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Abstract. Based on self-similar models of turbulence, we propose in
this paper a multi-scale regularizer in order to provide a closure to the
optic-flow estimation problem. Regularization is achieved by constrain-
ing motion increments to behave as a self-similar process. The associate
constrained minimization problem results in a collection of first-order
optic-flow regularizers acting at the different scales. The problem is opti-
mally solved by taking advantage of lagrangian duality. Furthermore, an
advantage of using a dual formulation, is that we also infer the regular-
ization parameters. Since, the self-similar model parameters observed in
real cases can deviate from theory, we propose to add in the algorithm a
bayesian learning stage. The performance of the resulting optic-flow esti-
mator is evaluated on a particle image sequence of a simulated turbulent
flow. The self-similar regularizer is also assessed on a meteorological im-
age sequence.

1 Introduction

The estimation of highly non-rigid image flows is an important problem in var-
ious application areas of fluid flow image analysis like remote sensing, medical
imaging, and experimental fluid mechanics. Such flows, which cannot be rep-
resented by a single parametric model, are typically estimated by variational
approaches. In this framework, regularization models are required to remove the
motion estimation ambiguities. However, standard regularizers acting in a lim-
ited spatial neighborhood are insufficient to recover accurately the multi-scale
structures of turbulent flows. Furthermore, they do not rely on any physical
prior knowledge and, moreover, raise the open question of tuning the regularizer
weight.

The objective of this contribution is to provide a multi-scale regularizer based
on turbulent motion self-similarity. In contrast to standard approaches, this self-
similar prior is physically sound and presents the valuable advantage of solving
the aperture problem while fixing regularizer weights at the different scales. The
paper is organized as follows. In the next section, we first highlight the limita-
tion of standard optic-flow regularizers. Besides, we introduce self-similar mod-
els issued from theoretical works on turbulence. Then, in section 3, self-similar
constraints are defined and a dual approach is proposed to solve optimally con-
strained optic-flow estimation problems using convex optimization methods. In
order to introduce uncertainty in the parameters of the self-similar model given
by theory, a bayesian estimation framework is presented in section 4. Finally, a
numerical evaluation with synthetic flow and results obtained with experimental
data reveal the interest of self-similar regularization for fluid flows.
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2 Related work

2.1 Optic-flow state of the art

Aperture problem The apparent motion v = (u, v), perceived through image
intensity I(s, t) variations, respects the standard Optical Flow Constraint (OFC)
observation model:

It + v · ∇I = 0. (1)

Apparent motion and the real underlying velocity field are identical when consid-
ering rigid motion and stable lighting conditions. For fluids, this identity remains
valid in the case of 2D incompressible flows. Based on mass conservation, the
integrated continuity equation has been proposed in the literature for various 3D
fluid flows visualized in a projected image plane in order to link the image inten-
sity function I to a vertically averaged horizontal velocity field v [1–3]. However,
observation models can not be used alone, as they provide only one equation
for two unknowns at each spatio-temporal locations (s, t). This constitute the
so-called aperture problem.

Standard regularizer limitations To deal with this problem, the most com-
mon assumption consists in enforcing locally spatial coherence. Global regular-
ization schemes over the entire image domain Ω are convenient to model spatial
dependencies on the complete image domain. On the contrary to disjoint esti-
mation approaches [4], dense velocity fields are estimated even in the case of
noisy, low contrasted and incomplete observations. More precisely, the motion a

posteriori estimation problem is defined as the global minimization of an energy
function composed of two components:

f(I,v) = fd(I,v) + αfr(v) (2)

The first energy fd(v, I), called the data term, penalizes discrepancies from
the observation models and thus can be related to a likelihood probability. For
example, discretizing in time the OFC equation, one can build the data term:

fd(I,v)=
1

2

∫

Ω

φ
(

(Ĩ−I+v · ∇Ĩ)2
)

ds (3)

where Ĩ denotes the image I(t + ∆t). A robust penalty function φ can be in-
troduced in the data term for attenuating the effect of observation outliers de-
viating significantly from the model. In this work, φ are Leclerc semi-quadratic
M-estimator as proposed in [5]. The second component fr(v), called the reg-
ularization term, acts as a spatial prior enforcing the solution to follow some
smoothness properties. In the previous expression, α > 0 denotes a regulariza-
tion parameter controlling the balance between the smoothness and the global
adequacy to the observation model. In this framework, Horn and Schunck [6]
proposed a first-order regularization of the two spatial components u and v of
velocity field v:

fr(v) =
1

2

∫

Ω

||∇u||2+||∇v||2ds (4)

However, a first order regularization is not adapted to fluid flows as it penalizes
spatially non-homogeneous velocity fields. Second order regularizers on motion
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vorticity and divergence have been proposed to overcome those limitations [2,
7, 8]. Nevertheless, such regularization models fail to describe the multi-scale
structure of turbulent velocity fields. Efficient multi-scale regularizers based on
fractal priors have already been introduced in [9]. However, such multi-scale
models have not been linked to physical prior on turbulence. Furthermore, using
an energy based on two components raises the difficult problem of fixing some
regularization parameters.

Multi-resolution approach One major problem with observation models
is the estimation of large displacements. Indeed, these equations are only valid
if the solution is in the region of linearity of the image intensity function. A
standard approach for tackling non-linearity is to apply successive linearizations
around a current estimate and to warp a multi-resolution representation of the
data accordingly. More precisely, a large displacement field ṽ is first estimated
with the original data term at coarse resolution, where the linearity assumption
is valid. Then, introducing the decomposition:

v = ṽ + v′, (5)

motion is refined through an incremental fields v′ estimated using a linearized
motion-compensated data term while going down the resolution levels of an
image pyramid [10]. Splines are in this context advantageous interpolators useful
to derive accurate motion-compensated images at the different resolutions [11].

2.2 Turbulence self-similar models

In the turbulence community, turbulent motion is known to be structured as a
scale invariant spatial process. In order to define scale invariance, let us introduce
the function of velocitity increments:

δv(s, ℓ) = v(s + ℓ) − v(s). (6)
where ℓ represents the norm of increment ℓ. We also introduce the longitudinal
δv‖(ℓ) and transverse δv⊥(ℓ) functions defined as δv‖(s, ℓ) = v(s + ℓt) − v(s)
and δv⊥(s, ℓ) = v(s + ℓn) − v(s), with t and n denoting the tangential and
the normal unitary vectors of any bidimensional orthogonal basis of the image
plane. No confusion should be made here with the normal and tangential optic-
flow components. As a classical hypothesis in turbulence studies, we assume
homogeneity and isotropy, that is to say we consider that the statistical proper-
ties of the velocity field are invariant under translation of spatial location s and
rotation of ℓ. In agreement with these assumptions, index to spatial locations
s can be dropped and a simple scalar velocity increment function δv(ℓ) can be
defined in the bidimensional plane either by δv‖(ℓ) · t, δv‖(ℓ) · n, δv⊥(ℓ) · t
or δv⊥(ℓ) ·n. For any of these scalar quantities, Kolmogorov [12] demonstrated
that from a statistical point of view the turbulent flow is self-similar, i.e. there
exists a unique scaling exponent h ∈ R such that:

δv(λℓ) = λhδv(ℓ), ∀λ ∈ R
+, (7)

A corollary is that the second order moment of the probability distribution func-
tion Pℓ(δv) of velocity increments, namely the second order structure function:

E[δv(ℓ)2] =

∫

R

δv(ℓ)2Pℓ(δv(ℓ))dδv(ℓ) (8)



4 P. Héas, E. Mémin, D. Heitz

follows a power law of universal exponent ζ:

E[δv(ℓ)2] − βℓζ = 0. (9)

For three dimensional turbulence, the scale range I of the power law, so-called
inertial range, is defined for ℓ ∈ [η, ℓ0], where η represents the dissipative scale
and where ℓ0 is much smaller than the diameter L of the largest vortex. In this
range, Kolmogorov demonstrated that ζ = 2/3. Analogously, for bi-dimensional
turbulence with energy injection at scale ℓ0, Kraichnan showed that there exist
two different self-similar processes: ζ = 2 within a range I1 = [η, ℓ0] and ζ =
2/3 within a range I2 = [ℓ0, L] [13]. For atmospheric turbulence, measurements
proved an inversion of the the two former power laws: ζ = 2/3 within a range I1 =
[1, 500] kilometers and ζ = 2 within a range I2 = [1000, 3000] kilometers [14].
Moreover, for any flow, there exits a power law of scaling exponent ζ = 2 in the
dissipative range I0 = [0, η].

3 Self-similar regularization of optic-flow

In this section we propose to close the optic-flow equations by introducing
physical-based self-similar constraints. Besides providing a closure for motion
estimation, such a self-similar regularizer yields several benefits:

– first, self-similar processes are multi-scale models which will structure motion
fields across scales in agreement with physics,

– second, solving optimally the optic-flow minimization problem under self-
similar constraints will lead to a non-parametric method where the problem
of fixing regularization parameter α does no longer exist,

– last, the motion estimation problem can be solved using standard convex
optimization methods.

3.1 Self-similar constraints

Let us first formalize self-similar constraints. The second order structure function
E[δv(ℓ)2] is an expectation defined in Eq. 8. We approximate this expectation
by a statistical average over the image domain Ω:

E[δv(ℓ)2] ≈
1

|Ω|

∫

Ω

δv(ℓ)2ds (10)

where |Ω| denotes the image domain area. In order to obtain an accurate expec-
tation estimator over the bi-dimensional plane and in order to avoid boundary
effects, we build a scalar structure function by averaging the norm of transverse
and longitudinal structure functions in the 2 directions:

δv(ℓ) =

√

1

8
(||δv‖(ℓ)||2 + ||δv⊥(ℓ)||2 + ||δv‖(−ℓ)||2 + ||δv⊥(−ℓ)||2) (11)

A constraint gℓ(v) is then defined for each scale ℓ as the difference between
the second order structure function depending on the velocity field v, and the
predicted power law. Thus, for any scale ℓ ∈ ∪Ii, an estimated motion field
should respect the constraint :

gℓ(v) =
1

2
(E[δv(ℓ)2] − βiℓ

ζi) = 0, ∀ℓ ∈ ∪Ii (12)

for given scaling exponent ζi and factor βi.
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3.2 Constrained motion estimation problem
Referring to section 2.1, the minimization related to the unclosed optic-flow
estimation problem reads:

(v̂) = arg min
v

fd(I,v). (13)

Adding the self-similar constraints, we obtain the following constraint minimiza-
tion problem: 













minv fd(I,v)
under the constraints:
gℓ(v) = 0, ∀ℓ ∈ ∪Ii

v ∈ R
n

. (14)

3.3 Discrete problem formulation
Let us now express the constraint problem in its discrete form. The derivatives
∇vfd(I,v) related to any motion-compensated data term (which is quadratic
with respect to motion increments v′) can be expressed in the matricial form
A0v

′−b0, when discretized on an image grid S of m points with a finite difference
scheme. The two discretized components of v′ now represents a field of n = 2m
variables supported by the grid S, A0 is a n×n symmetric positive-definite,b0 ∈
R

n represents a vector of size n. The discrete data term can be rewritten as:

fd(I,v) =
1

2
v′T A0v

′ − bT
0 v′ + c0. (15)

where c0 ∈ R denotes a scalar. For the self-similar constraints, as detailed in
appendix A, the quadratic constraint derivatives can be expressed in the vectorial
form Aℓv

′ − bℓ, where Aℓ are symmetric positive semi-definite matrices and bℓ

are vectors of size n. Thus, using discretized variables v′ yields :

gℓ(v) =
1

2
v′T Aℓv

′ − bT
ℓ v′ + cℓ = 0, ∀ℓ ∈ ∪Ii, (16)

where cℓ ∈ R are scalars. In particular, in appendix A we demonstrate that
Aℓv

′ = ∇v′gℓ(v
′) and bℓ = −∇ṽgℓ(ṽ) where the derivative reads:

∇vgℓ(v) = −
1

4|Ω−{Γt}|

(

∫

Ω−{Γt+Γn}
∆ℓu ds

∫

Ω−{Γt+Γn}
∆ℓv ds

)

+ border terms, (17)

where ∆ℓ represents a discretized laplacian operators defined on a grid with
a mesh equal to ℓ using a centered second order finite difference scheme and
where we have exculded vertical Γt and horizontal Γn image borders of width
ℓ. The discretized laplacian operators can thus be interpreted as a collection
of first-order regularizers performing at the different scales. They represent to
some extent a generalization of the Horn and Schunck first-order regularizer
(Eq. 4) to multi-scale. However, an important difference here is that motion
spatial derivatives are not penalized in our case, but constrained to follow a
power law across scales.
The constraint motion estimation problem defined in Eq. 14 can thus be rewrit-
ten in its discrete form as:

(P )















minv fd(v) = 1
2v

′T A0v
′ − bT

0 v′ + c0.
under the constraints:
gℓ(v) = 1

2v
′T Aℓv

′ − bT
ℓ v′ + cℓ = 0, ∀ℓ ∈ ∪Ii

v = v′ + ṽ ∈ R
n

. (18)

where for simplification we have dropped the dependance to the image I.
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3.4 Dual problem and optimal solution

A first idea would be to solve P by penalizing with a quadratic cost deviations
from the self-similar constraints, i.e. f(v) = fd(v) +

∑

∪Ii
αℓgℓ(v)2, where {αℓ}

are positive scalars. Such a multi-scale model would be to some extent similar
to the fractal regularizer proposed in [9]. However, this new functional is no
longer convex because of (gℓ(v))2 and one may face difficulties when resolving
non-linear problems and fixing the regularization parameters {αℓ}. An advan-
tageous alternative is to solve instead the associated constraint optimization
problem using classical lagrangian duality. To define optimality conditions, we
now introduce the lagrangian function L(v,λ) associated to (P ):

L(v,λ) = f(v) +
∑

∪Ii

λℓgℓ(v), λ = {λℓ}. (19)

In the lagrangian duality formalism, the optimal solutions of the so-called primal

problem P , are obtained by searching saddle points of the lagrangian function.
Saddle points denoted by (v∗,λ∗) are defined as the solutions of the so-called
dual problem:

(D)

{

L(v∗,λ∗) = maxλ w(λ) = maxλ{minv L(v,λ)}
λℓ ∈ R

+, ∀ℓ ∈ ∪Ii
,

where w(λ) denotes the dual function. As the functions f and gℓ are convex and
as the constrained group is not empty, for positive and large enough lagrangian
multipliers λℓ, L is convex and the minimization problem (P ) has a unique saddle

point i.e. an optimal solution v∗ which is unique1. Thus in this framework, each
lagrangian multiplier λℓ representing the regularization parameter at scale ℓ can
naturally be inferred.

3.5 Convex optimization

The minimum v̂′ of the convex lagrangian function at point λ can be obtained
by solving the following Euler-Lagrange equations:

∇vL(v,λ) = ∇vfd(v) +
∑

∪Ii

λℓ∇vgℓ(v) = 0. (20)

which reduce (using to Eq. 15 and Eq. 16) to solve the linear system :

(

A0 +
∑

∪Ii

λℓAℓ

)

v̂′ = b0 +
∑

∪Ii

λℓbℓ. (21)

The resolution of Euler-Lagrange large system is efficiently achieved using a
conjugate gradient squared optimization method. The dual function is then given
by:

w(λ) = v̂′T
(

A0 +
∑

∪Ii

λℓAℓ

)

v̂′ −
(

b0 +
∑

∪Ii

λℓbℓ

)T

v̂′ + c0 +
∑

∪Ii

λℓcℓ. (22)

1 Let us note that for negative lagrangian multipliers, the convexity of the functional is
no longer insured, and for too small lagrangian multipliers, the problem may remain
ill-posed with no guarantee of the unicity of the solution. However, in practice the
problem admits a solution if there exist at least one scale ℓ with λℓ 6= 0.
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The dual function is by definition concave and possesses so-called sub-gradients

equal to gℓ(v̂
′ + ṽ). We employ a classical gradient method to find λ

∗ which
maximizes the dual function and thus obtain the solution v∗. Finally, the con-
straint motion estimation method results in the Uzawa algorithm presented be-
low, which is used to converge towards the unique saddle point (v∗,λ∗), i.e. the
optimal motion estimate under self-similar constraints.

– (a) From any initial point λ
0 > 0 and estimate ṽ:

– (b) At iteration k, find increment v̂′ defining w(λk) by solving Eq. 21
– (c) Define λ

k+1 by: ∀ℓ ∈ ∪Ii, λk+1
ℓ = λk

ℓ + ρkgℓ(v̂
′+ṽ)

– (d) If stopping criterion valid :(v∗,λ∗) = (v̂′+ṽ,λk), END.
Else increment k and go back to (b)

ρk denotes the displacement step at iteration k. The latter parameter is adjust
at each iteration using a relaxation method proposed in [15].

Uzawa algorithm converging towards (v∗, λ∗).

4 Learning turbulence statistics

In this section we consider some uncertainty in the scaling exponent of the
self-similar model used for motion estimation. Indeed, there may exist for some
particular turbulent flows deviations from theory. The idea is thus to use an a

posteriori estimation framework to learn the power law parameters based on a
coarse motion estimate and theoritical priors.

4.1 Prior distribution for scaling exponents

Uncertainty on scaling exponents is introduced in the motion estimation scheme
by associating to the unknown self-similar model parameter (ζ, β) an a priori

Gaussian probability distribution:

p(ζ) ∼ N (ζK41, σ
2
ζ ) (23)

In Eq.23, the mean ζK41 denotes the exponent predicted by Kolmogorov (see
section 2.2). We also define a Gaussian likelihood probability distribution at
scale ℓ of the logarithm of the structure function:

p(logE[δv(ℓ)2]|β, ζ) ∼ N (log(βℓζ), σ2) (24)

Thus, the standard deviation σζ is a parameter tuning the degree of uncertainty
on Kolmogorov parameters, while the standard deviation σ represents the al-
lowed deviation of the structure function estimate E[δv(ℓ)2] from the predicted
law.

4.2 Learning power laws

Using Eq. 23 and Eq. 24, scaling exponent ζ is estimated using the Maximum
A Posteriori (MAP) estimator and Bayes law:



8 P. Héas, E. Mémin, D. Heitz

ζ̂MAP = arg max
ζ

p(ζ)
∏

ℓ∈I

p(logE[δv(ℓ)2]|ζ), (25)

where we have assumed that likelihood probabilities p(logE[δv(ℓ)2]|β, ζ) are in-
dependent at the different scale ℓ. In Eq.25, I denotes a scale interval. As there
is usually no a priori for β, it is estimated in the sense of the Minimum Mean
Square Error (MMSE). Thus, the model parameter (β̂MMSE , ζ̂MAP ) are ob-
tained by minimization of the functional J(β, ζ):

(β̂MMSE , ζ̂MAP ) = arg min
β,ζ

J(β, ζ) (26)

= arg min
β,ζ

(

∑

ℓ∈I

(logE[δv(ℓ)2] − log(βℓζ))2 +
σ2

σ2
ζ

(ζK41 − ζ)2

)

The minimization is achieved by searching the solution of the linear equations
∇β,ζJ(β, ζ) = 0 based on a coarse estimation of the velocity field with any
standard regularizer. Therefore, an analytical solution is obtained by solving the
two linear equations.

5 Experiments
To evaluate the performance of the self-similar regularization, a synthetic par-

Simulated particule image velocity ground truth velocity estimate

Fig. 1. Estimation of two-dimensional turbulence. Left: particle image obtained
by DNS of 2D Navier-Stokes equations. Middle: true velocity field Right: estimate

ticle image sequence was generated based on a two-dimensional turbulent flow
obtained by the direct numerical simulation (DNS) of Navier-Stokes equations,
and based on a particle image generator [16]. Fig. 1 presents one of the particle
images of 256 by 256 pixels, the true underlying velocity field and our estimation
obtained by minimizing the OFC based data-term (Eq. 1) under self-similarity
constraints. Parameters of the self-similarity model were inferred in the dissi-
pative scale range of I0 = [1, 10] pixels using a Horn&Schunck estimate and a
Gaussian prior power exponent centered on the theoretical value of ζK41 = 2 and
with standard deviation σζ = 0.3. Using Eq. 26, we obtained a MAP estimate

equal to ζ̂MAP = 1.8064. The estimated power law is plotted in Fig. 2 together
with the second order structure function E[δv(ℓ)2] obtained with Horn&Schunck

algorithm and with the proposed method. Note that constraining motion incre-
ments to behave as a self-similar process at small scales yields an enhancement of
the structure function at fine but also at large scales. Therefore, one can conclude
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(div-curl regularization) (gradient penalization) (correlation maximization) (self-similar regularization)

Fig. 2. Numerical evaluation of the self-similar regularizer. Upper left: power
law g(x) obtained by a posteriori estimation using a Horn&Schunck regularizer. It fits
the true and the estimated 2-nd order structure function E[δv(ℓ)2] obtained with the
proposed regularizer. Upper right: spectral comparison between a first order, a div-
curl or a self-similar regularizer and an operational correlation-based method (PIV
technique) from LaVision. Below: spatial distribution and average RMSE of different
methods.

that the multi-scale structural information has been propagated through scales.
A comparison with the state of the art is also presented in Fig. 2. One can remark
that the spatial distribution of the Root Mean Square Errors (RMSE) of velocity
field estimated using the self-similar model presents in average much lower values
than RMSE obtained with a div-curl [2] or a first order regularizer [6] or even
with operational correlation-based techniques. The energy spectrum comparison
displayed in the same figure proves that the proposed multi-scale regularization
enhances in particular the estimation of small scales displacements. However,
large scale enhancements can be also noticed when visualizing energy spectra in
natural coordinates.

The multi-scale regularizer has also been assessed on real data. A benchmark
has been constituted with a METEOSAT Second Generation meteorological
image sequence acquired at a rate of an image every 15 min. The image spatial
resolution was 3× 3km2 at the center of the whole Earth image disk. According
to the physical-based methodology presented in [3], sparse image observations
related to a layer at intermediate altitude have been derived. Moreover, a robust
data term relying on a layer mass conservation model has been used to relate the
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Fig. 3. Estimation of atmospheric winds. An horizontal wind field of an atmo-
spheric layer at mid-altitude has been estimated using the physical-based data term
proposed in [3] and the self-similar regularizer. Left: estimated velocity field superim-
posed on a sparse input image of the sequence. Right: estimated energy spectrum fits

the power laws gI1(x) ∝ x−
5
3 and gI2(x) ∝ x−3 known to rule atmospheric flows, on

the contrary to results obtained by first order regularization

image intensity function to a vertically averaged horizontal wind field. Using the
predicted power exponents of ζ = 2/3 in a range I1 = [1, 10] pixels (contained

in the theoretical interval of [1,500] kilometers), parameters (β̂MMSE , ζ̂MAP )
were derived with Eq. 26 based on a first order regularized solution. Using this
learnt power law, the proposed Uzawa algorithm was used to converge towards
the solution of minimal cost respecting the self-similar constraints. In Fig. 3,
one can visualize the estimated velocity field which has been superimposed on a
sparse image. A comparison is also provided with a first order regularization in
the spectral domain. On the contrary to classical regularization, one can notice
that the energy spectrum estimated with the proposed method respects the two
power laws known to rule atmospheric flows (−ζ − 1 = −5/3 in I1 = [1, 100]
pixels and −ζ − 1 = −3 for scales greater than 100 pixels [12, 14]).

6 Conclusions

A closure to the aperture problem for fluid motion estimation is provided in this
paper. It relies on constraining motion increments to follow self-similar processes
which are well known models in the turbulence community. Solving optimally
the associate constrained minimization problem using lagrangian duality leads to
a non-parametric method where the problem of fixing regularization parameter
does no longer exist. Furthermore, standard convex optimization methods can
be used to infer the optimal motion field and its associated lagrangian multipli-
ers. The resulting multi-scale regularizer structures motion fields across scales in
agreement with physics. The methods also integrates a learning stage in order to
authorize deviations from theory: an a posteriori estimation framework is used
to infer the power law parameters characterizing the self-similar model. The su-
periority of the self-similar model on state of the art regularizers is demonstrated
on synthetic particle images obtained by simulation of Navier-Stokes equations.
Experiments performed on a real meteorological image sequence proves that the
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self-similar regularizer enhances the motion spectral-consistency in agreement
with atmospheric measurements.

A - Discrete form of the self-similar constraints

From Eq. 10 and Eq. 11, one obtains :

E[δv(ℓ)2] ≈
1

|Ω|

∫

Ω

1

8
(||δv‖(ℓ)||

2 + ||δv⊥(ℓ)||2 + ||δv‖(−ℓ)||2 + ||δv⊥(−ℓ)||2)ds

(27)
Excluding vertical Γt and horizontal Γn image borders of width ℓ from the
calculation of the statistical average, one gets:

γE[δv(ℓ)2] ≈

∫

Ω−{Γt}

(||v(s) − v(s + ℓt)||2 + ||v(s) − v(s − ℓt))||2)ds (28)

+

∫

Ω−{Γn}

(||v(s) − v(s + ℓn)||2 + ||v(s) − v(s − ℓn)||2)ds

with γ = 8|Ω−{Γt}| = 8|Ω−{Γn}|. Manipulating the derivate with respect to
the motion horizontal component u of the constraints gℓ(v) which is defined in
Eq. 12, one obtains:

γ∇ugℓ(v) =

∫

Ω−{Γt}

(2u(s)−u(s + ℓt)−u(s − ℓt))ds (29)

+

∫

Ω−{Γ
+
t
}

(u(s)−u(s + ℓt))ds+

∫

Ω−{Γ
−

t
}

(u(s)−u(s − ℓt))ds

+

∫

Ω−{Γn}

(2u(s)−u(s + ℓn)−u(s − ℓn))ds

+

∫

Ω−{Γ
+
n )

(u(s)−u(s + ℓn))ds+

∫

Ω−{Γ
−

n }

(u(s)−u(s − ℓn))ds,

where (Γ−
t

, Γ+
t

) and (Γ−
n

, Γ+
n

) denote respectively the left and right borders
included in Γt and Γn. A similar expression can be obtained for the derivate
with respect to vertical component v. Noting the presence of laplacian operators
in the previous equation, the derivate can thus be rewritten in a compact form:

∇vgℓ(v) = −
2

γ

(

∫

Ω−{Γt+Γn}
∆ℓu ds

∫

Ω−{Γt+Γn}
∆ℓv ds

)

+ border terms, (30)

where ∆ℓ represents a two-dimensional discretized laplacian operators defined
on a grid with a mesh equal to ℓ using a centered second order finite difference
scheme. Considering now the velocity field decomposition v = ṽ + v′ used in
multi-resolution, as the operator is linear one obtains:

∇vgℓ(v) = ∇ṽgℓ(ṽ) + ∇v′gℓ(v
′) (31)

Using Eq. 29 and discretizing the velocity field, the constraints can finally be
written in their discrete form:
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gℓ(v) =
1

2
v′T Aℓv

′ − bT
ℓ v′ + cℓ = 0 (32)

where Aℓv
′ = ∇v′gℓ(v

′), bℓ = −∇ṽgℓ(ṽ) and

cℓ = −
βℓζ

2
+

1

2γ

∑

Ω−{Γt}

||ṽ(s) − ṽ(s + ℓt)||2 + ||ṽ(s) − ṽ(s − ℓt))||2ds

+
1

2γ

∑

Ω−{Γn}

||ṽ(s) − ṽ(s + ℓn)||2 + ||ṽ(s) − ṽ(s − ℓn)||2ds
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