
HAL Id: inria-00326530
https://hal.inria.fr/inria-00326530

Submitted on 3 Oct 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Deterministic and Probabilistic Implementation of
Context

Oliver Brdiczka, Patrick Reignier, James L. Crowley, Dominique Vaufreydaz,
Jérôme Maisonnasse

To cite this version:
Oliver Brdiczka, Patrick Reignier, James L. Crowley, Dominique Vaufreydaz, Jérôme Maisonnasse.
Deterministic and Probabilistic Implementation of Context. IEEE International Conference on Per-
vasive Computing and Communications Workshops, Mar 2006, Pisa, Italy. 5 p. �inria-00326530�

https://hal.inria.fr/inria-00326530
https://hal.archives-ouvertes.fr

Deterministic and Probabilistic Implementation of Context

Oliver Brdiczka, Patrick Reignier, James L. Crowley, Dominique Vaufreydaz, Jérôme Maisonnasse

Laboratoire GRAVIR
INRIA Rhône-Alpes
655 Av. de l’Europe

38330 Montbonnot, France
{brdiczka, reignier, crowley, vaufreydaz, maisonnasse}@inrialpes.fr

Abstract

This paper addresses the problem of implementing an
abstract context model. First, the abstract context model
is represented by a network of situations. Two different
implementations for the situation model are then
proposed: a deterministic one based on Petri nets and a
probabilistic one based on Hidden Markov Models. Both
implementations are illustrated and applied to real-world
problems.

1. Introduction

Pervasive and ubiquitous computing [16] integrate

computation into all-day environments. People are

enabled to move around and interact with computers more

and more naturally. One of the goals of these

computerized spaces is to enable devices to sense changes

in the environment and to automatically adapt and act

based on these changes. A main focus is laid on sensing

and responding to human activity.

Human activity does not strictly follow plans but is

very situation dependent [13]. Computerized spaces and

their devices need hence to use this situational

information, i.e. context [4], to respond correctly to
human activity. In order to become context-aware,

computer systems must maintain a model describing the

environment, its occupants and their activities.

In this paper, we describe how an abstract context

model [3] based on the notion of situation [4] can be

represented by different implementations. A probabilistic

implementation based on Hidden Markov Models and a

deterministic implementation based on Petri Nets is

discussed. Both implementations have been applied to

real-world problems (given as examples).

2. Representing abstract context by situation

models

The notion of context is not new and has been

explored in different areas like linguistics, natural

language processing and knowledge representation. Dey

defines context as “any information that can be used to

characterize the situation of an entity” [4]. An entity can

be a person, place or object considered relevant to user

and application. Context-aware applications need this

contextual information to deliver the correct service to the

correct user, at the correct place and time, and in the

correct format for the environment [16]. The structure and

representation of this information must be determined

before being exploited by a specific application.

Context and activity are separable. The context

describes features of the environment within which the
activity takes place [5]. Loke states that situation and

activity are, however, not interchangeable, and activity

can be considered as a type of contextual information

which can be used to characterize a situation [8].
Following Dey’s context definition, situation is a

central notion describing context. Crowley et al. consider

context to be a network of situations [3]. Dey defines

situation as “description of the states of relevant entities”

[4]. Situation is thus a temporal state within context.
Allen’s temporal operators [1] can be used to describe

relationships between situations.

There are different concepts used to characterize a

situation. As described above, activity is such a concept.

Activity models like in [9] identify the different states of

entities. Crowley et al. extend this concept to roles and

relations between entities [3]. An entity is observed to

play a role if it passes a role acceptance test on its

properties. A relation is defined as a predicate function on

meets meets

meets

meets meets

meets

Presentation

Asking question

START END

Figure 1 Context of a “presentation with questions”. The

conceptual events characterizing the situations are not

detailed.

several entities playing roles. Changes in activity, role or

relation can be signaled by events.
Behavior within the environment can be described by

a script. A script corresponds to a sequence of situations
in the situation network reflecting (human) behavior in

the environment. Scripts are not necessarily linear.

To summarize, we describe context as a situation
model. The situations are in temporal relationship within
a network. Changes between the states of context, i.e. the

situations, are activated by events referring to concepts
describing situation. Behavior within the environment can

be described by scripts. Figure 1 gives a simple example
of a context.

3. Implementing situation models

Situations and the underlying abstract concepts can be

interpreted as finite-state machines. The finite-state

machine implementation influences the control flow and

how perceptions, coded as events, are finally used and

interpreted to activate situations. We present a

deterministic and a probabilistic implementation of

situation models. The deterministic implementation is

based on Petri Nets, while the probabilistic

implementation is based on Hidden Markov Models. The

choice of the implementation depends on the application

that is envisaged. An example is given for each

implementation in the following sections.

3.1 Deterministic implementation: Petri Nets

We begin this section with an informal review of Petri

Nets. We then describe how Petri nets are used to

implement a network of situations within a context and

how to evaluate a script.

3.1.1. Petri Nets. A Petri net is a graphical

mathematical tool used to model dynamical systems with

discrete inputs, outputs and states. Such models have first

been defined by C. M. Petri [11]. A Petri Net is an

oriented graph, composed of arcs and two categories of

nodes (places and transitions). Places are the state

variables of the system containing zero or a positive

number of marks. Transitions model the system evolution

and are connected from places to places. A transition is
valid if all the “from” places have at least one mark.

When a valid transition is fired: one mark is removed

from every “from” place and one mark is added to every

“to” place. Only one transition can be fired at a time. A

more formal definition of a Petri net is given in [10].

Finite-state machines like situation models can be

equivalently represented by a subclass of Petri nets [10].

Several extensions of the Petri Net model have been

proposed. One of them is the synchronized Petri net. A
synchronized Petri net is a Petri Net with events

associated to each transition. A transition can now be

fired if it is valid and the corresponding event has been

triggered (Figure 2).

Before

T1 E

S1

S3

Event E

After

T1 E

S1

S3

S2 S2

Figure 2 Synchronized Petri net with places S1, S2, S3 and

transition T1 triggered by Event E.

3.1.2. Implementation and script evaluation using

Petri nets. A context is defined by a network of

situations. The arcs between the situations are temporal

constraints based on the Allen temporal operators [1].

Events indicate state changes of the concepts (activity,
role, relation or others) describing situations. A situation

S is validated by the set ValidS of relevant events. The
event condition for a transition T can be described using
relevant event sets of places (situations) before and after

the transition T. The following table shows the
transformations of the Allen operators between situations

into the corresponding synchronized Petri nets.

Allen

Operator

Synchronized Petri net + Event

conditions

S1 meets S2

T1

S1
S2

T1 = ┐ValidS1 ∧ ValidS2

S1 before S2

S2 after S1

T2
T1

S1
Unspec S2

T1 = ┐ValidS1, T2 = ValidS2

S1 overlaps

S2

T1
S2 Unspec

S1 Unspec

T2

T3

T4

T1 = ValidS1, T2 = ValidS2,

T3 = ┐ValidS1, T4 = ┐ValidS2
S1 starts S2

T1

S1

S2

T2

T3

T1 = ValidS1 ∧ ValidS2,
T2 = ┐ValidS1, T3 = ┐ValidS2

S1 equals S2

T1

S1

S2
T2

T1 = ValidS1 ∧ ValidS2

T2 = ┐ValidS1 ∧ ┐ValidS2
S1 during S2

S2

S1 Unspec Unspec

T1

T2 T3

T4

T1 = ValidS2, T2 = ValidS1,

T3 = ┐ValidS1, T4 = ┐ValidS2
S1 finishes S2

T3

T2

S2

S1

T1

T1 = ValidS1, T2 = ValidS2,
T3 = ┐ValidS1 ∧ ┐ValidS2

Using this table, we can thus transform a situation

network into a corresponding synchronized Petri net.

3.1.3. Example: Intelligent cameraman [6]. The

intelligent cameraman is system that automatically

records a lecture. The lecture room is equipped with

multiple cameras and microphones. The system is

context-aware selecting at every time, based on the

current situation, the appropriate camera to provide

images.

Figure 3 Different camera images recorded by the intelligent

cameraman system.

The lecture is an alternation of “lecturer speaking” and

“audience asking a question”. “New slide” and “Someone

entering the room” can happen in parallel. The situation

network is given in Figure 4, the corresponding Petri Net

is given in Figure 5.

before

before

during

before Lecturer speaks

Asking question

New slide Stop recording

before

meets

meets
during

meets

Start recording Someone enters

Figure 4 Situation network of intelligent cameraman system.

S0

S1

S2

S3

S5

Unspec

Unspec

Start

recording

New slide

Audie nce asks
a question

Lecturer

speaks

Someone enters

the room

S6
 Stop

recording

Figure 5 Petri net of intelligent cameraman system.

Code generation is done by automatically transforming

the synchronized Petri net into a corresponding program

in JESS [7]. JESS is an expert system programming

environment (facts database plus forward chaining rules).

The input of the generated program are facts based on

events describing state changes of the concepts (activity,

role, relation or others). The output are the current

situation(s) and the associated action(s).

Note that Petri nets are very well adapted for

implementing situation models containing parallelism.

Petri nets are, however, less suitable for applications with

erroneous perceptions or uncertain perception

expectations.

3.2 Probabilistic implementation: Hidden

Markov Models

A probabilistic implementation of the situation model

integrates uncertainty values into the model. These

uncertainty values can both refer to confidence values for

events and to a less rigid representation of situation and

situation transitions.

The situation model is a finite-state machine. The

natural choice for a probabilistic implementation is then a

probabilistic finite-state machine [14]. A probabilistic

finite-state machine is a probabilistic automaton (PFA)

defined over a finite alphabet Σ. A language is a subset of

Σ*. A PFA defines a stochastic language, which is a

probability distribution over Σ*. The distribution must

verify ∑ ∑∈

=* 1)(Pr
x

xobability . A formal definition of

PFA can be found in [14].

3.2.1. Hidden Markov Models. A Hidden Markov

Model [12] is a stochastic process where the evolution is

managed by states. The series of states constitute a

Markov chain which is not directly observable. Such a

chain is said to be “hidden”. Each state of the model

generates an observation. Only the observations are

visible. The objective is to derive the state sequence and

its probability, given a particular sequence of

observations. A more formal definition of an HMM is

given in [12]. The two following propositions hold [15]:

Proposition 1: Given a PFA A with m transitions and
Probability(epsilon) = 0, there exists an HMM M with at
most m states such that the stochastic language DM of M
is equal to the stochastic language DA of A.

Proposition 2: Given an HMM M with n states, there
exists a PFA A with at most n states such that the
stochastic language DA of A is equal to the stochastic
language DM of M.

As we are only interested in PFA without epsilon

transitions, i.e. PFA the transitions of which are triggered

by events, language-equivalent HMMs can be used to

implement PFA.

3.2.2. Implementation and script evaluation using

Hidden Markov Models. The situations of a context

model can be implemented by the states of a HMM.

Events indicating state changes of the concepts (activity,
role, relation or others) generate the observations for the

HMM. A state (situation) is characterized by a particular

probability distribution of these observations. The

activation of a new situation (state) is thus determined by

the transition probability from the current state to this

new state as well as by the probability of the given

observations in this new state. The connections in the

situation network are represented by non-zero transition

probability values. The observation probability

distributions for the situations as well as the transition

probabilities between the situations need to be specified

(or learned) when implementing a situation model. We

are interested in three basic problems:

1. Given a sequence of observations (based on events)

and a situation model implemented by a HMM, how

to choose the corresponding state sequence (situation

sequence)? This includes the determination of the

(most likely) current situation and the determination

of likely following situations.

2. Given a sequence of observations (based events) and

a situation model implemented by a HMM, how to

compute the probability of the observation sequence,

given the model? This corresponds to the likelihood

of the situation model (based on the given

observations).

3. How to adjust the HMM model parameters? This

corresponds to adjusting probability distributions

based on given data.

[12] gives several solutions to these problems. The

Viterbi algorithm is used to determine the most probable

state sequence, given a HMM and an observation

sequence (Problem 1). The probability of a HMM, given

an observation sequence, can be computed using the

Forward-Backward algorithm (Problem 2). The

expectation-maximization (EM) Baum-Welch algorithm

adjusts the HMM model parameters, given observation

sequences (Problem 3).

Note that the HMM implementation of a situation

model is particularly suitable for applications that deal

with erroneous perceptions as well as situations that are

characterized by a particular frequency of events. A

HMM implementation is, however, less suitable for

representing parallelism (not all Allen operators can thus

be represented by a classical HMM).

3.2.3. Example: Detection of Interaction Groups

[2]. This example addresses the problem of detecting

interaction groups in an intelligent environment. The

dynamic change of interaction group configuration, i.e.

the split and merge of interaction groups, can be seen as

indicator of new activities. Our goal is to determine the

current small group configuration from speech activity

event data. We focus thus on verbal interaction, which

further implies a minimum size of two individuals for one

group (assuming that isolated individuals do not speak).

The proposed approach is based on a HMM

implementation of the context model. The observations of

the HMM are a discretization of speech activity events

sent by an automatic speech detector [6]. This detector

parses multi-channel audio input and detects which

individual stops and starts speaking.

(A C) (B D) (A D) (B C)

(A B C D) (A B) (C D)

meets

meets

meets meets

meets

meets

(ABCD)

(AD)(BC) (AC)(BD)

(AB)(CD)

High transition probability

Low transition probability

Figure 6 Situation model (left) and states of HMM implementation

(right) for a meeting of 4 individuals A, B, C, D.

Figure 6 shows the situation model and the

corresponding HMM for a meeting with 4 individuals.

Each possible group configuration is represented by a

situation. The probability distributions of the different

situations are specified based on conversational

hypotheses [2]. The transition probabilities between the

states are set to a very low level in order to stabilize the

detection of state changes assuming hence that group

changes occur in reasonable delays. To detect different

group configurations, we apply the Viterbi algorithm

(solution to Problem 1 in section 3.2.2) to the flow of

arriving observations.

Figure 7 Example configuration of 2 groups of 2 individuals.

To evaluate, we recorded the interactions of 4

individuals during 3 experiments (Figure 7). The speech

was recorded using lapel microphones. We obtain a total

recognition rate for the group configurations of 84.8 %

[2].

4. Conclusion

This paper proposed two different implementations for

the situation model representing abstract context: a

deterministic one based on Petri nets and a probabilistic

one based on Hidden Markov Models. Both

implementations have been applied to real world

problems with success: an intelligent cameraman system

(Petri nets) and an interaction group detector (HMMs)

have been implemented. Each implementation is well

adapted for particular applications: Petri nets for

parallelism and Hidden Markov Models for erroneous or

uncertain input.

5. References

[1] Allen, J., Maintaining Knowledge about Temporal
Intervals, Comm. ACM, 26 (11):832-843, 1983.
[2] Brdiczka, O., Maisonnasse, J., and Reignier, P.,

Automatic detection of interaction groups. Proc. of ICMI,
October 2005.

[3] Crowley, J.L., Coutaz, J., Rey, G. and Reignier, P.,

Perceptual Components for Context Aware Computing,
Proc. of UbiComp, 2002.
[4] Dey, A.K., Understanding and Using Context,
Personal and Ubiquitous Computing 5:4-7, 2001.

[5] Dourish, P., What we talk about when we talk
about context, Personal and Ubiquitous Computing 8:19-
30, 2004.

[6] FAME: Facilitating Agent for Multi-Cultural
Exchange (WP4), European Commission project IST-
2000-28323 October 2001.

[7] Jess: the rule engine for java,

http://herzberg.ca.sandia.gov/jess/.

[8] Loke, S.W., Representing and reasoning with
situations for context-aware pervasive computing: a logic
programming perspective, The Knowledge Engineering
Review, 19(3):213-233, 2005.

[9] Muehlenbrock, M.; Brdiczka, O.; Snowdon, D.,

Meunier, J., Learning to Detect User Activity and
Availability from a Variety of Sensor Data, Proc. of
PerCom, 2004.

[10] Murata, T., Petri Nets: Properties, Analysis and
Applications, Proc. of IEEE 77(4):541-580, 1989.
[11] Petri, C. A., Kommunikation mit Automaten, Ph.D.
thesis, Institut fuer Instrumentelle Mathematik, Bonn,

1962.

[12] Rabiner, L., A tutorial on Hidden Markov Models
and selected applications in speech recognition, Proc. of
IEEE 77(2):257-286, 1989.

[13] Suchman, L., Plans and Situated Actions: The
Problem of Human-Machine Communication, Cambridge
University Press, 1987.

[14] Vidal, E., Thollard, F., de la Higuera, C.,

Casacuberta, and Carrasco, R. C., Probabilistic Finite-
State Machines – Part I. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 2005.

[15] Vidal, E., Thollard, F., de la Higuera, C.,

Casacuberta, and Carrasco, R. C., Probabilistic Finite-
State Machines – Part II. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 2005.

[16] Weiser, M., The Computer for the Twenty-First
Century, Scientific American Publishers, 1991.

