL|CL > 0) are always considerable large. Heritability for the real-valued
encoding with this operator is particularly poor regardless of the parental dis-
tance. As before, the reason for this behavior is the large disruption the opera-
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tor applies when generating the offspring. The inherited sub-structures are not
meaningful between each other since there is a dependency between the genes.

As for binary representation, 1-Point crossover starts to display small ex-
pected and standard deviation values but quickly they start to grow large when
the distance between parents increases. With k = 4, E(CL|CL > 0) and
σ(CL|CL > 0) are already superior to all the strong heritability operators and
from k = 32, expected values are always the larger obtained by an operator.
For σ(CL|CL > 0), although they are not the larger values, by k = 128 they
are very close to the ones attained by Discrete crossover. Since this is a binary
representation, this type of operator is not the most adequate for a good mix-in
and arrangement of good sub-structures. A little surprisingly, Uniform crossover
has the opposite behavior. The corresponding crossover loss values are low and
remain close to real-valued operators which displayed good heritability. From
the figure, we see that for low values of k, E(CL|CL > 0) and σ(CL|CL > 0)
are slightly larger but for high values of k, they are in the same level. The trend
is stable like Discrete crossover, however, the induced heritability is better. It
could have been expected that Uniform crossover would display values similar
to Discrete crossover since it is a binary encoding. The interesting factor is
that, the encoding is responsible for this behavior since the way this operator
functions allows a good arrangement of sub-structures. In spite of showing poor
locality, in terms of heritability, this operator is stronger.

4.3 Heuristic Bias Analysis

We examine now the heuristic bias of the operators. Although no problem
specific knowledge is used in any of the genetic operators, we feel that it is im-
portant to observe if a bias is present when using the different distributions and
control variance schemes. Even if no specific knowledge is incorporated into the
operators, the way they operate might still produce a small bias. Furthermore,
the initial population is randomly initialized but performed according to a grid
structure in order to have a better initial quality of the first population. The
heuristic bias of the grid is also measured in this section.

We start to analyze the bias in the operators by running a simple evolution-
ary algorithm with 100 individuals without selection (generational replacement),
for each operator to be tested, applying each operator individually it with a 1.0
rate. We run the algorithm for 100 generations (30 runs). To measure the bias
we use the following metric:

dlig−opt =

n
∑

i=1

dstruct(lig, opt)

n
(11)

where n is the population size, lig the current individual and opt the best so-
lution. Biased operators should show an approximation for the optimal solution
(or not) whilst unbiased ones should display a constant behavior.

Let’s start our analysis with mutation. The left plot in figure 6 shows the
measured heuristic bias for all real-valued operators (we do not consider the
binary operators for this part of the analysis) without the grid heuristic initial-
ization. As expected, all operators have a similar behavior and there are no
indications of a bias. The gaussian and cauchy-based operators are unable to
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Figure 6: Plots show the mean of dlig−opt over 100 generations of an evolu-
tionary algorithm with random selection, population with 100 individuals. Left
plot uses shows mutation with random initialization, and center plot with grid
initializaton. The right plot presents crossover with grid initialization.

bias the process to more fitter individuals. The operation of the different distri-
butions do not alter in any significant manner the type of generated individuals.
However, when the grid initialization is used, the results are slightly different.
The quality of the initial population improves with the grid. However, since
there is no specific heuristic encoded in the operators, they are expected not
keep the initial quality and modify the individuals in a manner that their quality
decreases. The best example of this behavior is Uniform mutation. From the
initial generations it starts to approach the a pure random status and for the
last 50 generations, the population presents the same behavior as a random one.
This confirms that this mutation operator is not able to preserve the quality ini-
tially introduced and acts in the sense of a negative bias, i.e., a bias not towards
the better solutions but the worse ones. The simple cauchy operator gives some
similar indications although in a much smaller scale. Starting from generation
50 it starts to drift from the constant behavior in the direction of the pure
random population. Since these are the operators that promote larger changes
in the individual’s phenotypes, on a initial good quality population, these will
changes will lead to a decrease of quality since the effect of biased selection is
not present to preserve the good individuals. Moreover, the other operators
promote small changes, especially the ones with variance control schemes, and
this is enough to preserve some of the quality of the population, i.e., not losing
the effect of the initial heuristic bias of the grid.

As for crossover, the case is not very different from mutation. When consid-
ering pure random populations, the performance pattern is similar to mutation.
All operators do not show a significant bias towards better solutions. Again,
with grid initialization results are more interesting. As the right plot of figure
6 confirms, the same improvement on the initial populations is present com-
paring to the random case. In addition, we also have operators that lose the
initial quality. Simulated binary, blend-α and discrete crossover start to display
an approximation towards worse solutions around generation 10-15. Simulated
binary has the worst performance since by generation 100 is very close to ran-
dom. On the other hand, both arithmetical crossover show a bias towards fitter
solutions. The whole arithmetical crossover displays the larger bias from the
first generations and stabilizes around generation 20. The simple arithmetical
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Figure 7: Box-plots for mutation (top) and crossover (bottom) showing the
heuristic bias differences, with grid initialization, between the several genetic
operators.

crossover behaves in a slightly different manner. It starts to converge to better
solutions around generation 15 and stops in generation 70. The presence of a
very small heuristic bias in these operators is surprising since they do not have
any kind of specific knowledge about the problem. The main difference between
these operators and the others is, once more, the degree of changes performed
on the genotypes. The later operators can act more disruptively than the arith-
metical operators. Nevertheless, we must point out that the differences between
all these operators are small.

Figure 7 shows the box-plots for mutation and crossover after applying the
Kruskal-Wallis test. This test is a non-parametric version of the classical one-
way ANOVA, and an extension of the Wilcoxon rank sum test to more than two
groups. It compares samples from two or more groups of data and returns the
p-value for the null hypothesis that all samples are drawn from the same popula-
tion, or equivalently, from different populations with the same distribution. The
plots allow us to better see the differences between operators. Significant differ-
ences can be found between all crossover operators. As for mutation, differences
between Gaussian operators are less clear although they existent between Gaus-
sian and Cauchy-based operators. The same pattern can be found in-between
Cauchy operators although the simple Cauchy operator shows a much larger
confidence interval.

For the sake of completeness, we also analyzed the heuristic bias between
the two encodings: binary and real-valued. Since semantically they are similar
and no heuristics are used, no bias is expected to be found. The only effect
that must be visible is the grid initialization. Bias in the encodings is examined
without reference to the effect of genetic operators. We randomly generated 1000
individuals, for each one, and perform a statistical analysis. Table 5 contains
the results and it is clear that no differences exist between both encodings. They
display the same behavior, even with the grid initialization. As expected, the
grid initialization imposes a strong heuristic bias in the first population.

INRIA



An Empirical Study on the Influence of Genetic Operators 31

Representation Grid Initialization Mean Std. Deviation

Binary no 0.25 0.03
yes 0.08 0.05

Real-valued no 0.25 0.04
yes 0.08 0.05

Table 5: Bias of representations. The mean and standard deviation of the metric
dlig−opt for 1000 randomly generated individuals (with and without grid). A
higher value indicates a lower bias.

4.4 Search Dynamics Analysis

The previous sections presented our analysis concerning several genetic encod-
ing properties and how variations operators affect them. The analysis revealed
some conditions that might influence the performance of an evolutionary algo-
rithm. However, the previous analysis were static, i.e., they were made without
performing complete runs of an evolutionary algorithm. The exception was the
heuristic bias property. Even so, it was an evolutionary algorithm without selec-
tion. Naturally, the evolutionary search process dynamics are influenced by the
interplay of variation operators, selection, replacement strategy and other addi-
tional factors. In this section, we will present an analysis of the dynamic case,
i.e., complete evolutionary runs to confirm the results of the previous analysis.

Since we are mainly interested in the behavior attained during the evolution-
ary runs, we use a simple generational evolutionary algorithm. The algorithm
uses binary tournament selection, elitism and no local search methods. The
parameters are also standard: 100 individuals, crossover rate of 0.8, mutation
rate of 0.05 and 100 generations. We performed 30 runs with the same ini-
tial conditions and with different random seeds. All initial populations were
randomly generated. Finally, for mutation, we will focus our analysis on the
Gaussian and Cauchy operator with the second annealing scheme. For crossover,
we concentrate on the real-valued crossover operators.

In order to analyze the dynamics of the evolutionary algorithm, we measure
the RMSD and energy mean of the population. Since the evolutionary algorithm
uses as fitness function an energy function, it is important to related it to the
solution’s structure. In this manner, we establish a relation between the static
measures that took into account the phenotype with the search process.

Figure 8 contain the plots that show the RMSD mean of a population. The
top plot uses Gaussian-based mutation and the bottom one Cauchy-based mu-
tation. We include binary encoding with Flip mutation for comparative pur-
poses. Figure 9 shows the plots with the energy mean of a population under
the same conditions. From these figures we can detect some important differ-
ences and similarities. The plots provide a resemblance in terms of RMSD and
energy level, although there is a fast convergence of the energy level compared
to RMSD, for all types of operators. In addition, it is visible the differences of
performance for all genetic operators. In fact, there are no major differences
between groups of operators. The most striking difference of performance we
find is related to Discrete crossover: it shows the worst RMSD behavior whereas
for energy the binary operators perform worse. Regarding the best levels for
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energy and RMSD the plots are clear: the arithmetical crossovers have the best
performance, especially the Whole Arithmetical operator. In terms of mutation,
the differences are not perceptible but we must add that mutation rate is low
and crossover is the main variation force in this scenario.

The important aspect from these figures is that supports the previous analy-
sis, mainly in terms of crossover. Looking at the energy and RMSD plots, arith-
metical crossover operators with gaussian-based mutation are faster to converge
towards fitter solutions. Moreover, it clearly shows that the choice of varia-
tion operators, and encoding, is important in the context of molecular docking.
However, the plots of these evolutionary runs show only the performance of the
genetic operators in the instance used during the analysis. It is important to test
and relate the performance attained by these components on more instances.

Additional experiments were also made with other instances to assess the
validity of this analysis in other instances, confirming the results present here.
It is not possible to present a full analysis for all the studied molecules, with
every single component and parameters. We focus on the overall picture across
several instances. It is important to notice that our goal is not to obtain new
best solutions or be competitive with current approaches. The displayed results
are only for analysis and have the main objective of showing patterns of perfor-
mance, i.e., to establish if the analysis presented in this paper reflects in other
instances.

Figure 8: Plots show the RMSD mean of a population with 100 individuals, over
100 generations (30 runs). Top plot uses Gaussian-based mutation and bottom
plot shows Cauchy-based mutation.
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Figure 9: Plots show the Energy mean of a population with 100 individuals, over
50 generations (30 runs). Top plot uses Gaussian-based mutation and bottom
plot shows Cauchy-based mutation.

Table 6 contains the results evolutionary algorithm optimization runs on
eight molecules. These instances are included in the Autodock suite and their
dimension is indicate in the row below each molecule designation. The algo-
rithm configuration is the same used before with the same parameters values.
The table displays the information according to each crossover operator. Gaus-
sian mutation with the second annealing scheme is used with the real-valued
encoding. The best and mean rows after label E contains the Energy average of
the best solutions found and the mean of the population. The label R is for the
RMSD values, i.e., the population’s mean and the Improvement Rate (IR). This
last measure indicates the RMSD improvement in the population. It measures
the percentage of structural improvement from the first generation to the last.
Values in bold indicate best results. Finally, the last column Avg contains the
average of each measure on all problem instances.
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Instance 1adb 1bmm 1hvr 1nnb 1tnh 2dbl 3ptb 7abp Avg
Dimension 21 19 17 16 9 13 7 11

Simple A. E best 331.40 3.55 165.41 -1.83 -2.07 -2.10 -2.36 8.90 62.61
mean 399.79 52.61 168.16 -1.82 -2.06 -2.05 -2.35 9.31 77.70

R mean 4.80 6.65 1.99 6.13 6.62 4.87 5.24 3.57 4.98
IR 41.91 23.06 72.59 17.42 26.74 34.71 38.55 54.05 38.63

Whole A. E best 425.95 4.80 -8.48 -3.20 -2.57 -5.90 -3.22 4.03 51.43

mean 440.24 5.23 -8.28 -3.17 -2.56 -5.85 -3.21 4.51 53.36

R mean 2.92 4.25 1.00 2.73 3.54 2.36 2.75 1.30 2.61

IR 61.62 45.75 84.10 58.28 56.49 64.22 64.16 81.58 64.52

S. Binary E best 4413.52 105.25 844.64 -0.35 -1.69 -1.09 -1.98 -0.03 669.78
mean 4543.16 111.43 1009.39 -0.21 -1.67 131.42 -1.96 46.95 729.81

R mean 3.02 6.16 1.78 6.04 8.40 5.38 7.40 5.68 5.48
IR 42.52 31.94 57.24 21.84 19.48 24.64 26.30 39.80 32.97

Discrete E best 5730.73 38.37 1592.20 -1.33 -1.61 -2.58 -1.82 -0.79 919.15
mean 6123.97 357.74 1713.57 -1.31 48.24 232.35 -1.81 -0.69 1059.01

R mean 6.151 7.219 3.342 6.917 8.347 6.037 8.120 7.718 6.73
IR 27.27 20.05 55.25 9.50 11.70 20.92 9.83 6.63 20.14

Blend E best 4451.07 105.15 1116.21 1.58 -1.76 0.84 -2.35 4.95 709.46
mean 4555.35 799.53 1158.92 1.78 -1.75 336.78 102.01 5.39 869.75

R mean 4.42 6.46 2.96 6.72 7.12 6.24 6.30 5.71 5.74
IR 47.94 28.15 60.05 12.83 25.20 19.93 29.67 30.53 31.79

1-Point E best 2742.53 -2.03 303.72 -2.68 -1.70 -2.75 -2.14 2.71 379.71
mean 1.46E+05 1.14E+05 7.44E+04 3.64E+04 2.21E+04 8.09E+04 2.02E+04 2.64E+04 6.50E+04

R mean 5.50 6.85 3.15 6.81 7.86 6.16 7.41 6.17 6.24
IR 36.15 23.87 58.18 10.79 16.37 19.90 18.29 24.18 25.97

Uniform E best 298.38 9.83 605.95 -2.49 -1.53 -2.86 -1.59 2.10 113.47
mean 8.48E+04 9.03E+04 5.81E+04 2.93E+04 2.04E+04 4.89E+04 2.57E+04 1.92E+04 4.71E+04

R mean 5.22 6.50 2.54 6.00 8.18 5.58 8.10 5.00 5.89
IR 41.18 28.58 67.34 21.65 12.15 29.29 10.52 39.81 31.32

Table 6: Results for the evolutionary algorithm optimization runs on 8 molecules.
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A quick look at the table allow us to detect some important differences.
The most important one is that Whole Arithmetical crossover with Gaussian-
based mutation consistently performs well on all the docking instances. In
terms of RMSD values, the best population means and improvement rate are
displayed. As for the energy levels, with the exception of instance 1adb and
1bmm, it also shows the same performance. Moreover, the Avg simply confirms
this behavior. A very important detail to notice is the improvement rate. The
use of Whole Arithmetical crossover and Gaussian mutation with an adaptive
scheme attained not only the best values but rates above 56% on every instance.
The sole exception was instance 1bmm which only achieved a rate of 45.75%.
The global average is 64.52%. By contrast, all the other operators present much
lower improvement rates and in most cases, below 40%. This is supported by
looking at the global averages, ranging from 25.97% to 38.63%. In terms of
energy, Simple Arithmetical crossover presents a good performance although
slightly worser than the Whole Arithmetical crossover. As for the structural
measures, in spite of being the second best, its performance is still far from the
best crossover as indicated by the global Avg column: 38.63% versus 64.52%, a
difference of 25.89%!

The performance of the remaining operators also follow the expected be-
havior: Discrete crossover and the binary operators show overall the weakest
performance. The exception to this situation is the relatively good capability
for Discrete crossover to attain good best solutions in terms of energy. The
observation of the row containing the average of the best solutions exhibits val-
ues which are better than Simulated Binary and Blend-α crossover operators.
Nevertheless, when examining the population mean we quickly see the perfor-
mance is considerably worse. Before concluding this section, we must add that
changing mutation didn’t alter the patterns displayed in table 6, even though
the overall best and mean values have lower quality. As table 7 shows, the
differences in results between Gaussian and Cauchy mutation with the second
annealing scheme are not very large. The observation of the overall average
gives a general overview. In terms of energy, the best mean are near, 23.94
for Gaussian and 25.87 for Cauchy, but the gap is wider for the population’s
mean: 25.45 to 106.06. As for the structural measure, the mean value is also
close since 2.29 is slightly lower then 2.51. However, the improvement rate is
considerable better for Gaussian mutation: 68.72% when compared to 59.47%
of Cauchy. Finally, a perusal of the table quickly reveals that the majority of
the best values belong to the Gaussian operator.

In addition, other factors could influence search dynamics, e.g., local search
methods. However, results shown here help to establish the role and perfor-
mance of each operator and their contribution, in the context of molecular
docking and in accordance with the previous static analysis and external in-
vestigations. In addition, local search methods can have a great impact on
the locality of operators and therefore, influence considerably the search per-
formance. The effect can be positive or negative. This raises the question if
a study should include from the start these methods. In this problem, several
evolutionary approaches do not use local search and as mentioned before, some
studies made, e.g., [4], state that the use of local search can be harmful to
search in this problem. Since competitive methods can be developed without
local search [2], an investigation with and without local search, makes perfect
sense.
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Instance 1adb 1bmm 1hvr 1nnb 1tnh 2dbl 3ptb 7abp Avg
Dimension 21 19 17 16 9 13 7 11

Gaussian A2 E best 199.24 4.05 9.27 -3.94 -3.07 -4.91 -3.66 -5.50 23.94

mean 210.60 4.30 9.65 -3.89 -3.06 -4.87 -3.64 -5.46 25.45

R mean 2.87 3.92 1.17 1.97 2.44 2.54 1.95 1.44 2.29

IR 62.07 49.60 81.63 70.52 70.36 61.26 74.78 79.55 68.72

Cauchy A2 E best 217.53 -2.26 16.40 -3.58 -2.82 -7.55 -3.91 -6.86 25.87
mean 289.25 -1.98 103.91 -3.51 332.36 138.64 -3.88 -6.32 106.06

R mean 3.19 3.95 1.08 2.58 3.36 2.78 2.38 0.74 2.51
IR 6.86 48.59 83.25 60.52 59.43 58.14 69.72 89.28 59.47

Table 7: Results showing the differences between both mutation operators for the evolutionary algorithm optimization runs on the eight
molecules. Values in bold indicate best results.
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5 Conclusions

We investigated the influence of several crossover and mutation operators, with
two representations, when applied to molecular docking optimization. The most
successful evolutionary algorithms for this problem use a real-valued representa-
tion as the basis for their model. Different variation operators have been used,
however, no studies were performed to conclude about their efficiency and per-
formance with the exception of [4]. It is important to understand the behavior
and influence of these components in order to design new and more efficient
evolutionary algorithms for the molecular docking problem. Our investigation
focused on encoding properties and how the different variation operators affect
them. Locality, heritability and heuristic bias were analyzed in this work. We
used the framework proposed by [7] to study these properties in a static and in-
expensive way, and later related the findings with actual runs from evolutionary
algorithms.

Results confirm that high locality is important and explain the behavior of
different crossover and mutation operators. Gaussian mutation provides locally
strong operators and this is especially true when used in conjunction with an
annealing scheme. This is an indication that more fine-tuning of the confor-
mations is allowed. On the other hand, Cauchy-based operators show a lesser
degree of locality. The operator with the annealing scheme shows a locality
similar to Gaussian mutation with fixed variance. Thus, these operators can
provide a more exploratory role. Regarding crossover, the class of Arithmeti-
cal operators have shown to be more balanced in terms of locality, providing a
good level of locality and innovation. A similar pattern is also displayed with
other operators with the exception of Discrete crossover and operators for the
binary encoding. Nevertheless, when used in conjunction with mutation, Simu-
lated Binary and Blend-α crossovers do not perform so well as the Simple and
Whole Arithmetical operators. The same kind of behavior is also visible with
the heritability property: the operators who generate offspring with more sub-
structures from the parents are the Simple and Whole Arithmetical crossover.
Discrete crossover is the complete opposite, followed by 1-Point crossover (for
the binary representation). In what concerns the heuristic bias, the different
mutation operators do not exhibit a bias towards fitter solutions since no spe-
cific problem knowledge is included. However, when in presence of a population
initialization heuristic, Uniform mutation is not able to preserve the introduced
bias. The same occurs with crossover. The main difference is that a small bias
is present in the Arithmetical crossovers in the direction of better solutions.
Finally, actual optimization runs in different instances of the problem support
the analysis findings. The performance and behavior of the variation operators
are consistent.

Although specific analysis results were shown for one single problem instance,
it is natural that, for other instances the actual absolute values are different.
In spite of that, additional tests were performed on different instances and the
same qualitative trends have been found. Previous studies have mainly applied
evolutionary techniques to molecular docking and investigations on why the
components are able to achieve the results are not provided. As such, the useful
outcome from this work is twofold: 1) it explains in terms of encoding properties
the operators under investigation; 2) it provides hints on how future genetic
operators can be developed. To conclude in this work, local search methods
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were not considered. These techniques will be the focus of future research, with
some initial work already described here [32] , since the impact of local search
is an important aspect of an evolutionary algorithm.
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