
HAL Id: inria-00332365
https://hal.inria.fr/inria-00332365

Submitted on 20 Oct 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Building certified static analysers by modular
construction of well-founded lattices

David Pichardie

To cite this version:
David Pichardie. Building certified static analysers by modular construction of well-founded lattices.
Proc. of the 1st International Conference on Foundations of Informatics, Computing and Software
(FICS’08), 2008, Shangai, China. �inria-00332365�

CORE Metadata, citation and similar papers at core.ac.uk

Provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/50216918?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00332365
https://hal.archives-ouvertes.fr


Replace this file with prentcsmacro.sty for your meeting,
or with entcsmacro.sty for your meeting. Both can be
found at the ENTCS Macro Home Page.

Building certified static analysers by modular

construction of well-founded lattices

David Pichardie

INRIA Rennes - Bretagne Atlantique, France

Abstract

This paper presents fixpoint calculations on lattice structures as example of highly modular programming
in a dependently typed functional language. We propose a library of Coq module functors for constructing
complex lattices using efficient data structures. The lattice signature contains a well-foundedness proof
obligation which ensures termination of generic fixpoint iteration algorithms. With this library, complex
well-foundedness proofs can hence be constructed in a functorial fashion. This paper contains two distinct
contributions. We first demonstrate the ability of the recent Coq module system in manipulating alge-
braic structures and extracting efficient Ocaml implementations from them. The second contribution is a
generic result, based on the constructive notion of accessibility predicate, about preservation of accessibility
properties when combining relations.

Keywords: Proof assistant, Constructive proofs, Static analysis.

1 Introduction

Static program analyses rely on fixpoint computations on lattice structures to solve

data flows equations. The basic algorithms are relatively simple, but lattice struc-

tures can be complex when dealing with realistic programming languages. Termi-

nation of these computations relies on specific properties of the lattice structures,

as for example the condition that all ascending chains are eventually stationary. In

this work, we aim at increasing confidence in static analysers by using the proof-

as-programs paradigm: from a machine-checked correctness proof of an analysis,

we extract a certified analyser. We use the extraction mechanism of the Coq proof

assistant to extract Ocaml programs from constructive proofs. In earlier work, we

presented a lattice library which allows the construction of complex lattices in a

modular fashion [3]. It was shown how this library was used to construct large

termination proofs based on the ascending chain condition. This paper presents a

new version of this library, based now on the more general termination criteria of

widening.

We first present in Section 2 the module signature that models the kind of

lattice we want to build. In Section 3 we motivate this library with a challenging

example of lattice to be built in Coq. Sections 4 and 5 then present various lattice

c©2008 Published by Elsevier Science B. V.
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functors proposed in the library. Section 4 discusses binary functors, in particular

the product functor. Section 5 deals with a functor of functions with various possible

implementations. Conclusions are given in Section 6.

We expect the reader to be familiar with the ML module system. The whole Coq

development is available on-line 1 . The theorems in this paper are given without

proofs but they can be found in a companion report [16].

Related work

This paper is a descendent of the work of Jones [10] where a modular construction

of finite lattices was proposed in the Haskell programming language using type

classes. Our lattice signatures are not restricted to ML function types but they are

also equipped with a specification. This is a consequence of the expressiveness gap

existing between the Haskell and the Coq type systems.

In earlier work, we already introduced the lattice library [3]. However, we mainly

discussed the semantic proofs required for certified analyses. Only ascending chain

conditions proofs were studied and few details were given about their constructions.

The current paper proposes several improvements:

• Mechanical proofs about fixpoint iteration using widenings has never been re-

ported before. Other existing works only deal with ascending chain condition

[11,2,4,9]. Widening operators require more complex termination proofs.

• In particular, new theoretical results about accessibility predicates are necessary

to handle product of widening operators in the constructive logic of Coq.

• We propose a modular notion of functions (see Section 5) which allows to con-

struct termination proofs without relying on the actual implementation chosen.

Previous proofs were specific to one implementation, and as a consequence it was

very difficult to adapt them to new function implementations.

The technical contribution of this paper deals with the modular construction of

large proof terminations in a proof assistant. Proving termination of static analysers

is sometimes considered as useless because we only need to check the result of the

analyser, if it terminates. Nevertheless, bugs concerning termination of fixpoint

iteration are difficult to debug: when do you stop the analyser ? Because of their

non-monotonous nature, widening operators break human intuition and sometimes

leads to invalid termination proofs (as noticed by Antoine Miné [13] as regards [17]).

Few detailed constructive proofs about accessibility properties have been pub-

lished. The reference in this field is the work of Paulson [15] where general rules

to preserve accessibility properties are given. Many of our proofs depend on these

rules, however the notion of widening operator required further extensions. As far

as we know the result proved in Theorem ?? is new.

2 Module signatures for lattices

This work is based on two algebraic structures: partially ordered sets (posets) and

lattices (see [7] for standard definitions). To be precise we consider a more general

1 http://www.irisa.fr/lande/pichardie/lattice/main.html
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notion that posets because the posets (A,≡,⊑) we consider in this paper are in fact

composed of a set A and a pre-order ⊑. ≡ is the associated equivalence relation.

In Coq, the corresponding definitions are given as module signatures (see Fig-

ure 1). The Poset signature reads as follow: a module of type (or signature) Poset

must at least contain a type t (to model elements in the posets) and two relations

eq and order. It must also contains proofs that eq (resp order) is an equivalence

relation (resp. a partial order). These required proofs are represented with the key-

word Axiom. At last the two relation eq and order must come with a computable test

function eq_dec and order_dec. The type of the operator eq_dec is a dependent type

that expresses the following: for any x and y of type t, the function must return a

boolean such that, if the boolean is true , x and y are equivalent, if it is false, they

are not.

The Lattice signature includes all elements of the Poset signature with the com-

mand Include Poset
2 . A first consequence of these signature definitions is that the

statement “every lattice is a poset” is free in Coq: a module satisfying the Lattice

signature, satisfies the Poset signature too.

Module Type Poset.
Parameter t : Set.

Parameter eq : t → t → Prop.

Axiom eq_refl : ∀ x : t, eq x x.

Axiom eq_sym : ∀ x y : t, eq x y → eq y x.

Axiom eq_trans : ∀ x y z : t, eq x y → eq y z → eq x z.

Parameter eq_dec : ∀ x y : t, {eq x y}+{¬ eq x y}.

Parameter order : t → t → Prop.

Axiom order_refl : ∀ x y : t, eq x y → order x y.

Axiom order_antisym : ∀ x y : t, order x y → order y x → eq x y.

Axiom order_trans : ∀ x y z : t, order x y → order y z → order x z.

Parameter order_dec : ∀ x y : t, {order x y}+{¬ order x y}.
End Poset.

Module Type Lattice.
Include Poset.

Parameter join : t → t → t.

Axiom join_bound1 : ∀ x y : t, order x (join x y).

Axiom join_bound2 : ∀ x y : t, order y (join x y).
Axiom join_least_upper_bound :

∀ x y z : t, order x z → order y z → order (join x y) z.

Parameter meet : t → t → t.

Axiom meet_bound1 : ∀ x y : t, order (meet x y) x.

Axiom meet_bound2 : ∀ x y : t, order (meet x y) y.
Axiom meet_greatest_lower_bound :

∀ x y z : t, order z x → order z y → order z (meet x y).

Parameter bottom : t.

Axiom bottom_is_bottom : ∀ x : t, order bottom x.
End Lattice.

Fig. 1. The lattice signature

We will need a further property to be able to compute over-approximation of

fixpoints in such structures. In our previous work [3] we considered the ascending

chain condition but in this work we are interested in more general criterion: the

existence of a widening operator.

2 This command is not currently available in the Coq system. It should be replaced by the complete list of
elements found in the module.
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The standard fixpoint iteration à la Kleene may require an important number

of iterations before convergence. Moreover, some lattices used in static analysis do

not respect the ascending chain condition (like the lattice of intervals used in Sec-

tion 3). The solution proposed by Cousot and Cousot [6] is a fixpoint approximation

by a post fixpoint. Such a post fixpoint is computed with an algorithm of the form

x0 = ⊥, and ∀n, xn+1 = xn▽f(xn) with ▽ a binary operator on A which ”extrap-

olates” its two arguments. The computed sequence should be increasing (property

ensured if ▽ satisfies ∀x, y ∈ A, x ⊑ x▽y) and should over-approximate the classical

iteration: fn(⊥) ⊑ xn (property ensured if ▽ satisfies ∀x, y ∈ A, y ⊑ x▽y). A last

condition ensures the computation convergence: after a finite number of steps, we

must reach a post fixpoint. The criterion proposed in the literature is generally

“ for all increasing chains x0 ⊑ x1 ⊑ · · · ⊑ xn ⊑ · · · , the chain y0 = x0, yn+1 =

yn▽xn+1 eventually reaches a rank k with yk ≡ yk+1”.

In order to implement this algorithm in Coq, we will work with a definition

which is better adapted to constructive proofs. This definition will be based on the

notion of accessibility and of noetherian 3 relation [1].

Definition 2.1 (Accessibility)

Given a relation ≺ on a set A, the set Acc≺ of accessibles

elements with respect to ≺ are inductively defined as

∀y ∈ A, y ≺ x ⇒ y ∈ Acc≺
x ∈ Acc≺

Definition 2.2 (Noetherian relation) A relation ≺ on a set A is noetherian if

all elements in A is accessible with respect to ≺.

Intuitively, an element is accessible with respect to a relation ≺ if it is not the

starting point of any infinite ≺-decreasing chain. A trivial example of accessible

element is an element without predecessor.

In order to express this widening criterion with the accessibility notion, we need

to define a relation where infinite chains will be prohibited. Such a relation is defined

by (x1, y1) ≺▽ (x2, y2) iff x2 ⊑ x1 ∧y1 ≡ y2▽x1 ∧y1 6≡ y2. Then, the following

equivalence holds
(

there exists a chain x0 ⊑ · · · ⊑ xn+1 ⊑ · · ·

with y0 = x0, and ∀n, yn+1 = yn▽xn

satisfying ∀k, yk 6≡ yk+1

)

⇐⇒

(

there exists a sequence ((xk, yk))k∈N

satisfying x0 = y0

and ∀k, (xk+1, yk+1) ≺▽ (xk, yk)

)

The classical criterion found in the literature can hence be formulated under the

form

∀x ∈ A, (x, x) ∈ Acc≺▽

Note that we do not require all elements to be accessible, only those of the form

(x, x) because they are potential starting points for iteration with widening.

Finally, these properties are collected in the PosetWiden interface given in Fig-

ure 2. The properties widen_eq1 and widen_eq2 ensure that ▽ respects the equivalence

≡ taken on A. The definition of the signature LatticeWiden (lattice with a widening

operator) is expressed in a similar way.

3 The Coq library uses the inappropriate name of well-founded relation.
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Figure 3 gives the construction of the associated generic post fixpoint solver.

This module is a functor that takes in argument a module of type LatticeWiden and

build an operator pfp_widen that computes post fixpoint. It is expressed in the type

of the operator as follow: given a function f, if f is monotone then the function

return an element x in the lattice that is a post fixpoint.

Module Type PosetWiden.
Include Poset.

Parameter widen : t → t → t.

Parameter widen_bound1 : ∀ x y : t, order x (widen x y).

Parameter widen_bound2 : ∀ x y : t, order y (widen x y).

Parameter widen_eq1 : ∀ x y z : t, eq x y → eq (widen x z) (widen y z).

Parameter widen_eq2 : ∀ x y z : t, eq x y → eq (widen z x) (widen z y).

Definition widen_rel : (t*t) → (t*t) → Prop := fun x y ⇒
order (fst y) (fst x) ∧
eq (snd x) (widen (snd y) (fst x)) ∧
¬ eq (snd y) (snd x).

Parameter widen_acc_property : ∀ x : t, Acc widen_rel (x,x).
End PosetWiden.

Fig. 2. The module signature for poset with a widening operator

Module PostFixPoint (L:LatticeWiden).

Definition monotone f := ∀ x y, L.order x y → L.order (f x) (f y).

Definition pfp_widen f : monotone f → { x:L.t | L.order (f x) x } :=

(∗ . . . omitted . . . ∗)
End PostFixPoint.

Fig. 3. Postfixpoint computation

3 A challenging example

When formalizing analyses for realistic programming language, the underlying lat-

tice may be complex, even for analyses of middle precision. We give here an example

of such lattice in order to motivate and illustrate our lattice library.

The aim of this lattice is to abstract the memory of a Java virtual machine with

a context-sensitive interval abstraction for numerical values and context-sensitive

class abstraction for references. Because in Java, values are numerics or references

it is natural to abstract them with a sum of lattice, here the sum of the set of class

name and the interval domain [6].

Value♯ = P(ClassName) + Interval

The global structure of the lattice is then of the form:

State♯ = Local♯ × Heap♯

with L and H some function domains of the form:

Local♯ = Context →
((

Value♯
)⋆

×
(

Var → Value♯
))

5
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Heap♯ = ClassName →
(

FieldName → Value♯
)

Var, ClassName, FieldName, MethodName and ProgPoint represent here the (fi-

nite) sets of variable name, class name, field name, method name and program

points. All this set are encoded with integers on 32 bits. The set Context is com-

posed of list of couples in MethodName × ProgPoint. These lists have at most k

elements and represent the last k call sites.

Context = (MethodName × ProgPoint)∗≤k

L is the flow-sensitive local abstraction of operand stack and local variables. H is

the flow-insensitive abstraction of the heap.

Value♯ =P(ClassName) + Interval

Context = (MethodName × ProgPoint)∗≤k

Local♯ = Context →
((

Value♯
)⋆

×
(

Var → Value♯
))

Heap♯ = ClassName →
(

FieldName → Value♯
)

State♯ = Local♯ × Heap♯

The global domain St admit a lattice structure with a widening operator. Thanks

to our lattice library it can be simply built by composition of functors. The con-

struction is presented in Figure 4. For Value♯ we use a functor SumLiftLatticeWiden

that builds the disjoint sum of two lattices. We build H with the function functor

presented in Section 5. The MapLatticeWiden functor allows to build function with

a complex codomain (here Contexte). Its utilisation (corresponding to line 8 to 11)

will be explained in Section 5. The final lattice is built with the product functor

ProdLatticeWiden presented in the next section.

1 Module Val := SumLiftLatticeWiden(IntervalLattice)(FiniteSetLatticeWiden).
2
3 Module H := ArrayBinLatticeWiden(ArrayBinLatticeWiden(Val)).
4
5 Module LocalVar := ArrayBinLatticeWiden Val.
6 Module Stack := ListLiftLatticeWiden Val.
7
8 Module N5. Definition val : nat := 5. End N5.
9 Module Context := ListFiniteSet(N5)(ProdFiniteSet(WordFiniteSet)(WordFiniteSet)).

10 Module Map := FMapList.Make Context.
11 Module L := MapLatticeWiden(Context)(Map)(ProdLatticeWiden(Stack)(LocalVar)).
12
13 Module GlobalState := ProdLatticeWiden(L)(H).

Fig. 4. Construction of the global lattice in Coq

We will now present some of the functors introduced during this example. We

will generally focus on the poset part (with widening) of the modules because the

operators specific to lattice do not require any technical details.

4 Lattice functors

We propose three basic binary functors in our library: the product, the disjoint sum

and the lifted sum. Due to lack of space, we will restrict our explanations in this

paper to the product.

6
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4.1 Poset product

Lemma 4.1 (Poset product) Given two posets (A,≡A,⊑A) and (B,≡B,⊑B),

the triplet (A × B,≡A×B,⊑A×B) defined by ≡A×B= {((a1, b1), (a2, b2)) | a1 ≡A

a2 ∧ b1 ≡B b2} and ⊑A×B= {((a1, b1), (a2, b2)) | a1 ⊑A a2 ∧ b1 ⊑B b2} is a poset,

called poset product.

In Coq, Lemma 4.1 corresponds to a functor which takes two modules of sig-

nature Poset and returns a module respecting the Poset signature for the product

structure.

4.2 The poset-with-widening product

Module ProdPosetWiden (P1:PosetWiden) (P2:PosetWiden) : PosetWiden
with Definition t := (P1.t * P2.t)
with Definition eq := fun (x y : (P1.t * P2.t)) ⇒

P1.eq (fst x) (fst y) ∧ P2.eq (snd x) (snd y)
with Definition order := fun (x y : (P1.t * P2.t)) ⇒

P1.order (fst x) (fst y) ∧ P2.order (snd x) (snd y)
with Definition widen := fun (x y : (P1.t * P2.t)) ⇒
match (x,y) with

((x1,x2),(y1,y2)) ⇒ (P1.widen x1 y1, P2.widen x2 y2)
end.

Include ProdPoset(P1)(P2).

Definition widen (x y : t) :=
match (x,y) with

((x1,x2),(y1,y2)) ⇒ (P1.widen x1 y1, P2.widen x2 y2)
end.

...

Lemma widen_acc_property : ∀ x:t, Acc widen_rel (x,x).
Proof. ... Qed.

End ProdPosetWiden.

Fig. 5. The poset-with-widening product functor

The construction of the poset-with-widening product functor is given in Figure 5.

The interactive definition of this functor is made in three steps. We first give the

functor signature with its base type t, its equivalence relation eq, its order relation

order and the considered widening operator using the with notation. In a second

step, we construct the definitions dealing with the poset part using the poset product

functor ProdPoset. Note that in the expression ProdPoset(P1)(P2), modules P1 and P2

are used as module of type Poset. The signature inclusion of Poset into PosetWiden

allows this use without requiring any proof of coercion. This is a convenient feature

when manipulating nested algebraic structures.

The last step concerns the new part of this functor: the proof that the widening

operator satisfies its termination criterion. In our previous work [3] the termination

criterion for the product of noetherian poset (i.e. that satisfy the ascending chain

condition) was proved using a classical result about lexicographic products, but it

is not possible for widening operators. Indeed, the key lemma to be established is:

Lemma 4.2 Given two posets (A,≡A,⊑A) and (B,≡B,⊑B), two binary operators

▽A and ▽B on A and B, if ∀a ∈ A, (a, a) ∈ Acc≺▽A
and ∀b ∈ B, (b, b) ∈ Acc≺▽B

7
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then the operator ▽A×B defined by

(a1, b1) ▽A×B (a2, b2) = (a1▽A a2, b1▽B b2)

satisfies ∀c ∈ A × B, (c, c) ∈ Acc≺▽A×B
.

Theorem Given two lattices (A,⊑A,⊔A,⊓A,▽A) and

(B,⊑B,⊔B,⊓B,▽B) the operator ▽A×B defined by

(a1, b1) ▽A×B (a2, b2) = (a1▽A a2, b1▽B b2)

satisfies ∀c ∈ A × B, (c, c) ∈ Acc≺▽A×B
.

This result in standard when proved in classical logic [6]. In constructive logic,

it has not been proved before (as far as we know). It requires a technical proof to

be directly established (because by example, it relies on pairs of pairs). We can

make a more general proof and express the current problem as a particular case.

The idea consists in expressing ≺▽A×B
as a lexicographic product between ≺▽A

and

≺▽B
. We then have to prove a result of the form

∀a ∈ Acc⊳A
, ∀b ∈ Acc⊳B

, (a, b) ∈ Acc⊳lex
A×B

with ⊳A playing the role of ≺▽A
and ⊳B the one of ≺▽B

. However if ⊳lex
A×B denotes

the standard lexicographic product of the two relations, the result is generally false:

Lemma 4.3 Given two relations ⊳A and ⊳B on sets A and B, if a ∈ Acc⊳A
and

b ∈ Acc⊳B
, if there exist b′ ∈ B such that b′ 6∈ Acc⊳B

and a′ ∈ A such that a′⊳Aa

then (a, b) 6∈ Acc⊳lex

A×B
.

The problem here is that we can take any element b′ to obtain a predecessor

(a′, b′) of (a, b). The case a1⊳Aa2 in the definition of ⊳lex
A×B is hence too weak. We

have to make restrictions on b1 and b2. To this purpose, we introduce a relation ◭B

and propose a new product of the form

(a1, b1)⊳
lex(a2, b2) ⇐⇒ (a1⊳Aa2 and b1◭Bb2) or (a1 = a2 and b1⊳Bb2)

adding a constraint between ⊳B and ◭B to prevent having any b′ as previously:

if b2◭Bb1 and b1 ∈ Acc⊳B
then b2 should stay in Acc⊳B

. We will take a simpler

sufficient condition (requiring no accessibility):

∀b1, b2, b3 ∈ B, b1⊳Bb2 and b2◭Bb3 implies b1⊳
+b3

We can even propose a symmetric definition and encompass the case of ⊑A×B (where

a1 = a2 was replaced by a1 ≡A a2) by introducing a relation ◭A satisfying a similar

property than ◭B.

8
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Definition(Extended lexicographic product) Given two pairs of rela-

tions ⊳A and ◭A on a set A, ⊳B and ◭B on B. The extended lexicographic

product is the relation ⊳◭lex(⊳A,⊳B ,◭A,◭B) defined on A × B by

(a1, b1)⊳◭
lex(⊳A,⊳B ,◭A,◭B)(a2, b2) ⇐⇒

(a1⊳Aa2 and b1◭Bb2) or (a1◭Aa2 and b1⊳Bb2)

with the following conditions

∀a1, a2, a3 ∈ A, a1⊳Aa2 and a2◭Aa3 implies a1⊳
+
Aa3 (1)

∀b1, b2, b3 ∈ B, b1⊳Bb2 and b2◭Bb3 implies b1⊳
+
Bb3 (2)

Theorem If ⊳A, ⊳B, ◭A and ◭B satisfy the hypotheses of the previous def-

inition, then for all a ∈ Acc⊳A
and b ∈ Acc⊳B

, (a, b) ∈ Acc
⊳◭lex(⊳A,⊳B,◭A,◭B) .

When the context will allow us to do it without ambiguity, we will use ⊳◭ to

denote this relation.

Example 4.4 The standard lexicographic product is a special case of ⊳◭.

(a1, b1) ⊐A×B (a2, b2) ⇐⇒ (a1 ⊐A a2 and b1 ⊒ b2) or (a1 ≡A a2 and b1 ⊐ b2)

and we have

∀a1, a2, a3 ∈ A, a1 ⊐A a2 and a2 ≡A a3 implies a1 ⊐A a3

and

∀b1, b2, b3 ∈ B, b1 ⊐B b2 and b2 ⊒B b3 implies b1 ⊐+
B b3

Then ⊐A×B= ⊳◭lex(⊐A,⊐B ,≡A,⊒B).

To prove Lemma 4.2, we only have to use a measure function f : (A×B)× (A×

B) → (A × A) × (B × B) defined by f ((a1, b1) , (a2, b2)) = ((a1, a2) , (b1, b2)) and

considering the relation ≺▽A×B
on (A×B)× (A×B) and ⊳◭lex(≺▽A

,≺▽B
,2▽A

,4▽B ) on

(A × A) × (B × B) where 2▽A
and 4▽B

are defined by (x1, y1) 2▽A
(x2, y2) ⇐⇒

x2 ⊑A x1 ∧ y1 ≡ y2 and (x1, y1) 4▽B
(x2, y2) ⇐⇒ x2 ⊑B x1 ∧ y1 ≡B y2▽B x1.

It is not difficult to satisfy that hypotheses of Theorem ?? are fulfilled and then

conclude.
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5 Lattices of functions

Another important functor concerns functions. Static analyses make heavy use of

functions during their computations. Efficiency of the underlying data structures is

hence crucial. However proof of termination properties on complex data structures

can be hard. This section proposes an abstract notion of function implementation

for which we prove termination properties. These proof can then be used for several

efficient implementations. We now describe the functor which builds a poset with

widening for functions.

First, we remark that implementing functions with the native functions of the

chosen functional programming language is not a reasonable solution. It is better

to use encoding as association lists, balanced trees, ... We will then prove the

termination criterion of widening ”for all function implementations”.

5.1 Function implementation

Module Type Func_FiniteSet_PosetWiden.
Declare Module A : FiniteSet.
Declare Module B : PosetWiden.

Parameter t : Set.

Parameter get : t → A.t → B.t.

Definition eq : t → t → Prop := fun f1 f2 ⇒
∀ a1 a2 : A.t, A.eq a1 a2 → B.eq (get f1 a1) (get f2 a2).

Axiom eq_refl : ∀ x : t, eq x x.

Axiom eq_dec : ∀ x y : t, {eq x y}+{¬ eq x y}.

Definition order : t → t → Prop := fun f1 f2 ⇒
∀ a1 a2 : A.t, A.eq a1 a2 → B.order (get f1 a1) (get f2 a2).

Parameter order_dec : ∀ x y : t, {order x y}+{¬ order x y}.
End Func_FiniteSet_PosetWiden.

Fig. 6. Function implementation signature

The notion of function implementation is given in Figure 6. This signature

handles

• a module 4
A with a signature FiniteSet (associated with the function domain).

The FiniteSet signature is given in Figure 7. It represents set in bijection with

parts J0, cardinal − 1K of Z. Our library proposes finite set functors (product,

list of bounded length) and a base finite set module (binary number on 32 bits).

• a poset module B associated with codomain.

• an abstract type t used to represent functions.

• a function get where (get F a) gives the image of a:A.t for the function associated

with the element F:t.

• fixed equivalence (eq) and order (order) relation definitions with their test imple-

mentations (eq_dec and order_dec).

4 Modules can handles modules. The corresponding signature element is then introduced by
Declare Module.
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• the property eq_refl ensures that get is compatible with the equivalence relation

A.eq taken on A.t.

Module Type FiniteSet.
Parameter t : Set.

Parameter eq, eq_dec [...]
Axiom eq_refl, eq_sym, eq_trans [...]

Parameter cardinal : Z.
Axiom cardinal_positive : cardinal > 0.

Parameter inject : t → Z.
Parameter nat2t : Z → t.

Axiom inject_bounded : ∀ x : t, 0 <= (inject x) < cardinal.

Axiom inject_nat2t : ∀ n : Z, 0 <= n < cardinal → inject (nat2t n) = n.

Axiom inject_injective : ∀ x y : t, inject x = inject y → eq x y.

Axiom inject_comp_eq : ∀ x y : t, eq x y → inject x = inject y.
End FiniteSet.

Fig. 7. FiniteSet signature

5.2 A widening operator on functions

Now for any function implementations we build a poset with a standard widening

operator. For functions in A → B this operator is defined as

∀f1, f2 ∈ A → B,∀a ∈ A, (f1▽f2)(a) = f1(a)▽Af2(a)

The proof of the termination criterion relies on the Theorem ?? and the finiteness

of the codomain.

5.3 Two efficient implementations

We propose two function implementations in our library. The first is a specific im-

plementation for functions whose domain is a bounded binary integer (each integer

denotes a position in a tree [14]). This kind of efficient implementation is heavily

used in Leroy’s certified compiler [12]. The second implementation is based on an

abstract implementation of Ocaml maps. We have adapted the Ocaml signature to

Coq and proven that any map fulfils the Func_FiniteSet_PosetWiden signature. We

currently propose a sorted list implementation and plan an implementation with

balanced tree, both based on the previous formalisation done in [8] 5 . Maps can by

built on any finite set. Finite sets can be constructed with the previously enumer-

ated functors.

To conclude this section, we finish by commenting the example presented in

Figure 4. Context is a module of type FiniteSet that is built with the functor

ListFiniteSet. N5 is a module that encapsulate the natural number 5. We hence

bound our lists with at most 5 elements. MapLatticeWiden is a functor that take as

argument a finite set (here Context), a map implementation (here Map built with

sorted list) and a lattice with a widening operator. It builds the expected lattice

and its widening operator.

5 Balanced trees are a keystone of the industrial-task Astre static analyser [5].
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6 Conclusion

We have presented a framework for programming fixpoint computations on lat-

tice structures in a dependently typed functional language. In order to construct

complex lattices, we propose a library of Coq module functors. We focused our ex-

planations on the product and the function functor, but other functors are available

in our Coq development.

The main contribution of this work deals with constructive proofs of termination

properties. The termination criteria used with widening operators has required

extensions of previousy known results about accessibility predicates. Termination

proofs are often very difficult to do in a proof assistant. This library shows the

benefit of modular reasoning to handle such complex proofs. By composing the

various functors that we propose, it is now possible to easily construct termination

proofs for deep structures with efficient extracted data structures in Ocaml.

We have more recently extend our library to handle narrowing operators [6].

Again the technical difficulty relies in the functor product. It is interesting to notice

that termination criterion of the narrowing operator is proved with the Theorem ??.

It confirms that this theoretical result was a cornerstone for our work.

We imagine two extension for our library. The first one concerns the construction

of base lattices, those which are used to instantiate lattice functors and construct

bigger lattices. Some automation could be proposed to quickly construct finite

lattices with their correctness proofs starting from a text description of their Hasse

diagram. The second one concerns Galois connexion that could be constructed in

the same modular way.
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