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Abstract. In this study, we present a calibration technique that is valid
for all single-viewpoint catadioptric cameras. We are able to represent
the projection of 3D points on a catadioptric image linearly with a 6×10
projection matrix, which uses lifted coordinates for image and 3D points.
This projection matrix can be computed with enough number of 3D-
2D correspondences (minimum 20 points distributed in three different
planes). We show how to decompose it to obtain intrinsic and extrinsic
parameters. Moreover, we use this parameter estimation followed by a
non-linear optimization to calibrate various types of cameras. Our results
are based on the sphere camera model which considers that every central
catadioptric system can be modeled using two projections, one from 3D
points to a unitary sphere and then a perspective projection from the
sphere to the image plane. We tested our method both with simulations
and real images.

1 Introduction

Since their introduction to the computer vision community, catadioptric omni-
directional cameras have been utilized in many application areas such as surveil-
lance [1], tele-presence [2], robot navigation [3] and 3D reconstruction [4].

Omnidirectional cameras being single-viewpoint are searched, since it is an
important property. If single-viewpoint cameras are used, directions of the light
rays coming into the camera can easily be calculated and combined in a multiview
geometric framework [5]. Catadioptric systems, combinations of camera lenses
and mirrors, are able to provide single-viewpoint property if the mirror has a
focal point which can behave like an effective pinhole. Parabolic and hyperbolic
mirrors are the two most popular mirrors for single-viewpoint systems.

Geometric properties of single-viewpoint cameras were examined by Baker
and Nayar [6]. Swaminathan et al. [7] conducted a detailed study on the geometry
of non-single-viewpoint systems. There also exist studies for approximating a
viewpoint in non-single-viewpoint systems as Derrien and Konolige proposed for
spherical mirrors [8].

Several methods were proposed for calibration of catadioptric systems. Some
of them consider estimating the parameters of the parabolic [9, 10], hyperbolic
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2 DLT-Like Calibration of Central Catadioptric Cameras

[11] and conical [12] mirrors together with the camera parameters. Calibration of
outgoing rays based on a radial distortion model is another approach. Kannala
and Brandt [13] used this approach to calibrate fisheye cameras. Scaramuzza et
al. [14] extended the approach to include central catadioptric cameras as well. A
disadvantage of their method is that it requires the user to click all the calibration
points in the images. Mei and Rives [15], on the other hand, developed another
Matlab calibration toolbox that estimates the parameters of the sphere camera
model (check Section 2 for the camera model). Parameter initialization is done
by user input, namely, the location of the principal point and depiction of a real
world straight line in the omnidirectional image (for focal length estimation).

Svoboda and Pajdla [16] derived epipolar geometry constraints for all types
of central catadioptric cameras. Geyer and Daniilidis have shown the existence
of a fundamental matrix for para-catadioptric cameras [17, 18]. This has been ex-
tended by Sturm towards fundamental matrices and trifocal tensors for mixtures
of para-catadioptric and perspective images [19]. Barreto showed that the frame-
work can also be extended to cameras with lens distortion due to the similarities
between the para-catadioptric and division models [20, 21].

Recently, Sturm and Barreto [22] extended these relations to the general
catadioptric camera model, which is valid for all central catadioptric cameras.
They showed that the projection of a 3D point can be modeled using a projection
matrix of size 6 × 10. They also show the existence of a general fundamental
matrix of size 15× 15 and plane homographies, again of size 15× 15. They used
the sphere camera model [23] and so-called lifted coordinates.

In our study we extend the work of Sturm and Barreto [22] and put their
theory of calibrating central cameras into practice. We compute the generic pro-
jection matrix, Pcata, with 3D-2D correspondences, using a straightforward DLT-
like (Direct Linear Transform [24]) approach, i.e. by solving a linear equation
system. Then, we decompose Pcata to estimate intrinsic and extrinsic parame-
ters. Having these estimates as initial values of system parameters, we optimize
the parameters based on minimizing the reprojection error. When compared to
the technique of Mei and Rives [15], the only previous work on calibration of
sphere camera model, our approach has the advantages of not requiring input
for parameter initialization and being able to calibrate perspective camera as
well. On the other hand, our algorithm needs a 3D calibration object currently.

In the next section, we introduce notations and background. In Section 3, we
show how to compute and decompose the generic projection matrix. In Sections
4 and 5, we present the results of experiments for the mentioned calibration
approach with simulated and real images, respectively.

2 Background

Notations. We do not distinguish between a projective transformation and the
matrix representing it. Matrices are represented by symbols in sans serif font, e.g.
M and vectors by bold symbols, e.g. Q. Equality of matrices or vectors up to a
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DLT-Like Calibration of Central Catadioptric Cameras 3

Fig. 1. Projection of a 3D point to two image points in sphere camera model. Cam-
era is looking down, accordingly z-axis of the camera coordinate system is positive
downwards.

scalar factor is written as ∼. [a]× denotes the skew-symmetric matrix associated
with the cross product of 3-vectors.

Camera model. We use the sphere model for catadioptric projection in-
troduced by Geyer and Daniilidis [23]. All central catadioptric cameras can be
modeled by a unit sphere and a perspective camera, such that the projection of
3D points can be performed in two steps (Fig. 1). First, one projects the point
onto the sphere, to the intersection of the sphere and the line joining its cen-
ter and the 3D point. There are two such intersection points, r±. These points
are then projected into the perspective camera resulting in two image points,
q±, one of which is physically true. This model covers all central catadioptric
cameras, encoded by ξ, which is the distance between the perspective camera
and the center of the sphere. ξ = 0 for perspective, ξ = 1 for para-catadioptric,
0 < ξ < 1 for hyper-catadioptric.

Let the unit sphere be located at the origin and the optical center of the
perspective camera, at the point Cp = (0, 0,−ξ)T. The perspective camera is
modeled by the projection matrix P ∼ ApRp

(
I −Cp

)
, where Ap is its calibration

matrix. The rotation Rp denotes a rotation of the perspective camera looking
at the mirror (this rotation is usually very small, thus often neglected). Since
both intrinsic and extrinsic parameters of the perspective camera are intrinsic
parameters for the catadioptric camera, we replace ApRp by a generic projective
transformation K. Note that the focal length of the sphere model is a value
determined by the actual camera focal length and the mirror shape parameters.
The intrinsic parameters of the catadioptric camera are thus ξ and K.

The projection of a 3D point Q is explained in Section 3. Very briefly: The
two intersection points of the sphere and the line joining its center and Q, are(
Q1, Q2, Q3,±

√
Q2

1 + Q2
2 + Q2

3

)T

. Their images in the perspective camera are

q± ∼ Kr± ∼ K

 Q1

Q2

Q3 ± ξ
√

Q2
1 + Q2

2 + Q2
3


Lifted coordinates from symmetric matrix equations. The derivation

of (multi-) linear relations for catadioptric imagery requires the use of lifted
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4 DLT-Like Calibration of Central Catadioptric Cameras

coordinates. The Veronese map Vn,d of degree d maps points of Pn into points

of an m dimensional projective space Pm, with m =
(

n + d
d

)
− 1.

Consider the second order Veronese map V2,2, that embeds the projective
plane into the 5D projective space, by lifting the coordinates of point q to

q̂ =
(
q2
1 q1q2 q2

2 q1q3 q2q3 q2
3

)T

Vector q̂ and matrix qqT are composed by the same elements. The former
can be derived from the latter through a suitable re-arrangement of parameters.
Define v(U) as the vector obtained by stacking the columns of a generic matrix
U [25]. For the case of qqT, v(qqT) has several repeated elements because of the
matrix symmetry. By left multiplication with a suitable permutation matrix P
that adds the repeated elements, it follows that

q̂ = D−1

 1 0 0 0 0 0 0 0 0
0 1 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 1 0 0 0 1 0 0
0 0 0 0 0 1 0 1 0
0 0 0 0 0 0 0 0 1


︸ ︷︷ ︸

P

v(qqT), (1)

with D a diagonal matrix, Dii =
∑9

j=1 Pij .
If U is symmetric, then it is uniquely represented by vsym(U), the row-wise

vectorization of its lower left triangular part:

vsym(U) = D−1PU = (U11, U21, U22, U31, · · · , Unn)T

Lifted matrices. Let us now discuss the lifting of linear transformations.
Consider A such that r = Aq. The relation rrT = A(qqT)AT can be written as
a vector mapping

(rrT) = (A⊗ A)(qqT),

with ⊗ denoting the Kronecker product [25]. Using the symmetric vectorization,
we have q̂ = vsym(qqT) and r̂ = vsym(rrT), thus:

r̂ = D−1P(A⊗ A)PT︸ ︷︷ ︸bA
q̂

where Â represents the lifted linear transformation. A few useful properties of
the lifting of transformations are [25, 26]:

ÂB = ÂB̂ Â−1 = Â−1 ÂT = D−1ÂTD (2)

In this paper, we use the following liftings: 3-vectors q to 6-vectors q̂ and
4-vectors Q to 10-vectors Q̂. Analogously, 3× 3 matrices are lifted to 6× 6 and
3× 4 matrices to 6× 10.
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DLT-Like Calibration of Central Catadioptric Cameras 5

3 Generic Projection Matrix

As explained in the previous section, a 3D point is mathematically projected
to two image points. Sturm and Barreto [22] represented these two 2D points
via the degenerate dual conic generated by them, i.e. the dual conic containing
exactly the lines going through at least one of the two points. Let the two image
points be q+, q−, and the dual conic is given by

Ω ∼ q+qT
− + q−qT

+

The vectorized matrix of the conic can be computed as shown below using
the lifted 3D point coordinates, intrinsic and extrinsic parameters.

vsym(Ω) ∼ K̂6×6XξR̂6×6

(
I6 T6×4

)
Q̂10 (3)

Here, R represents the rotation of the catadioptric camera. Xξ and T6×4

depend only on the sphere model parameter ξ and position of the catadioptric
camera C = (tx, ty, tz) respectively, as shown here:

Xξ =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
−ξ2 0 −ξ2 0 0 1− ξ2

 T6×4 =


−2tx 0 0 t2x
−ty −tx 0 txty
0 −2ty 0 t2y
−tz 0 −tx txtz
0 −tz −ty tytz
0 0 −2tz t2z


Thus, a 6×10 catadioptric projection matrix, Pcata, can be expressed by

its intrinsic and extrinsic parameters, like the projection matrix of a perspective
camera.

Pcata = K̂Xξ︸︷︷︸
Acata

R̂6×6

(
I6 T6×4

)︸ ︷︷ ︸
Tcata

(4)

3.1 Computation of the Generic Projection Matrix

Here we show the way used to compose the equations using 3D-2D correspon-
dences to compute Pcata. Analogous to the perspective case ([q]×PQ = 0), we
write the constraint based on the lifted coordinates [22]:

[̂q]× Pcata Q̂ = 0

This is a set of 6 linear homogeneous equations in the coefficients of Pcata.
Using the Kronecker product, this can be written in terms of the 60-vector pcata

containing the 60 coefficients of Pcata:(
[̂q]× ⊗ Q̂

)
pcata = 06
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6 DLT-Like Calibration of Central Catadioptric Cameras

Stacking these equations for n 3D-2D correspondences gives an equation
system of size 6n× 60, which we solve to least squares. Note that the minimum
number of required correspondences is 20: a 3 × 3 skew symmetric matrix has
rank 2, its lifted counterpart rank 3. Therefore, each correspondence provides
only 3 independent linear constraints.

Another observation is that the 3D points should be distributed on at least
three different planes. Here follows a proof of why points on two planes are not
sufficient to compute Pcata using linear equations. Let Π1 and Π2 be the two
planes. Hence, each calibration point Q satisfies

(
ΠT

1Q
) (

ΠT
2Q

)
= 0. This can be

written as a linear constraint on the lifted calibration points: pTQ̂ = 0, where
the 10-vector p depends exactly on the two planes. Thus, if Pcata is the true
6 × 10 projection matrix, then adding some multiple of pT to any row of Pcata

gives another 6× 10 projection matrix, P̄cata, which maps the calibration points
to the same image entities as the true projection matrix.

P̄cata = Pcata + vpT

where v is a 6-vector and represents the 6-dof on Pcata that can not be recovered
using only linear projection equations and calibration points located in only two
planes.

For three planes, there is no linear equation as above that holds for all cal-
ibration points. Hence, also supported by our experiments, it seems plausible
that three planes are sufficient for uniquely computing the projection matrix.

3.2 Decomposition of the Generic Projection Matrix

The calibration process consists of getting the intrinsic and extrinsic parameters
of a camera. Our purpose is to decompose Pcata as in Eq. (4). Consider first the
leftmost 6× 6 submatrix of Pcata:

Ps ∼ K̂XξR̂

Let us define M = PsD
−1PT

s . Using the properties given in Eq. (2) and
knowing that for a rotation matrix R−1 = RT, we can write R̂−1 = D−1R̂TD.
And from that we obtain D−1 = R̂D−1R̂T which we use to eliminate the rotation
parameters:

M ∼ K̂XξR̂ D−1R̂TXT
ξ K̂T = K̂Xξ D−1XT

ξ K̂T (5)

The complete form of M is omitted due to lack of space. The above equation
holds up to scale, i.e. there is a λ with M = λK̂Xξ D−1XT

ξ K̂T.
We use some elements of M to extract the intrinsic parameters:

M16 = λ
(
−(f2ξ2) + c2

x(ξ4 + cx(1− ξ2)2
)

M44 = λ

(
f2

2
+ c2

x(2ξ4 + (1− ξ2)2)
)

M46 = λcx(2ξ4 + (1− ξ2)2)
M56 = λcy(2ξ4 + (1− ξ2)2)
M66 = λ

(
2ξ4 + (1− ξ2)2

)
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DLT-Like Calibration of Central Catadioptric Cameras 7

Note that for the initial computation of intrinsic parameters, we suppose
that Rp = I, i.e. the perspective camera is not rotated away from the mirror.
We thus compute the following 4 intrinsic parameters: ξ, f, cx, cy. The last three
are the focal length and principal point coordinates of the perspective camera
in the sphere model. After initialization, the rotation Rp is also estimated, by
non-linear optimization (Section 3.3).

The intrinsic parameters are computed as follows:

cx =
M46

M66
cy =

M56

M66
ξ =

√√√√ M16
M66

− c2
x

−2(M44
M66

− c2
x)

f =

√
2(2ξ4 + (1− ξ2)2)

(
M44

M66
− c2

x

)
After extracting the intrinsic part Acata of the projection matrix, we are able

to obtain the 6 × 10 extrinsic part Tcata by multiplying Pcata with the inverse
of Acata:

Tcata = R̂6×6 (I6 T6×4 ) ∼
(
K̂Xξ

)−1

Pcata (6)

So, the leftmost 6× 6 part of Tcata will be the estimate of the lifted rotation
matrix. And if we multiply the inverse of this R̂est with the rightmost 6×4 part of
Tcata, we obtain an estimate for the translation (T6×4). This translation should
have an ideal form as given in Eq. (3) and we are able to identify translation
vector elements (tx, ty, tz) from it.

We extract the rotation angles around x, y and z axes one by one using R̂est.
First, we recover the rotation angle around the z axis, γ = tan−1

( bRest,51bRest,41

)
.

Then, R̂est is modified by being multiplied by the inverse of rotation around
z axis, R̂est = R̂−1

z,γ R̂est. Then, rotation angle around y axis, β, is estimated and

R̂est is modified β = tan−1
(
−bRest,52bRest,22

)
, R̂est = R̂−1

y,β R̂est

Finally, rotation angle around x axis, α, is estimated by α = tan−1
( bRest,42bRest,22

)
.

3.3 Other Parameters of Non-linear Calibration

The intrinsic and extrinsic parameters extracted linearly in Section 3.2 are not
always adequate to model a real camera. Extra parameters are needed to cor-
rectly model the catadioptric system, namely, tilting and lens distortions.

As mentioned before K̂ = ÂpRp = ÂpR̂p where Rp is the rotation between
camera and mirror coordinate systems, i.e. tilting. Tilting has only Rx and Ry

components, because rotation around optical axis, Rz, is merged with the exter-
nal rotation around z axis.

As well known, imperfections due to lenses are modeled as distortions for
camera calibration. Radial distortion models contraction or expansion with re-
spect to the image center and tangential distortion models lateral effects. To add
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8 DLT-Like Calibration of Central Catadioptric Cameras

these distortion effects to our calibration algorithm, we employed the approach
of Heikkila and Silven [27].

Radial distortion:

∆x = x(k1r
2 + k2r

4 + k3r
6 + ..) ∆y = y(k1r

2 + k2r
4 + k3r

6 + ..) (7)

where r =
√

x2 + y2 and k1, k2.. are the radial distortion parameters. We ob-
served that estimating two parameters was adequate for an accurate estimation.

Tangential distortion:

∆x = 2p1xy + p2(r2 + 2x2) ∆y = p1(r2 + 2y2) + 2p2xy (8)

where r =
√

x2 + y2 and p1, p2 are the tangential distortion parameters.
Once we have identified all the parameters to be estimated we perform a

non-linear optimization to compute the whole model. We use the Levenberg-
Marquardt (LM) method provided by the function lsqnonlin in Matlab. The
minimization criterion is the root mean square (RMS) of distance error between
a measured image point and its reprojected correspondence. Since the projection
equations we use, cf. (3), map 3D points to dual image conics, we have to extract
the two potential image points from it; the one closer to the measured point is
selected and then the reprojection error measured. We take as initial values
the parameters obtained from Pcata and initialize the additional 4 distortion
parameters by zero.

4 Calibration Experiments with a Simulated Environment

A simulated calibration object of 3 planar faces which are perpendicular to each
other was used. Each face has 11x11 points and the distance between points is
5cm. So size of a face is 50x50 cm. and a total of 363 points exist. The om-
nidirectional image fits in a 1 Megapixel square image. To represent the real
world points we expressed the coordinates in meters, so they were normalized
in a sense. This is important because we observed that using large numerical
values causes bad estimations with noisy data in the DLT algorithm. Normal-
ization of image coordinates was also performed since we observed a positive
effect both on estimation accuracy and the convergence time. Therefore, in pre-
sented experiments, 3D point coordinates are in meters and image coordinates
are normalized.

We performed experiments for different settings of intrinsic parameters, dif-
ferent amounts of noise and varying position of the calibration grid. Concerning
the latter, we first place the grid in an “optimal” position, such that it well fills
the image. Then, we successively move the grid downwards, parallel to the axis
of the catadioptric camera. This causes the grid to appear smaller and smaller
in the image. These different vertical positions of the grid are referred to by
the vertical viewing angle of the topmost calibration points, e.g., +15◦ means
that the highest of the points corresponds to an angle of 15 degrees above the
horizontal line containing the sphere center in Fig. 1.
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DLT-Like Calibration of Central Catadioptric Cameras 9

Vertical viewing angle of the topmost grid points
+15◦ 0◦ −15◦ −30◦ −45◦

ξreal 0.96 0.8 0.96 0.8 0.96 0.8 0.96 0.8 0.96 0.8

freal 360 270 360 270 360 270 360 270 360 270

ξDLT 0.544 0.405 0.151 0.152 0.084 0.053 0.012 0.043 0.029 0.050

fDLT 361 268 296 230 251 198 223 175 211 169

ξnonlin 0.960 0.800 0.955 0.793 0.951 0.810 0.991 0.780 0.912 0.750

fnonlin 360 270 359 271 362 271 365 266 354 261

errξ 0.0 0.0 0.5 0.8 0.9 1.2 3.2 2.5 5.0 6.3

errf 0.0 0.1 0.4 0.3 0.6 0.3 1.4 1.3 1.6 3.2

Table 1. Initial and optimized estimates with different grid heights and (ξ, f) values.
For all columns, cx = cy = 500, and α = −0.628, β = 0.628 and γ = 0.175. Amount of
noise: σ = 1 pixel. ξDLT ,fDLT and ξnonlin,fnonlin are the results of DLT algorithm and
non-linear optimization respectively, errξ and errf are the relative errors, in percent.

(a) (b)

Fig. 2. Errors for ξ and f after non-linear optimization. (a) (ξ, f)=(0.96,360) (b)
(ξ, f)=(0.80,270). x-axis: vertical viewing angle of the highest 3D pattern point.

In Table 1, we listed the results for two (ξ, f) pairs, (0.96,360) and (0.80,270).
We observe that errors in linear estimates, ξDLT and fDLT , are biased (smaller
than they should be) and the errors increase as the grid is lowered. For all the
cases, the true intrinsic parameters were reached after non-linear optimization
modulo errors due to noise. Since the grid covers a smaller area in the image
for its lowered positions, same amount of noise (in pixels) affects the non-linear
optimization more and errors in non-linear results increase as expected. These
errors were depicted in Table 1 as errξ = 100 · |ξnonlin − ξreal| /ξreal and errf =
100·|fnonlin − freal| /freal and plotted as shown in Fig. 2 for the two (ξ, f) pairs.
We observe the importance of a good placement of the calibration grid, i.e. such
that it fills the image as good as possible. We also observe that larger ξ and f
values produced slightly better results since errors in Fig. 2a are smaller.

4.1 Estimation Errors for Different Camera Types

Here we discuss the intrinsic and extrinsic parameter estimation for the two most
common catadioptric systems: hyper-catadioptric and para-catadioptric, with

in
ria

-0
03

25
32

8,
 v

er
si

on
 1

 - 
28

 S
ep

 2
00

8



10 DLT-Like Calibration of Central Catadioptric Cameras

Real σ = 0.5 σ = 1
values Initial Estimated Initial Estimated

f 360 361 360 354 360

cx 500 503 500 505 500

cy 500 498 500 509 500

ξ 0.96 0.848 0.960 0.530 0.961

Rx(α) -0.628 -0.604 -0.628 -0.405 -0.628

Ry(β) 0.628 0.625 0.628 0.654 -0.628

Rz(γ) 0.175 0.155 0.175 0.188 0.174

tx 0.30 0.386 0.300 0.456 0.300

ty 0.30 0.402 0.300 0.443 0.301

tz 0.20 0.050 0.200 0.008 0.200

RMSE 0.70 1.42
Table 2. Non-linear optimization with lsqnonlin method of Matlab using Levenberg-
Marquardt algorithm for 11 parameters (rotation, translation and intrinsic).

hyperbolic and parabolic mirror respectively. We also present our observation
for experiments on perspective cameras.

Hyper-catadioptric system. Table 2 shows non-linear optimization experi-
ment results for two different noise levels (σ = 0.5, σ = 1), when the described
3D pattern is used and maximum vertical angle of pattern points is +15◦.

Para-catadioptric system. Parabolic mirror has a ξ = 1, which has a po-
tential to disturb the estimations because Xξ becomes a singular matrix. We
observed that the results of DLT algorithm were not close to the real values
when compared to hyper-catadioptric system (initial values in Table 2). How-
ever, non-linear optimization was able to estimate the parameters as successful
as the hyper-catadioptric examples given in Table 2.

Perspective camera. In sphere camera model, ξ = 0 corresponds to the per-
spective camera. Our estimation in linear and non-linear steps are as successful
as the hyper-catadioptric case.

4.2 Tilting and Distortion

It seems intuitive that small amounts of tangential distortion and tilting have
similar effect on the image and in our simulations we observed that trying to
estimate both of them does not succeed. Therefore, we investigated if we can
estimate tangential distortion existing in the system by tilt parameters or tilt in
the system by tangential distortion parameters.

When there exists no tilt but tangential distortion and we try to estimate
tilting parameters, we observed that the direction and amount of tiltx, tilty, cx

and cy changes proportional to the tangential distortion applied and RMSE de-
creases. However, RMSE does not reach the values when there is no distortion.
In noiseless case, for example, RMSE is not close to zero. Hence, we concluded
that tilt parameters compensate the tangential distortion effect up to an extent,
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(a) (b)

Fig. 3. (a) 3D pattern, (b) Omnidirectional image of the 3D pattern(1024×768 pixels).

but not perfectly. We also investigated if tilting can be compensated by tan-
gential distortion parameters and we had very similar results. Thus, tangential
distortion parameters have the same capability to estimate tilting.

5 Experiments with Real Images using a 3D Pattern

In this section we perform some experiments using a 3D pattern Fig.3(a). To
obtain the 3D model we made a photogrammetric reconstruction by bundle ad-
justment. We use 6 convergent views taken with a calibrated high-resolution
camera (Canon EOS 5D with 12.8Mpix.) and software PhotoModeler. The esti-
mated accuracy of the 3D model is about 0.1mm. The omnidirectional images
were acquired using a catadioptric system with a hyperbolic mirror 1. We com-
puted from a total of 144 3D-2D correspondences the projection matrix Pcata

and extracted the intrinsic and extrinsic parameters as explained in Section 3.
From the simulations, we observed that we have better and faster estimations
if the 3D-2D correspondences are in the same order of magnitude. So 3D points
are given in meters and 2D points are normalized in all the experiments.

5.1 Intrinsic parameters

The first experiment is focused on obtaining the intrinsic parameters from Pcata

to get initial estimates of these values. As mentioned previously, we do not
compute tilting and distortion parameters from Pcata but it is possible to include
them in the non-linear optimization.

From simulations we observed that we can compute either the tangential
distortion or the tilting parameters which are coupled and can not be separated.
We tested which one of these (tangential distortion and tilting) can deal better
with the intrinsic parameter estimation. Table 3 shows a comparison of the
estimations performed with these two options. The real values given in the table
were computed using the calibration data of the perspective camera (previously
calibrated) and the mirror parameters (provided by the manufacturer).
1 Neovision H3S with XCD-X710 SONY camera
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12 DLT-Like Calibration of Central Catadioptric Cameras

Real Using distortion Using tilting

f 279.8454 297.2472 306.1197

cx 531.83 528.0804 552.7572

cy 407.98 406.2838 427.8974

ξ 0.9662 0.8623 0.9380

RMSE 0 0.3497 0.2766
Table 3. Parameters estimated using either tangential distortion or tilting angles.

Real Pcata approach Mei’s approach

f 279.8454 297.2472 298.6517

ξ 0.9662 0.8623 0.72607

cx 531.83 528.0204 528.1550

cy 407.98 406.2838 403.3924
Table 4. Comparison between our method and Mei’s.

Intrinsic parameter estimation using tilting gives a better RMSE but the
intrinsic values obtained are far from the real ones. Estimation using distortion
parameters increase slightly the RMSE but the intrinsic parameters are close to
the real ones, except for ξ but this error can be attached to the configuration
of the system (the optical center of the perspective camera may not be exactly
located at the other focal point of the hyperbola describing the mirror) and not
to the model.

After these results, we decided to use tangential distortion because it gives
better results and depicts better the real catadioptric system. In addition, we
know that tilting in sphere camera model does not represent the misalignment
of the perspective camera with respect to the mirror.

In order to verify our approach we compare our instrinsic parameter estimates
to the ones obtained by Mei’s [15] approach (Table 4). As we can see neither
Mei’s approach nor Pcata approach can estimate the theoretic f and ξ parameters
but they give a good estimation to cx and cy. Mei computes the initial values
directly from the inner circle of the omnidirectional image and using information
given by the user. Our approach computes all the initial values from Pcata.

5.2 Extrinsic parameters

To compute real extrinsic parameters we have taken two additional images ob-
serving the omnidirectional camera and the pattern which have been included
into the PhotoModeler project. After computing their orientation they were used
to locate the omnidirectional camera. Location of the focal point was difficult
since the points are not easy to identify in the images and focal point is inside
the mirror.

We performed experiments with 3 different camera locations. Table 5 shows
the rotations and translations obtained from these experiments. Using the pho-
togrammetric software we were just able to compute the direction of z-axis but
not the rotation around it. So we just show rotation estimations for x and y
axis. We can observe that the extrinsic parameter estimation is performed with
enough accuracy having an average error of 0.0096 radians for rotations and
0.0022 meters for translations.
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Experiment 1 Experiment 2 Experiment 3
Real Estimated Real Estimated Real Estimated

Rx -0.0105 -0.0244 -0.0105 -0.0033 -0.0105 -0.0028

Ry 0.0269 0.0257 0.0269 0.0140 0.0269 0.0352

Rz — — — — — —

tx 0.392 0.3904 0.396 0.3942 0.394 0.3877

ty 0.218 0.2155 0.332 0.3310 0.233 0.2350

tz -0.184 -0.1847 -0.184 -0.1817 -0.185 -0.1865

RMSE 0.2013 0.2622 0.2155

Table 5. Rotation and translation of the camera with respect to the 3D pattern.
Rotation angles are in radians. Translations are in meters. Real values were computed
by PhotoModeler software.

6 Conclusions

We presented a calibration technique based on the sphere camera model which
is able to represent every single-viewpoint catadioptric system. We employed a
generic 6 × 10 projection matrix, which uses lifted coordinates for image and
3D points. We estimated this projection matrix using 3D-2D correspondences
(from a 3D calibration pattern), and decomposed it to obtain intrinsic and ex-
trinsic parameters. We used this parameter estimation followed by a non-linear
optimization to calibrate various types of cameras. We tested this method both
with simulations and real images. Although we left it as a future work, it is also
possible to use the proposed technique for fisheye lenses since it was shown that
the sphere model can approximate fisheye projections [28]. Another possible im-
provement might be the ability to use the approach with a calibration object
having two planes, instead of three. We observed that this is possible when some
prior information about intrinsic parameters is available.
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