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ABSTRACT

In this paper, we consider the issue of the selection of eye

movements in an eye-free Multiple Object Tracking task.

We propose a Bayesian model of retinotopic maps with a

complex logarithmic mapping. This model is structured

in two parts: a representation of the visual scene, and a

decision model based on the representation. We compare

different decision models based on different features of the

representation and we show that taking into account uncer-

tainty helps predict the eye movements of subjects recorded

in a psychophysics experiment.
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1 Introduction

In this study, we investigate the possible role of uncertainty

evaluation in selection processes related to active percep-

tion. Uncertainty is the consequence of the inverse nature

of perception, as well as incompleteness of the models. We

choose to handle and reason with it using the Bayesian Pro-

gramming framework [1]. We use an eye-free version of

the standard Multiple Object Tracking (MOT) paradigm [2]

as a basic selection task. In MOT, the subject is presented a

number of moving objects, some of which are targets while

the others are distractors. The targets are cued at the begin-

ning of each trial, the subject has then to remember where

the targets are, while all objects move, and to designate the

targets at the end of the trial.

We design Bayesian models computing a sequence

of probability distributions over the next eye movement

to perform, based on a sequence of observations of ob-

jects in the visual field. They are inspired by the anatomy

and electrophysiology of eye-movement selection related

brain regions. These regions (fig. 1), the superior collicu-

lus (SC), the frontal eye fields (FEF) and the lateral bank

in the intraparietal sulcus (LIP) have a number of com-

mon points. They all receive information concerning the

position of points of interest in the visual field (visual ac-

tivity), memorize them (delay activity) and can generate

movements towards them (motor activity) [4, 5, 6].
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Figure 1: Premotor and motor circuitry shared by saccade and

smooth pursuit movements (Macaque monkey). In red, short

subcortical loop, in purple, long cortical loop. The dashed ar-

row stands for the cortical pathway including notably the lateral

geniculate nucleus and the visual cortex. BG: basal ganglia, FEF:

frontal eye fields, LIP: lateral bank of the intraparietal sulcus,

SBG: saccade burst generators, SC: superior colliculus, SEF: sup-

plementary eye fields, TH: thalamus, Verm: cerebellar vermis.

Adapted from [3].

These positions are encoded by topographically orga-

nized cells, with receptive/motor fields defined in retino-

topic reference frames. In the SC of primates, these maps

have a complex logarithmic mapping [7, 8], which is rep-

resented on fig. 2 by the blue lines (plain lines: iso-

eccentricities; dotted lines: iso-directions). Concerning the

FEF, the eccentricity of the position vector is encoded log-

arithmically [9], however the encoding of direction is not

well understood yet. Finally, the structure of the LIP maps

is still to be deciphered, but a continuous topographical or-

ganization seems to exist, with an over representation of the

central visual field [10]. We thus use the primate SC maps

geometry in our models, with the assumptions that human

SC and cortical maps probably have a similar geometry.

The spatial working memory-related neurons in SC

[11], FEF [12] and LIP [13] are capable of dynamic remap-

ping. They can be activated by a memory of the position of

a target, even if the target was not in the cell’s receptive

field at the time of presentation. They behave as if they

were part of a retinotopic memory map, where a remap-

ping mechanism would allow the displacement of the mem-

orized activity when an eye movement is performed. We

include this remapping capability in the representation part

of our models.
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After having presented the structure of our models,

we compare their movement predictions with recorded hu-

man movements and show that the explicit use of uncer-

tainty improves the quality of the prediction.

2 Model

Our model has two stages: a representation of the visual

field and the decision process of the next eye movement.

2.1 Representation

The representation model is a dynamic retinotopic map of

the objects in the visual field. This representation is struc-

tured in two successive layers: the occupancy of the visual

field, and a memory of the position of each target.

Occupancy of the visual field The first part is structured

like an occupancy grid, a recursive Bayesian filter intro-

duced for obstacle representation in mobile robotics [14].

The environment is discretized into a regular grid G (with

the logcomplex mapping) and we define a binary variable

Occt

c
in each cell c and for each time t that states whether

or not there is an object in the corresponding location in

the visual field. The input is introduced as a set of binary

variables Obst

c
. The observation and occupancy of each

cell are linked by a probabilistic relation P (Obst

c
| Occt

c
)

that states it is likely to observe the assumed occupancy of

the cell. As for all subsequent probability distributions that

appear in our models, we give this probability distribution

a parametrical form whose parameters we learn for part of

the experimental data.

The remapping capability of this model relies on

the current displacement Mvtt and the distribution

P (Occt

c
| Occt−1 Mvtt) that transfers the occupancy as-

sociated to antecedent cells to the corresponding present

cell with an additional uncertainty factor.

Due to the high dimensionality of this representation
space, we approximate the inference over the whole grid
by a set of inferences for each cell c that depend only on a
subset A(c) of antecedent cells c′ for the current eye move-
ment. Thus the update of the knowledge on occupancy in
our model is recursively computed as follows:

P (Occ
t
c | Obs

1:t
Mvt

1:t) (1)

∝ P (Obs
t
c | Occ

t
c)

×
∑

Occ
t−1
A(c)

[

P (Occt
c | Mvtt Occt−1

A(c)
)

∏

c′
P (Occt−1

c′
| Obs1:t−1 Mvt1:t−1)

Position of the targets To introduce the discrimination

between targets and distractors, we add a set of vari-

ables Tgtt
i

that represent the location of each target i at

each time t. We also include remapping capability for

the targets so that an eye movement Mvtt updates the

distribution on Tgtt
i
. This is done in a dynamic model

P (Tgtt
i
| Tgtt−1

i
Occt Mvtt) similar to the dynamic

model of occupancy.
In addition to question 1, the knowledge over the tar-

gets is computed at each time step as follows:

P (Tgt
t
i | Obs

1:t
Mvt

1:t) (2)

∝
∑

Tgt
t−1
i





P (Tgtt−1
i | Obs1:t−1 Mvt1:t−1)

×
∑

Occt

[

P (Occt | Obs1:t Mvt1:t)
×P (Tgtt

i | Tgtt−1
i Occt Mvtt)

where the summation over the whole grid can be approxi-

mated as above, by separating the cells.

Both questions 1 and 2 are the current knowledge

about the visual scene that can be inferred from the past

observations and movements and the hypotheses of our

model.

2.2 Decision

Based on this knowledge, we propose models that deter-

mine where to look next. We make the hypothesis that the

representation model exposed above is useful for produc-

ing eye movements. To test this hypothesis, we compare

one model that does not use this representation, constant

model, with one that does, target model.

The main hypothesis is that uncertainty explicitly

taken into account can help in the decision of eye move-

ment. Thus we compare one model that does not take ex-

plicitly into account the uncertainty, target model, with one

that does, uncertainty model.

Constant model This model is a baseline for the other

two. It is defined as the best static probabilistic distribution

P (Mot) that can account for the experimental eye move-

ment. In this distribution, the probability for a given eye

movement is equal to its experimental frequency. Thus we

learned this distribution from our experimental data.

Target model This second model determines its eye

movements based on the location of the targets. It is

a Bayesian fusion model with each target considered as

the location where to look. It uses an inverse model

P (Tgtt
i
| Mott) that states that at time t the location of

the target Tgtt
i

is probably near the eye movement Mott

with a Gaussian distribution. Moreover, the prior distribu-

tion on the eye movement is taken from the constant model.

Therefore, this target model refines the eye movement dis-

tribution with the influence of each targets.
As the exact locations of the targets are not known,

this model takes into account the estimation from ques-
tion 2 in the fusion. The actual eye movement distribution
can be computed using the following expression:

P (Mot
t | Obs

1:t
Mvt

1:t)

∝ P (Mot)

N
∏

i=1

∑

Tgtt

i

P (Tgt
t
i | Obs

1:t
Mvt

1:t)P (Tgt
t
i | Mot

t)



Uncertainty model The behaviour of the previous model

is influenced by uncertainty insofar as the incentive to look

near a given target is higher for a more certain location of

this target. As for any Bayesian model, uncertainty is han-

dled as part of the inference mechanism: as a mean to de-

scribe knowledge.

In this third model, we propose to include uncertainty

as a variable to reason about: as the knowledge to be de-

scribed. The rationale is simply that it is more efficient to

gather information when and where it lacks that is when

and where there is more uncertainty.

Therefore, we introduce a new set of variables It

c
rep-

resenting an uncertainty index at cell c at time t. For this
implementation, we choose to specify this uncertainty in-
dex as the probability distribution of occupancy in this cell.
The nearer this probability is from 1

2
the higher the uncer-

tainty and the higher the probability to look there. In the
end, this model computes the posterior probability distribu-
tion on next eye movement using the following expression:

P (Mot
t | Obs

1:t
Mvt

1:t
I
1:t)

∝ P (Mot
t | Obs

1:t
Mvt

1:t)P (It
Mott | Mot

t)

with It

c
= P (Occt

c
| Obs1:t Mvt1:t) (equation 1).

This model filters the eye movement distribution com-

puted by the second model, in order to enhance the proba-

bility distribution in the locations of high uncertainty.

3 Results

As shown in figure 2, these models produce a probabil-

ity distribution at each time step which is, except for the

constant model, heavily dependent on the past observa-

tions and movements in the retinocentered reference frame.

Therefore we first defined an appropriate tool to compare

these model. Then we present the results of our models

according to this evaluation method.

3.1 Comparison method

The generic Bayesian method to compare models (or pa-

rameters, that is formally the same issue) is to assess a prior

probability distribution over the models, compute the like-

lihood of each model in view of the data, and use Bayes

rule to obtain a probability distribution over the models:

P (Model | Data) ∝ P (Model) × P (Data | Model).

As deciding on priors is sometimes an arbitrary mat-

ter and this prior may have a negligible influence with a

growing number of data points, a common approximation

is simply comparing the likelihood of the models. Choos-

ing the model with the highest likelihood is dubbed as max-

imum likelihood estimation.

As the decision models compute a probability dis-
tribution, we can compute, for each model at each time
step, the probability of the actual eye movements recorded
from subjects, as well as the probability of the whole set
of recordings. In order not to have a measure that tends to

(a)

(b)

(c)

(d)

Figure 2: Example of probability distributions computed by each

model in the same configuration. Panel (a) is the distribution of

constant model. Panel (b) shows the probability distribution for

the target model that shows a preference for the targets. Panel (c)

shows the probability distribution for the uncertainty model that

highlights some of the targets. Bottom panel shows the position

of the targets (magenta) and objects (red) in the visual field.

zero as the number of trials increase, we choose the geo-
metric mean of the likelihood across trials, as it tends to be
independent on the number of trials. Thus we compare:

N

√

√

√

√

N
∏

τ=1

T
∏

t=1

P ([Mot = mott+1
τ ])

for the constant model,

N

√

√

√

√

N
∏

τ=1

T
∏

t=1

P ([Mot = mott+1
τ ] | obs1:t mot1:tτ )

for the target model, and

N

√

√

√

√

N
∏

τ=1

T
∏

t=1

P ([Mot = mott+1
τ ] | obs1:t mot1:tτ i1:t)

for the uncertainty model, where mott
τ

is the actual eye

movement recorded in trial τ at time t.



3.2 Results

The data set is gathered from 11 subjects with 110 trials

each for a total of 1210 trials (see [15] for details). Each

trial was discretized in time in 24 observations for a grand

total of 29040 data points. Part of the data set (124 random

trials) was used to determine the 9 parameters of the model

and the results are computed on the remaining 1089 trials.

Ratio Constant Target Uncertainty

Constant 1 280 320

Target 3.5 × 10−3 1 1.14

Uncertainty 3.1 × 10−3 0.87 1

Table 1: Ratio of the measures for pair of models.

Table 1 presents the results of our three decision mod-

els for this data set. It shows that the model that gener-

ates motion with the empiric probability distribution but

without the representation layer is far less probable than

the other two (by respectively a factor 280 and 320). This

shows that, as expected, the representation layer is useful

in deciding the next eye movement.

Table 1 further shows that the model taking explicitly

into account uncertainty is better than the model that does

not by 14%. This is in favor of our hypothesis that taking

explicitly into account uncertainty is helpful in deciding the

next eye movement.

It should be noted that the choice of the geometric

mean prevents the ratio of our models to raise exponentially

as the number of trials grows. In our case, the likelihood ra-

tio between the model with explicit uncertainty and the one

without is 4.9 × 1063. With half the trials, this likelihood

ratio is the square root, that is only 7.0 × 1031. We pre-

ferred presenting the results with a measure independent of

the number of trials.

Moreover, this model is designed to study the criteria

of eye movement selection and not to solve the task au-

tonomously. Nevertheless, we can add simple algorithms

to decide the eye movement at each time step and to point

out the targets at the end of the trial, based on the state of

the representation layer. A naive implementation yielded

a chance level performance. We did not have the opportu-

nity to delve deeper into this question, as this is not the aim

of our model, but this result could be improved by a more

accurate target layer.

4 Conclusion and discussion

As a conclusion, we propose a Bayesian model with two

parts: a representation of the visual scene, and a decision

model based on the state of the representation. The repre-

sentation both tracks the occupancy of the visual scene as

well as the locations of the targets.

Based on this representation, we tested several de-

cision models and we have shown that the model that

takes explicitly into account the uncertainty better fitted the

eye movements recorded from subjects participating a psy-

chophysics experiment.

Moreover, the eye movement frequency shows that,

most of the times, the eye movements are of low ampli-

tude, indicating either fixation or slow pursuit of an object.

In these cases, the constant model has a likelihood compa-

rable with or even sometimes greater than the other two.

Thus the difference is due to the saccadic events, when the

target and uncertainty model have a good likelihood con-

trary to the constant one that assign a lower probability as

the eccentricity grows.

The difference between the target model and the un-

certainty model, on the other hand is due to the filtering

of the eye movements distribution from the target model

by the uncertainty. The difference is less important than

for the constant model as the uncertainty associated to the

targets are often similar (isolated targets with comparable

movement profiles). It could be interesting to enrich the

stimulus in order to manipulate uncertainty more precisely.
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