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Safe Navigation for Indoor Mobile Robots -
Part II: Exploration, Self Localization and Map

Building
Alessandro Corrêa Victorino, Patrick Rives, Jean-Jacques Borrelly

Abstract— This paper is the second part of the au-

thor’s contribution on the topic of Safe Navigation for
Indoor Mobile Robots. It presents a new solution to the

exploration, self localization and map building problem

taking advantage of the sensor-based navigation frame-

work presented in the paper: Safe Navigation for Indoor
Mobile Robots - Part I: A Sensor-based Navigation Framework.
The model of the indoor environment is structured as

an hybrid representation, both topological and geomet-

rical, which is incrementally built during the explo-

ration task. The topological aspect of the model cap-

tures the connectivity and accessibility of the different

places in the environment, and the geometrical model

holds up an accurate robot localization and map build-

ing method. To overpass the problem of drift inher-

ited to the odometry when the robot navigates in large

scale environments, a new dead-reckoning method is

proposed combining laser readings and feedback con-

trol inputs. Embedding the self-localization and map

building problem in a sensor-based navigation frame-

work improves both the quality and the robustness of

the representation built during the exploration phase

and authorizes a further use to achieve safe navigation

tasks successfully. Experiments are shown which con-

firm the interests of the proposed methodology.

I. Introduction

The sensor-based control methodology previoulsly
published in the Part I of this work allows the robot
to safely move into his whole free space using only the
range measurements provided by a laser scanning de-
vice. However, it is well known that an efficient nav-
igation strategy is not possible without an accurate
robot localization and a reliable representation of the
environment. The present paper focuses on these is-
sues. We present here a precise localization methodol-
ogy and a robust environment modeling, taking advan-
tage of the sensor-based navigation strategy described
in the Part I.

Many researches are currently done to provide ro-
bust solutions to the robot localization problem. A
common conclusion is that due to the presence of drift
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Victorino is supported by a doctoral fellowship from the

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
- CAPES, Brazil, under Grant 2336/97-9.

and sliding, the odometry data from the wheel en-
coders (and more generally, the data provided by dead-
reckoning methods) are frequently corrupted and not
reliable enough to provide a correct long-dated esti-
mate of the robot localization. So, it is essential to
take into account the perception of the environment
provided by robot’s sensors in the localization process.
Generally, when an a priori map of the environnement
is available, the robot position is computed thanks to
a matching technique applied between the currently
observed part of the environment and the global a pri-
ori map. More recent methods of localization based on
Monte-Carlo simulation are currently under investiga-
tion [22]. When no knowledge about the environment
is assumed, it is necessary to solve two problems, local-
ization and environment modeling, in a unique step,
resulting that the representation of the environment
and the robot positioning are mutually influenced by
the uncertainties on the robot displacements. This
problem is known as the SLAM - simultaneous local-
ization and mapping - or so-called CLM - concurrent
localization and mapping - problem. Different ap-
proaches are proposed depending on the nature of the
representation, metric or topological, of the environe-
ment which is handled. Each type of representation
brings advantages and drawbacks. Metric represen-
tations authorize a precise localization but are very
sensitive to the propagation of uncertainties and drifts
introduced by the dead-reckoning methods used to pre-
dict the robot motion during the exploration. Many
instabilities and errors occur, mainly in large scale en-
vironments with cycles, when the distances navigated
by the robot increase and, as a consequence, the qual-
ity of the metric mapping and localization process con-
siderably decreases. In a topological description of the
environment, the semantic or relational aspects (corri-
dor intersections, door crossing, room A is connected
to room B, etc.) are evaluated rather than the metric
ones. It is well adapted to support a robust navigation
in a large environment, however only a coarse localiza-
tion based on the semantic aspects, can be performed.

In this context, we propose a new hybrid represen-
tation of the environment merging the advantages of
metric and topological descriptions. A complete rep-



resentation of the free space is incrementally built on-
line lying on an exploration strategy. We show how
this hybrid representation can be used to improve the
localization of the robot in a large environment, either
with respect to a precise metric representation of a
given region of the environment or with respect to a
global topological description of the environment.

The paper is organized as follows. Before introduc-
ing our environment modelling and robot localization
methodology, we present a brief state of the art on the
metric and topological representations in section II. In
section III, we design the hybrid model mixing both
topological and geometrical aspects for navigation pur-
poses. It is shown that the structure of the topologi-
cal model proceeds from the application of the sensor-
based control strategy presented in Part I of this work.
In section IV, we focus on the construction of the ge-
ometrical model, a motion estimator method is pre-
sented based on the telemetric laser measurements.
Experimental results are discussed in section V and
in section VI some conclusions and comments are pre-
sented.

II. State of the art

Metric representations have been developed in two
broad approaches based either on an exact parametric
description of the environment [8], [9], [17], [13], [10],
or on a discrete cell decomposition [16], [14], [20]. In
the first case, the model of the environment is con-
structed based on geometrical primitives describing
the surface of the objects which are extracted and up-
dated from the sensor observations. These maps are
often referred on a fixed reference frame in the envi-
ronment. In the second case, the environment is repre-
sented by a discrete grid where each cell is defined by a
probability index that indicates if the cell is occupied
by a obstacle or if it belongs to the free space. The
probability index is updated using the sensor observa-
tions currently available and the a priori knowledge by
means of a Bayesian rule.

In these approaches based on a geometric map, the
robot holds a description of the borders of its free space
that enables a metric localization with sufficient pre-
cision. This precision is essential for the execution
of navigation tasks that require some degree of inter-
action between the robot and its environment. The
principal restriction to the development of geometric
approaches is the sensitivity of the localization and
mapping algorithms with regard to the odometry er-
rors integrated during the navigation. In almost cases,
an important geometric distortion appears in the map
when the distance covered by the robot increases. This
distortion makes difficult the matching between the

observations and the global map when the robot comes
back in a place previously explored. Moreover, the ge-
ometric model is not appropriate to describe the topol-
ogy and accessibility of the different places of the en-
vironment.

The topological approach is based on a partitioning
of the environment in homogeneous areas (rooms, cor-
ridors, halls..) connected by links which represent the
relations of accessibility [15], [12], [5]. In this repre-
sentation, the semantic aspects are enhanced with re-
gard to the metric aspects [6]. The topological model
is generally a graph of nodes and edges: the nodes
represent the explored areas or places, and the edges
represent the way to access the different places from a
given starting position in the environment. Navigation
instructions or attributes are associated to the graph
and dynamically explored during a navigation task.
The attributes associated to the nodes (local struc-
ture of the environment, colors, etc.) are extracted
from video or telemetric images and are generally re-
lated to the identification of a place and to the robot
localization. The attributes associated to the edges,
equally extracted from the sensor’s observations, are
used to enable the navigation between the different
nodes, as the control decision aspects (turn on the
right, go ahead...) or the reference trajectory to be
followed [11], [23]. In [18] the topological model is
built on-line during the exploration phase and results
on the Voronöı diagram associated to the rigid envi-
ronment. The attributes associated to the nodes are
the features extracted from the telemetric measures
corresponding to the characteristic places in the envi-
ronment like doors or crossings of corridors.

The topological model captures the connectivity and
the accessibility aspects, providing then a robust way
to navigate from one place to another in a large envi-
ronment. The localization of the robot is performed in
a qualitative way based on the semantic relationship
between the different places represented in the graph,
limiting the application of this approach to the navi-
gation tasks where a precise metric localization (that
is provided in a geometric model) is not required.

These two modeling approaches, geometrical model
and topological model, when used separately, are not
sufficient to provide a precise and robust indoor mobile
robot navigation. Then, some authors have introduced
a navigation methodology based on a hybrid modeling
of the environment mixing geometric and topological
representations. In [6], [22], [2], the topological model
is constructed based on a geometric model, generally
an occupation grid representation built in a previous
learning phase. In [15] and [7], the topological repre-



sentation is constructed on-line from the sensor’s ob-
servation during the exploration phase, the geomet-
ric representation is constructed a posterior indepen-
dently of the topological model. The advantage added
by this independence between the two representations
is that the errors on the geometric model, generally
raised from odometry, are not propagated to the topo-
logical representation. In the opposite, the confidence
in the topological representation of a given place is
restricted without the local precision added by the ge-
ometric representation (important in the execution of
some precise navigation tasks like parking).

We propose in this paper a modeling approach that
combines the precision of a geometric model to the
robustness of the navigation strategy provided by the
topological representation. Our approach is in part
based on a method presented by Kuipers in [15], in
the sense that the topological description of the envi-
ronment is constructed in an autonomous way lying on
a sensor-based navigation strategy, and, in part based
on the methodology presented by Choset in [7], in the
sense that the robot is constrained to move on the
Voronöı diagram of the environment during the explo-
ration phase. As an improvement from these previous
works, we propose the construction of the geometric
and topological model simultaneously in an incremen-
tal way during the exploration of the environment,
what allows us to avoid the problems raised from the
independence between the two models.

III. A Hybrid Navigation Model:

Topological and Geometrical

In the paper: Safe Navigation for Indoor Mobile
Robots - Part I: A Sensor-based Navigation Frame-
work, it was detailed a sensor-based navigation frame-
work which allows the robot to safely move in an
indoor environment with collision avoidance and to
access in all the places belonging to the free space.
This sensor-based navigation framework lies on three
navigation functions which are designed based on the
Voronöı diagram (VD) properties, figure 1:

• e1, join the nearest Voronöı branch from any point
of the free space and stabilize the robot on it,
• e2, move along a Voronöı branch,
• e3, stop the robot in a Voronöı bifurcation point
(BP).

Moving along the VD branches represents a natural
way to safely navigate between two different points of
an indoor environment. Stopping in a BP is also useful
for navigation purpose because the BPs are associated
to the changes in the topology of the environment.
The BPs are appropriate places both to localize the
robot and to update the description of the environ-
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Fig. 1. The navigation tasks. e1, e2 and e3 are respectively the
tasks of stabilization on a branch, stabilization and displacement
along the branch and stabilization in a bifurcation point.

ment. In this section, we present the different layers
of the geometrical/topological representation which is
incrementally built during the exploration of an indoor
unknown environment.

A. The topological structure

Let us consider the figure 2. Applying the control
methodology defined in the Part I, the navigation func-
tions e1, e2 and e3 are performed and the robot is con-
strained to travel on the VD of the unknown environ-
ment. During the exploration phase, the robot moves
from the initial position marked by BP11, explores
all the accessible free space passing through the places
marked by Place 1, Place 2, Place 3 and Place 4,
and come back to the position BP11 in figure 2. The
robot travels on the VD of the environment without
explicitly constructing it, the green trajectory is plot-
ted for a better understanding only. We consider that
the environment is static and the VD associated to this
environment is unique.

By navigating on the VD of the environment in the
example shown in figure 2, the robot constructs on-line
a representation that determines the accessibility of its
free space, and a relation between the different places
of the environment established by the BPs connecting
the branches. This topological representation is struc-
tured as shown in the figure 3, it is formed by a list
of all the BPs found during the exploration. Each BP
is registered on the list with a set of characteristics
that describe the local topology of the environment,
like the set of possible directions exiting it, the cross
section of the local environment, and other geometric
characteristics that are described in the next section.
The possible directions exiting a BP are computed in
the local frame based on the cross section of the local
environment provided by the laser range finder at this
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Fig. 2. Exploration of an indoor simulated environment.

position, and describes the connectivity of the envi-
ronment. For example, when the robot exits BP11 by
the direction b1, it arrives in the direction b2 of the
BP12 in the Place 1. This topological structure is in-
crementally constructed during the exploration of the
robot free space, and will be used further for achieving
navigation tasks efficiently.

b1

b1

b1

b1

BP14
BP15

BP16

BP17

b1

b1

b2

b3

b2

b2 b3

b2

b3

b2

b2

b1

b2

BP13

BP11
BP12

PLACE  1

PLACE  4

PLACE  2

b3

Fig. 3. A graph representation of the topological structure as-
sociated to the Place 1 of the environment shown in the figure 2

B. The geometrical structure

A geometrical representation is also incrementally
built and updated during the navigation in parallel
to the construction of the topological model [24]. The
laser scanning device mounted on the robot delivers an
horizontal cross section of the environment (figure 4).
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Fig. 4. Cross section of the environment represented in the
laser frame. Top: Polar representation, Bottom: Cartesian
representation

The simultaneous localization and map building
methodology implemented is quite classic and already
used by several authors. A coarse localization based
on a dead reckoning technique is performed when the
robot moves along the VD branches, and a map match-
ing method based on a classical Extended Kalman Fil-
ter algorithm, is used when the robot stops on a BP.

However, in our case there are some improvements
associated to the construction of the metric model:

- The motion of the robot is controlled with the exe-
cution of the three navigation tasks presented in sec-
tion III during the exploration, that guarantees that
the robot returns to a same physical place of the en-



vironment with a bounded error. As the Voronöı is
unique for a given environment, it also guarantees a
unique robot’s trajectory will be realized in the real
environment. Such a property notably enhances the
localization and simultaneous map building process in
a given place of the environment.
- The metric map of the place is updated and the
robot position is corrected only when the robot stops
in a BP of the Voronöı diagram. The main advan-
tage of this approach is to perform a time consuming
operation (i.e. updating the global map) only in the
places associated to the changes in the topology of the
environment.
- When the robot is moving on the branches, its posi-
tion is estimated using the motion estimation method
based on the laser measurements and detailed in sec-
tion IV. In that way, the well-known problem of drift
inherent to the use of a dead-reckoning method based
on the wheels encoders, is considerably attenuated, as
shown in the experimental results in section V.

These characteristics justify the use of a simplified
version of the EKF [9], [3]. Recent versions more
robust take into account cross-correlations in the co-
variances [17], [10]. More details on the implemented
method can be found in the appendix A.

C. A hierarchical hybrid model of the environment

However, such a methodology shows some limita-
tions when applied in large scale environments, as that
shown in the example of the figure 2. Considering the
figure 2, the robot leaves the region of the environment
marked as Place 1 and goes towards the first BP in
the region indicated as Place 2. When it stops in this
BP, the global map which was created when the robot
was in Place 1 should be updated following the SLAM
strategy. In this case, due to the travel across the long
corridor between the two places, it is not reasonable
to refer the description of the Place 2 on the initial
reference frame fixed in Place 1. To solve this prob-
lem, we introduce a hierarchical representation of the
environment where each place is described in its own
local frame. The rule to decide when a new local frame
(and a new place) must be initialized, is based on the
capability, when the robot reaches a BP, to match the
current local observation with the global map. Two
cases can occur :

(a) There is a no empty set of segments which matches
the local observation with the global map currently
available. This fact indicates that the robot is still
in a same Place of the environment and it enables the
integration of the local observation updating the global
map.
(b) The set of matches between the local observation

and the global map is empty, due to the limited range
of the laser. Then, a new reference frame is created
in this position and a new map is initialized. This
new reference frame characterizes a new Place. The
relation with the previous place is essentially topologi-
cal due to the uncertainties in the localization process
during the travel.

In the resulting hybrid representation, the topolog-
ical description captures the global accessibility while
the geometrical one handles the local capabilities to
reach a position precisely. The localization of the robot
is performed at two levels:
(c) Qualitatively, thanks to the topological descrip-
tion, when the robot reaches a BP corresponding to a
different place.
(d) Precisely, thanks to the metric representation,
when the robot navigates in a peculiar place.

D. An example of SLAM

Let us consider the indoor environment shown in
the figure 5. In this figure, the red robot corresponds
to the current estimation of the robot position and
the blue one is the real position with regard to the
environment constrained by the sensor-based control
laws. The blue crosses represent the absolute position
in the initial reference frame, given by the odometry
computed from the wheels encoders since the starting
position without any map matching correction. The
robot starts its exploration from the reference frame
(figure 5-a). Using the e1 and e2 navigation functions,
it reaches the branch of the VD and goes ahead un-
til the first BP where it is stabilized thanks to the
e3 navigation function. From the laser scan, a set of
line segments is extracted and the global map corre-
sponding to the Place 1 is initialized. This map is
defined in the reference frame. Then the robot goes
towards a second BP (figure 5-a). Due to the short
travel distance, a map matching technique can be used
to merge the local laser scan with the global map in
progress, updating then the geometrical description of
the Place 1. Lying on this map matching, a precise
localization of the robot can be done. The robot leaves
the BP and navigates to the next one. Unfortunately,
the presence of a long corridor prevents the match-
ing between the local observation and the global map,
and a new Place 2 is initialized with its own reference
frame (figure 5-b). The Places 3, 4, 5 are succes-
sively created (figure 5-c and -d). Let us note that it
is not possible to have a precise metric localization of
Places 2, 3, 4, 5 (in construction) with respect
to the initial reference frame attached to the Place 1.
However each Place has its own precise metric model
which are connected by the global topological graph.



(a) Starting the exploration (b) Initializing the new place 2

(c) Initializing the new place 3 (d) Initializing the new place 5

(e) Exploring the place 5 (f) Merging the places 1 and 5

(g) Turning back to complete the exploration (h) Updating the global map by constraints propa-
gation

Fig. 5. Exploration of an indoor environment.



In this sense, the “way to access” the Places is more
relevant for the navigation task than the knowledge of
a geometrical relation between them. A rough knowl-
edge of the geometrical relation between two different
Places must be assumed only in the case of cycles on
the environment like in the situation shown in figure 5-
e. The robot is mapping the Place 5 when it comes
back in a BP which belongs to the (Place 1) already
explored. Then the robot has to identify the revisited
Place 1, to estimate its position in the metric model
of Place 1, and to merge Place 1 and Place 5. This
problem is considered in three aspects:

- Place recognition: As the robot is constrained to
move on the VD due to the navigation tasks, the place
recognition can be done by matching topological or
geometrical local attributes (visual or telemetric local
data) characteristic of the BP and stored in the global
hybrid model of the environment. These aspects are
not yet implemented in our experiments, so we assume
that the recognition is possible only using a rough es-
timation of the robot position referred into the initial
frame.

- Estimation of the robot position w.r.t. the frame of
a revisited place: Figure 6 illustrates the situation cor-
responding to the figure 5-e. The local rigid trans-
formations t1 (Cartesian position of the revisited BP
in the frame of Place 1) and t5 (the current robot
position in the frame of the Place 5) are approxima-
tively known related to the uncertainties during the
robot navigation. However, due to the bounded error
of the sensor-based navigation and the property of the
Voron̈ı representation, we can ensure the BP reached
by the robot when its navigates in the Place 1 and, af-
ter, when its navigates in the Place 5, corresponds to
a same cartesian position in the physical world. The
position of the robot in Place 1, tx, is estimated by
matching the local map observed in the robot frame
with the global map of Place 1. The global map of
Place 1 is projected into the robot frame using t1 as
prediction, then the rigid transformation, ∆t, between
the local map and the projected one is estimated using
a bounded-error estimator presented in [26].

- Fusion of places: The transformation between the
metric map of Place 1 and Place 5, t51, is predicted
with tx and t5. In order, t51 is estimated and the
two metric maps are merged by the application of an
extended Kalman filter approach, like that presented
in [24].

Merging Place 1 and Place 5 allows to compensate
the localization errors in the reference frame and the
distortions in the global map using a backward propa-
gation technique. This could be done by minimizing a
cost function taking into account rigidity constraints

∆ t

P1

P5

t1

tx

t5

BP1

t51

Fig. 6. A schematic representation of the situation shown in
figure 5-e

inside a same place and elastic bands between two dif-
ferent places. After merging Place 1 and Place 5 the
navigation continues by searching in the topological
model the branches not completely explored (figure 5-
f) . Finally, when the whole free space has been ex-
plored, the global map is updated as shown in the fig-
ure 5-g. The black ellipses (5 X magnified in the plot),
illustrate the growth in the uncertainty and the drift in
the localization during the travel when the positions
are estimated uniquely from the odometry based on
the wheels encoders .

Finally, using such a methodology, the geometrical
model of the explored environment is segmented in dif-
ferent “Places”, each one with a reference frame and
an associated map where it is possible to localize the
robot precisely. The access to the “Places” are defined
in the topological graph associated to the Voronöı dia-
gram as shown in the figure 3. The closed loop control
laws designed in the Part-I of this work guarantee the
tracking error along the Voronöı trajectory remains
bounded. As the Voronöı is unique for a given envi-
ronment, it also guarantees a unique robot’s trajectory
will be realized effectively. Such a property notably en-
hances the localization and simultaneous map building
process in a given place of the environment. However,
even if the trajectory following by the robot in the real
physical world is well-defined and unique, its estimate
built from the sensor measurements is subject to the
drift inherent to the dead reckoning methods based
on odometry provided by wheel encoders. So, when
the distance covered by the robot between two differ-
ent places becomes too large, problems can occur for
detecting when the robot comes back to a previously
observed place. We address this problem in the next
section and we propose a new robust dead-reckoning
method based only on the laser measurements in order
to limit the influence of the drift during the displace-
ment of the robot along the branches.



IV. A Robust Dead-reckoning Method based

on Laser Range Data

In this section, we propose a new method for esti-
mating the robot motion between two sampling times
(k) and (k + 1) using the laser range data, ( figure 7)
and taking into account the uncertainties related to
the perception process in a probabilistic framework.
By this way, the method sounds like a dead-reckoning
method which will be used in order to replace odome-
try based on wheel encoders during the displacement
of the robot between two BPs. The relative motion is
predicted in two stages [25] :

1. Assuming a local rigidity constraint on the envi-
ronment, the robot motion can be estimated from two
successive local laser scans, a first one at time (k) ex-
pressed into the frame Xck and another one at time
(k + 1) expressed into the frame Xck+1, figure 7.
2. We use the knowledge on the control input pro-
vided by the sensor-based control laws to overpass the
problem of incomplete observality detailed in section
IV-A.1.
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Fig. 7. The robot displacement [Tr ϕ]T between times (k) and
(k+1). C is the frame in which the control is computed. C has
the orientation β with respect to a frame Xc fixed at the point
xc of the robot’s basis. W is a fixed reference frame.

A. Estimating the robot displacement from two succes-
sive laser scans

The laser carried out by the robot periodically pro-
vides a planar scan of the local environment :

{δ(θ0), . . . , δ(θi), . . . , δ(θ2π)} (1)

where δi = δ(θi) is the distance from the origin of the
laser frame to the nearest object at the angular po-
sition θi. A polar and Cartesian representation are

shown in the figure 4.

The polar scan is segmented in a set of segments
characterized by the ending points and the support
lines. This set of segments computed in the laser frame
at each time (k) represents the visible objects around
the robot and it is called the local map Ik. Let us
consider two local maps Ik and I(k+1) after the robot
motion :

Ik = {D0, . . . , Di, . . . , Dn}k

Ik+1 = {D0, . . . , Dj , . . . , Dm}k+1
(2)

where:

Di = {Pi, Qi, φi, ρi, σ
2
φi
, σ2ρi}

Dj = {Pj , Qj , φj , ρj , σ
2
φj
, σ2ρj}

- P and Q are the ending points of the segment.
- (φ, ρ, σ2φ, σ

2
ρ) the parameters of the support line with

their variances. Di and Dj are represented in the laser
frame at the times (k) and (k + 1) respectively, as
shown in the figure 7.

A rigid transformation between Ik and Ik+1 is defined
as:

RT =





Tx
Ty
ϕ



 (3)

The estimation of the displacement [Tr ϕ]T is equiv-
alent to estimate the rigid transformation between Ik
and I(k+1). That can be done by using a classical
matching technique under the assumption that at least
some segments in the two local maps correspond to the
same objects of the environment.

Hypothesis 1: There exists a set of objects S 6=
∅ in the environment which are observable from the
positions Xck and Xck+1.

The hypothesis 1 is necessary for the estimation of
the rigid transformation (3) but not sufficient. In the
next section, we demonstrate that, for some peculiar
configurations of the environment, the rigid transfor-
mation RT is not fully observable from the laser range
map.

A.1 The observability analysis

Let us consider the controlled frame C attached to
the laser scanning device carried out by the robot (
figure 7). Assuming nc lines can be perceived both
at times (k) and (k + 1), and let us denote SXc =
{M0 . . .Mnc} the set of these lines expressed in the
controlled frame C at time (k). The state representa-
tion associated to the evolution of the controlled frame



C, in a continuous form, is given by:

{

Ẋc = F(Xc,U) Xc ∈ R3

Y = G(Xc, {M0 . . .Mnc}) Y ∈ R2nc
(4)

where:
- XC = [xc yc θc]

T is the state of C into the fixed
reference frame.
- U = [u1 u2 u3]

T is the control input corresponding
to the desired motion (τc in our case).
- Mi = [ρi, φi], i ∈ {1, nc} where ρi and φi are the
parameters of the line i into a fixed frame in the envi-
ronment. Mi is derived from the representation Di (
eq. 2)
The function G(2nc×1) is the observation vector defined
as,

G =





















ρ1 − xc.cos(φ1)− yc.sin(φ1)
...

ρnc − xc.cos(φnc)− yc.sin(φnc)
φ1 − θc

...
φnc − θc





















=





















g1
...
gnc
gnc+1

...
g2nc





















The displacement [Tr ϕ]T results from the application
of a control input τc computed from the laser mea-
surements using the sensor-based control framework
described in the Part-I of this work. The necessary
condition required for the observability of [Tr ϕ]T from
the range observations of the environment is stated in
the Proposition 1.

Proposition 1: Given a feedback control input τc
which induces a relative motion (k) → (k + 1) of the
controlled frame, [Tr ϕ]T , as shown in the figure 7 and
given the set SXc of matched lines in the local maps
Ik and I(k+1), then [Tr ϕ]T is fully observable if there
exists at least two lines {Ml, Mp} ∈ SXc so that,

|φl − φp| 6= π

where φl and φp are the estimated orientation of the
lines Ml and Mp into Ck.

The proof holds on the well known result of observ-
ability rank condition for non-linear systems, [19], [3].

The observability rank condition states in a general
case that,

Theorem 1: (Observability rank condition)
Let us consider a generalization of the system (4)
with F : Rn → Rn and G : Rn → Rm where
G =

[

g1 g2 · · · gm
]T
. The observability matrix O

is written as:

O = [ dg1 dLfg1 · · · dL
n−1
f g1 · · · dgm · · · dLn−1f gm ]

where

dgi = [
∂gi
∂Xc1

· · ·
∂gi
∂Xcn

]T

is the gradient of the ith element of G with respect to
Xc and

dLfg =
∂g

∂Xc
f

and

dLnf g =
∂[dLn−1f g]

∂Xc

are the Lie derivatives of g with respect to f .
If O is a full rank matrix then the system is locally
observable.

In a first step, the Proposition 1 is proved con-
sidering the particular case where only two lines are
matched between Ik and I(k+1) (figure 8), then, the
proof is generalized to the case of nc matches.

VD

C

φ1

ρ2

φ2

ρ1

Fig. 8. Robot navigation in a corridor-like environment

Proof of the Proposition 1:

The observability matrix for the system in (4) in the
case of two lines (nc = 2), is given by,

O(3×12) = [ dg1 dg2 dg3 dg4 dLfg1 dLfg2

dLfg3 dLfg4 dL2fg1 dL2fg2 dL2fg3 dL2fg4 ]

denoting si = sin(φi), ci = cos(φi), sic = sin(φi − θc)
and cic = cos(φi − θc) yields,

O(3×12) =





−c1 −c2 0 0 0
−s1 −s2 0 0 0
0 0 −1 −1 u1s1c + u2c1c

0 0 0 0
0 0 0 0

u1s2c + u2c2c 0 0 u3[−u1c1c + u2s1c]
0 0 0
0 0 0

u3[−u1c2c + u2s2c] 0 0







Therefore ∀τc the rank of O(3×12) written above is the
rank of the following sub-matrix O′

(3×3)

O′ =





−cos(φ1) −cos(φ2) 0
−sin(φ1) −sin(φ2) 0

0 0 −1





that is full rank if

|φ1 − φ2| 6= π

Let us consider the generalized system of (4), the (nc >
2) matches of the set SXc are considered and the sub-
matrix O′ is rewritten in a general form as,

O′ =





−cos(φ1) −cos(φ2) · · · −cos(φl) · · ·
−sin(φ1) −sin(φ2) · · · −sin(φl) · · ·

0 0 · · · 0 · · ·

−cos(φp) · · · −cos(φnc) 0
−sin(φp) · · · −sin(φnc) 0

0 · · · 0 −1





Therefore, if there exists at least a couple of matched
lines {Ml, Mp} ∈ SXc so that

|φl − φp| 6= π

it will always exist a full rank sub-matrix O′′ of O′ and
the generalized system of (4) is observable.

Finally, assuming that the rigid transformation (3)
is fully observable, then the property (1) can be stated.

Property 1: Given {Ik, Ik+1, Sl ∈ Ik, Sm ∈ Ik+1},

then ∀ Di ∈ Sl ∃ Dj ∈ Sm, so that, Di
RT
→ Dj. Sl and

Sm are the representation of S at the times (k) and
(k + 1).

The property (1) will be used to estimate the rigid
transformation (3). This rigid transformation is esti-
mated in three steps :
1. the matching step (section IV-A.2),
2. the estimation of the rotation ϕ (section IV-A.3),
3. the estimation of the translation Tr = [Tx Ty]

T

(section IV-A.4).

A.2 The matching step

Given the two local maps Ik and Ik+1, (2), the cor-
respondence between the segments is performed using
a vote method. Initially the set of all reasonable1 cor-
respondence hypotheses between Ik and Ik+1 are gen-
erated:

H = {(H1, . . . , Hh, . . . , HNC)/Hh : Dk
i
cor
→ Dk+1

j } (5)

1The elements of the maps are ordered and the displacement
is small then an element i from Ik is supposed to have a corre-
spondent in a neighborhood of the position i in Ik+1

where NC is the number of possible hypotheses to be
evaluated, Dk

i
cor
→ Dk+1

j indicates that possibly there
is a correspondence between the element i of Ik and
the element j of Ik+1, that constitutes the hypothesis
Hh.

Let us consider an element Hh : Dk
i
cor
→ Dk+1

j from
H. If this hypothesis is true then the robot (sensor)
has been rotated of ϕij = φj − φi, where φi ∈ Dk

i

and φj ∈ Dk+1
j . The rotation ϕij is used to check the

hypothesis thanks to the following algorithm:

∀ Dl ∈ Ik if ∃ Dp ∈ Ik+1
so that (φp + ϕij) < ξijp , then
Ac(Hh) = Ac(Hh) + 1
{Dk

l , Dk+1
p } is included in a set SCh of all the cor-

respondences under the hypothesis Hh.

where:
- l ∈ {1, . . . , n} − {i}
- p ∈ {1, . . . ,m} − {j}
- Ac(Hh) is the score of the hypothesis Hh.
- ξijp is a function of the uncertainties associated with

the measurements Dk
i , D

k+1
j and Dk+1

p .
After the application of this procedure to the set H,

the best hypothesis in H is selected as:

H∗ = max
Hh∈H

{Ac(Hh)} (6)

Then the best correspondence between the local
maps Ik and Ik+1 is the set of couples of segments
SCh∗ according to the best hypothesis H∗. SCh∗ is
represented as:

{

SCh∗ = {sc1, . . . , scl, . . . , scnc}
scl = {∆φij ,∆ρij , σ2∆φij , σ

2
∆ρij

}
(7)

where,

- nc is the number of elements in SCh∗ .
- ∆φij = φj − φi; φi ∈ Dk

i and φj ∈ Dk+1
j

- ∆ρij = ρj − ρi; ρi ∈ Dk
i and ρj ∈ Dk+1

j

- σ2∆φij = σ2φi + σ2φj ; σ
2
φi
∈ Dk

i and σ2φj ∈ Dk+1
j

- σ2∆ρij = σ2ρi + σ2ρj ; σ
2
ρi ∈ Dk

i and σ2ρj ∈ Dk+1
j

The prediction of RT in (3), called T̂L = [T̂ rL ϕ̂L]
T

is estimated taken into account the correspondences
SC∗

h. A probabilistic framework is used to estimate

T̂L due to the noisy nature of the laser measurements.

A.3 The estimation of the rotation

Let us ϕ be the relative rotation of the sensor be-
tween the times (k) and (k + 1), ϕ is considered as a
random variable with a normal distribution. The set,

ϕ ∼ {∆φ0, . . . ,∆φl, . . . ,∆φnc} (8)



resulted from the correspondence procedure is a se-
quence of measurements or realizations of ϕ. The es-
timate ϕ̂ of ϕ is calculated using a Maximum a Poste-
riori (MAP) estimator.

Let us the measurement ∆φ0 = ϕ + e0 be a first
realization of ϕ, where e0 ∼ N (0, σ2∆φ0). An a priori
distribution of ϕ is initialized as,

f(ϕ|∆φ0) = N (ϕ̂0, σ
2
ϕ̂0) (9)

where ϕ̂0 = ∆φ0 and σ2ϕ̂0 = σ2∆φ0 .

Considering a measurement ∆φl = ϕ + el, el ∼
N (0, σ2∆φl), in (8), the estimate ϕ̂l after the realization
∆φl is given by the maximization of the a posteriori
distribution f(ϕ|∆φl),

ϕ̂l = max
ϕ
{f(ϕl|∆φl)} (10)

The a posteriori f(ϕ|∆φl) is determined following
the Bayes rule,

f(ϕ|∆φl) =
f(ϕ|∆φl−1)f(∆φl−1|ϕ)

f(∆φl−1)

= c(∆φl−1)exp(−
(∆φl−1−ϕ)

2

2σ2∆φl
− ϕ̂l−1−ϕ
2σ2

ϕ̂l−1

)
(11)

c(∆φl−1) is not dependent of ϕ and can be dropped in
the maximization. Then,

ϕ̂l = maxϕ{f(ϕl|∆φl)}

= minϕ{−
(∆φl−1−ϕ)

2

2σ2∆φl
− ϕ̂l−1−ϕ
2σ2

ϕ̂l−1

} (12)

that is,

ϕ̂l = ϕ̂l−1 +
σ2ϕ̂l−1

σ2ϕ̂l−1 + σ2∆φl
(∆φl − ϕ̂l−1) (13)

and,

σ2ϕ̂l =
σ2ϕ̂l−1σ

2
∆φl

σ2ϕ̂l−1 + σ2∆φl
(14)

The estimated rotation ϕ̂L and its variance σ2ϕ̂L are
computed applying the equations (13) and (14) for all
l in the sequence (8).

A.4 The estimation of the translation Tr

The translation between the local maps Ik and Ik+1
is estimated using a weighted least square estimator
based on the matching set SCh∗ . Let us consider the
lth element of SCh∗ , (7) in subsection IV-A.2, as:

scl = {∆φij ,∆ρij , σ
2
∆φij , σ

2
∆ρij} (15)

The translation Tr = [Tx Ty]
T , defined in (3), is

related with the measurements in scl by the following
error function:

el = AlTr −∆ρijl (16)

where:

- The error el models the uncertainties related to the
measurements.
- Al =

[

cos(φ∗l ) sin(φ∗l )
]

- φ∗l is a mean value between the parameter φi and
(φj + ϕ̂L).
- ϕ̂L is the predicted rotation of the sensor frame cal-
culated in (13).
- The variance of φ∗l is given by σ2φ∗

l
= σ2φi+σ

2
φj
+σ2ϕ̂L .

- ∆ρijl is as defined in (7).

Let us define a cost function J ,

J =

nc
∑

l=1

µle
T
l el (17)

where µl is a weight determined in the matching step
for handling the uncertainties in scl due to the mea-
surement process.

The prediction of the relative translation Tr given
by the laser measurement, T̂ rL, is then derived by
minimizing (17):

T̂ rL = minTr{
∑nc

l=1 µle
T
l el}

= (
∑nc

l=1 µlA
T
l Al)

−1
∑nc

l=1 µlA
T
l ∆ρijl

(18)

The covariance associated to T̂ rL is calculated by
propagating the uncertainties from the laser readings
in scl, (7), to the predicted translation T̂ rL. The prop-
agation of covariances between random frames was for-
malized in [21].

Let us define a function g from the minimization
process,

g = ∂J
∂Tr

=
∑nc

l=1 µl(A
T
l AlTr −AT

l ∆ρijl)
=

∑nc
l=1 f(Tr,Ml)

(19)

where

Ml =
[

φ∗l ∆ρijl
]T

is a measurement vector.

Expanding (19) in Taylor series and taking the first
order elements,

g − g|(T̂ rL,M̂l)
=

∑nc
l=1 µl

∂f
∂Tr |(T̂ rL,M̂l)

∆Tr+
∑nc

l=1 µl
∂f
∂Ml

|(T̂ rL,M̂l)
∆Ml

(20)

g − g|(T̂ rL,M̂l)
→ 0 since T̂ rL minimizes (19). Then,

0 = (
∑nc

l=1 µl
∂f
∂Tr |(T̂ rL,M̂l)

)∆Tr+
∑nc

l=1 µl
∂f
∂Ml

|(T̂ rL,M̂l)
∆Ml

(21)



As T̂ rL is a minimum value of the quadratic function
(17), the matrix

∂g

∂Tr
|(T̂ rL,M̂l)

=

nc
∑

l=1

µl
∂f

∂Tr
|(T̂ rL,M̂l)

(22)

must be definite positive and non singular so that the
inverse matrix (

∑nc
l=1 µl

∂f
∂Tr |(T̂ rL,M̂l)

)−1 exists, it fol-

lows from (21),

∆Tr = −(
nc
∑

l=1

al)
−1

nc
∑

l=1

pl∆Ml (23)

where:

al = µl
∂f
∂Tr |(T̂ rL,M̂l)

pl = µl
∂f
∂Ml

|(T̂ rL,M̂l)

Taking the expectations of (23),

CT̂ rL = E[∆Tr∆TrT ] =

(
∑nc

l=1 al)
−1
∑nc

l=1{plCMl
pTl }(

∑nc
l=1 al)

−T (24)

where:

CMl
=

[

σ2φ∗
l

0

0 σ2∆ρijl

]

is the covariance of the measurements in scl. The de-
velopment of (24) is given in the Appendix B.

To summarize, the prediction of the relative motion
Tr is computed from the laser readings as

T̂ rL = (

nc
∑

l=1

µlA
T
l Al)

−1
nc
∑

l=1

µlA
T
l ∆ρijl (25)

with the covariance CT̂ rL computed in (24). In [4] a
weighted least square method is also used in the es-
timation of the robot relative translation in a similar
way.

If the Proposition 1 stated in the section IV-A.1 is
not satisfied then the matrix

nc
∑

l=1

µlA
T
l Al

will be singular and the displacement cannot be ob-
served anymore from the laser readings. This non-
observability problem can be overpassed considering
the odometry data from the wheels to complete the
observation of the system.

Let us consider the equation (25). The estimated

translation T̂ rL is computed from the matching set

SCh in (7). A simple way to take advantage of the
odometry observation in the computation of (25), is
to extend the matching set SCh by adding a virtual
correspondence element sc(nc+1) built from the projec-
tion of the odometry measurement in the non-observed
dimension of (25). Then T̂ rL is computed by,

T̂L = (
∑nc+1

l=1 µlA
T
l Al)

−1
∑nc+1

l=1 µlA
T
l ∆ρijl (26)

where :
- φnc+1 in Anc+1 is the non-observed direction of (25)
into the frame Lk.
- ∆ρijnc+1 is the projection of the odometry measure-
ment onto the non-observed direction of (25).

B. Estimating the robot displacement from the desired
control inputs

In this section, we define another motion estimator
between two sampling times (k) and (k + 1), figure
7, by integrating the desired velocity control inputs.
Then, this estimation will be merged with the predic-
tion T̂L computed in (24)-(26) from the laser readings.
Using two concurrent ways for estimating the robot
displacement provides more robustness and the pos-
sibility of detecting non systematic errors due to the
slippage of the wheels or due to spurious sensor data .

Sensor-based control laws are derived so that the
robot is constrained to move on the Voronöı diagram
(VD) (figure 1 see Safe Navigation for Indoor Mobile
Robots - Part I: A Sensor-based Navigation Framework
for more details). The desired control input τC com-
puted when the robot is moving on a Voronöı branch
can be rewritten as:

τC = −λebranch +B ∂gs
∂t

ebranch = Ae1 +Bgs
(27)

The desired control input τC when the robot is stabi-
lized at a bifurcation point can be rewritten as,

τC = −λeBP
eBP = Ce3

(28)

where:
- τC is the velocity control input expressed into the
frame Ck,( figure 7).
- e1 (two dimensional) and e3 (three dimensional) are
respectively the output errors corresponding to the
stabilization on a branch and on a BP ; they are de-
pending on the distance and orientation computed
from the laser readings.
- gs is a secondary task which allows to move ahead
the robot along the branch, let us note that the sub-
space spanned by this secondary task is orthogonal to
the subspace spanned by e1.



- ebranch is an hybrid task grouping e1 and gs.
- eBP is an hybrid task proportional to e3.
- We assume the laser readings and the variables τC ,
e1, e3, gs, ebranch and eBP have random distribution.
- A(3×2), B(3×3) and C(3×3) are constant not random
matrices.

The control τC , calculated from equations (27) and
(28) at each time (k), is a velocity input τC =
[

vx vy θ̇C
]T

where vx and vy are the desired

translational velocities and θ̇C the desired rotational
velocity of the frame C in the fixed frame W , figure
7. With the application of τC the robot moves to a
new position at the time (k + 1). The objective is to
compute a prediction, and the associated uncertainty,
of this motion based on the integration of τC . τC is
computed in the controlled frame (C), (figure 7).

Let us consider the motion of the frame C under the
control τC ,

∆XC = τC∆t+ ν (29)

where:

- ∆XC and τC are expressed in the frame Ck.
- ∆t is the sampling rate of the feedback control loop.
- ν is the error on the realization of τC .

Two sources of uncertainties are identified from the
model (29):

- The uncertainties associated with laser readings
which corrupt the computation of τC .
- The uncertainties associated with the impossibility
of the complete realization of τC by the real dynamic
system. These uncertainties are related with the mod-
eling errors of the robot and the eventual slippage of
the wheels.

The predicted motion of the controlled frame C is
given by,

∆X̂C =





∆x̂C
∆ŷC
∆θ̂C



 = τ̂C∆t (30)

The variance is derived taking the expectations of the
prediction error,

P∆X̂C
= E[(∆XC −∆X̂C)(∆XC −∆X̂C)

T ]

P∆X̂C
= ∆t2QC +Qm

(31)

where:

- QC = E[(τC − τ̂C)(τC − τ̂C)
T ] is the covariance of

the control τC .
- Qm = E[ννT ] is the variance of ν.

QC is derived by propagating the uncertainties on the
laser readings to the control τC .

Expanding τC , (27), in Taylor series and taking the
expectations at the first order,

E[∆τC∆τ
T
C ] = E[∆ebranch∆e

T
branch] +

E[∆ebranch∆gs
T ]BT +BE[∆gs∆gsT ]BT

(32)

As the stabilization task e1 on the Voronöı branch and
the motion along the branch gs (27) span orthogonal
subspaces, then E[∆ebranch∆gs

T ] ∼ 0, that yields:

QC = Cebranch +BCgsB
T (33)

Cebranch , the covariance of ebranch, is determined from
(27) with the same covariance propagation rule,

Cebranch = ACeA
T +BCgsB

T (34)

where Ce is a (2× 2) matrix with the variances of the
laser readings. The covariance matrix Cgs, (3×3), rep-
resents the uncertainties related to the motion of the
robot along the Voronöı branch, it is approximated by
the odometry uncertainty.

The covariance of τC , called QC , at a bifurcation
point is calculated in a similar manner using the equa-
tions (28) and yields,

QC = CE[∆eBP∆e
T
BP ]C

T

= CCeBPC
T

= CCe3C
T

(35)

Ce3 is a (3×3) covariance matrix of the laser measure-
ments at a bifurcation point.

The prediction of the relative translation Tr calcu-
lated by integrating the desired control input, in (30)
and expressed into the frame Xck is then:

T̂ rC = Rβk





∆x̂C
∆ŷC
1



 (36)

Rβk is a rotation matrix between the frames Ck and
Xck, figure 7.

The predicted rotation expressed into the frameXck
is,

ϕ̂C = ∆θ̂C + βk − βk+1 (37)

and the full predicted motion will be

T̂C =

[

T̂ rC
ϕ̂C

]

The covariance P∆X̂C
is projected from Ck into Xck

as,

PT̂C = RβkP∆X̂C
RT
βk

(38)



C. Localization of the robot in the reference frame

Let us consider xk the estimated position of Xck in
the reference frame W , and Pxk the associated covari-
ance.

The new estimate xk+1 and the new associated co-
variance Pxk+1 are calculated by,

1. Merging the two predictions T̂L and T̂C of the mo-
tion xk → xk+1 which were calculated respectively
from the correspondence between the local maps Ik
and Ik+1, described in section IV-A.4, and the integra-
tion of the control inputs, described in section IV-B.
2. Mapping the final relative motion expressed in the
frame Xck into the reference frame W .

The final estimate of the motion RT , T̃ , results from
the fusion between the two predictions T̂L and T̂C , as
follows,

T̃ = PT̂C (PT̂L + PT̂C )
−1T̂L+

PT̂L(PT̂L + PT̂C )
−1T̂C

(39)

and the covariance PT̃ :

PT̃ = PT̂L(PT̂L + PT̂C )
−1PT̂C (40)

This robot position, expressed into the reference
frame, can be then computed by :

xk+1 = xk +Rθk T̃ = f(xk, T ) (41)

where Rθk is the rotation matrix between Xck and W .

The covariance of xk+1 is calculated by updating the
uncertainties,

Pxk+1 =
∂f(xk,T )

∂x Pxk
∂f(xk,T )

∂x

T
+

∂f(xk,T )
∂T PT̃

∂f(xk,T )
∂T

T (42)

V. Experimental results

In this section, we present results validating the
dead-reckoning method developed in section IV. The
results show that such a method improves consider-
ably the localization process as well as the accuracy in
the map building during the exploration of the envi-
ronment.

The test-bed is constituted with the mobile robot
ANIS, figure 9, developed in our laboratory2. This
robot is equipped with a 2D-Laser range-finder with a
scanning device that delivers 2000 points of measure-
ments distributed in a 360 degrees scan.

The navigation is performed in an indoor structured
but unknown environment as shown in the figure 10.

2http://www-sop.inria.fr/icare/icare-fra.html

Fig. 9. The robot ANIS.

The robot moves without any reference trajectory or
off-line path planning. The trajectories plotted in the
figures were calculated and shown just for visualiza-
tion purpose. The Voronöı graph related to the en-
vironment is neither previously known nor calculated
during the robot navigation.

Fig. 10. Sensor-based navigation, localization and map build-
ing.

The robot starts from the point O, follows the
Voronöı branch until it stops at a bifurcation point.
Then, it navigates through the successive bifurcation
points, marked BP , turning in the clockwise direc-
tion around the central object. The localization of the
robot with respect to a fixed frame in O is performed
when it stops on each BP of the environment. The



current global map of the environment is updated at
these points by merging the local scan using an Ex-
tended Kalman Filter estimator (Appendix A).

Let us now compare our approach to a classical one
uniquely based on odometry. When the robot local-
ization and the map updating are performed only in
the bifurcation points, the performances in terms of
accuracy and robustness strongly decrease as the dis-
tance between two successive bifurcation points grows.

The figure 11 shows what happens when the robot
continues the previous navigation task and try to turn
back to the starting point. As it can be noted, the es-

l

2m 

O 

Fig. 11. Problems occurring with a classical odometry based on
wheels encoders data.

timated robot position diverges when it returns to the
initial bifurcation point, at the bottom of the figure.
Due to the drift in the estimation of the robot posi-
tion, a bad matching score is realized between the local
and global maps resulting on a distortion as shown in
the figure. The results presented in the next sections
show that this problem can be avoided when using the
motion estimation method described in the section IV.
We show in sections V-A and V-B the robustness of
the estimation method in a cyclic environment face to
unbounded odometry errors, and detail the result ob-
tained in a more large scale environment where the
problem of non observability discussed in section IV-
A.1 occurs.

A. Navigating in a cyclic environment

In the figure 12 the robot starts from the point
marked by a cross (the starting point of the controlled
frame) and a circle (the starting point of the robot’s
frame) at the left hand side of the figure and goes
ahead in the direction of the central box and stops at

the first bifurcation point BP . Then, it performs 5
turns around the central box in the clockwise sense for
a total distance of 57.73m. Note that the point of the
robot that is stabilized to the BP is the origin of the
controlled frame Xc, fixed at the center of the robot
as shown in figure 7.

The environment is unknown and the robot ex-
plores it with the sensor-based control strategy so
that the robot is constrained to move on the Voronöı
branches of the environment by the closed loop con-
trol laws. The BPs3 are characteristics of the envi-
ronment, therefore, due to the sensor-based control
scheme, when the robot (or the point Xc) comes back
to a BP it converges to a same real position of the en-
vironment with a threshold error of 0.03m related to
the execution of the stabilization task e3, presented in
section III, when the norm of the task e3 is less than
0.03m the robot is considered stabilized at the BP ori-
ented with the arriving branch. These unknown real
positions of the robot at each BP of this place are es-
timated with respect to the constructed local metric
map by applying the methodology described in section
IV.

The positions of the robot as well as the associated
uncertainty ellipses are shown at each BP found dur-
ing the cyclic motion. The crosses and circles repre-
sent the positions of the robot frame, R in figure 7.
The odometric positions calculated from the wheel en-
coders are represented by crosses and the estimated
positions given by the estimation method are marked
by circles. The estimated BP positions are not rep-
resented on the figure 12. As we can see the position
estimated by the odometry diverges considerably from
the robot real positions at the BPs after some cy-
cles, however the positions estimated by our method
perfectly match the real positions of the robot in the
environment. The uncertainties associated to the esti-
mated positions are denoted by the ellipses plotted in
the BP locations.

When the robot arrives at each BP the estimated
position at the end of the branches are used as pre-
dictions in the global localization and map building
algorithm. This global localization is performed with
the fusion of the estimated predictions and the laser
measurements using the Extended Kalman Filter (Ap-
pendix A).

In the figure 13 the dashed line represents the posi-
tions computed by the odometry based on wheel en-
coders and the dotted one represents the estimated po-
sitions provided by our method. We see in this figure

3The points equidistants to three segment lines. The minimal
distances to these segment lines are extracted from the laser and
considered in the stabilization task.



Fig. 12. The robot’s behavior in a cyclic environment. The
positions of the robot at each BP are shown: the blue crosses
correspond to the odometry and the blue circles to the estima-
tions given by our method. The uncertainty ellipses related to
the estimated position are shown as well. The environment’s
map dynamically built during the 7 cycles is equally plotted.
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Fig. 13. The trajectories of the xc point of the robot’s basis
represented into the origin frame fixed in O.

that when the odometry diverges the estimated posi-
tions remain close to the real positions of the robot
with a bounded error.

When the robot came back to a BP of another place
when navigating in a large environment with several
places, the fact that the robot came back to a same
real position of the environment is used to localize the
robot in the global topological model by recognizing
the revisited place, which guarantees the fusion be-
tween the metric model of different places, as explained
in the examples shown in section III.

B. A more largest and significant environment

The navigation in the figure 14 is the same as in
the experiment presented in the figure 11. The robot
is stabilized to the Voronöı branch starting from an
initial position at the point 0, at the bottom of the fig-
ure, it explores the possible branches turning around
the box in the clockwise sense for returning to the area
of the initial position, passing through the bifurcation
points in the regions marked C and C ′. The exper-
imentation is stopped when the robot returns to the
first bifurcation point founded in the region C ′. It is
shown in the figure 14 that the position estimation er-
rors remain bounded by the application of the motion
estimation at the branches as described in the section
IV. The precision of the global map generated at the
end of the motion is considerably improved.

Odometry
Estimation

} 

} 

C 

C’ 

L1 

L2 

L3 

2m 

O 

Fig. 14. Complete navigation with motion estimation. The
solid blue line corresponds to the estimated robot positions and
the dotted dark line correspond to the odometry data. The global
map of the environment constructed up to this point of the nav-
igation is shown as well.

A zoom in the region C ′ is shown in the figure 15
where it is noted that the estimated robot position,
the solid line, corresponds to the real position of the
robot which is stabilized at the bifurcation point of
the environment in this region. The dotted line in the
figure represents the positions given by the odometry.

The figure 14 illustrates observability problems
which can occur when using a motion estimator based
on the laser readings only. The estimated positions



−0.5 0 0.5 1 1.5 2 2.5 3 3.5 4
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

y(m) 

x(m) 

O 

Fig. 15. A zoom of the region C ′ of the figure 14. The solid
blue line corresponds to the estimated robot positions and the
dotted dark line corresponds to the odometric data.

are unstable around the region C (see the zoom, figure
16) when the robot is navigating in both senses, due to

the fact that the translations T̂ rL computed from the
laser measurements in this region become not observ-
able. The objects represented by the horizontal lines
L1, L2 and L3 of the figure 14 are not perceived by
the robot from the region C, the only objects observed
from this region are constituted by parallel segments
so that the Proposition 1 in the section IV-A.1 is not
verified.
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Fig. 16. A zoom of the region C of the figure 14.

The results shown in figure 17 are related to a same
navigation as in figure 14. The estimates of the robot
displacements are computed by (26) in section IV-A.4

with the modifications proposed to handle the rela-
tive motions observable. It is noted in the figure that
the estimated positions become stable, even when the
robot is navigating through the region C.

Odometry
Estimation

bp1 

bp2 

} C 

O 

2m 

Fig. 17. Complete navigation with motion estimation. The
problem of observability is overpassed using the odometry data
to complete the laser observation.

Finally, the figure 18 illustrates the advantages of
merging the robot motion estimations computed from
the laser data and the one obtained by integrating the
control inputs. In 18.a the estimates of the translations
are computed by (25) in section IV-A.4 only from the
laser readings and in 18.b with the observable version
given by (26). It is only shown the relative motion
along the x-axis of the frame C in figure 7, dX, that is
the dominant direction of motion is this region. The
solid blue lines represents the estimates computed from
the laser readings (dXL) and the dashed lines the es-
timates computed by integrating the velocity control
inputs (dXC). The experimentation was performed
in good conditions without important slippage on the
wheels, so that dXC can be used as a reference, that is
not the case with perturbed conditions. In these cases
the stability on the estimation dXL is important and it
determines the quality of the final fusion between dXC
and dXL as described in section IV-C. The results in
figure 18 validate the observability issues discussed in
sections IV-A.1-IV-A.4.

VI. Conclusions

In the Part-I of this work, we proposed a full sensor-
based navigation methodology where feedback control
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Fig. 18. Estimated relative displacements (a) T̂ rL given by

(25) in section IV-A.4; (b) T̂L given by (26).

laws were derived in such a way that the robot is con-
strained to move on the Voronöı diagram to explore
its free workspace. This methodology is well adapted
to the exploration of a corridor-like environment. In
this paper, the Part-II of this work, we presented a
methodology for localizing the robot and building a
representation of the explored environment. In this
paper, we focus on the use of a laser range finder pro-
viding a planar map of the environment. The use of
vision data, which is out of the scope of this paper,
in complement to range measurement could of course
improve in a large scale the performances and should
simplify the problem of identifying the places already
visited by the robot, by recognizing corridors, door
intersections, etc.

We proposed an hybrid representation of the envi-
ronment: topological and geometrical, that is built in-
crementally during the exploration of the environment.
The topological model is a direct result of the appli-
cation of the sensor-based control strategy presented
in the Part-I, and represents the connectivity and ac-
cessibility of the different regions of the environment.
The geometrical model, which is constructed in par-
allel with the topological one, is a precise description
of the robot’s free space. The geometrical model was
segmented into different places, each place is charac-
terized by a reference frame and a map of line seg-
ments, where the robot can be localized with a suffi-
cient precision. The relation and connectivity between
the different places of the environment are essentially
topological.

The SLAM problem in a place was in particular con-
sidered. It was shown that the simultaneous localiza-

tion and map building (SLAM) results can be consider-
ably improved due to the fact that the robot motions
are constrained by feedback control laws. Although
the global SLAM result is qualitatively improved with
the feedback control methodology it remains limited
due to the odometry drift and depends on the distance
traveled by the robot between two successive localiza-
tion and mapping steps.

To overpass this limitation, we proposed a new lo-
calization method taking advantage the facts that the
relative motion is bounded by feedback control laws
and that laser measurements are available at each sam-
pling time. Results were established defining the con-
ditions required for the observability of the robot dis-
placement from the laser readings. Moreover, we have
developed a new estimator that provides the displace-
ment of the robot at sampling rate during its motion
on the Voronöı branches. This new estimation method
merges the estimate of the displacement provided from
the laser readings and a prediction computed from the
control input.

The proposed control methodology was experimen-
tally validated in our mobile robot. The stability and
robustness of the feedback control laws was verified.
Experimental results showing the robustness provided
by the relative motion estimation method as well as
the improvement in the global localization and map
building process are presented and discussed.

Appendices

I. Self localization and map building

During the exploration, the robot constructs and
updates a rigid metric model composed of a reference
frame, sub-frames associated to each BP position and
a set of line segments expressed in the reference frame
which constitutes the global map , figure A-1.

P2

bp22
bp21

bp23

bp24bp25

T
21

Fig. A-1. The metric model of the Place 2 of the environment
shown in figure 5. P2 is the reference frame associated to the
place, BP21 to BP25 are the BP frames rigidly linked to P2.

The simultaneous localization and map building
methodology is based on the fusion between the laser
range measurements and the dead-reckoning observa-
tion using an extended Kalman filter (EKF). The laser



scan (figure 4) is segmented in a set of line segments
I0, computed in the laser frame:

I0 = {D1, . . . , Di, . . . , Dn} (A.1)

where,

Di = {Pi, Qi, φi, δi, σ
2
φi , σ

2
δi} (A.2)

with :
- The end points of the segment P = [xp yp] and
Q = [xq yq] ,
- the line parameters l = (δ, φ) ,
- the variances ( σ2δi , σ2φi) which characterize the
segmentation process.

The model of a line segment Di used in the metric
map is shown in figure A-2.
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Fig. A-2. Line segment model.

Exploring the place 2, the robot reaches a BP (k+1)
coming from a previous BP (k), then the new robot
position Xk+1 = (xk+1, yk+1, αk+1) has to be esti-
mated and the global map I0 expressed in P2 has to
be updated taken into account the local observation
provided by the laser in the BP (k + 1). The last
estimated state Xk/k with its associated covariance
matrix Pk/k of dimension (3 × 3) is known, the es-
timation of the new position (k+1) is predicted using
the results of the motion estimation method (devel-
oped in section IV) applied during the displacement
on the branch k → (k + 1), the prediction is noted
Xk+1/k with covariance Pk+1/k. A new set of segments
lik+1 = (δik+1, φ

i
k+1) is extracted from the laser scan,

at the BP (k+1), and constitutes the new observation
of the environment Ik+1.

A. The observation prediction and matching

Using the current global map of the environment
(which is incrementally built at each BP (k) in
the place reference frame P2) and the prediction

Xk+1/k = (xk+1/k, yk+1/k, αk+1/k) provided by the
dead-reckoning method during the displacement of the
robot on the branch, we are also able to predict the
line segments that are potentially visible from the new
robot position at the BP (k + 1):

G(Xk+1/k, l0) =
[

d0 − xk+1/k cos(φ0)− yk+1/k sin(φ0)
φ0 − θk+1/k

]

(A.3)

Ik+1/k = G(Xk+1/k, l0) constitutes the prediction of
the observation at the BP (k+1), where l0 = (δ0, φ0) is
expressed in the reference frame. Then, we can write,

Ik+1 = Ik+1/k + Ek+1 (A.4)

that is the observation equation with Ek+1 the obser-
vation error.
The matching between Ik+1 and Ik+1/k is performed
by a probabilistic test based on the classical Maha-
lanobis distance. If the following inequality holds,

Ek+1S
−1
k+1/kE

T
k+1 < ε (A.5)

then, a match occurs between Ik+1 and Ik+1/k, where

the variable Ek+1S
−1
k+1/kE

T
k+1 follows a X

2 probability

distribution given by tables [1], ε is an iso-probability
threshold, Sk+1/k is the variance of the observation
prediction, computed as:

Sk+1/k =
∂G

∂Xk+1/k
Pk+1/k

∂G

∂Xk+1/k

T

+Rk+1 (A.6)

Rk+1 is the variance matrix of the measurement Ik+1.

B. The state estimation

Using the EKF equations, we can now compute the
new estimated state and update the covariance matrix
at the BP (k + 1) :

Xk+1 = Xk+1/k +Kk+1Ek+1 (A.7)

The Kalman gain Kk+1 is done by,

Kk+1 = Pk+1/k
∂G

∂Xk+1/k

T

S−1
k+1/k (A.8)

and the covariance of the estimated position is

Pk+1 = (I −Kk+1
∂G

∂Xk+1/k
)Pk+1/k (A.9)

C. Updating the global map by fusion and integration
of Ik+1 elements

Integration of the new segments in the global map I0



A segment Di of the local map Ik+1 that is not
matched using (A.5) is added to the global map I0,
after having been projected into the reference frame
P2, as follows:

l′0 =

(

δ′0
φ′0

)

=

[

δ(k+1) + xc(Φ) + ys(Φ)
Φ

]

l′0 =M(X(k+1)/(k+1), l(k+1))

where lk+1 is computed on the estimated position
Xk+1/k+1 = {x, y, θ} and Φ = φ(k+1) + θ

The covariances associated to the projected line
l′0 are calculated by linearizing the nonlinear system
(A.10) around the mean values l′0 = (δ′0 φ

′
0)
T :

∆p′0 = Jmx∆X(k+1)/(k+1) + Jml∆l(k+1) (A.10)

where :

Jmx =
∂M

∂X(k+1)/(k+1)

Jml =
∂M

∂l(k+1)

and the covariance matrix is given by :

C ′
0 = E[∆l′0∆l

′
0
T
]

C ′
0 = JmxP(k+1)/(k+1)Jm

T
x + JmlC(k+1)Jm

T
l

where,

C(k+1) =

[

σ2δ(k+1) 0

0 σ2φ(k+1)

]

assuming E[∆l′0∆X(k+1)/(k+1)
T ] = 0.

The end points of segment Di in the local map Ik+1,
q(k+1), are projected into the reference frame P2 by the
transformation:

q′0 =

(

x
y

)

+

[

cos(θ) −sin(θ)
sin(θ) cos(θ)

]

q(k+1) (A.11)

where Xk+1/k+1 = {x, y, θ} is the estimated position.

Then, a new elementDj = {q
′
0, l

′
0, C

′
0} is integrated

to the metric map of the place I0 represented on the
reference frame P2.

Fusion between the matched segments

The fusion of the couples of segment lines of I0 and
Ik+1, represented by its line parameters l0 and lk + 1,
which were matched thanks to the test (A.5) is per-
formed as follows. The end points of all the segments
that contributed to the construction of the line l0 are
stored in a list of points, this list is augmented by the

integration of the new end points of lk + 1 after hav-
ing been projected into the reference frame P2 using
(A.11). A polygonal segmentation is then performed
in this list of end points associated to l0 and the es-
timation of the line parameters are updated. The co-
variances of these new parameters result from the seg-
mentation process. New end points for the new l0
are extracted from the augmented list of points. In
this way, at the position BP (k + 1) the segment l0 is
updated with the fusion of its correspondent segment
l(k + 1).

II. Development of the equation (24) of the
section IV-A.4

The covariance of the predicted relative motion T̂ rL
calculated in section IV-A.4 is given by:

CT̂ rL = E[∆Tr∆TrT ]

where ∆Tr is given from the equation (23) as:

∆Tr = −(
nc
∑

l=1

al)
−1

nc
∑

l=1

pl∆Ml

where:

al = µl
∂f
∂Tr |(T̂ rL,M̂l)

pl = µl
∂f
∂Ml

|(T̂ rL,M̂l)

Developing the expectation E[∆Tr∆TrT ],

E[∆Tr∆TrT ] = E[(

nc
∑

l=1

al)
−1(

nc
∑

l=1

pl∆Ml)·

(

nc
∑

l=1

pl∆Ml)
T (

nc
∑

l=1

al)
−T ] =

(
nc
∑

l=1

al)
−1E[(

nc
∑

l=1

pl∆Ml)(
nc
∑

l=1

pl∆Ml)
T ](

nc
∑

l=1

al)
−T

the expectation E[(
∑nc

l=1 pl∆Ml)(
∑nc

l=1 pl∆Ml)
T ] is

calculated as follows,

E[(

nc
∑

l=1

pl∆Ml)(

nc
∑

l=1

pl∆Ml)
T ] =

E[(

nc
∑

l=1

pl∆Ml∆M
T
l p

T
l ) + pl∆Ml

nc
∑

j=1, j 6=l

∆MT
j pj ]

considering E[∆Ml∆M
T
j ] = 0 if (j 6= l) then,

E[(

nc
∑

l=1

pl∆Ml)(

nc
∑

l=1

pl∆Ml)
T ] =

nc
∑

l=1

plE[∆Ml∆M
T
l ]p

T
l

and,

CT̂ rL = (

nc
∑

l=1

al)
−1

nc
∑

l=1

plE[∆Ml∆M
T
l ]p

T
l (

nc
∑

l=1

al)
−T

= (
∑nc

l=1 al)
−1{

∑nc
l=1 plCMl

pTl }(
∑nc

l=1 al)
−T
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