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Abstract: Sequential Monte Carlo (SMC) methods are a general class of tech-
niques to sample approximately from any sequence of probability distributions.
These distributions are approximated by a cloud of weighted samples which are
propagated over time using a combination of importance sampling and resam-
pling steps. This article is concerned with the convergence analysis of a class
of SMC methods where the times at which resampling occurs are computed on-
line using criteria such as the effective sample size. This is a popular approach
amongst practitioners but there are very few convergence results available for
these methods. It is shown here that these SMC algorithms correspond to a
particle approximation of a Feynman-Kac flow of measures on adaptive excur-
sion spaces. By combining a non-linear distribution flow analysis to an original
coupling technique, we obtain functional central limit theorems and uniform ex-
ponential concentration estimates for these algorithms. The original exponential
concentration theorems presented in this study significantly improve previous
concentration estimates obtained for SMC algorithms.
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Méthodes de Monte Carlo séquentielles et
adaptatives

Résumé : Cet article porte sur la modélisation et l’analyse de la convergence
de méthodes de Monte Carlo séquentielles et adaptatives. Ces techniques de sim-
ulation stochastiques sont fondées sur l’évolution aléatoire de systèmes de par-
ticules en interaction et associées à des critères d’adaptation. Nous présentons
des interprétations de ces algorithmes en termes d’approximation de type champ
moyen de flots de mesures de Feynman-Kac dans des espaces d’excursions. Les
instants d’interaction sont calculés en lignes selon des critères d’adaptation em-
piriques tels des critères de tailles de ré-échantillonnage effectives et des critères
d’entropie relative de type Boltzmann. Ces stratégies d’adaptation empiriques
sont d’un usage courant en pratique souvent présentées comme de simples heuris-
tiques, sans aucun fondement mathématique rigoureux. Nous présentons de
nouvelles techniques d’analyse de type semi-groupe fondées sur des couplage de
processus à valeurs mesures. Cette analyse permet d’obtenir des théorèmes de
la limite centrale fonctionnels et des résultats de concentration exponentielle
uniformes par rapport au paramètre temporel. Notons enfin que ces travaux
sont les premières études rigoureuses sur la concentration et les fluctuations de
ces classes d’algorithmes de simulation adaptatifs. Par ailleurs, les théorèmes
de concentration exponentielle présentés dans cette étude améliorent de récents
travaux sur ce thèmes dans le cadre des interprétations particulaires de flots de
mesures de Feynman-Kac.

Mots-clés : Méthodes de Monte Carlo séquentielles et adaptatives, for-
mules de Feynman-Kac, méthodes particulaires de type champ moyen, taille
d’échantillonnage effective, critères adaptatifs fonctionnels.
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1 Introduction

Sequential Monte Carlo (SMC) methods are a generic class of simulation-based
algorithms to sample approximately from any sequence of probability distribu-
tions. These methods are now extensively used in statistics, computer science,
engineering, and physics; see [5, 10, 13] for many applications. SMC methods
approximate the target probability distributions of interest by a large number
of random samples termed particles which evolve over time according to a com-
bination of importance sampling and resampling steps.

In the resampling steps, new particles are sampled with replacement from a
weighted empirical measure associated to the current particles; see Section 2.1.2
for more details. These resampling steps are crucial and, without them, it is
impossible to obtain uniform (in time) convergence results for SMC estimates.
However, resampling too often has a negative effect: it decreases the number
of distinct particles, increases the variance of SMC estimates and thus should
only be applied when necessary. Consequently, in most practical implementa-
tions of SMC methods, the times at which resampling occurs are selected by
monitoring a criterion which assesses the quality of the current particle approx-
imation. Whenever this criterion is above or below a given, user-set, threshold
then resampling occurs. This approach was originally proposed in [14] and,
subsequently, has been widely adopted.

For this class of adaptive SMC methods, the times at which resampling oc-
curs are computed on-line using our current SMC approximation and thus are
random. However, most of the theoretical results on SMC algorithms assume
resampling occurs at deterministic times; see [9] for an exception which is dis-
cussed later on. The objective of this article is to provide a thorough treatment
of this problem.

Sharp convergence results are provided for this type of SMC algorithms; this
is achieved through a coupling argument. Under weak assumptions, the random
times at which resampling occurs converge, almost surely as the number of par-
ticles goes to infinity, toward some deterministic resampling times. We consider
a reference SMC algorithm which resamples at these deterministic times; the
times are not explicitly known so this algorithm cannot be implemented but all
the convergence results developed in the literature hold for it. It is then shown
that the difference, in probability, between this reference SMC algorithm and
the adaptive algorithm is exponentially small in the number of particles. This
approach allows us to transfer rather straightforwardly the convergence results
of the reference SMC algorithm to the adaptive SMC algorithm. In particular,
we establish multivariate and functional central limit theorems, yielding what
seems to be the first results of this type for this class of algorithms. Moreover,
for standard SMC methods and the adaptive SMC schemes presented here, we
present new exponential concentration estimates, including time uniform esti-
mates which significantly improve over those presented in [5]. These results
allow us to calibrate the number of samples so as to achieve a given precision
with a given probability, uniformly with respect to the time parameter.

RR n° 6700



4 Del Moral, Doucet & Jasra

1.1 Structure of the Article

The rest of the paper is organized as follows. Note that the proofs of some
technical results are given in the appendix.

In Section 2, we detail some generic models (Section 2.1.2) and present the
class of adaptive SMC algorithms studied here (Section 2.2). Various resampling
criteria that are used by practitioners are discussed in Section 2.3. It is shown
that they correspond to empirical approximations of limiting criteria defined in
Section 2.4.1. This allows us to present our main coupling result in Section 2.4:
the difference in probability between the reference SMC algorithm using these
limiting criteria and the adaptive SMC algorithm using approximations of these
limiting criteria is exponentially small in the number of particles.

In Section 3, a precise description of the sequence of distributions approxi-
mated by the reference SMC algorithm is given. We review Feynman-Kac distri-
bution flows in Sections 3.1 and 3.2 then describe such flows on excursion spaces
(Section 3.3). In Section 3.4 a general class of functional criteria which are used
to define the deterministic resampling times are presented; the construction of
these times is detailed in Section 3.5. We further detail the construction of these
times for the criteria previously introduced in Section 2.4.1.

In Section 4, a theoretical analysis of the reference SMC algorithm is pre-
sented; this is defined formally in Section 4.1. A concentration analysis is given
in Section 4.2 which significantly improves the exponential estimates for SMC
approximations presented in earlier studies; e.g. those in Section 7.4.3 of [5].
These results are used to obtain a concentration result for the empirical criteria
around their limiting values.

The results above are used, in Section 5, to bound the differences between
the deterministic resampling times and their empirical approximations, up to an
event with an exponentially small probability. This is achieved by introducing
a randomized criterion. Finally we analyze the fluctuations of adaptive SMC
algorithms in Section 6.

2 Adaptive SMC Algorithms and Main Results

2.1 Target distributions on path spaces

2.1.1 Some Notation

Standard notation used in this article is as follows. M(E), P(E), and Bb(E),
respectively denote, the set of bounded and signed measures, the subset of all
probability measures on some measurable space (E, E), and the Banach space
of all bounded and measurable functions f on E when equipped with the uni-
form norm ‖f‖ = supx∈E |f(x)|. Osc1(E) is the convex set of E-measurable
functions f with oscillations osc(f) = sup(x,y)∈E2 {|f(x)− f(y)|} ≤ 1. µ(f) =∫
µ(dx) f(x), is the integral of a function f ∈ Bb(E), w.r.t a measure µ ∈M(E).

In a slight abuse the notation, let µ(A) = µ(1A) with A ∈ E and 1A the indica-
tor of A. Recall that a bounded integral operator M from a measurable space
(E, E) into an auxiliary measurable space (F,F), is an operator f 7→ M(f)
from Bb(F ) into Bb(E) such that the functions M(f)(x) =

∫
F
M(x, dy) f(y)

are measurable and bounded, for any f ∈ Bb(F ). A bounded integral operator
M from a measurable space (E, E) into an auxiliary measurable space (F,F)

INRIA



Adaptive Resampling Procedures for Sequential Monte Carlo Methods 5

also generates a dual operator µ 7→ µM from M(E) into M(F ) defined by
(µM)(f) := µ(M(f)).

2.1.2 Motivation and Models

Most of the research in Monte Carlo simulation is centered around the compu-
tation of integrals, for a wide range of f

γ(f) :=
∫

f(x) G(x) µ(dx) = E (f(X) G(X))

η(f) := γ(f)/γ(1) (2.1)

where X is a random variable distributed according to µ on some measur-
able space (E, E), G is a given non-negative potential type function on E and
f ∈ Bb(E). If it is possible to draw independent copies (Xi)i≥1 from µ, an
approximation of the pair of measures (γ, η) can be obtained as

γN (·) :=
1
N

N∑
i=1

G
(
Xi
)
δXi(·) and ηN (·) :=

N∑
i=1

G(Xi)∑N
j=1G(Xj)

δXi(·)

where δa is the Dirac measure at the point a ∈ E. In practice, these approxima-
tions can suffer from several problems. For instance, assume that G = 1A and
µ(A) := P(X ∈ A) ' 10−p, for some large parameter p ≥ 1. In this situation, it
may not be possible to find a sample Xi within the set A, so that γN (·) = 0 and
the measure ηN (·) is not well defined. To overcome this difficulty, importance
sampling techniques are often used. This strategy consists of finding an aux-
iliary importance distribution, say µ′, such that µ � µ′ with Radon-Nikodym
derivative dµ

dµ′ , and to set

γ(f) = E (f(X ′) G′(X ′)) =
∫

f(x) G′(x) µ′(dx) with G′(x) := G(x)
dµ

dµ′
(x)

where X ′ ∼ µ and µ′ a distribution on E. This new model has exactly the
same form as the one discussed above, so that we can use the same Monte Carlo
strategy, replacing the pair of parameters (µ,G) by (µ′, G′).

For importance sampling, even if we have found a good importance distri-
bution, another significant problem often arises. Namely, the Radon-Nikodym
derivative reflects the relative differences between the desired reference measure
and the importance sampling one. These weight functionals are generally de-
generate (also known as weight degeneracy). For instance, assume X represents
the path of a sequence of random variables (X ′0, . . . , X

′
n), and the potential

functions G are a product of a sequence of functions from the origin up to a
given time horizon n

X = (X ′0, . . . , X
′
n) and G(X) =

∏
0<p<n

G′p(X
′
p)

where G′p is a potential function of the random state X ′p. As n increases, so
does the relative variance of G, and accurate estimation of (2.1) is very difficult.
In this situation, the pair of measures (γ, η) given below depend on the time

RR n° 6700



6 Del Moral, Doucet & Jasra

parameter, and they are given for every test function fn on the path space by
the following Feynman-Kac integral representation formulae

ηn(fn) = γn(fn)/γn(1) with γn(fn) = E

(
fn (X ′0, . . . , X

′
n)

∏
0<p<n

G′p(X
′
p)

)
.

(2.2)
From a pure mathematical point of view, we emphasize that every importance
sampling/change of measure, of the type discussed above, reduces to the same
type of Feynman-Kac model.

These probabilistic models and their SMC approximations appear in nu-
merous fields including: probability, Bayesian statistics, theoretical chemistry,
quantum physics and engineering sciences. For instance, in signal processing,
(X ′n)n≥0 is often a Markov chain and represents a signal process and the poten-
tial functions are the likelihood functions associated with some noisy observa-
tions. The corresponding measures ηn are the conditional distributions of the
random paths of the signal, given a series of observations. In particle physics, the
law of an unabsorbed particle X ′n evolving in an absorbing medium En associ-
ated with an energy well V is given by a Feynman-Kac integral formulae. In this
case, there is a Boltzmann-Gibbs potential function G′n(X ′n) = exp (−β V (X ′n)).
For more details on these models and their connections to molecular simulation
and particle filtering techniques, see, for example, chapter 12 of [5].

We remark that in most of the application areas discussed above, the free
evolution process X ′n and the potential functions G′n are given by the phys-
ical problem at hand. In other instances, the choice of these parameters is
more flexible. Let us assume that the target measure is defined in terms of a
Boltzmann-Gibbs mass transformation of a reference ‘static’ measure λ, with
respect to some potential function gn on some measurable space E; that is

πn(dx) = Ψgn(λ)(dx) :=
1
Zn

gn(x) λ(dx) with Zn := λ(gn).

For instance, in combinatorial counting problems λ often represents the uniform
measure on a given finite set E and gn = 1An the indicator function a subset
An ⊂ E. In global optimization problems, λ may represent a reference measure
on a given space E and gn = exp (−βnV ) a Boltzmann-Gibbs factor associated
with an inverse temperature parameter β and an energy type non-negative func-
tion V . Numerous algorithms have been proposed in the Markov chain Monte
Carlo community to sample from these Boltzmann-Gibbs measures; that is, we
design Markov kernels M ′n with a prescribed invariant measure πn = πnM

′
n. For

instance, Metropolis-Hastings transitions consist of sampling a candidate, and
to accept or reject it according to an appropriate acceptance ratio which ensures
that the target measure πn is reversible w.r.t these local transitions. The well-
known simulated annealing algorithm consists of finding a judicious schedule βn
increasing sufficiently slowly to ensure that successive Metropolis-Hasting moves
between these changes are close to equilibrium. Another strategy, consists of
finding a sequence of multiplicative potential functions, so that

(gn+1 = gn ×G′n and πn = πnM
′
n)⇒ πn+1 = ΨG′n

(πn)M ′n+1. (2.3)

Returning to the examples discussed above, we can choose the exponential
Boltzmann-Gibbs potential and respectively the indicator potential functions

INRIA



Adaptive Resampling Procedures for Sequential Monte Carlo Methods 7

defined by

G′n = exp (−(βn+1 − βn)V ) , and respectively G′n = 1An+1 (2.4)

with a non-decreasing inverse temperature parameter βn and a non-increasing
sequence of subsets An.

Using the Markov property and the multiplicative structure of the Feynman-
Kac measures (2.2), it can be proved that the measures πn given in (2.3) coincide
with the n-time marginals of the path measures defined in (2.2); that is

πn(f) ∝ E

(
f (X ′n)

∏
0<p<n

G′p(X
′
p)

)
and λ(gn) := λ(g0)×

∏
0≤p<n

πp
(
G′p+1

)
.

(2.5)
We underline that these integral representation formulae are valid for any choice
of the parameters (G′n,M

′
n) satisfying the pair of admissibility conditions pre-

sented in the L.H.S of (2.3). This formula is known as Crooks identity in sta-
tistical physics [3]; see [8] for a generalization. It is a discrete-time version
of the celebrated Jarzynski identity [11]; see [15] for a continuous-time SMC
implementation.

2.2 Adaptive sequential Monte Carlo

SMC methods are a popular class of methods for approximately sampling ran-
dom variables according to the Feynman-Kac path measures (2.2) and com-
puting their normalizing constants. These algorithms are sometimes referred
to as population Monte Carlo, branching and interacting particle systems or
diffusion/quantum Monte Carlo methods. The central idea is now given.

First, N particles evolve according to the free path evolution of the reference
Markov chain X ′n. In a second stage, particles with low G′n-potential value are
killed, and those with a relative larger potential are duplicated. In this sense, we
define a branching particle model with a genealogical tree occupation measure
that approximates the desired measures (2.2) as N tends to∞. The theoretical
foundations of these algorithms are now rather well understood. From the
pure mathematical point of view, they can be regarded as a mean field particle
approximation of a non-linear Feynman-Kac flow of distributions.

In recent years, researchers have built new branching/resampling strategies.
The idea is to evolve the particles up to some times that depend on criteria
computed using the current particle approximation. These adaptive algorithms
have several advantages over standard methods:

1. In the context of the Feynman-Kac path measures (2.2), these criteria
can be used to design online strategies controlling the ‘quality’ of the cur-
rent particle approximation. Popular criteria include the variance of the
weights, or entropy like distances between the free evolution distribution
and the weighted one.

2. In the context of Boltzmann-Gibbs measures (2.3), they allow us to de-
fine adaptive temperature schedules or adaptive subset sequences. For
instance, we can decide to change the temperature parameter at some
appropriate time periods. These time parameters and the next cooling
temperature may depend on the performance of the exploration of the
individuals in the energy landscape.

RR n° 6700



8 Del Moral, Doucet & Jasra

In terms of the latter point, some related investigations can be found in [12].

2.2.1 Adaptive Framework

Adaptive SMC algorithms proceed as follows. Let
(
(E′n, E ′n)

)
n≥0

be a sequence
of measurable spaces. The idea is to propagate forward a collection of N sample
paths copies (Y (N,i)

n ∈ E′n)

∀1 ≤ i ≤ N Y(N,i)
1 := (Y (N,i)

0 , Y
(N,i)
1 , . . . , Y

(N,i)

tN1
)

of the path valued random variables (X ′0, . . . , X
′
tN1

) up to the first time tN1 the
importance weights

W0,tN1
(Y(N,i)

1 ) :=
∏

0<p≤tN1

G′p(Y
(N,i)
p )

(G′0 ≡ 1, although this need not be the case), of the N path samples become,
in some respect, degenerate; see Section 2.3 for more details. Loosely speaking,
at time tN1 the weighted occupation measure of the system

η̃N1 (·) :=
N∑
i=1

W0,tN1
(Y(N,i)

1 )∑N
j=1W0,tN1

(Y(N,j)
1 )

δY(N,i)
1

(·)

is an N particle approximation measure of the updated target measure given by

η̂1(f) = γ̂1(f)/γ̂1(1) with γ̂1(f) = E

f (X ′0, . . . , X ′tN1 ) ∏
0<p≤tN1

G′p(X
′
p)

 .

The precise analysis of these approximations is one of the objectives of the
article will be discussed later.

To prevent the weighted measure η̃N1 from becoming degenerate after the se-
lected time period tN1 , these measures are replaced by a bootstrap type empirical
measure

η̂N1 (·) :=
1
N

N∑
i=1

δbY(N,i)
1

(·)

associated with N path particles Ŷ(N,i)
1 := (Ŷ (N,i)

0,tN1
, Ŷ

(N,i)

1,tN1
, . . . , Ŷ

(N,i)

tN1 ,t
N
1

) that are

resampled; for instance randomly from the current weighted measure η̃N1 .
In a second stage we propagate forward, from every end point Ŷ (N,i)

tN1 ,t
N
1

of the

selected paths Ŷ(N,i)
1 , a collection of N sample path copies

(Y (N,i)

tN1 +1
, Y

(N,i)

tN1 +2
, . . . , Y

(N,i)

tN2
)

of the path-valued random variables (X ′
tN1 +1

, X ′
tN1 +2

, . . . , X ′
tN2

) starting at X ′
tN1

=

Ŷ
(N,i)

tN1 ,t
N
1

, up to the first time tN2 , the importance weights of the N path samples
given by

WtN1 ,t
N
2

(Y(N,i)
2 ) :=

∏
tN1 <p≤tN2

G′p(Y
(N,i)
p )

INRIA



Adaptive Resampling Procedures for Sequential Monte Carlo Methods 9

again become degenerate. In the above expression, Y(N,i)
2 stands for the result-

ing path sequences of length tN2 + 1 given by the formula

Y(N,i)
2 :=

(
Ŷ(N,i)

1 , (Y (N,i)

tN1 +1
, Y

(N,i)

tN1 +2
, . . . , Y

(N,i)

tN2
)
)
.

The following weighted occupation measure of the system

η̃N2 (·) :=
N∑
i=1

WtN1 ,t
N
2

(Y(N,i)
2 )∑N

j=1WtN1 ,t
N
2

(Y(N,j)
2 )

δY(N,i)
2

(·)

is an approximation of the updated target measure at time tN2 :

η̂2(f) = γ̂2(f)/γ̂2(1) with γ̂2(f) = E

f (X ′0, . . . , X ′tN2 ) ∏
0<p≤tN2

G′p(X
′
p)

 .

As before, to prevent the degeneracy of the weighted measures, after the se-
lected time period tN2 , the weighted measure η̃N2 is replaced by a bootstrap type
empirical measure

η̂N2 (·) :=
1
N

N∑
i=1

δbY(N,i)
2

(·)

associated withN particle paths Ŷ(N,i)
2 := (Ŷ (N,i)

0,tN2
, Ŷ

(N,i)

1,tN2
, . . . , Ŷ

(N,i)

tN2 ,t
N
2

) resampled

from the current weighted measure η̃N2 , and so on up to the desired final time
horizon.

Remark 2.1 This adaptive excursion model is quite flexible. For instance, in
the context of the Boltzmann-Gibbs model (2.3), it is possible to choose the same
potential function G′tNn +1 := G′p between the interaction times tNn < p ≤ tNn+1.
In other words, the potentials are only changed at the random interaction times
tNn

∀tNn < p ≤ tNn+1 G′p := G′tNn +1

↓

∀tNn+1 < p ≤ tNn+2 G′p := G′tNn+1+1

↓

· · ·

As an example, a temperature schedule can be used with the same decay rate
between the interaction times tNn < p ≤ tNn+1, and then changed only at the
interaction times. Using this strategy, we have used only n different potential
functions at time tNn+1:

G′tN0 +1  G′tN1 +1  . . . G′tNn +1  .

Without further work, the forthcoming analysis can be extended to situations
where the potential functions

(
G′p
)
p>tNn

, at a given level n, depend on the series

of parameters (tN0 , . . . , t
N
n ). More formally, it is possible to choose

∀tNn < p ≤ tNn+1 G′p(x) := G′′p,(tN0 ,...,tNn )(x) (2.6)

RR n° 6700



10 Del Moral, Doucet & Jasra

for some collection of mappings G′′p,(t0,...,tn), with 0 = t0 ≤ · · · ≤ tn < p. In
much the same way, in the context of the Boltzmann-Gibbs model (2.3), we
can use a sequence of Markov transitions

(
M ′p
)
p>tNn

as well as an adaptive

resampling criterion at a given level n that depends on (tN0 , . . . , t
N
n ).

2.3 Some empirical criteria

A few empirical criteria have been proposed in the SMC literature to measure
the degeneracy of the weighted samples; these criteria can be used to design
adaptive resampling strategies. In all of these situations, the resampling times(
tNn
)
n≥0

are random variables that depend on the current SMC approximation.
Four criteria are now presented which are termed 1)-4), in the order that

they appear. Due to their practical importance, and to better connect these
strategies with existing results in the literature, we present a rather detailed
discussion on the resulting adaptive resampling strategies.

2.3.1 Adaptive control of the weights

In this case, the particles explore the state-space with a series of local transitions

Ŷ
(N,i)

tNn ,t
N
n
−−−−−−−→ Y

(N,i)

tNn +1
−−−−−−→ Y

(N,i)

tNn +2
−−−−−−→ . . . −−−−−−→ Y (N,i)

s (2.7)

up to the first time s = tNn+1 (≥ tNn ) the proportion of particles with a weight
of at least size sn is below a prescribed an-threshold

CNtNn ,s :=
1
N

Card

1 ≤ i ≤ N :
∏

tNn <k≤s

G′k(Y (N,i)
k ) ≥ sn

 ≤ an (2.8)

where 0 < an ≤ 1. To our knowledge, this type of criteria was first discussed as
an heuristic type resampling schedule in [4]. Next, we provide some comments
on the choice of the adaptive parameters (sn, an). The forthcoming discussion
applies to all the criteria discussed in the article.

For [0, 1]-valued potential functions G′k, it is sensible to choose sn ∈ [0, 1].
In this situation, the random mappings

s ∈ [tNn ,∞) 7→ CNtNn ,s ∈ [0, 1]

are non-increasing functions starting at CNtNn ,tNn = 1 (the standard convention∏
∅ = 1 is used). It should be noted that when none of the sampled particles

at time s = tNn + 1 have a weight greater than the prescribed threshold sn,
then tNn+1 = tNn and the above sampling strategy is restarted. As discussed
in Remark 2.1, our framework is general enough that it allows us to analyze,
without further work, fully adaptive algorithms. For example, we may use a
sequence of threshold parameters that depend on the previous times steps

sn = s′n(tN0 , . . . , t
N
n ) and an = a′n(tN0 , . . . , t

N
n )

for some functions s′ and a′n on Rn+1
+ . So, in cases where tNn+1 = tNn , it is possible

to either choose to restart the complete run with the same set of potentials and
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Markov transitions used before and/or to decide to decrease the weight size
parameter sn as well as the threshold level an.

The choice of these threshold parameters depends on the problem at hand.
From the previous discussion, if sn is excessively large, the algorithm may get
stuck at a given time step tNn during several runs. In the further developments of
the article, we provide a set of regularity conditions under which these empirical
criteria approximate a limiting functional integration criteria. It will be shown,
that the random times tNn converge, as N tends to∞, to a series of deterministic
times tn expressed in terms of these functional criteria. In this situation, for a
large population size N we ensure that tNn+1 > tNn with high probability as soon
as tn+1 > tn.

To illustrate this idea, suppose that (X ′k)k≥0 is a Markov chain on E′k = Z
starting at the origin X ′0 = 0. For instance, X ′k can be taken as a simple random
walk on the integer lattice. If we choose the indicator potential functions and
the unit weight size parameters

G′k = 1[k,∞) and sn = 1 (2.9)

then we find ∏
tNn <k≤s

G′k(Y (N,i)
k ) ≥ 1⇐⇒

(
∀tNn < k ≤ s Y

(N,i)
k ≥ k

)
for every 1 ≤ i ≤ N . Thus,

CNtNn ,s =
1
N

Card
{

1 ≤ i ≤ N : ∀tNn < k ≤ s Y
(N,i)
k ≥ k

}
. (2.10)

When an = 1/2, we find that tNn+1 is such that

tNn+1 = inf
{
s ≥ tNn :

Card
{

1 ≤ i ≤ N : Y
(N,i)

tNn +1
≥ tNn + 1, Y (N,i)

tNn +2
≥ tNn + 2 , . . . , Y (N,i)

s ≥ s
}
≤ N/2

}
.

Roughly speaking, for the simple random walk model, this ensures that about
half of the N particles are able to reach the next upper level set at every ele-
mentary time step. In this situation, the random times tNn+1 are more likely to
take the value tNn + 1, or to return the value tNn . If we take a lower threshold
parameter, say an = 1/100, these random times tNn+1 are more likely to take
large values. Indeed, in this case, about N/2 particles will be able to reach
the first level, then about N/4 the second, N/8 the third one, and so on up to
N/128 the seventh. Therefore, for an = 1/100 it is expected that tNn+1 = tNn +6.

The random walk model discussed above can easily be extended to multi-
splitting branching excursion type models, absorbed at some lower level set
B ⊂ Z ∩ R−. Here, the random path processes (Y (N,i)

k )k≥tNn are independent
copies of a random excursion starting from a given level set tNn and ending at
the absorbing set B. The next adaptive step tNn+1 coincides with the first upper
level set the N particles are able to reach with a proportion less than an (that
is, before being absorbed by the set B). The resulting algorithm for adaptive
multi-level splitting coincides with the adaptive branching algorithm for rare
event simulation discussed in [1].
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12 Del Moral, Doucet & Jasra

2.3.2 Normalizing constants

In this scenario, the particles explore the space with a series of local transitions
(2.7) up to the first time s = tNn+1 the average of the importance weights - which
is an estimate of a normalizing constant - goes below a prescribed threshold an

CNtNn ,s :=
1
N

N∑
i=1

∏
tNn <k≤s

G′k(Y (N,i)
k ) ≤ an. (2.11)

For indicator potential functions, this criterion coincides with the one discussed
above; see (2.10). Furthermore, for (0, 1]-valued potential functions G′k, it is
convenient in (2.11) to set an ∈ [0, 1]; the random mappings

s ∈ [tNn ,∞) 7→ CNtNn ,s ∈ [0, 1]

are non-increasing functions starting at CNtNn ,tNn = 1. Notice that an = 1 =⇒
tNn+1 = tNn . For (0, 1)-valued threshold parameters, we have the rather crude
estimates

g
k

:= inf G′k ≤ supG′k := gk

⇓

∏
tNn <k≤s

g
k

:= CNtNn ,s ≤ C
N
tNn ,s
≤ CNtNn ,s :=

∏
tNn <k≤s

gk. (2.12)

This pair of estimates can be improved by considering the infimum and the
supremum of the potential product weight functions along the M ′k-admissible
paths sequences (2.7) starting at the selected states Ŷ (N,i)

tNn ,t
N
n

. Note that (2.12)
implies

tNn+1 ≤ tNn+1 ≤ t
N
n+1

with

tNn+1 := inf
{
s ≥ tNn : CNtNn ,s ≤ an

}
and t

N
n+1 := inf

{
s ≥ tNn : C

N

tNn ,s
≤ an

}
.

For instance, for the exponential Boltzmann-Gibbs potential given in (2.4),
we have

V := inf V ≤ supV := V =⇒ g
k

= e−(βk+1−βk)V and gk = e−(βk+1−βk)V .

This clearly implies that

CNtNn ,s = e
−
“
βs+1−βtNn +1

”
V and C

N

tNn ,s
= e
−
“
βs+1−βtNn +1

”
V
.

In addition, further assume that the temperature schedule (βk)k>tNn after time
tNn is associated with a fixed decay rate δn > 0, then

∀tNn < k ∆βk+1 = (βk+1 − βk) = δn =⇒
(
βs+1 − βtNn +1

)
=
(
s− tNn

)
δn

=⇒


CNtNn ,s = e−(s−tNn ) δn V

C
N

tNn ,s
= e−(s−tNn ) δn V .

INRIA



Adaptive Resampling Procedures for Sequential Monte Carlo Methods 13

From the previous discussion, it can be concluded that

tNn +
1
δnV

log (1/an) := tNn+1 ≤ tNn+1 ≤ tNn+1 = tNn +
1
δnV

log (1/an).

For small values of the inverse temperature decay rates δn, it is ensured that
the criterion (2.11) is met in at least 1

δnV
log (1/an) time steps. Alternatively,

if we want to ensure that (2.11) is met in at least mn time steps then δn ≤
(mnV )−1 log (1/an) is needed; that is

δn ≤ (mnV )−1 log (1/an) =⇒
(
tNn+1 − tNn

)
≥ mn.

2.3.3 Variance of the weights

In this situation, the particles explore the state-space with a series of local
transitions (2.7) up to the first time s = tNn+1 the empirical particle variance is
larger than some prescribed threshold an

N∑
i=1

 ∏
tNn <k≤s

G′k(Y (N,i)
k )∑N

j=1

∏
tNn <k≤s

G′k(Y (N,j)
k )

2

≥ (1 + an)/N

or equivalently

CNtNn ,s :=
1
N

N∑
i=1

 ∏
tNn <k≤s

G′k(Y (N,i)
k )

1
N

∑N
j=1

∏
tNn <k≤s

G′k(Y (N,j)
k )

2

− 1 ≥ an.

This is equivalent to resampling when the so-called effective sample size is be-
low a prescribed threshold. This popular strategy was first proposed in [14].
For indicator potential functions, this criterion coincides with those above; as
(G′k)2 = G′k.

2.3.4 Boltzmann’s entropy

Assume that the potential functions G′k take values in (0,∞). In this case, the
particles explore the state-space with a series of local transitions (2.7) up to
the first time s = tNn+1 such that the relative entropy of the empirical particle
measures w.r.t its weighted versions are larger than some threshold an

CNtNn ,s := − 1
N

N∑
i=1

∑
tNn <k≤s

logG′k(Y (N,i)
k ) ≥ an. (2.13)

For the exponential Boltzmann-Gibbs potential given in (2.4), we have

CNtNn ,s :=
1
N

N∑
i=1

∑
tNn <k≤s

(βk+1 − βk)V (Y (N,i)
k ).

In this situation, the random mappings

s ∈ [tNn ,∞) 7→ CNtNn ,s ∈ [0, 1]
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14 Del Moral, Doucet & Jasra

are non-decreasing functions starting at CNtNn ,tNn = 0 (using the standard conven-
tion

∑
∅ = 0). Arguing as above, we have the rather crude estimates

V := inf V ≤ supV := V

⇓

CNtNn ,s =
(
βs+1 − βtNn +1

)
V ≤ CNtNn ,s ≤ C

N

tNn ,s
:=
(
βs+1 − βtNn +1

)
V .

This implies that
tNn+1 ≤ tNn+1 ≤ t

N
n+1

with

tNn+1 := inf
{
s ≥ tNn : C

N

tNn ,s
≥ an

}
and t

N
n+1 := inf

{
s ≥ tNn : CNtNn ,s ≥ an

}
.

When the temperature schedule (βk)k>tNn is associated with a prescribed and
fixed decay rate δn > 0, it follows that

CNtNn ,s =
(
s− tNn

)
δn V and C

N

tNn ,s
=
(
s− tNn

)
δn V

and therefore

tNn+1 := tNn + an/(δnV ) ≤ tNn+1 ≤ t
N
n+1 := tNn + an/(δnV ).

In this case, to ensure that the criterion (2.13) is met in at least mn iterations,
we need to choose an inverse temperature decay rate δn ≤ an/(mnV ); that is

δn ≤ an/(mnV ) =⇒
(
tNn+1 − tNn

)
≥ mn.

2.4 Statement of some results

The following Section provides a guide of the major definitions and results in
this article; these will be repeated at the relevant points in the paper.

2.4.1 A limiting reference SMC algorithm

Let (tn)n≥0 be the deterministic sequence of time steps obtained by replacing
the empirical criteria CNtNn ,s by their limiting values Ctn,s, i.e. as N ↑ ∞; e.g. in
the examples 1) and 2)

tn+1 := inf {tn ≤ s : Ctn,s ≤ an}.

In all situations, set tN0 = t0 = 0.
In the examples 3) and 4), the limiting times (tn)n≥0 are defined as above

by replacing condition Ctn,s ≤ an by the condition Ctn,s ≥ an. In the four
situations discussed above, these limiting criteria Ctn,s are respectively given
by

1) Pn,bηn
 ∏
tn<k≤s

G′k(X ′k) ≥ an

 2) En,bηn
 ∏
tn<k≤s

G′k(X ′k)
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and

3)
En,bηn

(∏
tn<k≤sG

′
k(X ′k)2

)
En,bηn

(∏
tn<k≤sG

′
k(X ′k)

)2 − 1 4) −
∑

tn<k≤s

En,bηn (logG′k(X ′k))

with the updated Feynman-Kac path measures η̂n given below

η̂n(f) = γ̂n(f)/γ̂n(1) with γ̂n(f) = E

f (X ′0, . . . , X ′tn) ∏
0<p≤tn

G′p(X
′
p)

 .

In the above formulae, En,bηn is the expectation w.r.t the law of a free evolution
X ′k starting at time tn at the end point X ′tn = X̂ ′tn,tn of a random path X̂n :=
(X̂ ′0,tn , X̂

′
1,tn , . . . , X̂

′
tn,tn) with distribution η̂n; that is

X̂tn,tn ∼ η̂n
M ′tn+1

−−−−−−−→ X ′tn+1

M ′tn+2

−−−−−−→ X ′tn+2

M ′tn+3

−−−−−−→ . . .
M ′s
−−−−−−→ X ′s (2.14)

Definition 2.2 Let

Y(N)
n :=

(
Y(N,1)
n ,Y(N,2)

n , . . . ,Y(N,N)
n

)
and

Ŷ(N)
n :=

(
Ŷ(N,1)
n , Ŷ(N,2)

n , . . . , Ŷ(N,N)
n

)
denote the N particles associated to the adaptive SMC algorithm resampling at
times

(
tNn
)
n≥0

and let

X (N)
n :=

(
X (N,1)
n ,X (N,2)

n , . . . ,X (N,N)
n

)
and

X̂ (N)
n :=

(
X̂ (N,1)
n , X̂ (N,2)

n , . . . , X̂ (N,N)
n

)
denote the N particles associated to the reference SMC algorithm resampling at
times (tn)n≥0. We also suppose that

(
X (N)
n , X̂ (N)

n

)
and

(
Y(N)
n , Ŷ(N)

n

)
coincide

on every time interval 0 ≤ n ≤ m, as soon as the random times tNn = tn, for
every 0 ≤ n ≤ m. This condition simply corresponds to the coupling of the two
processes on the events ∩0≤n≤m{tNn = tn}.

2.4.2 An exponential coupling theorem

We give our main results, which hold under the following regularity condition:

(G′) ∀n ≥ 0 q′n := sup
(x,y)∈(E′n)2

(G′n(x)/G′n(y)) <∞. (2.15)

The analysis of more general models is technically more involved and often
requires some additional assumptions on the free evolution process. We refer
the interested reader to [5] for a more thorough discussion on these technicalities.

The first result is a non-asymptotic exponential concentration estimate. Be-
low, if constants are written with an argument, then they depend only on this
given argument.
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16 Del Moral, Doucet & Jasra

Theorem 2.3 For any n ≥ 0, fn ∈ Osc1(E′0 × · · · × E′tn), any N ≥ 1 and
any 0 ≤ ε ≤ 1/2, there exist c1 < ∞, 0 < c2(n) < ∞ such that we have the
exponential concentration estimate

P
(∣∣[ηNn − ηn] (fn)

∣∣ ≥ ε
)
≤ c1 exp{−N ε2/c2(n)}

for the empirical measures

ηNn (·) =
1
N

N∑
i=1

δ“ bX (N,i)
n−1 ,

“
X

(N,i)
tn−1+1,X

(N,i)
tn−1+2,...,X

(N,i)
tn

””(·).

In addition, under appropriate regularity conditions on the potential transitions
G′k and on the Markov chain X ′k given in Section (4.2.1) the above estimates
are valid for the marginal measures associated with the time parameters tn−1 ≤
p ≤ tn, for some constant c2(n) = c2 whose values does not depend on the time
parameter.

The second result is the following exponential coupling theorem.

Theorem 2.4 Assume the threshold parameters (an)n≥0 are sampled realiza-
tions of a collection of absolutely continuous random variables A = (An)n≥0.
Then, for almost every realization of the sequence (an)n≥0, (X (N)

n , X̂ (N)
n )n≥0

and (Y(N)
n , Ŷ(N)

n )n≥0 are such that, for every m ≥ 0 and any N ≥ 1, there exist
0 < c1(m), c2(m) <∞ and almost surely ε(m,A) ≡ ε(m) > 0 such that

P
(
∃0 ≤ n ≤ m (Y(N)

n , Ŷ(N)
n ) 6= (X (N)

n , X̂ (N)
n ) | A

)
≤ c1(m) e−Nε

2(m)/c2(m).

The proofs of Theorem 2.3 and Theorem 2.4 are detailed, respectively, in
Sections 4.2.3 and 5.2. Some direct consequences of the exponential coupling
Theorem 2.4 are as follows. The reference SMC algorithm (X (N)

n , X̂n)n≥0 can
be regarded as a ‘standard’ SMC algorithm as it resamples at deterministic
times. A variety of convergence results have already been developed for these
algorithms (see for instance [5]), including non asymptotic exponential estimates
and Lp-mean error bounds. Up to an event having an exponentially small
occurrence probability, Theorem 2.4 allows us to transfer all of these estimates
to the adaptive SMC algorithm that approximates these deterministic times.

3 Description of the models

For the convenience of the reader, in the first two sections 3.1, 3.2, we briefly
introduce an abstract Feynman-Kac flow of distributions. The Feynman-Kac
flow of distributions in excursion space associated to a prescribed sequence of
resampling times is presented in Section 3.3.

The definition of the functional criteria dicussed in this work is provided in
Section 3.4, and the precise definition of the associated ‘limiting’ deterministic
time parameters (tn)n≥0 discussed in the introduction is provided in Section 3.5.
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3.1 Feynman-Kac distributions flow

We consider a sequence of measurable state spaces Sn, a probability measure
η0 on S0, and a sequence of Markov transitions Mn(xn−1, dxn) from Sn−1 into
Sn, with n ≥ 1. Let

(
Xn
)
n≥0

be a Markov chain with initial distribution
Law(X0) = η0 on S0 and elementary transitions

P(Xn ∈ dy | Xn−1 = x) =Mn(x, dy).

Let
(
Gn
)
n≥0

be a sequence of non-negative and bounded potential-likelihood
functions on Sn. To simplify the presentation, and to avoid unnecessary tech-
nicalities, it is supposed that G0 = 1 and for n ≥ 1, Gn ∈ (0, 1) with

(G) qn := sup
(x,y)∈S2

n

(Gn(x)/Gn(y)) <∞. (3.1)

This regularity condition can be relaxed in various ways; see [5]. The Boltzmann-
Gibbs transformation Ψn associated with a given potential function Gn is the
mapping

Ψn : µ ∈ P(Sn) 7→ Ψn(µ) ∈ P(Sn) with Ψn(µ)(dx) :=
1

µ(Gn)
Gn(x) µ(dx).

Notice that Ψn(µ) can be rewritten as a non-linear Markov transport equation

Ψn(µ)(dy) = (µSn,µ) (dy) =
∫
Sn

µ(dx) Sn,µ(x, dy)

with the accept-reject type selection transition

Sn,µ(x, dy) := Gn(x) δx(dy) + (1− Gn(x)) Ψn(µ)(dy).

Let (ηn, η̂n)n≥0 be the flow of probability measures, both starting at η0 = η̂0,
and defined for any n ≥ 1 by the following recursion

∀n ≥ 0 ηn+1 = η̂nMn+1 with η̂n := Ψn(ηn). (3.2)

Notice that (ηn)n≥0 and (η̂n)n≥0 satisfy the nonlinear recursion

ηn+1 = Φn+1(ηn) := Ψn(ηn)Mn+1 and η̂n+1 = Φ̂n+1(η̂n) := Ψn+1 (η̂nMn+1) .

It is worth mentioning that the one step mapping Φ̂n+1 can be rewritten as
follows

Φ̂n+1(η̂n) := Ψ̂n (η̂n)M̂n+1

with the Boltzmann-Gibbs transformation Ψ̂n associated with a given poten-
tial function Ĝn = Mn+1(Gn) and the Markov transition M̂n+1 given for any
bounded measurable test function f on Sn+1, and any x ∈ Sn by the formula

M̂n+1(f)(x) =
Mn+1(Gn f)(x)
Mn+1(Gn)(x)

.

From the pure mathematical point of view, this shows that the flow (η̂n)n≥0

has the same dynamical structure as the flow (ηn)n≥0. Thus, w.l.o.g we shall
concentrate our analysis on the flow of measures (ηn)n≥0.
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To get one step further, it can be readily checked that the flow of measures
(ηn)n≥0 satisfies the non-linear transport equation

ηn+1 = ηnKn+1,ηn with Kn+1,ηn := Sn,ηnMn+1.

Also recall that the solution (ηn, η̂n) of these recursive updating-prediction equa-
tions have the following functional representations

ηn(fn) = γn(fn)/γn(1) and η̂n(fn) = γ̂n(fn)/γ̂n(1) (3.3)

with the unnormalized Feynman-Kac measures γn and γ̂n defined by the for-
mulae

γn(fn) = E
[
fn(Xn)

∏
0<k<n Gk(Xk)

]
and γ̂n(fn) = γn(fnGn). (3.4)

3.2 Feynman-Kac semi-groups

To analyze SMC methods, it is necessary to introduce the Feynman-Kac semi-
group associated to the flow of measures (γn)n≥0 and (ηn)n≥0. Let us start by
denoting by Qn+1(xn, dxn+1) the bounded integral operator from Sn into Sn+1;
this is defined by the elementary multiplicative formula

Qn+1(xn, dxn+1) = Gn(xn) Mn+1(xn, dxn+1).

Let (Qp,n)0≤p≤n be the corresponding linear semi-group defined by

Qp,n = Qp+1Qp+2 . . .Qn

with the convention Qn,n = I, the identity operator. Note that Qp,n is alterna-
tively defined by:

Qp,n(fn)(xp) = E

fn(Xn)
∏

p≤k<n

Gk(Xk)
∣∣∣∣ Xp = xp

 . (3.5)

Using the Markov property, it follows that

γn(fn) = E

E

fn(Xn)
∏

p≤k<n

Gk(Xk)
∣∣∣∣ Xp

 ∏
0<k<p

Gk(Xk)

 = γp (Qp,n(fn)) .

The last assertion shows that (Qp,n)0≤p≤n is the semi-group associated with the
unnormalized measures (γn)n≥0. Denote its normalized version by

Pp,n(fn) :=
Qp,n(fn)
Qp,n(1)

. (3.6)

Finally, denote by (Φp,n)0≤p≤n the non-linear semi-group associated to the flow
of normalized measures (ηn)n≥0:

Φp,n = Φn ◦ . . . ◦ Φp+2 ◦ Φp+1

with the convention Φn,n = I, the identity operator. From the previous dis-
cussion, note that (Φp,n)0≤p≤n is alternatively defined in terms of (Qp,n)0≤p≤n
with the following formulae:

Φp,n(ηp)(fn) =
γpQp,n(fn)
γpQp,n(1)

=
ηpQp,n(fn)
ηpQp,n(1)

. (3.7)
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3.3 Path space and excursion models

Let
(
X ′n
)
n≥0

be a Markov chain taking values in some measurable state-spaces
E′n with elementary transitions

P
(
X ′n ∈ dx′n | X ′n−1 = x′n−1

)
:= M ′n(x′n−1, dx

′
n)

and the initial distribution η′0 = Law(X ′0). In addition, introduce a sequence of
potential functions G′n on the state spaces E′n. To simplify the presentation, it
is assumed that the G′n take values in (0, 1).

Associate, with a prescribed non-decreasing sequence of time parameters
(tn)n≥0, the excursion-valued random variables

X0 = X ′0 and ∀n ≥ 1 Xn := (X ′tn−1+1, X
′
tn−1+2, . . . , X

′
tn)

and the random path sequences

Xn := (X0, . . . , Xn) = (X ′0, X
′
1, . . . , X

′
tn) ∈ Etn := E′0 × . . .× E′tn .

Note that
(
Xn
)
n≥0

forms a Markov chain

Xn+1 := (Xn, Xn+1) =
(
Xn,

(
X ′tn+1, . . . , X

′
tn+1

))
(3.8)

taking values in the excursion spaces Sn := Etn . Furthermore, choosing, in
(3.4), the potential functions

∀n ≥ 1 Gn(Xn) = Gn(Xn) :=
∏

tn−1<k≤tn

G′k(X ′k) (3.9)

then we readily find that

γn(fn) = E

[
fn(Xn)

∏
0<k<n

Gk(Xk)

]

= E

[
fn(X0, . . . , Xn)

∏
0<k<n

Gk(Xk)

]

= E

fn(X ′0, . . . , X
′
tn)

∏
0<k≤tn−1

G′k(X ′k)

 .
By definition of the potential functions Gn of the excursion Feynman-Kac

model (3.9), it is easily proved that the condition (G) (eq. (3.1)) is satisfied, as
soon as (G′) introduced in (2.15) holds true. More precisely, it holds that

(G′)

⇓

(G) with qn ≤M ′ − sup

 ∏
tn−1<k≤tn

(G′k(x′k)/G′k(y′k))


≤ ∏

tn−1<k≤tn

q′k
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where the essential supremum M ′ − sup {.} is taken over all M ′k-admissible
paths (x′tn−1+1, x

′
tn−1+2, . . . , x

′
tn) and (y′tn−1+1, y

′
tn−1+2, . . . , y

′
tn) of the under-

lying Markov chain X ′k. Moreover, the marginal γn of γn on the state space
Sn := (E′tn+1 × . . .× E′tn+1

) is again given, for any fn ∈ Bb(Sn), by

γn(fn) := E

[
fn(Xn)

∏
0<k<n

Gk(Xk)

]
.

3.4 Functional criteria

In Section 3.3, we have assumed that a non-decreasing sequence of time parame-
ters (tn)n≥0 was available. We now introduce the functional critera which will be
used to build this sequence. To connect the empirical criteria with their limiting
functional versions, the latter need to satisfy some weak regularity conditions
which are given below.

Definition 3.1 We consider a sequence of functional criteria

∀n ≥ 0 ∀p ≤ q H(n)
p,q : µ ∈ P (Eq) 7→ H(n)

p,q (µ) ∈ R+

satisfying the following Lipschitz type regularity condition∣∣∣H(n)
p,q (µ1)−H(n)

p,q (µ2)
∣∣∣ ≤ ∫ | [µ1 − µ2] (h) | H(n)

p,q (dh) (3.10)

for some collection of bounded measures H(n)
p,q on Bb(Eq) such that

δ(H(n)
p,q ) :=

∫
osc(h) H(n)

p,q (dh) <∞.

To illustrate this rather abstract construction, we provide four examples of
functional criteria corresponding those discussed in Section 2.4.1. All of them
are defined in terms of the importance weight function

Wp,q : (x′0, . . . , x
′
q) ∈ Eq 7→Wp,q(x′0, . . . , x

′
q) :=

∏
p<k≤q

G′k(x′k) ∈ (0, 1)

In all the situations described below, the measures H(n)
tn,s in (3.10) have a finite

support with one or two elements.

1. Weights thresholds control: The functional defined below

H(n)
p,q (µ) = µ

(
A(n)
p,q

)
with A(n)

p,q := {xq ∈ Eq : Wp,q(xq) ≥ sn}

measures the proportion of the path sequences with a weight product
larger than some parameter sn.

2. Normalizing constants: In some sense, the functional defined below

H(n)
p,q (µ) = µ(Wp,q)

measures the degeneracy of the normalizing constants for large values of
the parameter (q − p).
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3. Variance of the weights: The functional defined below

H(n)
p,q (µ) = µ

([
Wp,q

µ(Wp,q)
− 1
]2
)

coincides with the variance of the weights w.r.t the reference measure µ.

4. Boltzmann’s entropy: The functional defined below

H(n)
p,q (µ) = Ent (dµ | Wp,q dµ) := −µ (logWp,q)

measures the relative entropy distance between the reference measure µ
and the updated weighted measure.

3.5 Resampling time construction

We now explain, precisely, how to define the sequence of resampling times
(tn)n≥0.

Definition 3.2 For any pair of integers 0 ≤ p ≤ n and any η ∈ P(Ep), we
denote by Pη,(p,n) the law of a random path sequence of length n, starting with
an initial distribution η on the path space Ep and performing (n−p) elementary
moves with the local probability transitions M ′k, with p < k ≤ n. More precisely,
Pη,(p,n) is the measure defined by

Pη,(p,n)(d(xp, x′p+1, . . . , x
′
n)) := η(dxp) M ′p+1(x′p, dx

′
p+1) . . .M ′n(x′n−1, dx

′
n)

∈ P
(
Ep ×

(
E′p+1 × . . .× E′n

))
= P(En)

where dxp = d(x′0, . . . , x
′
p) denotes an infinitesimal neighborhood of a path se-

quence
xp = (x′0, . . . , x

′
p) ∈ Ep =

(
E′0 × . . .× E′p

)
.

Given H(n)
p,q , with n ≥ 0 and 0 ≤ p ≤ q, we define a non-decreasing sequence

of deterministic time steps (tn)n≥0 and a flow of Feynman-Kac measures (ηn, η̂n)
as follows:

• Set n = 0 and tn = 0 and η̂0 = η0 = η′0.

• Suppose that the time step tn is defined as well as the pair of measures
(ηn, η̂n) ∈ P(Etn)2 at a given rank n. To define the time step tn+1 and the
pair of measures (ηn+1, η̂n+1) ∈ P(Etn+1)2, we consider H(n)

tn,s, with s ≥ tn
and a given interval In ⊂ R+ of the form In = [an,∞) or In = (−∞, an]
such that

H(n)
tn,tn

(
Pbηn,(tn,tn)

)
6∈ In.

The resampling time tn+1 is defined as the first time s ≥ tn the quantity
H(n)
tn,s

(
Pbηn,(tn,s)) hits the set In; that is

tn+1 := inf
{
tn ≤ s : H(n)

tn,s

(
Pbηn,(tn,s)) ∈ In}
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Given tn+1(> tn), set

ηn+1 = Pbηn,(tn,tn+1) and η̂n+1 = Ψn+1 (ηn+1) (3.11)

with the Boltzmann-Gibbs transformation Ψn+1 associated with the po-
tential function Gn+1 = Wtn,tn+1 .

We end this construction with an important observation. By definition of
the Markov transition Mn+1 of the excursion model Xn defined in Section 3.3,
it can be checked that

ηn+1 = Pbηn,(tn,tn+1) = η̂nMn+1. (3.12)

This yields the recursion

(3.11) and (3.12) =⇒ ηn+1 = Ψn (ηn)Mn+1.

Hence the flow of measures ηn and η̂n coincide with the Feynman-Kac flow
of distributions defined in (3.3) with the Markov chain and potential function
(Xn,Gn) on excursion spaces defined in (3.8) and (3.9). The only difference
between these models and the ones discussed in Section 3.3 comes from the fact
that the sequence of time parameters (tn)n≥0 is inductively defined in terms of
a prescribed sequence of functional criteria. The SMC approximation of these
distributions is discussed in Section 4.

3.6 Some applications

In this Section, we examine, in detail, the inductive construction of the deter-
ministic resampling times tn introduced in Section 3.5 for the criteria 1)-4) in
Section 2.3.

3.6.1 Adaptive control of the weights

Consider [0, 1)-valued potential functions. The resampling times are built to
control the degeneracy of the Feynman-Kac weights through

H(n)
tn,s

(
Pbηn,(tn,s)) = En,bηn

[
1
A

(n)
tn,s

(
X ′tn+1, . . . , X

′
s

) ]

= Pn,bηn
 ∏
tn<k≤s

G′k(X ′k) ≥ sn


where 0 < sn < 1 and

A
(n)
tn,s :=

(x′tn+1, . . . , x
′
s) ∈ E′tn+1 × · · · × E′s :

∏
tn<k≤s

G′k(x′k) ≥ sn

 .

Here En,bηn denotes the expectation w.r.t the law Pn,bηn of a free evolution X ′k
starting at time tn at the end point X ′tn of a random path (X0, . . . , Xn) with
distribution η̂n on the space En.
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The mappings

tn ≤ s 7→ Pn,bηn
 ∏
tn<k≤s

G′k(X ′k) ≥ sn


are clearly non-increasing functions starting at 1 for s = tn. If we choose an
interval

In := (−∞, an] for some an < 1

then the resampling time tn+1 coincides with the first time s the sequence of
probabilities

s 7→ Pn,bηn
 ∏
tn<k≤s

G′k(X ′k) ≥ sn


goes below the level an; that is

tn+1 := inf

tn ≤ s : Pn,bηn
 ∏
tn<k≤s

G′k(X ′k) ≥ sn

 ≤ an
.

This strategy allows us to decompose the trajectories of the reference free motion
X ′k into a sequence of excursion-processes

X0 = X ′0 and ∀n ≥ 1 Xn := (X ′tn−1+1, X
′
tn−1+2, . . . , X

′
tn) (3.13)

with

∀s < tn+1 Pn,bηn
 ∏
tn<k≤s

G′k(X ′k) ≥ sn

 > an

and

s = tn+1 =⇒ Pn,bηn
 ∏
tn<k≤tn+1

G′k(X ′k) ≥ sn

 ≤ an.
We illustrate this construction with the random walk model discussed in (2.9)
(Section 2.3.1). In this situation, recall that X ′k is a Markov chain on E′k = Z
starting at the origin X ′0 = 0. If the indicator potential functions, G′k = 1[k,∞),
are chosen then

E0,bη0
 ∏

0<k≤t1

G′k(X ′k)

 = P(X ′1 ≥ 1 . . . , X ′k ≥ k).

When a0 = 1/2, we find that t1 coincides with the first level k the chain X ′k can
reach with a probability less than 1/2 with X ′0 = 0; more formally, we have

t1 = inf {k ≥ 0 : P(X ′0 ≥ 0, X ′1 ≥ 1 . . . , X ′k ≥ k) ≤ 1/2}.

Similarly, when an = 1/2, tn+1 coincides with the first level k the chain X ′k can
reach with a probability less than 1/2 with X ′tn = x′tn ; more formally, we have

tn+1 = inf
{
k ≥ tn : Pn,bηn (X ′tn+1 ≥ tn + 1, . . . , X ′k ≥ k

)
≤ 1/2

}
.
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3.6.2 Normalizing constants

The resampling times are built to control the degeneracy of the normalizing
constants estimates. To be more precise, set

H(n)
tn,s

(
Pbηn,(tn,s)) = En,bηn

 ∏
tn<k≤s

G′k(X ′k)


:=
∫

η̂n(dxtn) Etn,x′tn

 ∏
tn<k≤s

G′k(X ′k)


=
∫

η̂n(dxtn) M ′tn+1(x′tn , dx
′
tn+1) . . .

. . .×M ′s(x′s−1, dx
′
s)

∏
tn<k≤s

G′k(x′k).

We have
s = tn =⇒ H(n)

tn,tn

(
Pbηn,(tn,tn)

)
= 1.

When the potential functions take values in [0, 1), one concludes that the map-
ping

s ≥ tn 7→ H(n)
tn,s

(
Pbηn,(tn,s))

is clearly non-increasing starting at 1 at time s = tn. If we choose an interval

In := (−∞, an] for some an < 1

then the resampling time tn+1 coincides with the first time s the quantities

s 7→ En,bηn
 ∏
tn<k≤s

G′k(X ′k)


go below the level an; that is, we have

tn+1 := inf

tn ≤ s : En,bηn
 ∏
tn<k≤s

G′k(X ′k)

 ≤ an
.

This criterion allows us to decompose the trajectories of the reference free motion
X ′k into a sequence of excursion like processes

X0 = X ′0 and ∀n ≥ 1 Xn := (X ′tn−1+1, X
′
tn−1+2, . . . , X

′
tn) (3.14)

with

∀s < tn+1 En,bηn
 ∏
tn<k≤s

G′k(X ′k)

 > an

and

En,bηn
 ∏
tn<k≤tn+1

G′k(X ′k)

 ≤ an.
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3.6.3 Variance of the weights

The resampling times are built to control the variance of the weights. To be
more precise, set

H(n)
tn,s

(
Pbηn,(tn,s)) = En,bηn


 ∏

tn<k≤sG
′
k(X ′k)

En,bηn
(∏

tn<k≤sG
′
k(X ′k)

) − 1

2


=
En,bηn

(∏
tn<k≤sG

′
k(X ′k)2

)
En,bηn

(∏
tn<k≤sG

′
k(X ′k)

)2 − 1.

In this case,
s = tn =⇒ H(n)

tn,tn

(
Pbηn,(tn,tn)

)
= 0.

The variance mappings s 7→ H(n)
tn,s

(
Pbηn,(tn,s)) are generally increasing. For

instance, in the case of indicator potential functions G′k = 1A′k we have

∀tn ≤ s ≤ r H(n)
tn,s

(
Pbηn,(tn,s)) = En,bηn

 ∏
tn<k≤s

G′k(X ′k)

−1

− 1

≤ H(n)
tn,r

(
Pbηn,(tn,r)) .

For another example in filtering problems, we refer the reader to [6]. One natural
way to control these variances is to choose an interval

In := [an,∞) for some an > 0

then the resampling time tn+1 coincides with the first time s the function

s 7→ En,bηn
 ∏
tn<k≤s

G′k(X ′k)2

 / En,bηn
 ∏
tn<k≤s

G′k(X ′k)

2

goes above the level 1 + an; that is

tn+1 := inf

tn ≤ s : En,bηn
 ∏
tn<k≤s

G′k(X ′k)2


≥ [1 + an] En,bηn

 ∏
tn<k≤s

G′k(X ′k)

2
.

This construction allows us to decompose the trajectories of the reference free
motion X ′k into a sequence of excursion like processes

X0 = X ′0 and ∀n ≥ 1 Xn := (X ′tn−1+1, X
′
tn−1+2, . . . , X

′
tn) (3.15)

with controlled Feynman-Kac weights variances

∀tn ≤ s < tn+1

En,bηn
(∏

tn<k≤sG
′
k(X ′k)2

)
En,bηn

(∏
tn<k≤sG

′
k(X ′k)

)2 < 1 + an
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and for s = tn+1

En,bηn
(∏

tn<k≤tn+1
G′k(X ′k)2

)
En,bηn

(∏
tn<k≤tn+1

G′k(X ′k)
)2 =

En,bηn (Gn+1(Xn+1)2
)

En,bηn (Gn+1(Xn+1))2 ≥ 1 + an.

3.6.4 Boltzmann’s entropy

This criterion allows us to control the entropy like distance between the free mo-
tion trajectories and the weighted Feynman-Kac measures. To be more precise,
set

H(n)
tn,s

(
Pbηn,(tn,s)) = Ent

(
Pbηn,(tn,s) | Qbηn,(tn,s)) = −

∑
tn<k≤s

En,bηn (logG′k(X ′k))

with the weighted measures Qη,(p,n) defined by

Qη,(p,n)(d(xp, x′p+1, . . . , x
′
n)) = Pη,(p,n)(d(xp, x′p+1, . . . , x

′
n))×

∏
p<k≤n

G′k(x′k).

For (0, 1)-valued potential functions, the mappings

tn ≤ s 7→ Ent
(
Pbηn,(tn,s) | Qbηn,(tn,s))

are clearly non-decreasing functions starting at 0 for s = tn. If we choose an
interval

In := [an,∞) for some an > 0

then the resampling time tn+1 coincides with the first time s the entropy distance
goes above the level an; that is,

tn+1 := inf
{
tn ≤ s : Ent

(
Pbηn,(tn,s) | Qbηn,(tn,s)) ≥ an}.

This construction allows us to decompose the trajectories of the reference free
motion X ′k into a sequence of excursion like processes

X0 = X ′0 and ∀n ≥ 1 Xn := (X ′tn−1+1, X
′
tn−1+2, . . . , X

′
tn) (3.16)

with
∀s < tn+1 Ent

(
Pbηn,(tn,s) | Qbηn,(tn,s)) < an

and
Ent

(
Pbηn,(tn,s) | Qbηn,(tn,s)) ≥ an.

4 Convergence analysis of the reference SMC
algorithm

In Section 4.1, we present the reference SMC algorithm which resamples at the
deterministic times (tn)n≥0. The concentration analysis of this algorithm is de-
veloped in Section 4.2. In Section 4.2.1, we provide a brief discussion on the
set of constants arising in our estimates and introduce assumptions ensuring
a uniform control of these constants w.r.t the time horizon. In Section 4.2.2,
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several estimates on the bias and Lm-mean errors are provided, whereas Sec-
tion 4.2.3 gives an original non-asymptotic exponential concentration estimate.
In practice the times (tn)n≥0 are unknown and are approximated, on-line, us-
ing the current SMC approximation. In Section 4.3, we use the concentration
results obtained in Section 4.2 to analyze the convergence of these empirical
approximations towards their limiting functional values.

4.1 A reference SMC algorithm

The SMC interpretation of the evolution equation (3.2) is the Markov chain

X (N)
n =

(
X (N,1)
n ,X (N,2)

n , . . . ,X (N,N)
n

)
∈ SNn

with elementary transitions

P
(
X (N)
n+1 ∈ dxn+1 | X (N)

n

)
=

N∏
i=1

Kn+1,ηNn
(X (N,i)

n , dxin+1) (4.1)

with

Kn+1,ηNn
= Sn,ηNnMn+1 and ηNn (·) :=

1
N

N∑
j=1

δX (N,j)
n

(·). (4.2)

Loosely speaking this integral decomposition shows that this SMC algorithm has
the same updating/prediction nature as the one of the ‘limiting’ Feynman-Kac
model. More precisely, the deterministic two-step updating/prediction transi-
tions in distribution spaces

ηn
Sn,ηn
−−−−−−−−→ η̂n = ηnSn,ηn = Ψn(ηn)

Mn+1

−−−−−−−→ ηn+1 = η̂nMn+1 (4.3)

have been replaced by a two-step resampling/mutation transition in a product
space

X (N)
n ∈ ENtn

resampling
−−−−−−−−→ X̂ (N)

n ∈ ENtn
mutation
−−−−−−−→ X (N)

n+1 ∈ ENtn+1
(4.4)

where it is recalled that the state-space at the (n + 1)-th iteration is the path
space given by

Etn+1 :=
(
E′0 × . . .× E′tn+1

)
= Etn ×

(
E′tn+1 × . . .× E′tn+1

)
.

In our context, the SMC algorithm keeps track of all the paths of the sampled
particles and the corresponding ancestral lines are denoted as follows

X̂ (N,i)
n =

(
X̂

(N,i)
0,tn

, X̂
(N,i)
1,tn

, . . . , X̂
(N,i)
tn,tn

)
X (N,i)
n =

(
X

(N,i)
0,tn

, X
(N,i)
1,tn

, . . . , X
(N,i)
tn,tn

)
∈ Etn :=

(
E′0 × . . .× E′tn

)
.

By definition of the reference Markov model Xn given in (3.8), every path par-
ticle X (N,i)

n+1 ∈ Etn+1 keeps track of the selected excursion X̂ (N,i)
n ∈ Etn and it
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evolves its terminal state X̂(N,i)
tn,tn with (tn+1−tn) elementary random moves with

the Markov transitions M ′k. More formally, we have that

X (N,i)
n+1 =

(X(N,i)
0,tn+1

, X
(N,i)
1,tn+1

, . . . , X
(N,i)
tn,tn+1

)
︸ ︷︷ ︸,

(
X

(N,i)
tn+1,tn+1

, . . . , X
(N,i)
tn+1,tn+1

)
︸ ︷︷ ︸


=
(

X̂ (N,i)
n ,

(
X

(N,i)
tn+1 , . . . , X

(N,i)
tn+1

) )
with the (tn+1− tn) M ′k-exploration transitions given by the following synthetic
diagram:

X̂
(N,i)
tn,tn

M ′tn+1

−−−−→ X
(N,i)
tn+1

M ′tn+2

−−−−→ X
(N,i)
tn+2

M ′tn+3

−−−−→ . . .
M ′tn+1

−−−−→ X
(N,i)
tn+1

.

From this discussion, it is worth mentioning a further convention that the par-
ticle empirical measures

ηNn+1(·) =
1
N

N∑
i=1

δ“ bX (N,i)
n ,

“
X

(N,i)
tn+1 ,X

(N,i)
tn+2 ,...,X

(N,i)
tn+1

””(·)

are the terminal values at time s = tn+1 of the flow of random measures

tn ≤ s ≤ tn+1 7→ PNbηNn ,(tn,s)(·) =
1
N

N∑
i=1

δ“ bX (N,i)
n ,

“
X

(N,i)
tn+1 ,X

(N,i)
tn+2 ,...,X

(N,i)
s

””(·).

(4.5)

4.2 Concentration analysis

4.2.1 Introduction

This Section is concerned with the concentration analysis of the empirical mea-
sures ηNn associated with (4.2) around their limiting values ηn defined in (3.3).
Our concentration estimates are expressed in terms of the following constants

qp,n = sup
(x,y)∈S2

p

Qp,n(1)(x)
Qp,n(1)(y)

and β(Pp,n) := sup
f∈Osc1(Sn)

osc(Pp,n(f))

where Qp,n is the linear semi-group (3.5) and Pp,n its normalized version (3.6).
Note that these parameters can be expressed in terms of the mixing properties
of the Markov transitions Mn. It is clearly out of the scope of the present
article to derive these estimates; we refer the interested reader to chapter 4 of
[5]. Nevertheless, under appropriate mixing type properties we can prove that
the series

∑n
p=0 q

α
p,n β(Pp,n) is uniformly bounded with respect to the final time

horizon n, for any parameter α ≥ 0. Most of the results presented in this Sec-
tion are expressed in terms of these series, including bias estimates, Lm-mean
error bounds, as well as exponential concentration estimates. As a result, these
non-asymptotic results can be converted into uniform in time convergence re-
sults. To get a flavor of these uniform estimates, let us assume that the Markov
transitions Mk satisfy the following regularity property
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(M)m There exists an m ∈ Z+ and a sequence (δp)p≥0 ∈ (0, 1)N such that

∀p ≥ 0 ∀(x, y) ∈ S2
p Mp,p+m(x, ·) ≥ δp Mp,p+m(y, ·).

We also introduce the following quantities:

∀k ≤ l rk,l := sup
∏

k≤p<l

Gp(xp)
Gp(yp)

 ≤
∏

k≤p<l

qp


with the collection of constants (qn)≥1 introduced in (3.1). In the above dis-
played formula, the supremum is taken over all admissible pair of paths with
elementary transitions Mp.

Under the condition (M)m we have for any n ≥ m ≥ 1, and p ≥ 1,

qp,p+n ≤ δ−1
p rp,p+m and β(Pp,p+n) ≤

bn/mc−1∏
k=0

(
1− δ2

p r
−1
p+km+1,p+(k+1)m

)
.

(4.6)
The proof of these estimates relies on technical semi-group techniques; see chap-
ter 4 of [5] for details. Several contraction inequalities can be deduced from these
results. To understand this more closely, assume that (M)m is satisfied with
m = 1, δ = ∧nδn > 0 and q = ∨n≥1qn. In this case,

qp,p+n ≤ δ−1 q and β(Pp,p+n) ≤
(
1− δ2

)n
⇓

∀α ≥ 0
n∑
p=0

qαp,n β(Pp,n) ≤ qα/δ(2+α).

More generally, assume (M)m is satisfied for some m ≥ 1 and that the
parameters δp and rk,l are such that

∧δp := δ > 0 ∨p rp,p+m := r <∞ and ∨p rp+1,p+m := r <∞. (4.7)

In this situation,

qp,p+n ≤ δ−1 r and β(Pp,p+n) ≤
(
1− δ2r−1

)bn/mc
and therefore

∀α ≥ 0
n∑
p=0

qαp,n β(Pp,n) ≤ m r rα/δ(2+α). (4.8)

It is well known that the mixing type condition (M)m is satisfied for any ape-
riodic and irreducible Markov chains on finite spaces, as well as for bi-Laplace
exponential transitions associated with a bounded drift function. We also men-
tion that this mixing condition is of course never met for the complete historical
process Xn = (X ′p)0≤p≤tn on Sn =

∏
0≤p≤tn E

′
p discussed in Section 3.3.

Nevertheless, under appropriate conditions on the Markov transitions M ′k,
it is satisfied for the time marginal model associated with the excursion valued
Markov chain model on

∏
tn−1<p≤tn E

′
p. For instance, if

∀k ≥ 1 ∀(x, y) ∈
(
E′p
)2

M ′k(x, .) ≥ δ′ M ′k(y, .)
for some δ′ > 0, then condition (M)m is met with m = 1 and δp = δ′.
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4.2.2 Some Lm-mean error bounds

At this point, it is convenient to observe that the local sampling errors induced
by the mean field particle model are expressed in terms of the collection of local
random field models defined below.

Definition 4.1 For any n ≥ 0 and any N ≥ 1, let V Nn be the collection of
random fields defined by the following stochastic perturbation formulae

ηNn = ηNn−1Kn,ηNn−1
+

1√
N

V Nn

(
⇐⇒ V Nn :=

√
N
[
ηNn − ηNn−1Kn,ηNn−1

])
.

(4.9)
For n = 0, the conventions K0,ηN−1

(x, dy) = η0(dy) and ηN−1K0,ηN−1
= η0 are

adopted.

In order to quantify high order Lm-mean errors we need the following Kint-
chine type inequality for martingales with symmetric and independent incre-
ments. This result is more or less well known. For the convenience of the
reader, a proof is provided in the appendix.

Lemma 4.2 (Kintchine’s inequality) Let Mn :=
∑

0≤p≤n ∆p be a real-valued
martingale with symmetric and independent increments (∆n)n≥0. For any in-
teger m ≥ 1, and any n ≥ 0, we have

E (|Mn|m)
1
m ≤ b(m) E

(
[M ]m

′/2
n

)1/m′

with [M ]n :=
∑

0≤p≤n

∆2
p (4.10)

where m′ stands for the smallest even integer m′ ≥ m and (b(m))m≥1 is the
collection of constants given below:

b(2m)2m := (2m)m 2−m and b(2m+ 1)2m+1 :=
(2m+ 1)(m+1)√

m+ 1/2
2−(m+1/2).

(4.11)

Proposition 4.3 For any N ≥ 1, m ≥ 1, n ≥ 0 and any test function fn ∈
Bb(Sn) we have the almost sure estimate

E
(∣∣V Nn (fn)

∣∣m ∣∣∣F (N)
n−1

) 1
m ≤ b(m) osc(fn). (4.12)

Proof:
By construction, we have

V Nn (fn) =
N∑
i=1

∆(N)
n,i (fn)

with
∆(N)
n,i (fn) :=

1√
N

[
fn(X (N,i)

n )−Kn,ηNn−1
(fn)(X (N,i)

n−1 )
]
.

Given X (N)
n−1, we let (Y(N,i)

n )1≤i≤N be an independent copy of (X (N,i)
n )1≤i≤N .

We readily check that

∆(N)
n,i (fn) := E

(
1√
N

[
fn(X (N,i)

n )− fn(Y(N,i)
n )

]
| X (N)

n−1

)
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This yields the formula

V Nn (fn) = E
(
M

(N)
n,N (fn) | X (N)

n−1

)
where M (N)

n,N (fn) is the terminal value of the martingale sequence defined below

i ∈ {1, . . . , N} 7→M
(N)
n,i (fn) :=

i∑
j=1

1√
N

[
fn(X (N,j)

n )− fn(Y(N,j)
n )

]
.

Using Kintchine’s inequality the end of the proof of (4.12) is clear.

The proof of the following lemma is rather technical and is provided in the
appendix.

Lemma 4.4 For any 0 ≤ p ≤ n, any η, µ ∈ P(Sp) and any fn ∈ Osc1(Sn), we
have the first order decomposition for the non-linear semi-group Φp,n defined in
(3.7):

[Φp,n(µ)− Φp,n(η)] (fn) = 2 qp,nβ(Pp,n) [µ− η] (Up,n,η(fn)) +Rp,n(µ, η)(fn)

with a remainder term

|Rp,n(µ, η)(fn)| ≤ 4 q3
p,n β(Pp,n) |[µ− η] (Vp,n,η(f))| × |[µ− η] (Wp,n,η(fn))|

and a collection of functions Up,n,η(f),Vp,n,η(f),Wp,n,η(f) in Osc1(Sp), whose
values only depends on the parameters (p, n, η).

We now present a bias estimate and some Lm bounds of independent interest.

Theorem 4.5 For any n ≥ 0, fn ∈ Osc1(Sn) and any N ≥ 1,

N
∣∣E (ηNn (fn)

)
− ηn(fn)

∣∣ ≤ σ1,n with σ1,n := 4
n∑
p=0

q3
p,n β(Pp,n).

In addition, for any m ≥ 1 we have

√
N E

(∣∣[ηNn − ηn] (fn)
∣∣m) 1

m ≤ 1√
N

b(2m)2 σ1,n + b(m) σ2,n

with

σ2,n := 2
n∑
p=0

qp,n β(Pp,n).

Proof:
Using Lemma 4.4, we have the telescoping sum decomposition

WN
n :=

√
N
[
ηNn − ηn

]
=
√
N

n∑
p=0

[
Φp,n(ηNp )− Φp,n

(
Φp(ηNp−1)

)]
= INn + JNn
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with the pair of random measures (INn ,JNn ) given for any fn ∈ Osc1(Sn) by

INn (fn) := 2
n∑
p=0

qp,n β(Pp,n) V Np
(
Up,n,Φp(ηNp−1)(fn)

)
JNn (fn) :=

√
N

n∑
p=0

Rp,n
(
ηNp ,Φp(η

N
p−1)

)
(fn).

Now, observe that
E
(
WN
n (fn)

)
= E(JNn (fn)).

Using Proposition 4.3, for any fn ∈ Osc1(Sn) it can be checked that

E
(∣∣INn (fn)

∣∣m) 1
m ≤ b(m) σ2,n.

In much the same way, we find that

√
N E

(∣∣JNn (fn)
∣∣m) 1

m ≤ b(2m)2 σ1,n. (4.13)

The end of the proof is now clear.

4.2.3 A concentration theorem

The following concentration theorem is the main result of this Section. It im-
proves the exponential estimates presented in Section 7.4.3 in [5], by removing
a multiplicative correction factor of order

√
N in front of the exponential decay.

Theorem 4.6 For any n ≥ 0, fn ∈ Osc1(Sn), N ≥ 1, and any 0 ≤ ε ≤ 1/2,

P
(∣∣[ηNn − ηn] (fn)

∣∣ ≥ ε
)
≤ 6 exp

(
− N ε2

8 σ1,n

)
(4.14)

where the constant σ1,n is defined in Theorem 4.5.
In addition, suppose (M)m is satisfied for some m ≥ 1 and condition (4.7)

holds true for some δ > 0 and some finite constants (r, r). In this situation, for
any value of the time parameter n, for any fn ∈ Osc1(Sn), N ≥ 1 and for any
ρ ∈ (0, 1) the probability that

∣∣[ηNn − ηn] (fn)
∣∣ ≤ 4r

δ2

√
2mrr
N δ

log
(

6
ρ

)
is greater than (1− ρ).

Proof:
We use the same notation as in the proof of Theorem 4.5. Recall that b(2m)2m =
E(X2m) for every centered Gaussian random variable with E(X2) = 1 and

∀s ∈ [0, 1/2) E(exp
{
sX2

}
) =

∑
m≥0

sm

m!
b(2m)2m =

1√
1− 2s

.
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Using (4.13), for any fn ∈ Osc1(Sn) and 0 ≤ s < 1/(2σ1,n) it follows that

E
(

exp
{
s
√
NJNn (fn)

})
≤
∑
m≥0

(sσ1,n)m

m!
b(2m)2m =

1√
1− 2sσ1,n

. (4.15)

To simplify the presentation, set

fNp,n := Up,n,Φp(ηNp−1)(fn) and αp,n := 2 qp,n β(Pp,n)

where Up,n,η (·) was introduced in Lemma 4.4. In this notation, it follows

V Np
(
fNp,n

)
=

1√
N

N∑
i=1

(
fNp,n(X (N,i)

p )−Kp,ηNp−1
(fNp,n)(X (N,i)

p−1 )
)
.

Recalling that E(etX) ≤ et
2c2/2, for every real-valued and centered random

variable X with |X| ≤ c, we prove that

E
(

exp
{
t αp,n V

N
p

(
fNp,n

)} ∣∣∣ X (N)
p−1

)

=
∏N
i=1

∫
Sp

Kp,ηNp−1

(
X (N,i)
p−1 , dx

)
e
tαp,n√
N

„
fNp,n(x)−K

p,ηN
p−1

(fNp,n)(X (N,i)
p−1 )

«

≤ exp

(
t2α2

p,n

2

)
.

Iterating the argument, we find that

E
(
et I

N
n (fn)

)
= E

(
exp

{
t

n∑
p=0

αp,n V
N
p

(
fNp,n

)})
≤ exp

(
t2σ2

n

2

)
(4.16)

with

σ2
n := 4

n∑
p=0

q2
p,n β(Pp,n)2.

From these Laplace upper bounds, the proof of the exponential estimates
now follows standard arguments. Indeed, for any 0 ≤ s < 1/(2σ1,n) and any
ε > 0, by (4.15) we have

P
(√

N JNn (fn) ≥ ε
)
≤ 1√

1− 2sσ1,n

exp {−εs}.

Replacing ε by εN

P
(
JNn (fn)/

√
N ≥ ε

)
≤ 1√

1− 2sσ1,n

exp {−εs N} .

Now, if choosing s = 3/(8σ1,n), then

P
(
JNn (fn)/

√
N ≥ ε

)
≤ 2 exp {−εN/(3σ1,n)}.
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To estimate the probability tails of INn (fn), we use (4.16) and the fact that ε > 0
and t ≥ 0

P
(
INn (fn) ≥ ε

)
≤ exp

{
−
(
εt− t2

2
σ2
n

)}
.

Now choosing t = ε/σ2
n and replacing ε by

√
Nε then we obtain

∀ε > 0 P
(
INn (f)/

√
N ≥ ε

)
≤ exp

(
−Nε

2

2σ2
n

)
.

Using the decomposition[
ηNn − ηn

]
= INn /

√
N + JNn /

√
N

we find that for any parameter α ∈ [0, 1]

P
([
ηNn − ηn

]
(fn) ≥ ε

)
≤ P

(
INn (fn)/

√
N ≥ αε

)
+P
(
JNn (fn)/

√
N ≥ (1− α)ε

)
.

From previous calculations,

P
([
ηNn − ηn

]
(fn) ≥ ε

)
≤ exp

(
−Nε

2α2

2σ2
n

)
+ 2 exp

(
−N ε(1− α)

3σ1,n

)
. (4.17)

Now choose α = (1− ε)(≥ 1/2), then α2 ≥ 1/4 and

P
([
ηNn − ηn

]
(fn) ≥ ε

)
≤ exp

(
−Nε

2

8σ2
n

)
+ 2 exp

(
−N ε2

3σ1,n

)
≤ 3 exp

(
− N ε2

8 (σ1,n ∨ σ2
n)

)
.

It remains to observe that

qp,n ≥ 1 and β(Pp,n) ≤ 1 =⇒ σ2
n ≤ σ1,n

and∣∣[ηNn − ηn] (fn)
∣∣ ≥ ε⇐⇒

[
ηNn − ηn

]
(fn) ≥ ε or

[
ηNn − ηn

]
(fn) ≤ − ε

⇐⇒
[
ηNn − ηn

]
(fn) ≥ ε or

[
ηNn − ηn

]
(−fn) ≥ ε

so that

P
(∣∣[ηNn − ηn] (fn)

∣∣ ≥ ε
)
≤ P

([
ηNn − ηn

]
(fn) ≥ ε

)
+P

([
ηNn − ηn

]
(−fn) ≥ ε

)
.

The end of the proof of (4.14) is now easily completed. We further assume that
the mixing condition (M)m is satisfied for some m ≥ 1 and condition (4.7) holds
true for some δ > 0 and some finite constants (r, r). In this situation, by (4.8)
the following uniform concentration estimate holds

sup
n≥0

P
(∣∣[ηNn − ηn] (fn)

∣∣ ≥ ε
)
≤ 6 exp

(
− N ε2 δ5

32 m r r3

)
.

The proof of the theorem is concluded by choosing ε := 1√
N

4r
δ2

√
2mrr
δ log 6

ρ .
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Remark 4.7 Returning to the end of the proof of Theorem 4.6, it can be ob-
served that the exponential concentration estimates can be improved, marginally,
by choosing in (4.17) the parameter α = αn(ε) ∈ [0, 1] such that an(ε) α2 =
bn (1− α), with an(ε) := ε

2σ2
n

and bn = 1
3σ1,n

. Elementary manipulations yield

αn(ε) =
bn

2an(ε)

√1 +
4an(ε)
bn

− 1


=

σ2
n

3σ1,n

1
ε

(√
1 +

6σ1,n

σ2
n

ε− 1

)
(−→ε↓0 1)

and therefore

∀ε ≥ 0 P
([
ηNn − ηn

]
(f) ≥ ε

)
≤ 3 exp

(
−N ε2

2σ2
n

α2
n(ε)

)
.

4.3 Approximating the criteria

By construction, the particle occupation measures PNbηn,(tn,s) approximate the
measures Pbηn,(tn,s) introduced in Definition 3.2; that is, in some sense

PNbηNn ,(tn,s) 'N↑∞ Pbηn,(tn,s).
Conversely, observe that PNbηNn ,(tn,s), and respectively Pbηn,(tn,s) are the marginals
of the measures ηNn+1, and respectively ηn+1 w.r.t the (s − tn) + 1 first coordi-
nates. In other words, the measures PNbηNn ,(tn,s), and respectively Pbηn,(tn,s) are
the projections of the measures ηNn+1, and respectively ηn+1 on the state space

Es := Etn ×
(
E′tn+1 × . . .× E′s

)
.

For instance, the following proposition is more or less a direct consequence
of Theorem 4.6.

Proposition 4.8 For any N ≥ 1, n ≥ 0, tn ≤ s ≤ tn+1 and any ε > 0, the
concentration inequality:

P
(∣∣∣H(n)

tn,s

(
PNbηNn ,(tn,s)

)
−H(n)

tn,s

(
Pbηn,(tn,s))∣∣∣ ≥ ε) ≤ (1 + ε

√
N/2) exp

(
−Nε

2

c(n)

)
holds for some finite constant c(n) < ∞ whose values only depend on the time
parameter. In addition, when the measures H

(n)
tn,s have a finite support, the

concentration inequality:

P
(∣∣∣H(n)

tn,s

(
PNbηNn ,(tn,s)

)
−H(n)

tn,s

(
Pbηn,(tn,s))∣∣∣ ≥ ε) ≤ c1(n) exp

(
− Nε2

c2(n)

)
also holds, with a pair of finite constants c1(n), c2(n) < ∞ whose values only
depend on the time parameter.
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Proof:
By theorem 7.4.4 in [5], for any N ≥ 1, p ≥ 1, n ≥ 0 and any test function
fn ∈ Osc1(Etn), we have

sup
N≥1

√
N E

(∣∣ηNn (fn)− ηn(fn)
∣∣p) 1

p ≤ b(p) c(n)

with some finite constant c(n) < ∞ and with the collection of constants b(p)
defined in (4.11). These estimates clearly imply that for any tn ≤ s ≤ tn+1, and
any test function hn ∈ Osc1(Es)

sup
N≥1

√
N E

(∣∣∣PNbηNn ,(tn,s)(hn)− Pbηn,(tn,s)(hn)
∣∣∣p) 1

p

≤ b(p) c(n).

Under our Lipschitz regularity condition (3.10) on the criteria type function-
als H(n)

tn,s and using the generalized integral Minkowski inequality, it can be
concluded that

sup
N≥1

√
N E

(∣∣∣H(n)
tn,s

(
PNbηNn ,(tn,s)

)
−H(n)

tn,s

(
Pbηn,(tn,s))∣∣∣p) 1

p

≤ b(p) c(n) δ(H(n)
tn,s).

The proof of the exponential estimate follows exactly the same lines of argu-
ments as the ones used in the proof of corollary 7.4.3 in [5]; thus it is omitted.
The last assertion is a direct consequence of Theorem 4.6. This ends the proof
of the proposition

4.4 An online adaptive SMC algorithm

The above proposition shows that the functional criteria H(n)
tn,s

(
Pbηn,(tn,s)) can

be approximated by H(n)
tn,s

(
PNbηNn ,(tn,s)

)
, up to an exponentially small probability.

Therefore, as we cannot compute the deterministic resampling times (tn), it is
necessary to approximate the reference particle model:

Definition 4.9 We use the letters Y and Y to define the particle model as-
sociated to the following approximation of the reference particle model. More
precisely, the particle systems Y(N) =

(
Y(N,i)

)
, Ŷ(N) =

(
Ŷ(N,i)

)
, Y (N,i)

s,t and

Ŷ
(N,i)
s,t are defined as X (N) =

(
X (N,i)

)
, X̂ (N) =

(
X̂ (N,i)

)
, and X(N,i)

s,t and X̂(N,i)
s,t

by replacing in the inductive construction of the deterministic sequence (tn)n≥0

the measures Pbηn,(tn,s) by their current N -particle approximation measures

PNbηNn ,(tNn ,s)(·) :=
1
N

N∑
i=1

δ„bY(N,i)
n ,

„
Y

(N,i)
tNn +1

,Y
(N,i)
tNn +2

,...,Y
(N,i)
s

««(·).

Here η̂Nn (·) = 1
N

∑N
i=1 δbY(N,i)

n
(·) denotes the updated occupation measure of the

particle model Ŷ(N)
n . We also assume that both models are constructed in such a

way that they coincide on every time interval 0 ≤ n ≤ m, as soon as the random
times tNn = tn, for every 0 ≤ n ≤ m.
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It is emphasized that the measures PNbηNn ,(tNn ,s) generally differ from the ref-
erence empirical measures PNbηNn ,(tn,s) introduced in (4.5). Indeed, the reference
measures PNbηNn ,(tn,s) are built using the deterministic times tn based on the func-

tional criteria H(n−1)
tn−1,s

(
Pbηn−1,(tn−1,s)

)
, whilst the empirical measures PNbηNn ,(tNn ,s)

are inductively constructed using random times tNn based on the current empir-
ical criteria H(n−1)

tNn−1,s

(
PNbηNn−1,(t

N
n−1,s)

)
.

By construction, for the four functional criteria discussed in Section 3.6, we
have H(n)

tNn ,s

(
PNbηNn ,(tNn ,s)

)
= CNtNn ,s

where CNtNn ,s are the empirical criteria discussed
in 2.3.

5 Asymptotic analysis

5.1 A key approximation lemma

To go one step further in our discussion, it is convenient to introduce the fol-
lowing collection of events.

Definition 5.1 For any δ ∈ (0, 1), m ≥ 0, an ∈ R and N ≥ 1, we denote by
ΩNm (δ, (an)0≤n≤m), the collection of events defined by:

ΩNm (δ, (an)0≤n≤m)

:= {∀0 ≤ n ≤ m ,∀tn ≤ s ≤ tn+1∣∣∣H(n)
tn,s

(
PNbηNn ,(tn,s)

)
−H(n)

tn,s

(
Pbηn,(tn,s))∣∣∣ ≤ δ

∣∣∣H(n)
tn,s

(
Pbηn,(tn,s))− an∣∣∣} .

Lemma 5.2 On the event ΩNm(δ, (an)0≤n≤m), for any n ≤ m and for any tn ≤
s ≤ tn+1, we have

H(n)
tn,s

(
Pbηn,(tn,s)) > an =⇒ H(n)

tn,s

(
PNbηNn ,(tn,s)

)
> an

H(n)
tn,s

(
Pbηn,(tn,s)) < an =⇒ H(n)

tn,s

(
PNbηNn ,(tn,s)

)
< an.

Proof:
Observe that∣∣∣H(n)

tn,s

(
PNbηNn ,(tn,s)

)
−H(n)

tn,s

(
Pbηn,(tn,s))∣∣∣ ≤ δ

∣∣∣H(n)
tn,s

(
Pbηn,(tn,s))− an∣∣∣

is equivalent to saying that

H(n)
tn,s

(
Pbηn,(tn,s))− δ ∣∣∣H(n)

tn,s

(
Pbηn,(tn,s))− an∣∣∣ ≤ H(n)

tn,s

(
PNbηNn ,(tn,s)

)
and

H(n)
tn,s

(
PNbηNn ,(tn,s)

)
≤ H(n)

tn,s

(
Pbηn,(tn,s))+ δ

∣∣∣H(n)
tn,s

(
Pbηn,(tn,s))− an∣∣∣ .
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Thus, if H(n)
tn,s

(
Pbηn,(tn,s)) < an then

H(n)
tn,s

(
PNbηNn ,(tn,s)

)
≤ H(n)

tn,s

(
Pbηn,(tn,s))+ δ

(
an −H(n)

tn,s

(
Pbηn,(tn,s)))

≤ δ an + (1− δ) H(n)
tn,s

(
Pbηn,(tn,s)) < an.

Similarly, if we have H(n)
tn,s

(
Pbηn,(tn,s)) > an then we also have

H(n)
tn,s

(
PNbηNn ,(tn,s)

)
≥ H(n)

tn,s

(
Pbηn,(tn,s))− δ (H(n)

tn,s

(
Pbηn,(tn,s))− an)

≥ δ an + (1− δ) H(n)
tn,s

(
Pbηn,(tn,s)) > an.

This ends the proof of the lemma.

Proposition 5.3 Assume that the threshold parameters an are chosen so that
H(n)
tn,s

(
Pbηn,(tn,s)) 6= an, for any n ≥ 0. In this situation, for any δ ∈ (0, 1),

m ≥ 0 and N ≥ 1, we have

∩0≤n≤m{ tNn = tn } ⊃ ΩNm (δ, (an)0≤n≤m)

Proof:
This result is proved by induction on the parameter m ≥ 0. Under our assump-
tions, for m = 0 we have tN0 = t0 = 0. Thus, by our coupling construction the
pair of particle models coincide up to the time

(
tN1 ∧ t1

)
. Therefore,

∀s <
(
tN1 ∧ t1

)
PNbηN0 ,(t0,s) = PNbηN0 ,(tN0 ,s).

By Lemma 5.2, on the event ΩNm (δ, (an)0≤n≤m) we have tN1 = t1. This proves
the inclusion for m = 0 and m = 1. Suppose the result is true at rank m.
Thus, on the event ΩNm (δ, (an)0≤n≤m) it is the case that tNn = tn, for any
0 ≤ n ≤ m. By our coupling construction, the pair of particle models coincides
up to

(
tNm+1 ∧ tm+1

)
; that is,

tNm = tm and ∀ ≤ s <
(
tNm+1 ∧ tm+1

)
PNbηNm,(tm,s) = PNbηNm,(tNm,s).

Once again, by Lemma 5.2, on the event ΩNm+1 (δ, (an)0≤n≤m+1) it also follows
that tNm+1 = tm+1. This ends the proof of the proposition.

5.2 Randomized criteria

The situation where the threshold parameters coincide with the adaptive crite-
ria values H(n)

tn,s

(
Pbηn,(tn,s)) = an cannot be handled using our analysis. Indeed,

in this rather degenerate situation it is impossible, at least with our approach,
to compare the random times

(
tNn
)
n≥0

with the reference deterministic ones
(tn)n≥0. The analysis of this situation is clearly more involved since it requires
us to control both the empirical approximating criteria and the mean field ap-
proximation model.
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To avoid this technical problem, one natural strategy is to introduce ran-
domized criteria thresholds. We further assume that the parameters (an)n≥0 are
sampled realizations of a collection of absolutely continuous random variables
(An)n≥0; in practice, this element can be incorporated into the simulation, with
no real change in the performance. The main simplification of these randomized
criteria comes from the fact that the parameters

εm := inf
0≤n≤m

inf
tn≤s≤tn+1

∣∣∣H(n)
tn,s

(
Pbηn,(tn,s))− an∣∣∣

are strictly positive for almost every realizations An = an of the threshold
parameters.

Theorem 5.4 For almost every realization of the random threshold parameters,
and for any δ ∈ (0, 1), we have the following exponential estimates :

P
(
∃0 ≤ n ≤ m tNn 6= tn | (An)0≤n≤m

)
≤ c1(m)

(
1 + δ εm

√
N

2

)
e
−
Nδ2ε2m
c2(m)

for some constants c1(m), c2(m) < ∞ whose values only depend on the time
parameter m. In addition, when the measures H(n)

tn,s have a finite support, for
any δ ∈]0, 1/(2εm)[

P
(
∃0 ≤ n ≤ m tNn 6= tn | (An)0≤n≤m

)
≤ c1(m) e−Nδ

2ε2m/c2(m)

holds, for a possibly different pair of finite constants c1(m), c2(m) <∞.

Proof:
Using Proposition 4.8, we obtain the rather crude estimate

P
(
Ω− ΩNm (δ, (An)0≤n≤m) | (An)0≤n≤m = (an)0≤n≤m

)
≤
∑m
n=0

∑tn+1
s=tn

P
(∣∣∣H(n)

tn,s

(
PNbηn,(tn,s)

)
−H(n)

tn,s

(
Pbηn,(tn,s))∣∣∣ ≥ δ

∣∣∣H(n)
tn,s

(
Pbηn,(tn,s))− an∣∣∣)

≤
∑m
n=0

∑tn+1
s=tn

P
(∣∣∣H(n)

tn,s

(
PNbηn,(tn,s)

)
−H(n)

tn,s

(
Pbηn,(tn,s))∣∣∣ ≥ δ εm

)
≤ c1(m) (1 + δ εm

√
N/2) exp

(
−Nδ2 ε2m/c2(m)

)
for a pair of finite constants c1(m), c2(m) <∞ whose values only depend on the
time parameter. The final line is a direct consequence of Proposition 4.8 and
an application of Proposition 5.3 completes the proof.

We conclude that for almost every realization (An)0≤n≤m = (an)0≤n≤m the
pair particle models (X (N)

n , X̂ (N)
n )0≤n≤m and (Y(N), Ŷ(N)

n )0≤n≤m only differ on
events Ω− ΩNm(δ, (an)0≤n≤m) with exponentially small probabilities:

P
(
∃0 ≤ n ≤ m (Y(N), Ŷ(N)

n ) 6= (X (N)
n , X̂ (N)

n ) | (An)0≤n≤m = (an)0≤n≤m

)
≤ c1(m) (1 + δ εm

√
N/2) exp

(
−Nδ2 ε2m/c2(m)

)
.
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6 A functional central limit theorem

6.1 A direct approach

In this Section some direct consequences of the exponential coupling estimates,
presented in Section 5.2, are discussed. For almost every realization (An)0≤n≤m =
(an)0≤n≤m and for any test function fn ∈ Osc1(Etn) the following decompo-
sition holds (writing ηNn for the online adaptive approximation introduced in
Definition 4.9)
√
N
[
ηNn − ηn

]
=
√
N
[
ηNn − ηn

]
+
√
N
[
ηNn − ηNn

]
1Ω−ΩNm(δ,(an)0≤≤m)

with

E
(√

N
[
ηNn − ηNn

]
(fn) 1Ω−ΩNm(δ,(an)0≤n≤m)

)
≤
√
N P

(
Ω− ΩNm(δ, (an)0≤n≤m)

)︸ ︷︷ ︸
→N↑∞ 0

.

Thus we can conclude directly that, for almost every realization (An)0≤n≤m =
(an)0≤n≤m, the random fields

W
N

n :=
√
N
[
ηNn − ηn

]
= and WN

n :=
√
N
[
ηNn − ηn

]
converge in law, as N ↑ ∞, to the same Gaussian and centered random field
Wn.

6.2 Functional central limit theorems

To demonstrate the impact of this functional fluctuation result and to connect
this work with related studies, we provide a brief discussion on the proof of this
multivariate central limit theorem.

Let us begin by recalling a rather well-known functional fluctuation theorem
of the local errors associated with the mean field particle approximation intro-
duced in (4.9). This result was initially presented in [7] in the case of elementary
genetic type models. It has been extended to general mean field particle models
in Section 9.3 in [5].

Theorem 6.1 For any fixed time horizon n ≥ 0, the sequence (V Np )0≤p≤n con-
verges in law, as N tends to infinity, to a sequence of n independent, Gaus-
sian and centered random fields (Vp)0≤p≤n with, for any fp, gp ∈ Bb(Ep), and
1 ≤ p ≤ n,

E(Vp(fp)Vp(gp)) = ηp−1Kp,ηp−1([fp −Kp,ηp−1(fp)][gp −Kp,ηp−1(gp)]). (6.1)

Using arguments fairly similar to those in the proof of Lemma 4.4, we obtain
the first order decomposition formula:

[Φn(µ)− Φn(η)](f) = (µ− η)Dn,η +Rn(µ, η)

with the signed measure Rn(µ, η) given by

Rn(µ, η)(f) := − 1
µ(Gn,η)

[µ−η]⊗2(Gn,η⊗Dn,η(f)) with Gn,η := Gn−1/η(Gn−1)

and the bounded integral operator

Dn,η(f)(x) := Gn,η(x) × Mn (f − Φn(η)(f)) (x).
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Definition 6.2 Denote by Dp,n the semi-group associated to the integral oper-
ators Dn := Dn,ηn−1 ; that is,

Dp,n := Dp+1 . . . Dn−1Dn.

For p = n, we use the convention Dn,n = Id, the identity operator.

It should be noted that the semi-group Dp,n introduced above can be ex-
plicitly described in terms of the semi-group Qp,n, with the following formula

Dp,n(f) =
Qp,n

ηp(Qp,n(1))
(f − ηn(f)) .

The next technical lemma provides a key first order decomposition of the
random fields WN

n in terms of the local fluctuation errors. Its proof follows an
elementary induction on the time parameter n, and is in the appendix. Note
that Rp is a remainder term that can be understood in the proof.

Lemma 6.3 For any N ≥ 1 and any 0 ≤ p ≤ n, we have

WN
n =

n∑
p=0

V Np Dp,n+RNn with RNn :=
√
N

n−1∑
p=0

Rp+1

(
ηNp , ηp

)
Dp+1,n. (6.2)

Using the Lm-mean error estimates presented in Section 4.2.2, it is easily
proved that the sequence of remainder random fields RNn , introduced in (6.2),
converge in law, in the sense of finite distributions, to the null random field as
N tends to ∞. Therefore the fluctuations of WN

n follows from Theorem 6.1.

Corollary 6.4 For any fixed time horizon n ≥ 0, the sequence of random fields
(WN

n )n≥0 converges in law, as N tends to infinity, to the sequence of Gaussian
and centered random fields (Wn)n≥0 given below

∀n ≥ 0 Wn =
n∑
p=0

VpDp,n.

6.3 On the fluctuations of weighted occupation measures

We end this article with some comments on the fluctuations of weighted occupa-
tion measures on path spaces. Returning to the online adaptive particle model,
given a pair of time steps (tNn , t

N
n+1) = (tn, tn+1) the N -particle measures

ηNn+1 =
1
N

N∑
i=1

δ„bY(N,i)
n ,

„
Y

(N,i)
tNn +1

,Y
(N,i)
tNn +2

,...,Y
(N,i)

tN
n+1

««

can be used to approximate the flow of updated Feynman-Kac path distributions
(η̂n+1,s)tn≤s≤tn+1 given for any bounded test function fn+1 ∈ Bb(Sn+1) by

s ∈ [tn, tn+1] 7→ η̂n+1,s(fn+1) ∝ E

fn+1(X ′0, . . . , X
′
tn+1

)
∏

0<k≤s

G′k(X ′k)

 .
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Indeed, if we choose the weighted functions

T
(1)
n+1(fn+1)(x′0, . . . , x

′
tn+1

) := fn+1(x′0, . . . , x
′
tn+1

)
∏

tn<k≤s

G′k(x′k)

then in some sense

η̂Nn+1,s(fn+1) :=
ηNn+1

(
T

(1)
n+1(fn+1)

)
ηNn+1

(
T

(1)
n+1(1)

) 'N↑∞ η̂n+1,s(fn+1) :=
ηn+1

(
T

(1)
n+1(fn+1)

)
ηn+1

(
T

(1)
n+1(1)

)
where ηn+1 is the flow of Feynman-Kac measures on path spaces introduced in
Section 3.3.

Since the adaptive interaction time is taken such that tNn+1 = tn+1, it holds
that

1
N

N∑
i=1

δbY(N,i)
n+1

'N↑∞ η̂n+1,tn+1 = η̂n+1.

In other words, the marginal type functions are chosen

T
(0)
n+1(fn+1)(x′0, . . . , x

′
tn+2

) := fn+1(x′0, . . . , x
′
tn+1

)

so

ηn+2

(
T

(0)
n+1(fn+1)

)
= η̂n+1(fn+1) ∝ E

fn+1(X ′0, . . . , X
′
tn+1

)
∏

0<k≤tn+1

G′k(X ′k)


and therefore

ηNn+2

(
T

(0)
n+1(fn+1)

)
=

1
N

N∑
i=1

fn+1

(
Ŷ(N,i)
n+1

)
'N↑∞ ηn+2

(
T

(0)
n+1(fn+1)

)
.

From the previous discussion, for almost every realization (An)0≤n≤m = (an)0≤n≤m
a central limit theorem is easily derived for the collection of random fields given
below

Ŵ
N,(0)
n+1 (fn+1) :=

√
N
[
ηNn+2

(
T

(0)
n+1(fn+1)

)
− ηn+2

(
T

(0)
n+1(fn+1)

)]
and

Ŵ
N,(1)
n+1,s(fn+1) :=

√
N
[
η̂Nn+1,s(fn+1)− η̂n+1,s(fn+1)

]
as well as for the mixture of random field sequences

ŴN
n+1,s = 1tNn ≤s<tNn+1

Ŵ
N,(1)
n+1,s + 1s=tNn+1

Ŵ
N,(0)
n+1 . (6.3)

The fluctuation analysis of these random fields strongly relies on the func-
tional central limit theorem stated in corollary 6.4. In particular, the fluctua-
tions of the random fields (6.3) depend on the fluctuations of a pair or random
fields. From elementary stochastic calculus, the corresponding fluctuations can-
not be deduced directly from the separate fluctuations of each components.
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6.4 Related work

To our knowledge, the article [9] is the only reference providing convergence re-
sults for a specific adaptive SMC scheme in a state-space models context. The
authors establish a central limit theorem using an inductive proof w.r.t deter-
ministic time periods; this does not account for the randomness of the latter
quantities. They implicitly avoid the degenerate situation where the threshold
parameter coincides with the limiting functional criterion. The fluctuations of
the sum of the weighted and the resampled empirical approximations is de-
duced from the fluctuations of each separate components without the use of any
multivariate type central limit theorem.

Alternative adaptive schemes can be found in [2]. In that paper, the authors
focus upon adapting the parameters of the instrumental kernel, so as to minimize
the Kullback-Liebler or Chi-Square distance between this quantity and target
distribution of interest. As such, this work is different from ours, other than the
idea of using adaptive criteria within the simulation algorithm. An idea that
combines this, in a different context, with the adaptation of target densities and
dynamic resampling can be found in [12].
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Appendix

Proof of Lemma 4.2

We prove the lemma by induction on the parameter n. The result is clearly
satisfied for n = 0. Suppose the estimate (4.10) is true at rank (n − 1). To
prove the result at rank n, use the binomial decomposition

(Mn−1 + ∆n)2m =
2m∑
p=0

(
2m
p

)
M2m−p
n−1 (∆n)p .

Using the symmetry condition, all the odd moments of ∆n are null. Conse-
quently,

E
(

(Mn−1 + ∆n)2m
)

=
m∑
p=0

(
2m
2p

)
E
(
M

2(m−p)
n−1

)
E
(
∆2p
n

)
.

Then, via the induction hypothesis, the above expression is upper-bounded by
the quantity

∑m
p=0

(
2m
2p

)
2−(m−p) (2(m− p))(m−p) E

(
[M ]m−pn−1

)
E
(
∆2p
n

)
.

To take the final step, use the fact that(
2m
2p

)
2−(m−p) (2(m− p))(m−p) =

2−m (2m)m
2−p (2p)p

(
m
p

)
and (2p)p ≥ 2p
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to conclude that

E
(

(Mn−1 + ∆n)2m
)
≤ 2−m (2m)m

m∑
p=0

(
m
p

)
E
(

[M ]m−pn−1

)
E
(
∆2p
n

)
= 2−m (2m)m E ([M ]mn ) .

For odd integers, apply the Cauchy-Schwarz inequality twice to deduce that

E(|Mn|2m+1)2 ≤ E(M2m
n ) E(M2(m+1)

n )

≤ 2−(2m+1) (2m)m (2(m+ 1))(m+1) E
(

[M ]m+1
n

) 2m+1
m+1

.

Since we also have that

(2(m+ 1))(m+1) =
(2(m+ 1))!

(m+ 1)!
= 2

(2m+ 1)!
m!

= 2 (2m+ 1)(m+1)

and

(2m)m =
1

2m+ 1
(2m+ 1)!

m!
=

1
2m+ 1

(2m+ 1)(m+1)

it can be concluded that

E(|Mn|2m+1) ≤ 2−(m+1/2) (2m+ 1)(m+1)√
m+ 1/2

E
(

[M ]m+1
n

)1− 1
2(m+1)

.

This ends the proof of the lemma.

Proof of Lemma 4.4

Using (3.7), for any f ∈ Bb(Sn+1) we find that

[Φp,n(µ)− Φp,n(η)](f) =
1

µ(Gp,n,η)
(µ− η)Dp,n,η(f)

with the bounded integral operator

Dp,n,η(f)(x) := Gp,n,η(x) × Pp,n (f − Φp,n(η)(f)) (x)

where Gp,n,η and Pp,n stand for the potential function and the Markov operator
is given by

Gp,n,η := Qp,n(1)/η(Qp,n(1)) and Pp,n(f) = Qp,n(f)/Qp,n(1).

Now, since η (Gp,n,η) = 1, it is now immediate to check that

[Φp,n(µ)− Φp,n(η)] = (µ− η)Dp,n,η +Rp,n(µ, η)

with the measure Rp,n(µ, η) given by

Rp,n(µ, η)(f) := − 1
µ(Gp,n,η)

[µ− η]⊗2(Gp,n,η ⊗Dp,n,η(f)).
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Using the fact that

Dp,n,η(f)(x) = Gp,n,η(x)
∫

[Pp,n(f)(x)− Pp,n(f)(y)] Gp,n,η(y) η(dy)

we find
∀f ∈ Osc1(En) ‖Dp,n,η(f)‖ ≤ qp,n β(Pp,n).

Finally, for any f ∈ Osc1(Sn) observe that

|Rp,n(µ, η)(f)| ≤
(
4q3
p,n β(Pp,n)

) ∣∣[µ− η]⊗2
(
Gp,n,η ⊗Dp,n,η(f)

)∣∣
with the pair of functions

Gp,n,η :=
Gp,n,η
2qp,n

and Dp,n,η(f) :=
Dp,n,η(f)

2qp,nβ(Pp,n)
∈ Osc1(Sp).

This ends the proof of the lemma.

Proof of Lemma 6.3

The lemma is proved by induction on the time parameter n. For n = 0, we
readily find that WN

n = V N0 =
√
N

[
ηN0 − Φ0(ηN−1)

]
, with the convention

Φ0(ηN−1) = η0. Assuming that the decomposition is satisfied at rank n it may
be proved that

WN
n+1 = V Nn+1 +

√
N
[
Φn+1(ηNn )− Φn+1(ηn)

]
= V Nn+1 +WN

n Dn+1 +
√
N Rn+1

(
ηNn , ηn

)
= V Nn+1 +

n∑
p=0

V Np Dp,n+1

+
√
N

n−1∑
p=0

Rp+1

(
ηNp , ηp

)
Dp+1,n+1 +

√
N Rn+1

(
ηNn , ηn

)
.

Using the convention Dn+1,n+1 = I it follows that

V Nn+1 +
n∑
p=0

V Np Dp,n+1 =
n+1∑
p=0

V Np Dp,n+1

n−1∑
p=0

Rp+1

(
ηNp , ηp

)
Dp+1,n+1 +Rn+1

(
ηNn , ηn

)
=

n∑
p=0

Rp+1

(
ηNp , ηp

)
Dp+1,n+1

from which we conclude that (6.2) is satisfied at rank (n + 1). This ends the
proof of the lemma.
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