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Abstract 
 

This paper addresses the problem of implementing an 
abstract context model. First, the abstract context model 
is represented by a network of situations. Two different 
implementations for the situation model are then 
proposed: a deterministic one based on Petri nets and a 
probabilistic one based on Hidden Markov Models. Both 
implementations are illustrated and applied to real-world 
problems. 
 

1. Introduction 
 

Pervasive and ubiquitous computing [16] integrate 

computation into all-day environments. People are 

enabled to move around and interact with computers more 

and more naturally. One of the goals of these 

computerized spaces is to enable devices to sense changes 

in the environment and to automatically adapt and act 

based on these changes. A main focus is laid on sensing 

and responding to human activity.  

Human activity does not strictly follow plans but is 

very situation dependent [13]. Computerized spaces and 

their devices need hence to use this situational 

information, i.e. context [4], to respond correctly to 
human activity. In order to become context-aware, 

computer systems must maintain a model describing the 

environment, its occupants and their activities.  

In this paper, we describe how an abstract context 

model [3] based on the notion of situation [4] can be 

represented by different implementations. A probabilistic 

implementation based on Hidden Markov Models and a 

deterministic implementation based on Petri Nets is 

discussed. Both implementations have been applied to 

real-world problems (given as examples). 

 

2. Representing abstract context by situation 

models 
 

The notion of context is not new and has been 

explored in different areas like linguistics, natural 

language processing and knowledge representation. Dey 

defines context as “any information that can be used to 

characterize the situation of an entity” [4]. An entity can 

be a person, place or object considered relevant to user 

and application. Context-aware applications need this 

contextual information to deliver the correct service to the 

correct user, at the correct place and time, and in the 

correct format for the environment [16]. The structure and 

representation of this information must be determined 

before being exploited by a specific application. 

Context and activity are separable. The context 

describes features of the environment within which the 
activity takes place [5]. Loke states that situation and 

activity are, however, not interchangeable, and activity 

can be considered as a type of contextual information 

which can be used to characterize a situation [8].  
Following Dey’s context definition, situation is a 

central notion describing context. Crowley et al. consider 

context to be a network of situations [3]. Dey defines 

situation as “description of the states of relevant entities” 

[4]. Situation is thus a temporal state within context. 
Allen’s temporal operators [1] can be used to describe 

relationships between situations. 

 
There are different concepts used to characterize a 

situation. As described above, activity is such a concept. 

Activity models like in [9] identify the different states of 

entities. Crowley et al. extend this concept to roles and 

relations between entities [3]. An entity is observed to 

play a role if it passes a role acceptance test on its 

properties. A relation is defined as a predicate function on 
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Figure 1 Context of a “presentation with questions”. The 

conceptual events characterizing the situations are not 

detailed. 



several entities playing roles. Changes in activity, role or 

relation can be signaled by events. 
Behavior within the environment can be described by 

a script. A script corresponds to a sequence of situations 
in the situation network reflecting (human) behavior in 

the environment. Scripts are not necessarily linear. 

To summarize, we describe context as a situation 
model. The situations are in temporal relationship within 
a network. Changes between the states of context, i.e. the 

situations, are activated by events referring to concepts 
describing situation. Behavior within the environment can 

be described by scripts. Figure 1 gives a simple example 
of a context. 

 

3. Implementing situation models 
 

Situations and the underlying abstract concepts can be 

interpreted as finite-state machines. The finite-state 

machine implementation influences the control flow and 

how perceptions, coded as events, are finally used and 

interpreted to activate situations. We present a 

deterministic and a probabilistic implementation of 

situation models. The deterministic implementation is 

based on Petri Nets, while the probabilistic 

implementation is based on Hidden Markov Models. The 

choice of the implementation depends on the application 

that is envisaged. An example is given for each 

implementation in the following sections. 

 

3.1 Deterministic implementation: Petri Nets 
 

We begin this section with an informal review of Petri 

Nets. We then describe how Petri nets are used to 

implement a network of situations within a context and 

how to evaluate a script.  

 

3.1.1. Petri Nets. A Petri net is a graphical 

mathematical tool used to model dynamical systems with 

discrete inputs, outputs and states. Such models have first 

been defined by C. M. Petri [11]. A Petri Net is an 

oriented graph, composed of arcs and two categories of 

nodes (places and transitions). Places are the state 

variables of the system containing zero or a positive 

number of marks. Transitions model the system evolution 

and are connected from places to places. A transition is 
valid if all the “from” places have at least one mark. 

When a valid transition is fired: one mark is removed 

from every “from” place and one mark is added to every 

“to” place. Only one transition can be fired at a time. A 

more formal definition of a Petri net is given in [10]. 

Finite-state machines like situation models can be 

equivalently represented by a subclass of Petri nets [10]. 

Several extensions of the Petri Net model have been 

proposed. One of them is the synchronized Petri net. A 
synchronized Petri net is a Petri Net with events 

associated to each transition. A transition can now be 

fired if it is valid and the corresponding event has been 

triggered (Figure 2). 

 

  

 

Before 

T1 E 

S1 

S3 

Event E 

  

 

After 

T1 E 

S1 

S3 

S2 S2 

 
Figure 2 Synchronized Petri net with places S1, S2, S3 and 

transition T1 triggered by Event E. 

 

3.1.2. Implementation and script evaluation using 

Petri nets. A context is defined by a network of 

situations. The arcs between the situations are temporal 

constraints based on the Allen temporal operators [1]. 

Events indicate state changes of the concepts (activity, 
role, relation or others) describing situations. A situation 

S is validated by the set ValidS of relevant events. The 
event condition for a transition T can be described using 
relevant event sets of places (situations) before and after 

the transition T. The following table shows the 
transformations of the Allen operators between situations 

into the corresponding synchronized Petri nets.  
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Using this table, we can thus transform a situation 

network into a corresponding synchronized Petri net.  

 

3.1.3. Example: Intelligent cameraman [6]. The 

intelligent cameraman is system that automatically 

records a lecture. The lecture room is equipped with 

multiple cameras and microphones. The system is 

context-aware selecting at every time, based on the 

current situation, the appropriate camera to provide 

images. 

 

  
Figure 3 Different camera images recorded by the intelligent 

cameraman system. 

 

The lecture is an alternation of “lecturer speaking” and 

“audience asking a question”. “New slide” and “Someone 

entering the room” can happen in parallel. The situation 

network is given in Figure 4, the corresponding Petri Net 

is given in Figure 5. 
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Figure 4 Situation network of intelligent cameraman system. 
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Figure 5 Petri net of intelligent cameraman system. 

 

Code generation is done by automatically transforming 

the synchronized Petri net into a corresponding program 

in JESS [7]. JESS is an expert system programming 

environment (facts database plus forward chaining rules). 

The input of the generated program are facts based on 

events describing state changes of the concepts (activity, 

role, relation or others). The output are the current 

situation(s) and the associated action(s). 

Note that Petri nets are very well adapted for 

implementing situation models containing parallelism. 

Petri nets are, however, less suitable for applications with 

erroneous perceptions or uncertain perception 

expectations. 

 



3.2 Probabilistic implementation: Hidden 

Markov Models 
 

A probabilistic implementation of the situation model 

integrates uncertainty values into the model. These 

uncertainty values can both refer to confidence values for 

events and to a less rigid representation of situation and 

situation transitions. 

The situation model is a finite-state machine. The 

natural choice for a probabilistic implementation is then a 

probabilistic finite-state machine [14]. A probabilistic 

finite-state machine is a probabilistic automaton (PFA) 

defined over a finite alphabet Σ. A language is a subset of 

Σ*. A PFA defines a stochastic language, which is a 

probability distribution over Σ*. The distribution must 

verify ∑ ∑∈

=* 1)(Pr
x

xobability . A formal definition of 

PFA can be found in [14]. 

 

3.2.1. Hidden Markov Models. A Hidden Markov 

Model [12] is a stochastic process where the evolution is 

managed by states. The series of states constitute a 

Markov chain which is not directly observable. Such a 

chain is said to be “hidden”. Each state of the model 

generates an observation. Only the observations are 

visible. The objective is to derive the state sequence and 

its probability, given a particular sequence of 

observations. A more formal definition of an HMM is 

given in [12]. The two following propositions hold [15]: 

 

Proposition 1: Given a PFA A with m transitions and 
Probability(epsilon) = 0, there exists an HMM M with at 
most m states such that the stochastic language DM of M 
is equal to the stochastic language DA of A. 
 

Proposition 2: Given an HMM M with n states, there 
exists a PFA A with at most n states such that the 
stochastic language DA of A is equal to the stochastic 
language DM of M. 
 

As we are only interested in PFA without epsilon 

transitions, i.e. PFA the transitions of which are triggered 

by events, language-equivalent HMMs can be used to 

implement PFA. 

 

3.2.2. Implementation and script evaluation using 

Hidden Markov Models. The situations of a context 

model can be implemented by the states of a HMM. 

Events indicating state changes of the concepts (activity, 
role, relation or others) generate the observations for the 

HMM. A state (situation) is characterized by a particular 

probability distribution of these observations. The 

activation of a new situation (state) is thus determined by 

the transition probability from the current state to this 

new state as well as by the probability of the given 

observations in this new state. The connections in the 

situation network are represented by non-zero transition 

probability values. The observation probability 

distributions for the situations as well as the transition 

probabilities between the situations need to be specified 

(or learned) when implementing a situation model. We 

are interested in three basic problems: 

1. Given a sequence of observations (based on events) 

and a situation model implemented by a HMM, how 

to choose the corresponding state sequence (situation 

sequence)? This includes the determination of the 

(most likely) current situation and the determination 

of likely following situations. 

2. Given a sequence of observations (based events) and 

a situation model implemented by a HMM, how to 

compute the probability of the observation sequence, 

given the model? This corresponds to the likelihood 

of the situation model (based on the given 

observations). 

3. How to adjust the HMM model parameters? This 

corresponds to adjusting probability distributions 

based on given data. 

[12] gives several solutions to these problems. The 

Viterbi algorithm is used to determine the most probable 

state sequence, given a HMM and an observation 

sequence (Problem 1). The probability of a HMM, given 

an observation sequence, can be computed using the 

Forward-Backward algorithm (Problem 2). The 

expectation-maximization (EM) Baum-Welch algorithm 

adjusts the HMM model parameters, given observation 

sequences (Problem 3). 

Note that the HMM implementation of a situation 

model is particularly suitable for applications that deal 

with erroneous perceptions as well as situations that are 

characterized by a particular frequency of events. A 

HMM implementation is, however, less suitable for 

representing parallelism (not all Allen operators can thus 

be represented by a classical HMM). 

 

3.2.3. Example: Detection of Interaction Groups 

[2]. This example addresses the problem of detecting 

interaction groups in an intelligent environment. The 

dynamic change of interaction group configuration, i.e. 

the split and merge of interaction groups, can be seen as 

indicator of new activities. Our goal is to determine the 

current small group configuration from speech activity 

event data. We focus thus on verbal interaction, which 

further implies a minimum size of two individuals for one 

group (assuming that isolated individuals do not speak). 

The proposed approach is based on a HMM 

implementation of the context model. The observations of 



the HMM are a discretization of speech activity events 

sent by an automatic speech detector [6]. This detector 

parses multi-channel audio input and detects which 

individual stops and starts speaking.  
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Figure 6 Situation model (left) and states of HMM implementation 

(right) for a meeting of 4 individuals A, B, C, D. 

 

Figure 6 shows the situation model and the 

corresponding HMM for a meeting with 4 individuals. 

Each possible group configuration is represented by a 

situation. The probability distributions of the different 

situations are specified based on conversational 

hypotheses [2]. The transition probabilities between the 

states are set to a very low level in order to stabilize the 

detection of state changes assuming hence that group 

changes occur in reasonable delays. To detect different 

group configurations, we apply the Viterbi algorithm 

(solution to Problem 1 in section 3.2.2) to the flow of 

arriving observations.  

 

 
Figure 7 Example configuration of 2 groups of 2 individuals. 

 

To evaluate, we recorded the interactions of 4 

individuals during 3 experiments (Figure 7). The speech 

was recorded using lapel microphones. We obtain a total 

recognition rate for the group configurations of 84.8 % 

[2]. 

 

4. Conclusion 
 

This paper proposed two different implementations for 

the situation model representing abstract context: a 

deterministic one based on Petri nets and a probabilistic 

one based on Hidden Markov Models. Both 

implementations have been applied to real world 

problems with success: an intelligent cameraman system 

(Petri nets) and an interaction group detector (HMMs) 

have been implemented. Each implementation is well 

adapted for particular applications: Petri nets for 

parallelism and Hidden Markov Models for erroneous or 

uncertain input. 
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