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Abstract:

In WDM backbone networks, the traffic pattern evolves constantly due to the nature of
the demand itself or because of equipment failures leading to reroute affected connections.
In this context, requests are routed greedily using available resources without changing the
routing of pre-established connections. However, such a policy leads to a poor usage of
resources and so higher blocking probability: new connection requests might be rejected
while network resources are sufficient to serve all the traffic. Therefore, it is important to
regularly reconfigure the network by rerouting established connections in order to optimize
the usage of network resources.

In this paper, we consider the network reconfiguration problem that consists in switching
existing connections one after the other from the current routing to a new pre-computed
routing. Due to cyclic dependencies between connections, some requests may have to be
temporarily interrupted during this process. Clearly, the number of requests simultaneously
interrupted has to be minimized. Furthermore, it might be impossible for the network
operator to interrupt some connections because of the contract signed with the corresponding
clients. In this setting, the network reconfiguration problem consists in going from a routing
to another one given that some priority connections cannot be interrupted.

The network reconfiguration problem without priority connections has previously been
modeled as a cops-and-robber game in [5, 6]. Here, we first extend this model to handle
priority connections. Then we identify cases where no solution exists. Using a simple
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transformation, we prove that the reconfiguration problem with priority connections can
be reduced to the problem without this constraint. Finally, we propose a new heuristic
algorithm that improves upon previous proposals.

Key-words: Rerouting, process number, vertex separation, pathwidth.
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Reconfiguration de routage/process number:
prise en compte de deux classes de services

Résumé : Dans les réseaux de cœur WDM, le trafic évolue de manière continue. Cela
est due aux variations des demandes mais aussi aux pannes d’équipements qui nécessitent
le reroutage de certaines connections. Dans ce contexte, les connections sont routées en
utilisant les ressources disponibles et sans modifier le routage des connections préalablement
établies. Cependant, une telle politique peut amener à des blocages dus à une mauvaise
utilisation des ressources. Ainsi, il est important de reconfigurer régulièrement le routage
des connections présentes afin d’optimiser l’utilisation des ressources du réseau.

Dans cet article, nous étudions le problème de reconfiguration qui consiste à modifier
des connections de manière successives pour passer du routage courant à un autre routage
précalculé. Seulement, les redondances entre les ressources nécessaires à l’établissement de
certaines connections et les ressources utilisées par d’autres peuvent nécessiter l’interruption
temporaires de certaines connections. Il est dans l’intérêt de l’opérateur de minimiser le
nombre de ressources à interrompre simultanément. De plus, dus à des contrats spécifiques
avec des clients, il peut être impossible à l’opérateur d’en interrompre certaines. Dans ce
contexte, le problème de reconfiguration consiste à ordonnancer les connections à rerouter
tout en minimisant le nombre de connections interrompues et en respectant certaines con-
traintes imposées par des connections prioritaires.

Le problème de reroutage en l’absence de connections prioritaires a déjà été étudié et
modélisé par un jeux de capture dans [5, 6]. Nous généralisons ici ce modèle pour la première
fois dans l’optique de tenir compte des connections prioritaires. Nous caractérisons ensuite
les cas dans lesquels un reroutage n’est pas possible et, à l’aide d’une transformation simple,
nous montrons que le problème avec connections prioritaires peu se ramener au problème
sans connections prioritaires. Enfin, nous proposons une nouvelle heuristique améliorant les
heuristiques précédemment proposées.

Mots-clés : Reroutage, process number, vertex separation, largeur de chemins
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1 Introduction

Optimizing the usage of network resources is a critical issue for telecom companies operating
high speed WDM backbone networks [14, 8]. The traffic demand increases rapidly (e.g. 6
millions new Internet users per month in China) and is subject to constant variation with
the deployment of new services (mobile Internet, peer-to-peer, on-demand TV). Therefore,
the routing of the traffic pattern has to be updated regularly to ensure an efficient usage of
network resources and to preserve enough flexibility to accomodate new connection requests
rapidly. For example, Fig. 1(a) represents a path network using two wavelengths where four
connections are initially established. After the termination of request 3, it is not possible
to accept request 5 although the routing depicted in Fig. 1(b) is possible. Hence, to re-
duce the blocking probability [16, 12], some requests have to be switched on other routes,
and so the routing has to be reconfigured [10]. Fault tolerance is another critical concern
of the networks. Indeed, failures in the backbone network may have an important impact
with huge financial repercussions. Therefore, when a failure occurs, traffic restauration or
protection mechanisms are used to ensure the continuation of affected connections. Such
mechanisms are fast and ensure low traffic perturbation, but the resulting routing of con-
nections requests may be inefficient. Since the reparing time of the network could be long
(days), it is interesting to optimize the usage of resources and so to reconfigure the routing.

In this paper, we concentrate on routing reconfiguration problem. It consists in switching
a set of connection requests from current routing to another pre-determined routing under
the constraint that connections are switched one by one. Our study is independent of the
destination routing and its computation is not considered here.

To switch an established connection from a lightpath to another, one has to ensure that
destination resources are available. For instance, in Fig. 1(a), connection 4 must be switched
before the establishment of connection 5. To model all dependencies between connections in
the reconfiguration phase, we use the notion of dependency digraph [10]. Given the initial
routing R and the new routing R′ we want to achieve, the dependency digraph contains a
node per connection and there is an arc from node u to node v if connection v uses resources
in R that will be used by u in R′. So an arc from u to v indicates that connection v must
be switched before connection u.

Clearly, when the dependency digraph is a DAG, the scheduling of the switchings is
straightforward, starting from the leaves. However, cyclic dependencies may exist and so
the dependency digraph may contains cycles. In such cases, reconfiguration is feasible only if
we allow to temporarily interrupt some connections in order to break the dependency cycles.
The objective is thus to minimize the number of connections that will be simultaneously
interrupted. Initially, this problem has been studied in [10] with an heuristic algorithm.
Later, the network reconfiguration problem has been defined in terms of process number [5,
6], an analogous of cops-and-robber games [11, 9]. Using this formulation, this problem
has been shown NP-complete [5, 6]. More precisely, a game is defined where agents are
successively placed to and removed from the vertices of the dependency digraph [5, 6].
In this setting, the minimum number of agents used during the game equals the smallest
number of connections simultaneously interrupted during the reconfiguration process. In this

INRIA
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(a) Initial routing R1 of requests 1, 2, 3, 4.
Request 3 finishes and a new request starts.

2 4

1 5

(b) The new routing R2 satisfying requests
1, 2, 4, 5.

Figure 1: Example of reconfiguration.

game, an agent placed on a node models the interruption of the corresponding connection,
and a connection can be switched, or processed, if all its outneighbors in the dependency
digraph are either covered by an agent or have already been processed. In other words, a
connection can be switched if all of the connections using the same resources have either
been interrupted, or have already been switched. Furthermore, an agent can be reused as
soon as corresponding connection is switched. The process number is the minimum number
of agents needed in the game.

The reconfiguration of the routing allows the network operator to optimize the usage of
network resources. However, this process forces to interrupt temporarily some connections,
and so induces some traffic perturbations that clients may not accept. Moreover, some clients
may sign a specific contract forbidding interruptions, and so the operator offers two classes
of services. To cope with these two classes, we introduce the new constraint that imposed
some particular connections, called the priority connections, not to be interrupted. In the
process number game formulation, this constraint is modeled by a particular class of nodes of
the dependency digraph, called the black nodes, that are those nodes corresponding to the
priority connections. During the game, the black nodes cannot host agents, i.e., the single
way to process them is to deal with all their outneighbors first. It is worth-mentioning that a
direct cycle of black nodes in the dependency digraph makes the reconfiguration impossible,
thus the number of such nodes (and so clients) must be small. Furthermore, due to black

nodes the process number of the dependency digraph may increased (see Section 3).
Section 2 is devoted to the formal definition of the process number and the game on the

dependency digraph without black nodes. Then, in Section 3 we introduce the modeling
with black nodes. We give impossibility results. Namely, we prove that reconfiguration can
be performed if and only if no subset of black nodes induces a strongly connected component
of the dependency digraph. Then, we show that both problems, with and without black

nodes are equivalent. More precisely, when reconfiguration is possible, we present a simple
transformation of any digraph D with black nodes (without strongly connected component
induced by the black nodes) into another digraph D∗ without black nodes with same
process number and such that it is straightforward to adapt the rerouting strategy for D∗

into a strategy for D. In Section 4, we recall the basic principles of the heuristic designed
in [4] and propose some improvements to solve more efficiently our problem. Finally, in
Section 5, we evaluate the respective efficiency of heuristic algorithms through simulations.

RR n° 6698



6 Coudert, Huc, Mazauric, Nisse, and Sereni

cb

a
r

e

d

(a) Routing R1 of requests
a, b, c, d, e. The new request r
cannot be satisfied.

b

a

d
c

e
r

(b) Routing R2 satisfying re-
quests a, b, c, d, e and r.

b

ca

d

(c) Dependency digraph D for switch-
ing from routing R1 to R2.

b

ca

d

0.25

0.25

0.25

0.250.75

0.25

0.375

0.375

0.25

0.25

0.75

(d) Dµ from D to apply flow circula-

tion algorithm.

b

a

c

(e) D∗(d) from D if d
is a black node.

Figure 2: Fig. 2(a) is a grid where links have a single wavelength in each direction. New
request r can not be accepted, although the routing of Fig. 2(b) is possible. Figs. 2(c)
and 2(d) represents dependency digraph D and corresponding Dµ to switch from routing
R1 to routing R2. If d is a black node, digraph D∗(d) of Fig. 2(e) is obtained from D by
removing d and adding a complete bipartite digraph from N−(d) to N+(d).

2 Modeling

In this section, we recall the modeling proposed in [5, 6] to solve the routing reconfiguration
problem when it is allow to interrupt any connection request during a reconfiguration phase,
if needed.

Following [5, 6], the routing reconfiguration problem can be expressed as a cops-and-
robber game, similar to the game-theoretical model of the pathwidth of a graph [15, 11].
Hence, it can be seen as an exploration of the digraph by agents using the following rules.
Interrupting a request r is represented by placing an agent on the corresponding vertex ur

INRIA
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in D. A vertex is said processed when the corresponding request has been rerouted, and
we call a process strategy a sequence of the three following actions allowing to reroute all
requests with respect to the constraints represented by the dependency digraph.

R1. Put an agent on a vertex (interrupt a connection).

R2. Remove an agent from a vertex if all its out-neighbours are either processed or occupied
by an agent (release a connection to its final route when destination resources are
available). The vertex is now processed (connection has been rerouted).

R3. Process a vertex if all its out-neighbours are occupied by an agent (destination re-
sources are available, and so the connection can be rerouted).

A p-process strategy is a strategy which process the digraph using p agents and the process
number, pn(D), is the smallest p such that a p-process strategy exists. For example, a star
has process number one and the strategy consists in positioning an agent on the central
vertex (R1). Thus all leaves can be processed (R3) and finally the agent can be removed
(R2). A path of four vertices or more has process number two, a cycle of size five or more
has process number three, and a n× n grid, n ≥ 3, has process number n+ 1.

In the example of Fig. 2, the network is a 3×3 grid where links have a single wavelength
in each direction. With the routing of Fig. 2(a), the new request r can not be accepted
but the routing of Fig. 2(b) is possible. Fig. 2(c) represents the dependency digraph for
switching from routing R1 to routing R2. The process strategy is first to place an agent of
node d (R1). The remaining digraph is a direct path a, b, c, and so we process c, b and then
a (R3). Finally, the agent can be removed to process d (R2). So the process number of this
digraph is 1 and a single connection has to be temporarily interrupted.

Although digraphs with process number 1 and 2 have been characterized [6], com-
puting pn(D) is NP-complete for general digraphs and the same result holds when D is
a symmetric digraph and so for the underlying graph G. It has also been proved that
pw(G) ≤ pn(G) ≤ pw(G) + 1, where pw(G) is the pathwidth of G. Because the prob-
lem of computing the pathwidth is NP-complete in general [13], numerous works have been
directed toward particular graphs’ classes. For instance, several polynomial-time, or even
linear-time, algorithms have been proposed that compute the pathwidth of trees [17], co-
graph [2], permutation graphs [1], circular arc graphs [18] (in particular, this class contains
interval graphs), etc. Due to the relation between the pathwidth of a graph and its pro-
cess number, all aforementioned results compute the process of number up to one for any
of these graphs’ classes. In [3], Bodlaender et al. proposed a O(log2 n)-approximation for
the pathwidth problem in arbitrary graph. Furthermore, the pathwidth problem is not in
APX [7], meaning that there is no polynomial time algorithm that can ensure a constant
approximation factor k unless P = NP , for any constant k. This motivate us to develop
efficient heuristic algorithms.

RR n° 6698
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3 Coping with multiple classes

We now extend the model to the case where some requests, the priority connections, cannot
be interrupted during a reconfiguration phase. In our setting, the priority connections are
modeled by a specific class of vertices of the dependency digraph, called the black nodes.
The constraint over the priority connections can be reformulated by the fact that a black

node cannot host an agent during the process strategy. So rule R1 can be applied only on
other nodes. For example, suppose that node d of Fig. 2(c) is a black node. In this situation
the process strategy consists in putting agents on both nodes b and c (R1) which allow to
process node a (R2), then to process node d (R2) and finally to process nodes b and c. Such
strategy requires 2 agents while the process number of the digraph of Fig. 2(c), without
black node, is 1. Note that the presence of a single black node may increase drastically
the number of agents. For instance, consider a star with a large number of leaves where the
central node is a black node.

Let pn∗(D,Q) denote the process number of a digraph D = (V,A) with a set Q ⊆ V
of black nodes. We will show in Sec. 3.1 that in some cases it is not possible to perform
the reconfiguration and thus pn∗(D,Q) is not defined. Then, we will show in Sec. 3.2 that,
when the reconfiguration is possible, we have pn∗(D,Q) = pn(D∗), where D∗ is a digraph
without black nodes obtained from D by a simple transformation.

3.1 Impossibility results

When the dependency digraph contains a direct cycle of black nodes, it is impossible to
break it and so no feasible process strategy exists. So we have:

Lemma 1. Let D = (V,A) be a dependency digraph and let Q ⊆ V be the set of black

nodes. If D contains a direct cycle of black nodes then no process strategy exists.

Proposition 2. Given a dependency digraph D = (V,A) and a set of black nodes Q ⊆ V ,
we can decide in time O(|V |+ |A|) if a process strategy exists.

Proof. The existence of a process strategy relies on the existence of a direct cycle of black

nodes. So, it suffices to test if the digraph DQ, obtained by removing all nodes of V − Q
from D, has a strongly connected component.

As a consequence of Lemma. 1, it is always possible to compute a process strategy when
|Q| ≤ 1. Now, when |Q| ≥ 2 an interesting question is to determine the probability that the
dependency digraph contains a strongly connected component of black nodes. Clearly, this
probability will increase with |Q|, and so we have to determine the size of Q for which this
probability will be 1 with high probability.

Indeed, there is a tradeoff to determine for operators between the number of clients for
which no traffic interruption is allowed and the blocking probability. When the number
of such client is large, then it is almost impossible to reconfigure the routing and so the
blocking probability will be high.

INRIA
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3.2 Transformation

To compute the number of agents needed to process a digraph D containing black nodes,
we can construct a digraph D∗ from D without black nodes such that the process number
of D∗ equals the number of agents needed to process the initial digraph D with black nodes.
Moreover, the process strategy for D directly follows the process strategy of D∗.

Definition 3. Let D = (V,A) be a digraph and let v ∈ V . The digraph D∗(v) is obtained
from D by removing v and adding an arc from every vertex of N−(v) to every vertex of
N+(v). Note that the preceding transformation can yield loops if N−(v) ∩N+(v) 6= ∅.

For example, let D be the digraph depicted in Fig. 2(c) and let d be a black node. Using
above transformation, we obtain the digraph D∗ represented in Fig. 2(e). Since we have
N−(d) = {b, c}, N+(d) = {a, b, c}, and so N−(v)∩N+(v) = {b, c}, nodes b and c have loops
in D∗. We have pn(D∗) = 2 and from a process strategy for D∗, we can deduce a process
strategy for (D, {d}), as will be proved in Proposition 4.

Proposition 4. For every digraph D = (V,A) and set Q := {v} for some vertex v ∈ V
which has no loop, we have pn∗(D,Q) = pn(D∗(v)).

Proof. Let P ∗ be a processing strategy for (D,Q). We apply it to D∗(v), ignoring the step
that processes the vertex v. This processes the whole graph D∗(v): there can only be a
problem when we process a vertex u ∈ N−D (v). But when any such step is reached, note that
(since P ∗ is a valid strategy) the vertex v has already been processed earlier. Consequently,
all the vertices of N+

D (v) are already processed or covered by an agent, and the vertex u can
safely be processed. Thus, pn(D∗(v)) ≤ pn∗(D,Q).

Conversely, let P be a processing strategy for D∗(v). We obtain P ∗ from P by adding the
step “process v” just before the first vertex of N−(v) is processed. By the definition ofD∗(v),
all the vertices of N+(v) must be already processed or covered by an agent. Consequently,
we obtain a valid processing strategy for (D,Q), and thus pn∗(D,Q) ≤ pn(D∗(v)). This
concludes the proof.

More generally, by recursively applying Proposition 4, given a dependency digraph D =
(V,A) and a set Q ⊆ V of black nodes, we can construct digraph D∗ without black nodes
and deduce the process strategy of (D,Q) from the process strategy for D∗.

Corollary 5. Let D = (V,A) be a digraph and let Q := {v1, v2, . . . , vf} ⊆ V . We set
D1 := D∗(v1) and, for each i ∈ {2, 3, . . . , f}, we set D(vi+1) := D∗i (vi+1) if vi+1 has no loop
in Vi. Then, p∗(D,Q) is finite if and only if Df is defined, and then pn∗(D,Q) = pn(Df).

Notice that if vi+1 has a loop in Vi, then D contains a direct cycle of black nodes and
so the digraph cannot be processed.

To conclude this section, we prove an upper bound on the amount of extra searchers
needed to process a dependency digraph D = (V,A) containing black nodes compared to
the process number of D without black nodes. Let Q ⊆ V . In the following, N+(Q) denotes
the set of vertices that are outneighbors of some vertex in Q.

RR n° 6698
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Proposition 6. For every digraph D = (V,A) and set Q ⊆ V of black nodes, pn∗(D,Q) ≤
pn(D) + |N+(Q)|. Moreover, this bound is asymptotically tight.

Proof. Let P be a processing strategy for D using pn(D) agents. Let us apply P to (D,Q)
with the following adaptations. At every step of P that consists of placing an agent at some
vertex v ∈ Q, let us replace this operation by the sequence of operations that consists of
placing an agent at every node in N+(v). If a vertex in N+(v) is a black node, we also place
an agent at every vertex of its outneighborhood and so on recursively. Then, all the black

nodes considered at this step are processed. Now, if at some step of the process strategy,
P decides to place an agent at an already occupied vertex (this may happen if this vertex
is the outneighbor of a black node), then we simply skip this step. Finally, if P decides
to process a vertex that is not occupied (in P ) but that is occupied by an agent following
the modified strategy, then this agent is removed. It is easy to see that the strategy defined
above is a process strategy for (D,Q) because when a vertex v of D is occupied by an agent
in P , either it is also the case in our strategy, or v is a black node and has been processed.
Moreover, the modified strategy trivially used at most pn(D) + |N+(Q)| agents.

To prove that this bound is tight, let us fixed k ≥ 1. Consider the digraph D that
consists of k symmetric cliques of size k: C1, C2, · · · , Ck and of the k+ 1 vertices v0, · · · , vk.
Now, add an edge from v0 to vi for any i ≤ k. Then, for any i ≤ k, let us add an edge from
vi to any vertex of Ci and from any vertex of Ci to any vertex of Ci+1. Finally, add an
edge from any vertex of Ui≤kCi to v0. We first prove pn(D) = k + 1. Indeed, the strategy
consists in placing an agent at v0, processing v1, · · · , vk, and finally placing successively an
agent at every vertex of Ci, for i from 1 to k. To conclude, let Q = {v0, · · · , vk}. We prove
that pn∗(D,Q) =

∑
i≤k
|Ci|. By applying the transformation described above at the vertices

v1, · · · , vk, we obtain a digraph in which the black node v0 is a in-neighbor of all vertices
in
⋃
i≤k Ci. The result follows Proposition 4.

4 Heuristic algorithms

In this section we present an heuristic for the reconfiguration problem. This heuristic is
based on an improvement of the heuristic proposed in [4]. We first recall it and then we
further study its behaviour and possible improvements. Then, we explain how this heuristic
can be used when the network contains some black nodes.

4.1 Principles of the heuristic in [4]

Before going into the detail of the algorithm proposed in [4], let us notice that the process
number of a digraph is simply the maximum over the process numbers of its strongly con-
nected components. Therefore, at each step of the execution of the heuristic in [4], a similar
process will be executed to any strongly connected components of the digraph.

The heuristic of [4] proceeds as follows. At each step, an unprocessed and unoccupied
vertex is chosen. Then, an agent is placed at this vertex and the protocol processes all

INRIA
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possible vertices. Moreover, the agents occupying a processed vertex are removed. The
main part of the heuristic clearly consists in choosing the vertex where an agent will be
placed. For this purpose, [4] proposes to use the flow circulation method. Intuitively, every
vertex of the network wants to be processed as soon as possible without being interrupted.
For this purpose, the better choice for a vertex v would be to place an agent at one of its
outneighbors. The flow circulation method somehow models a voting process at the end of
which the vertex that maximize the happiness of all the vertices is chosen.

Let us describe the flow circulation method more formally. Let us consider a strongly
connected component C of the digraph induced by the not yet processed nor occupied
vertices. A weight is assigned to any vertex of C, then a flow circulates in the following way.
At each round, any vertex u in C sends a uniform fraction of its weight to its out-neighbors.
Simultaneously, u receives a fraction of the weight of its in-neighbors and updates its new
weight as the sum of the flows it has received. The same process is executed during |V |
rounds and the vertex with maximum final weight is chosen. By modeling this process by
a discrete Markov chain, Coudert and Mazauric proved that the vector of weights always
admits a unique stationary vector and that convergence is achieved after |V | rounds [4]. In
Fig. 2(d), we can show the digraph of Fig. 2(c) from a Markov point of view to apply flow
circulation method. See [4] for more details.

Lemma 7. The worst case time complexity of the heuristic proposed in [4] is O(n2(n+m)).

4.2 Improvements

In this section, we further study the behaviour of the heuristic described above and propose
a modification allowing to improve its performances.

To illustrate the behaviour of the heuristic in [4], let us consider the graph defined by a
path of cliques. More precisely, the (symmetric) graph G consists of r > 0 cliques C1, · · · , Cr
each of size 6 such that, for any 0 < i < r, Ci intersects Ci−1 and Ci+1 in 2 vertices and no
other cliques intersect Ci. The optimal process strategy for G consists in placing agents at
the vertices in C1∩C2. Then, more agents are placed at the vertices of C1 but in one vertex
in C1 \ C2, that is then processed. Then, all agents at C1 \ C2 are removed and placed at
C2 ∩ C3. Again, other agents are placed at the yet unoccupied vertices of C2 \ C3 but one,
that is then processed. And so on. Such a strategy uses exactly 5 agents.

In this particular class of graph, we can observe a faulty behaviour of the heuristic.
Indeed, while the first steps executed by the algorithm consists in placing agents at the
vertices of C1, once the vertices in C1 \C2 have been processed, the algorithm places agents
at the vertices in C3 \C4. Finally, some agents are placed in the vertices in C1 \C2 and the
vertices in C2 are occupied and processed. Therefore, at least 7 agents are used. It is worth
to notice that during the processing of the vertices in C2, the agents occupying C3 \ C4

are useless and should not be taken into account. The new heuristic that we propose takes
advantage of this remark.

The above remark leads to the following improvement of the heuristic of [4]. At every step
of the execution of the previous algorithm, after having chosen a vertex at which an agent

RR n° 6698



12 Coudert, Huc, Mazauric, Nisse, and Sereni

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

number of nodes

n
u

m
b

e
r 

o
f 
a

g
e

n
ts

 r
e

q
u

ir
e

d

B

Exact

A

(a) Circular arc graphs

0 5 10 15 20 25 30
10

15

20

25

30

35

40

45

number of black nodes

n
u

m
b

e
r 

o
f 
a

g
e

n
ts

 r
e

q
u

ir
e

d

(b) Circulant digraphs with 50 nodes
and arcs from node i to nodes
{i+ 1, i+ 2, . . . , i+ 10}.
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Figure 3: Simulation results on circular arc graphs, circulant digraphs and 2-digraphs. A
correspond to the heuristic algorithm proposed in [4] and B to the heuristic algorithm
proposed in this paper. For each size of digraph, 100 digraphs are randomly generated for
our experiments.

will be placed, the vertices on which rule R2 applies are processed. In our algorithm, before
processing those nodes (and only if at least one such node exists), we remove all agents that
are occupying a node v not in-neighbors of which have been processed previously. Indeed,
such a vertex v has not been used before in contrast with another kind of vertices occupied
by agents that cannot be removed: those occupied nodes belonging to the in-neighborhood
of some processed node u that have been used for the processing of u. The agents that have
been removed at this stage are not taken into account in the count of the number of agents.

To conclude this section, we show that the heuristic can easily be adapted in the case
of digraphs containing black nodes. Using this heuristic, it is indeed not necessary to
implement the transformation described in Section 3. It is sufficient to proceed in the
following way: when choosing a candidate vertex to place an agent, black nodes are not
considered. So, the complexity of the algorithm is unchanged.

5 Simulations

To validate the heuristic algorithm proposed above, we have done experiments on different
topologies. Recall that computing the process number is NP-complete in general. Therefore,
and to make fair comparisons, we have restricted ourself to digraph classes for which effi-
cient exact algorithms (or good approximations) computing the process number have been
designed. For each type of topology, described below, and for a range of networks’size, we
create 100 random instances of networks belonging to this type. Then we run on each of
them the heuristic proposed in [4], the improved heuristic designed in Section 4, and an
algorithm computing the pathwidth (and so the process number up to one). The results are
represented in Fig. 3.

Circular arc graphs are particularly interesting because they corresponds to the case
where the physical topology is a ring. A graph is a circular arc graph if (i) its vertices
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can be represented by a subinterval over the circular interval [1, n] and (ii) two vertices
are adjacent if the corresponding interval intersect. When the network is a ring, each
communication between processors represents an interval. Therefore, when proceeding to
rerouting, two paths will interfer if the corresponding intervals intersect. This yield to
a dependency digraph that is precisely a circular arc graph. To make comparisons, we
have also implemented an algorithm to compute optimaly the pathwidth of circular arc
graphs [18]. Fig. 3(a) shows that our heuristic algorithm (B) is better than (A) [4], and that
the deviation with optimal value is small.

Digraphs with process number 2 have been characterized in [6], where a polynomial time
algorithm to decide whether a digraph has process number 2 or not is also given. On such
digraphs, the improvement of our heuristic algorithm is small compare to [4], as reported
in Fig. 3(c). However, it shows that our algorithms are relatively fast, since it took us only
one minute to perform all the simulations depict in Fig. 3(c) on a standard laptop.

We now consider circulant digraphs with n vertices (v1, . . . , vn) and arcs from vi to
{vi+1, vi+2, . . . , vi+k}, for i = 1 . . . n and for some fixed k (indexes are taken modulo n). In
particular, the directed cycle (v1, . . . , vn) is a subgraph of D. Simulation has been done in
order to illustrate the impact of the black nodes in terms of process number (see Propo-
sition 6). It is easy to see that, in absence of black nodes, the optimal process strategy
uses k agents and consists of the following: place agents at (v1, . . . , vk) and then, itera-
tively processes vn, vn−1 to vk+1. Without any black node, our heuristic computes this
optimal process number for any pair n, k. In Fig. 3(b), we consider a circulant graph with
50 nodes and outdegree k = 10. We gradually increase the number |Q| of black nodes.
For each value of |Q|, we run 100 tests with random positions of the black nodes and plot
the maximum value found. While |Q| ≤ 5, with high probability, the black nodes create a
configuration similar to the one of the graph defined in the proof of Proposition 6, increasing
the number of agents up to

∑
v blacknode |N

+(v)|. When |Q| increases too much, with high
probability, strongly connected components consisting of black nodes are created leading to
many impossible reconfigurations. Simultaneously, when |Q| is large enough, the only valid
configurations are very specific and forbid situations like in Proposition 6.

6 Conclusion

In this paper, we have investigated the reconfiguration problem: switching connections
routed in a WDM backbone network from current routing to a pre-determined destination
routing under the constraints that (1) connections are switched one after the other, and (2)
some connections may refused any temporarily interruption. This last constraint, modeled
using black nodes in the dependency digraph, may cause impossibility situation for the
reconfiguration and so the number of black nodes must remain small. Then, we have shown
how to handle black nodes in the process strategy by constructing a new dependency digraph
without black nodes. Finally, we have proposed a new heuristic algorithm that performs
well according to our experiments.

RR n° 6698



14 Coudert, Huc, Mazauric, Nisse, and Sereni

An interesting open question is now to evaluate the number of priority clients that an
operator may accept in the network in order to ensure the faisability of the reconfiguration
with high probability.
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