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Abstract: We introduce the framework of ordered read-write locks, ORWL, that are
characterized by two main features: a strict FIFO policy for access and the attribution
of access to lock-handles instead of processes or threads. These two properties allow
applications to have a controlled pro-active access to resources and thereby to achieve a
high degree of asynchronicity between different tasks of the same application. For the
case of iterative computations with many parallel tasks which access their resources
in a cyclic pattern we provide a generic technique to implement them by means of
ORWL. We show that the possible execution patterns for such a system correspond to a
combinatorial lattice structure and that this lattice is finite iff the configuration contains
a potential deadlock. In addition, we provide efficient algorithms: one that allows for
a deadlock-free initialization of such a system and another one for the detection of
deadlocks in an already initialized system.

Key-words: synchronization, iterative algorithms, read-write locks



Calculs itératifs avec des verrous ordonnés de

lecteur/écriture

Résumé : Nous présentons la structure des verrous ordonnés de lecture/écriture,
ORWL, qui sont caractérisés par deux fonctionnalités principales : une politique d’accès
FIFO stricte et une attribution des accès à des gestionnaires de verrou plutôt qu’à des
processus ou des threads. Ces deux propriétés permettent aux applications d’avoir un
contrôle dynamique de l’accès aux ressources et donc de parvenir à un haut niveau
d’asynchronisme entre les différentes tâches d’une même application. Dans le cas de
calculs itératifs avec beaucoup de tâches parallèles accédant à leurs ressources selon
un motif cyclique, nous proposons une technique générique d’implémentation avec
des ORWL. Nous montrons que les schémas d’exécution possibles pour un tel système
forment un treillis combinatoire et que ce treillis est fini si et seulement si la config-
uration contient un interblocage potentiel. De plus, nous proposons deux algorithmes
efficaces : l’un pour une initialisation sans interblocage d’un tel système et l’autre pour
la détection d’interblocage dans un système déjà initialisé.

Mots-clés : synchronisation, algorithmes itératifs, verrous lecture/écriture



Iterative Computations with Ordered Read-Write Locks 3

1 Introduction and Overview

Many iterative computations are be found to observe data dependency patterns between
their different computation tasks. In this paper we handle the common case that the out-
put of a task may be input to one or many other tasks and that the read and write access
to that data cannot be done atomically. Such dependencies hold e.g for block oriented
matrix computations, see [2], where the data chunks that are needed for reading are far
to big to allow for an atomic wait-free operation on system level.

A well-known technique to handle such situations uses read-write locks (RWL).
RWL are designed to allow efficient concurrent access of several readers without in-
volving more than one atomic operation to check readability, see e.g [13, 10] for paral-
lel environments and [14] for an algorithm for distributed environments. Before a task
reads data that was the output of some other tasks it acquires a read-lock (or shared
lock) for that data, meaning that the data can’t be modified in the mean time. But even-
tually other tasks may read the same data without creating a conflict. Before writing,
the corresponding task acquires a write-lock (or exclusive lock) that hinders any other
task to read or write the data until the lock is released.

Implementations of such RWL data structures usually do not prescribe which task is
granted a lock in case that several of them simultaneously request access. This is e.g the
case for both RWL that are specified for POSIX [9], namely pthread_rwlock_t
and range locks on files (with fcntl). Here, the norm explicitly states that no guar-
antee is given on the order in which locks are granted and that applications should not
rely on the ordering in which locks are required. In particular, it explicitly allows to
grant access to writers (to avoid writer starvation) even if the write-lock request had
been clearly issued after the read-lock request.

While such an underspecification of the lock order may be convenient on the sys-
tem side it clearly is very annoying for an application designer: because of possible
lock inversion, cyclic data dependencies easily lead to deadlocks and which to avoid
becomes very tedious. This is probably the primal reason why RWL although present
in all modern OS do not have a wide spread use.

This underspecification also has the disadvantage that it becomes difficult to guar-
antee an equitable progression of all tasks. In case of a contention on a lock, two writ-
ers could e.g alternate on holding a particular lock while other tasks (readers) would be
waiting endlessly to obtain their locks.

Another disadvantage of the commonly used RWL models is the fact that a lock
is granted to a process (e.g file locks) or a thread (pthread_rwlock_t) and not to
a data entity. Such a dissociation would be convenient when a task wants to reserve
a resource pro-actively for an access in a near future (“give me a lock on resource X
whence it is available”), to come back to that lock request later, and then only block on
it when this has become unavoidable.

In this paper we try to overcome these inconveniences by first imposing that the
locks are granted in the FIFO ordering of the requests. Second, we introduce handles
as entities that require, acquire and release a lock (Section 2). As an additional benefit,
lock-handles give the possibility that a task may issue a new requests on a particular
lock while already holding one through another handle (“give me a lock on resource X
after all current requests have been satisfied”).
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4 Pierre-Nicolas Clauss and Jens Gustedt

With these modifications we are able to introduce a convenient strategy (Section 3)
for iterative computations with cyclic data dependencies that can detect (respectively
avoid) deadlocks while still guaranteeing a high degree of parallelism and asynchronic-
ity. In particular, in Section 4 we prove that the possible states of such a system of de-
pendencies form a combinatorial lattice that only depends on the initial configuration
(ordering) of the locks. As a consequence, we see then that a configuration may dead-
lock iff this lattice is finite (things that may go wrong will go wrong) and also that the
computation then obeys a homogeneous progress, the “homogeneity” only depending
on the connectivity properties between the tasks.

Finally, Section 5, we will briefly introduce an algorithm that allows for an efficient
instantiation of such lock systems as well as another one that detects if a system that is
in a given state would lead to a deadlock or not.

2 Model

In the following, we suppose we are given a set of computational tasks T that is to be
performed and such that there are data dependencies between these tasks. As part of
an iterative process, tasks may be recurrent, i.e we may want to executed them many
times.

Data dependencies are modeled via read and write operations that are not necessar-
ily atomic. So a data dependency of v ∈ T from w ∈ T then implies that v may only
execute while w doesn’t. Otherwise v could eventually read inconsistent parts of w’s
output, one from before an update and one from after.

In order to model parallelism between tasks, we introduce an auxiliary graph, the
conflict graph C(T ). We draw an edge between v, w ∈ T if v reads the output of w or
w reads the output of v. We say that a subset of tasks T ′ ⊆ T is independent if there
is no data dependency between any pair of tasks v, w ∈ T ′. Independent sets of tasks
may be executed in parallel. Clearly T ′ is independent iff it forms an independent set
in graph C(T ). The size of the maximum independent set in C(T ) is thus the maximal
amount of parallelism that may be reached for the set of tasks T .

We now describe the tools used in our model along with their basic properties.

Ordered Read-Write Locks. Our model targets applications with several tasks which
have temporal and possibly data dependencies. Its goal is to allow easy and pre-
dictable synchronization between tasks and therefore relies on ordered read-write locks
(ORWL). This type of locks has the same semantic of common read-write locks (Con-
current Read, Exclusive Write) but enforces the use of a FIFO policy for its waiting
queue. Furthermore, these locks are resource-oriented. Acquisition is thus granted to
lock-handles (LH) rather than threads following a two-step pattern.

1. Post a read- or write-request to the lock through a handle. This inserts the request
in the FIFO queue for further use (and the requester is thus free to continue
execution).

2. Require the previous request. This waits until the request moves first in the FIFO
queue, thus granting read- or write-access to the associated resource.

INRIA



Iterative Computations with Ordered Read-Write Locks 5

This pattern is designed for a particular class of applications which require iterative
computation (see Section 3). Obviously, for a comfortable use of ORWL other prim-
itives would be convenient, in particular a non-blocking test that allows to know if a
request has been achieved. But since they are not needed in the sequel, we will not go
into details of these.

Synchronization overlay. For a given interdependent system of tasks, our model
associates a synchronization overlay as an abstraction of the data access pattern. Its
role is to give control to tasks whenever it is appropriate (based on the dependencies
between them). More specifically, the data space is partitioned maximally according
to the different dependencies of the tasks: to each primitive part of the data (called a
location) corresponds an ORWL and to each individual request for that part of the data
corresponds one (or later several) LH. Acquiring control for a task is done by requiring
a write access to a data block (which can be viewed as being proprietary data of the
task), while dependencies are modeled by requiring read accesses to other data blocks
(viewed as owned by other tasks). Once these accesses are granted, the task is allowed
to perform whatever action it is designed for on its data (with possible read-only use of
other tasks’ data).

This model is of course best suited for applications requiring parallel computation
over a data space. The partitioning method for the data itself is application-dependent.
As an example, take a matrix oriented computation where locations would correspond
to blocks of the matrix, tasks would be responsible for writing an individual block.
These tasks would then compete for write access to their own block and for read-access
to ‘neighboring’ blocks.

Definition 2.1 (Overlay) Consider a synchronization overlay used atop an executable
system of n locations.

• Each of these locations can stack any number of exclusive and inclusive lock-
requests (abbreviated Xreq and Ireq, respectively), numbered bottom-up. This
numbering is called the priority rank of the lock request in the location.

• The request in a location (if any) that has the lowest priority is accounted as
being acquired.

• Ireqs may correspond to several (but at least one) LH for which a read-request
was issued for the location. Xreqs always correspond to exactly one LH for
which was issued a write request for the location. In the priority order, Ireqs
may only be directly followed by an Xreq; no such restriction applies to Xreqs
which may be directly followed by an Xreq or Ireq.

• Locations which have no Xreqs are called unconstrained and can safely be re-
moved from the system. Others are called constrained.

• An active task is represented by an Xreq along with all the Ireqs that it requested.

We visualize such a lock overlay system by a directed data dependency graph as
shown in Figure 1. Here Xreqs are symbolized by a � and Ireqs by a©. The requests

RR n° 6685
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Figure 1: Sample overlay with an executable task (light grey) and a delayed task (dark
grey).

are connected together following the data dependency of their defining tasks. Connec-
tions always connect an Xreq to an Ireq, thereby capturing the requirements for a given
write request to hold read-locks on other locations.

In the above definition we ask for a task to require exactly one Xreq. This is not
a restriction in the modelling capacity since a job that has to place several Xreqs can
be easily split into several tasks with one Xreq each such that the read-write semantics
remain the same. Take Figure 2 as an example. Here the two coupled write requests
A1 and A2 are replaced by one request A′

o that allows to pull the data from locations
L1 and L2 and two requests A′

1 and A′

2 that allows to push the modified data back to
L1 and L2.

We give now a few definitions to clearly identify the elements of our overlays and
their attached semantic.

Definition 2.2 (Executability) A task is executable if all its locks are acquired, oth-
erwise it is delayed. For a given overlay S, the subset R(S) of locations where the
lowest lock is the Xreq of an executable task defines the set of executable locations of
S. Locations that are not executable are blocked.

Definition 2.3 (Deadlock) An overlay is in a deadlock if all its locations are blocked.

Definition 2.4 (Minimal Support) A deadlock’s minimal support in an overlay S is
the smallest subset of S (both over the locations and over the priority ranks) so that
the overlay restricted to that subset is in a deadlock situation.

A1 A2

L2L1

(a) Two coupled write requests

L0

A′

2

A′

0

A′

1

L2L1

(b) Replacement by one pull task A′

0

and two push tasks A′

1
, A′

2

Figure 2: Transforming coupled write requests
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(a) Only Xreqs acquired (b) Only Ireqs acquired (c) Both types acquired

Figure 3: Deadlock situations

For an overlay to be in deadlock clearly implies that there must be some cycle
among its dependencies (see also Lemma 2.1 below). Figure 3 shows different types
of minimal supports of deadlocks.

In its general form, our model allows multiple tasks to operate on the same data.
This is modeled by several Xreqs on the same location. From such a general overlay
S, it is possible to derive an overlay where there is only one Xreq per location but still
offers the same execution order of the tasks.

Definition 2.5 (Canonical Form) An overlay is in canonical form if it has at most one
Xreq per location.

Figure 4 gives the rewrite pattern used to transform an overlay into canonical form.
Here a location with n Xreqs is split into n different locations. The Xreqs are placed on
their respective locations with just one new Ireq underneath and above. The Xreq on
location Li is then connected to the upper Ireq on Li−1 and to the lower one on Li+1.
Some slightly modified rules apply to the Xreqs 1 and n as indicated in the figure. This
reordering from a chain on one location to a staircase on several locations does not
change the relative ordering in which the Xreqs are acquired.

Other Xreqs that are connected to the Ireqs (e.g the grey one) are connected to the
respective two copies. For Xreqs (as A or B), that connect to the top or the bottom of
the chain, special connection rules apply.

It is important to note that these replacement rules ensure that the order of the
acquisition of the requests remains stable, even if the analogous requests for completed
task are re-issued after their termination: e.g B always gets acquired just after n is
freed, and 1 only gets acquired just after B, whereas A and B are always executed in
between n and 1 but their respective order is not fixed.

Let n be the size of the initial location and m be the number of external connection
into that location. Then the number of added Ireqs is at most 2n and the number of
added links is at most 2n + m. Since each Xreq and each link appears at most once
in such a replacement of a chain, the overall size of the overlay remains linear in size
compared to the original one.

In the sequel we will usually assume that an overlay is given in canonical form.
This means in particular that any given location may have at most three requests that are
pending, the valid configurations are illustrated in Figure 5. Thus an implementation
may restrict the length of the priority queue to three items.

RR n° 6685
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n

1

2

L

(a) A chain of requests

1

2

n

L1 L2 Ln

(b) A staircase of requests

B A

n

1

2

LB LAL

(c) External elements on locations LA

and LB connected to the chain

1

2

n

B

LB

A

LAL1 L2 Ln

(d) External elements on locations LA

and LB connected to the staircase

Figure 4: Transforming a chain in location L to canonical form on locations
L1, . . . , Ln.

©
� � ©

© © © � �

Figure 5: Non-trivial configurations in canonical form

As we have seen, this assumption does not change the modelling capacity nor does
it increase the size of the overlay by more than a constant factor. It has the advantage
that from now on we may identify three conceptually different types of objects, namely
the set of tasks, the set of lock locations and the set of Xreqs : each task corresponds to
exactly one (data) location and is the only one to have an Xreq for that location.

INRIA



Iterative Computations with Ordered Read-Write Locks 9

Definition 2.6 (Delay digraph) For a given overlay S in canonical form, its delay
digraph is constructed as follows:

1. Build an undirected graph whose vertices are the locations. One edge is added
each time a link exists in the overlay between a pair of locations. This graph is
isomorphic to the conflict graph C(T ) over tasks from above.

2. Add orientation to the edges depending on the link in the overlay:

• If the Xreq A is connected to an Ireq which is above an Xreq B, the edge is
oriented A→ B, as in Figure 6(a).

• If the Xreq A is connected to an Ireq which is below an Xreq B, the edge is
oriented A← B, as in Figure 6(b).

Lemma 2.1 An overlay S in canonical form has a deadlock iff there is a cycle in its
delay digraph.

A B A B

(a) priority of Xreq over Ireq

A

B

A B

(b) priority of Ireq over Xreq

Figure 6: Delays imposed by the priority order on the lock requests

Proof. In a delay digraph, a location L connected to a location L′ means that L is
blocked as long as L′ is blocked. Therefore, if a cycle exists in the delay digraph, all
the locations in the cycle are blocked and thus obviously fit the definition of a deadlock.

Contrariwise, if there is a deadlock then all the locations in the deadlock are blocked
and are thus connected to a blocked location in the delay digraph. Suppose that all these
connections do not form a cycle, then at least one of the location has to be a sink which
means that it is not blocked and is thus not part of the deadlock, a contradiction. �

3 Iterative Computations

In this section, we explain how our model can be applied to iterative computations. This
category of computations shows data dependencies that allow to run parallel execution
by slicing data and feeding a pipeline. As applied here, the model performs per-slice
synchronization, i.e it synchronizes between computations of data blocks. The use
of ORWL and their FIFO policy perfectly suits the dependency requirements of such
algorithms. As an iterative algorithm generally computes until stabilization or a pre-
defined number of iterations, computation over a single data block is performed with
the following loop: wait to acquire the ORWL for reading (or writing), then perform
computation (if any), then release the ORWL.

RR n° 6685



10 Pierre-Nicolas Clauss and Jens Gustedt

Therefore a complete execution of an iterative algorithm over some data space re-
quires one ORWL per sliced data block (a location). We now detail the execution model
for such algorithms and give some of its properties.

L1 L2 L3

(a)

L1
//

L3L2L1

(b)

L2

||

L3L2L1

(c)

L3

OO

L1
//

L1+L3

<<

L1 L2 L3

(d)

L3

OO

Figure 7: Evolutions of a linear chain of three tasks.

Definition 3.1 (Evolution) In an overlay S, an executable location L ∈ R(S) allows
the overlay to evolve by executing the location L. This is done with the following steps:

Setup. • A new Xreq is posted on top of L.

• For each Ireq to which the lowest Xreq in L is connected to, a new
Ireq is posted on top of the corresponding location.

• For each connection between the lowest Xreq in L and an Ireq, a
similar connection is established between the new Xreq and new
Ireq that were previously added.

Run. • The system is now ready to execute the computational task repre-
sented by L.

Clean up. • All connections from the original Xreq in L are removed (includ-
ing the target Ireq if it was the last connection to it).

• The original Xreq in L is removed.

Less formally, execution of a location is done by reinserting the Xreq and its Ireqs
(the task) back on top of their locations (for further execution) and then removing it
(after the execution of the task took place). Figure 7 gives the evolution of a linear
chain of three tasks.

INRIA



Iterative Computations with Ordered Read-Write Locks 11

The setup phase uses the delayed request feature of ORWL. Once a lock is acquired,
a new request for the same lock is posted for the future iteration. The clean up phase is
simply releasing of all acquired locks.

Iterative computations with our model involve an initial distribution of requests (see
Section 5). Then each task only competes on a predefined subset of ORWL and runs
according to the previously
defined loop. This means that posting a new request during the setup phase can only

�

©
�

Figure 8: New non-trivial configuration

be done if the corresponding (old) request is already hold.
Therefore once a new Xreq has been posted in the setup phase, the location is not in

canonical form until the clean up phase. This introduces only one new possible config-
uration given by Figure 8. This situation is not problematic since the iterative execution
model states that nothing can be added atop the location until the middle Ireq has been
acquired. This can only happen after the lowest Xreq has been released, which leads
back to a canonical form. In this new half canonical form, the lowest Xreq corre-
sponds to the task performing the nth iteration, while the highest Xreq corresponds to
the computation of the n + 1th iteration by the same task.

Definition 3.2 (Parallelism) The parallelism level of a given overlay S is given by:

(1) ‖S‖ =
|R(S)|

|S|

A parallelism level of 0 is a deadlock situation (R(S) = ∅, so there is no executable
location).
A parallelism level of 1 is maximal (R(S) = S, so the entire overlay is executable).

As defined, the parallelism level is computed on a snapshot of a single iteration.
Iterative algorithms may show different parallelism levels, depending on the chosen
iteration and data dependency pattern. For instance, the linear chain of three tasks has
two possible configurations cycles of three configurations each (abc and bcd). On each
of these cycles, one configuration has a parallelism level of 2

3
and the other two have a

parallelism level of 1

3
. The average parallelism level on the cycle is thus of 4

9
.

Definition 3.3 (Devolution) The evolution rule can easily be reverted by considering
the horizontally mirrored overlay and then applying the evolution rule. This is equiv-
alent to the evolution rule with "lowest" replaced by "highest" and "on top of" by
"below".

The following lemma shows that our execution model for iterative algorithms can-
not undo a deadlock, nor can it spawn a new one.

RR n° 6685



12 Pierre-Nicolas Clauss and Jens Gustedt

Lemma 3.1 Whenever a deadlock exists in an overlay, then the minimal support for
that overlay exists in all its ancestors and successors.

Proof: Suppose we have an overlay which contains a deadlock. All the Xreqs in the
deadlock’s minimal support are either not the lowest in their corresponding locations
or are connected to Ireqs that are not the lowest in their corresponding locations. This
means that whenever an execution occurs, all the items that are removed from the
overlay are not part of the deadlock’s minimal support and so are the items added atop
the overlay. Thus, execution does not modify the deadlock’s minimal support, which
is therefore present in all successors.

With the devolution rule, the same applies to all ancestors of a given overlay. �

4 Lattice Structure and Deadlocks

In this section, we will give the constructs and proofs of a lattice structure over the
overlay configuration space and characterize the configuration spaces with deadlock.

Definition 4.1 (Overlay configuration) Given an overlay I , an overlay S that can be
obtained from I by i applications the evolution rule is said to be in configuration (i, S).
The overlay I is in configuration (0, I) and is said to be the initial configuration.

Definition 4.2 The relation (i, A) −→ (i+1, B) denotes the application of the evolution
rule once from (i, A) to get (i+1, B). The relation

∗
−→ is the reflexive transitive closure

of the relation −→. The relation
+
−→ is the transitive closure of the relation −→.

Lemma 4.1 (Order) For a given initial configuration (0, I), the relation
+
−→ defines a

partial order.

Proof: It is obvious that (i, A)
∗
−→ (i, A) by not applying the evolution rule once

(reflexivity).
Let (i, A)

∗
−→ (j, B) and (j, B)

∗
−→ (k, C). It is obvious that (i, A)

∗
−→ (k,C), by

applying the evolution rule along the two paths to and from (j, B) (transitivity).

Let (i, A)
∗
−→ (j, B) and (j, B)

∗
−→ (i, A). First, notice that (i, A)

+
−→ (j, B) =⇒

i < j. Suppose now that (i, A) 6= (j, B). The evolution rule is thus applied at least
once and we have i < j and j < i, which is contradictory. Therefore (i, A) = (j, B)
(antisymmetry). �

Lemma 4.2 (Evolution Independence) Whenever two locations a and b are indepen-
dently executable in an overlay S, any order of execution of a and b leads to the same
overlay S′.

Proof. As a and b are independent, all the elements added and removed by the execution
of a do not modify the location b. Contrariwise, all the elements added and removed
by the execution of b do not modify the location a.

INRIA
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A
b

��

S

a

77

b
''

a+b
// S′

B

a

GG

Therefore after both a and b have been executed, all the elements added and re-
moved from S are the same, no matter the order in which the two locations were exe-
cuted. �

Lemma 4.3 Let (t, It) any common predecessor of (i, Ai) and (j, Bj) such that the
two execution paths from (t, It) to (i, Ai) and (j, Bj) have a common executable loca-
tion. Then (t, It) is not a maximal predecessor.

Proof. Let a = at, . . . , ai−1 be the path from (t, It) to (i, Ai) and b = bt, . . . , bj−1 be
the path from (t, It) to (j, Bj). Let us assume that L = aλ is the first element in a with
L ∈ a ∩ b.

(i, Ai)

(t, It)
L

// (t + 1, It+1)

∗

55

∗
))
(j, Bj)

Figure 9: Inductive step.

If λ = t then L is executable for (t, It). Otherwise, if λ 6= t the locations
at, . . . , aλ−1 are not executed in b. Then, since L is also executed in b, at, . . . , aλ−1

can’t change the property of L of being executable or not. Thus L must already be
executable for (t, It).

By the Lemma 4.2, we know that the execution order of initially executable ele-
ments along a path does not matter, thus if there is L ∈ a ∩ b, we can permute the
execution order so that L appears first in both a and b. Now denote by (t + 1, It+1) the
configuration that is obtained from (t, It) by executing L. Then we have the situation
of Figure 9 and this completes the proof of the claim. �

Theorem 4.1 (Lattice structure) The configuration space built from an overlay initial
configuration and the evolution rule forms a lattice.

RR n° 6685



14 Pierre-Nicolas Clauss and Jens Gustedt

Proof: Since any two configurations are derived from the initial configuration, by
Lemma 4.3 we see that there is a unique maximal predecessor (p, Pp) to any two at-
tainable configurations (i, Ai) and (j, Bj) with i > p and j > p, and (i, Ai) 6

∗
−→ (j, Bj)

and (j, Bj) 6
∗
−→ (i, Ai). It follows that the locations that are executed on the two path

from (p, Pp) to (i, Ai) and (j, Bj) form two sets of locations that are mutually disjoint.

We now show by induction that (i, Ai) and (j, Bj) have a common successor and
that the minimal such successor is unique.

Let a = {{ap, . . . , ai−1}} be the multiset containing the locations along the execu-
tion path from (p, Pp) to (i, Ai) and similarly let b = {{bp, . . . , bj−1}} be the multiset
containing the locations along the execution path from (p, Pp) to (j, Bj).

By definition a ∩ b = ∅ and either a 6= ∅ or b 6= ∅ (otherwise Ai = Bj). W.o.l.g,
let assume that a 6= ∅. Lemma 4.2 states that, as ap is executable in (p, Pp), it remains

so along the path to (j, Bj). Thus (j, Bj)
ap

−→ (j + 1, Bj+1).

Let (p, P )
ap

−→ (p + 1, Pp+1). (p + 1, Pp+1) is the maximal predecessor of (i, Ai)

and (j + 1, Bj+1). Now suppose that Ai 6
∗
−→ Bj+1. Then obviously (p + 1, Pp+1),

(i, Ai) and (j + 1, Bj+1) still fulfill the induction hypothesis. So by induction we
may conclude that we may subsequently add elements to B = Bj , Bj+1, . . . , Bℓ until
(i, Ai)

∗
−→ (ℓ, Bℓ). This show that there is a common successor of (i, Ai) and (j, Bj).

Bℓ is minimal and unique with that property since by construction its set of locations
is a ∪ b and ℓ = |a ∪ b|. �

Chip Firing Games. During the development of our model, we defined a morphism
from overlays to chip firing games (CFG). CFG, as defined in [12], are directed graphs
whose vertices are numbered by a certain amount of chips. Once a vertex acquires
more chips
than its outgoing degree, it can be fired. Firing a vertex means to decrease its chips

(0, b)

L2

��

(1, c)
L3

��

L1

��

L1+L3

��

(2, a)

L1 ''

(2, d)

L3ww
(3, b)

L2

��

Figure 10: Lattice for the linear chain of three tasks.
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by its outgoing degree and distribute one chip along each outgoing link, which is then
added to the connected vertex.

Definition 4.3 (Evolution by a CFG) The evolution of an overlay in canonical form
can be modeled with a chip firing game (CFG). The support for the CFG of a given
overlay S is built as follows:

• Each constrained location in the overlay gives a vertex in the support.

• Each location connected to a non-constrained location in the overlay gives a
loop to its corresponding vertex.

• Each connection between an Xreq and an Ireq in a constrained location in the
overlay gives a pair of arcs, one directed forward (according to the correspond-
ing locations) and the other directed backward.

With:

• δS(L) be the number of connections originating from location L.

• σS(L) be the total number of requests in location L.

• ωS(L) be the rank of the Xreq in location L.

• ρS(L, L′) be the rank of the Ireq in location L′ to which the Xreq in location L

is connected (if such a connection exists, 0 otherwise).

The initial chip distribution for a vertex v given by a constrained location L is:

chips(v) = δS(L) + σS(L)− 1− ωS(L)−
∑

L′∈S

ρS(L, L′)

Note that by construction, all connected components in the CFG are closed com-
ponents.

In [11], an extended configuration for the CFG is given for the general case, in
particular the ones with closed components. This new configuration space has the
same properties of the original one, notably the equal length of paths between two
configurations and the lattice structure.

Infinite Lattices and Deadlocks. In the general case of iterative computations, the
configuration space is an infinite lattice. This is a desired state since this kind of ap-
plications typically require computation to be performed until some external event oc-
curs (stabilization or user-defined termination). Figure 10 gives the beginning of the
lattice structure for the linear chain of three tasks with initial configuration given by
Figure 7(b).

Theorem 4.2 (Deadlock is finite) An overlay which has a deadlock has a finite con-
figuration space and the maximal configuration is a deadlock situation.

RR n° 6685



16 Pierre-Nicolas Clauss and Jens Gustedt

Algorithm 1: Compute an initial request ordering

Input: A set of tasks T , a set of lock locations L and for each task T ∈ T a list
of Xreqs (X1, . . . , Xw) and of Ireqs (I1, . . . , Ir), where the Xi and Ij

are locations in L.
Output: For each L ∈ L a priority ordering of the requests for L such that the

resulting overlay as a whole is deadlock free.
construct construct an implicit representation of the conflict graph C(T );

color compute a coloring T1, . . . , Tx of C(T );
foreach location L ∈ L of T do

initialize p(L) to 0;

insert foreach color c = 1, . . . , x do

foreach task T ∈ Tc do in parallel

foreach Xreq X of T , X = X1, . . . , Xw do
increment p(L), set the priority of X to the new value and increment
p(L) again;

foreach Ireq I of T , I = I1, . . . , Ir do set the priority of X to p(L);

Proof: A finite configuration space (and thus a maximal configuration) obviously fits
the definition of a deadlock (no further evolution possible).

Suppose we have an overlay which is known to have a deadlock. Let (i, D) be a
configuration of a deadlock at minimum distance i from the initial configuration. Let
(i, C) be another configuration at the same distance from the initial configuration. The

configuration space is a lattice, so we have (j, B) with (i, C)
+
−→ (j, B) and (i, D)

+
−→

(j, B). Since (i, D) is in fact a deadlock, we must have that j = i and thus that
B = D. But then also C = D = B and the two configurations are the same. Thus
(i, D) is the only configuration that exists at distance i. It follows that there is no other
attainable configuration at distance j > i. Hence the lattice is finite (with the maximal
configuration being the deadlock configuration). �

5 Overlay Initialization and Deadlock Detection

In the first part of this section we will not be able to assume that an overlay would be in
canonical form or that each task only has one Xreq. This is so, since the replacement
techniques that we introduced already need a priority ordering as an input.

Deadlock Free Initialization. For a strategy to construct an initial overlay see Algo-
rithm 1. It consists of first computing the conflict graph, finding a partition of it into
independent sets (i.e a coloring) and then placing the lock requests according to the
position of color class of the task. Since it only handles tasks in parallel that don’t
have conflicts, at most one Xreq X is inserted for a given location L during each of
the x insertion phases. The following lemma is easily verified by observing that in the
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L3 L4 L5 L6L1 L2

(a) One color class per location

L1 L2 L3 L4 L5 L6

(b) The result of a 2-coloring

Figure 11: Two different initializations of the same set of requests

corresponding delay digraph the orientations of the arcs always lead from a task with a
higher number in the coloring to one with a lower number.

Lemma 5.1 Algorithm 1 generates an overlay that is deadlock free.

Lemma 5.2 Besides the phases construct and color, Algorithm 1 runs in sequential time
that is proportional to the input and can be implemented in parallel to run in time x,
where x is the coloring number that color computed.

The two phases construct and color are not explained in Algorithm 1 (and thus in
Lemma 5.2). In construct, we could be tempted to construct the entire graph C(T ). This
graph could be quite large for the case that there are several Xreqs in one location;
C(T ) then has a clique containing all the tasks that write to the same location. Such an
explicit construction can be avoided by using a data structure that uses the knowledge
about the shared locations. Details of that are left to the extended version of this paper.

With this implicit representation of C(T ) in color we then have to construct a col-
oring. Although this problem is NP-hard in general, there are good heuristics that
provide colorings with ∆ + 1 colors, where ∆ is the maximum degree of the graph.
They can be computed in parallel and in a distributed setting, see [6], and large scale
tests (especially for matrix computations) show that these algorithms behave quite well
in practise, see [3]. We don’t think these computations will be a bottleneck for real
applications of our techniques. Also, usually we may suppose that we are in a setting
where each processor will have to perform several tasks per iteration. Thus a rough
estimate of the coloring number should suffice.

In addition, Algorithm 1 is only computing the initial setting, afterwards the system
evolves asynchronously. The set of tasks that are active in parallel can be the set of
executable locations of any of the reachable configurations. Consider the example in
Figure 11. Both subfigures represent different initializations for the same system of
tasks and that both could be produced by Algorithm 1. 11(a) corresponds to a non-
optimal coloring where each task has its own color and these colors are taken in worst
possible order. In contrast, 11(b) corresponds to an optimal coloring with just two
colors. 11(b) has a much higher degree of parallelism than 11(a) and is therefore clearly
preferable. Nevertheless, both configurations are part of the same configuration space
and reachable from each other. Thus, the behavior of the system on the long run does
not depend too much from initial setting but much more on the execution strategy that
chooses among the executable tasks.
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Transforming into Canonical Form. As we have seen in Section 2, a transforma-
tion of an overlay into canonical form can be done with local replacement rules that
eventually introduce new locations and Ireqs, and may move some dependencies from
one request to another. It is easy to see that such replacements can be computed in a
distributed setting. Also observe that these replacements do not change the execution:
no additional tasks are introduced and the relative order of tasks is strictly respected.
We leave the details for a full version of this paper.

Deadlock Detection. If for some reason an overlay can’t be initialized by Algo-
rithm 1 we may use the tools of Section 2 to detect a deadlock. The idea would be
to first construct the conflict graph and then the delay digraph C(T ) from it. Then
from Lemma 2.1 it follows that a simple test for cycles will show whether or not the
overlay contains a deadlock or not.

But with the structural results of Section 4 we even have a much easier strategy,
which consists in a test execution of all tasks.

Theorem 5.1 Suppose an overlay has a sequence of executions such that each location
is executed at least once. Then the overlay is deadlock free.

Proof: First assume that the overlay is connected. Let L = (L1, . . . , Lk) be an
execution path that executes all locations. Let L′ = (L′

1, . . . , L
′

k′) the sub-sequence
of the first occurrence of the locations. From Lemma 4.2 we know that L′ is also
executable. Thus L′ leads back to the initial configuration and as a consequence the
lattice of configurations is infinite. Theorem 4.2 then proves that the overlay must be
deadlock-free.

If the overlay is not connected the argument applies to each connected component.
�

The algorithmic details of such a deadlock detection routine are left to the reader.

6 Conclusion and Outlook

The analysis of our model shows valuable properties for parallel computation in general
and iterative algorithms in particular. It is interesting to note that it allows for automated
initialization of a system from an abstract representation of tasks and dependencies.
The user has only to specify these dependencies and to implement the computational
part of the different tasks. The lattice structure of the overlay configuration space
then ensures that a deadlock-free initialized system will run as expected; namely is
guaranteed to remain without deadlock and to execute all tasks evenly.

A first implementation of ORWL has been added to our PARXXL library [8]. It
is based on request stamps (the priority ranks) that are accorded to lock-handles data
structure and on condition variables to regulate congestion.

As ORWL are a general tool which is not bound to a particular class of applications,
we plan some extensions. For instance, it could be used to model byte-range locking
on files or other objects by tackling the problem of joint ranges. This would provide
predictable access to shared objects without imputing to the user more overhead than
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common read-write locks operations. Also, as ORWL are resource-oriented they can
more easily be extended to distributed environments. This will enable us to implement
the data handover API as it was described in [7].

As shown, the coloring method directly impacts the initialization of a given sys-
tem. For some applications, different initializations can lead to disconnected configu-
ration spaces. For instance, it is possible to initialize a linear cycle to produce either a
token-ring or a half-homogeneous execution pattern. This makes it possible to also use
ORWL as a temporal synchronizing tool.
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