
HAL Id: inria-00334009
https://hal.inria.fr/inria-00334009

Submitted on 4 Nov 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Parsing TAG with Abstract Categorial Grammar.
Sylvain Salvati

To cite this version:
Sylvain Salvati. Parsing TAG with Abstract Categorial Grammar.. TAG+8: Workshop On Tree
Adjoining Grammar And Related Formalisms, 2006, Sidney, Australia. �inria-00334009�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/50215521?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00334009
https://hal.archives-ouvertes.fr


Parsing TAG with Abstract Categorial Grammar

Sylvain Salvati
National Institute of Informatics
2-1-2 Hitotsubashi, Chiyoda-ku,

Tokyo 101-8430, JAPAN
salvati@nii.ac.jp

Abstract

This paper presents informally an Earley al-
gorithm for TAG which behaves as the al-
gorithm given by (Schabes and Joshi, 1988).
This algorithm is a specialization to TAG of
a more general algorithm dedicated to sec-
ond order ACGs. As second order ACGs al-
lows to encode Linear Context Free Rewriting
Systems (LCFRS) (de Groote and Pogodalla,
2004), the presentation of this algorithm gives
a rough presentation of the formal tools which
can be used to design efficient algorithms for
LCFRS. Furthermore, as these tools allow to
parse linear λ-terms, they can be used as a ba-
sis for developping algorithms for generation.

1 Introduction

The algorithm we present is a specialization to TAGs
of a more general one dedicated to second order
Abstract Categorial Grammars (ACGs) (de Groote,
2001). Our aim is to give here an informal presen-
tation of tools that can be used to design efficient
parsing algorithms for formalisms more expressive
than TAG. Therefore, we only give a representation
of TAGs with linear λ-terms together with simple
derivation rules; we do not give in complete details
the technical relation with ACGs. For some more in-
formation about ACGs and their relation to TAGs, one
may read (de Groote, 2001) and (de Groote, 2002).

The advantage of using ACG is that they are de-
fined with very few primitives, but can encode many
formalisms. Thus they are well suited to study from
a general perspective a full class of formalisms. In
particular, a special class of ACGs (second order
ACGs) embeds LCFRS (de Groote and Pogodalla,
2004), i.e. mildly context sensitive languages. There-
fore, the study of second order ACGs leads to in-
sights on mildly context sensitive languages. Having
a general framework to describe parsing algorithms

for mildly context sensitive languages may give some
help to transfer some interesting parsing technique
from one formalism to another. It can be, for exam-
ple, a good mean to obtain prefix-valid algorithms,
LC algorithms, LR algorithms. . . for the full class of
mildly context sensitive languages.

The class of languages described by second or-
der ACGs is wider than mildly context sensitive lan-
guages. They can encode tree languages, and more
generally languages of linear λ-terms. As Montague
style semantics (Montague, 1974) is based on λ-
calculus, being able to parse linear λ-term is a first
step towards generation algorithms seen as parsing al-
gorithm. Furthermore, since this parsing algorithm is
a generalization of algorithms à la Earley for CFGs
and TAGs, the more general algorithm that can be
used for generation (when semantic formulae are lin-
ear) can be considered as efficient.

The paper is organized as follows: section two
gives basic defintions and tools concerning the lin-
ear λ-calculus. Section three explains how the indices
usually used by parsers are represented for the linear
λ-calculus. Section four gives a rough explaination of
the encoding of TAGs within a compiled representa-
tion of second order ACGs. Section five explains the
parsing algorithm and we conclude with section six.

2 The linear λ-calculus

We begin by giving a brief definition of linear
types and linear λ-terms together with some stan-
dard notations. We assume that the reader is famil-
iar with the usual notions related to λ-calculus (β-
conversion, free variables, capture-avoiding substitu-
tions. . . ); for more details about λ-calculus, one may
consult (Barendregt, 1984).

Definition 1 The set of linear types, T , is the smallest
set containing {∗} and such that if α, β ∈ T then
(α ( β) ∈ T .



Given a type (α1 ( (· · · (αn ( ∗) · · · )), we write
it (α1, . . . , αn) ( ∗.

Definition 2 Given a infinite enumerable set of vari-
ables, X , and an alphabet Σ, we define the set of lin-
ear λ-terms of type α ∈ T , Λα, as the smallest set
satisfying the following properties:

1. x ∈ X ⇒ xα ∈ Λα

2. t ∈ Λα ∧ xβ ∈ FV (t) ⇒ λxβ.t ∈ Λβ(α

3. a ∈ Σ ⇒ a ∈ Λ∗(∗

4. t1 ∈ Λβ(α ∧ t2 ∈ Λβ ∧ FV (t1) ∩ FV (t2) ⇒
(t1t2) ∈ Λα

In general, we write λx1 . . . xn.t for λx1. . . . λxn.t
and we write t0t1 . . . tn for (. . . (t0t1) . . . tn). Strings
are represented by closed linear λ-terms of type str =
∗ ( ∗. Given a string abcde, it is represented by the
following linear λ-term: λy∗.a(b(c(d(e y∗)))); /w/
represents the set of terms which are β-convertible to
the λ-term representing the string w. Concatenation
is represented by + = λxstr

1
xstr

2
y∗.xstr

1
(xstr

2
y∗), and

(+w1)w2 will be written w1 +w2. The concatenation
is moreover associative, we may thus write w1+ · · ·+
wn.

For the description of our algorithm, we rely on
contexts:

Definition 3 A context is a λ-term with a hole. Con-
texts are defined by the following grammar:

C = [] | ΛC | CΛ | λV.C

The insertion of a term within a context is done
the obvious way. One has nevertheless to remark that
when a term t is inserted in a context C[], the context
C[] can bind variables free in t. For example, if C[] =
λx.[] and t = x then C[t] = λx.x and x which was
free in t is not free anymore in C[t].

3 Indices as syntactic descriptions

Usually the items of Earley algorithms use indices to
represent positions in the input string. The algorithm
we describe is a particular instance of a more general
one which parses linear λ-terms rather than strings.
In that case, one cannot describe in a simple way po-
sitions by means of indices. Instead of indices, po-
sitions in a term t will be represented with zippers
((Huet, 1997)), i.e. a pair (C[], v) of a context and a
term such that C[v] = t. Figure 1 explicits the corre-
spondence between indices and zippers via an exam-
ple.

The items of Earley algorithms for TAGs use pairs
of indices to describe portions of the input string.

In our algorithm, this role is played by linear types
built upon zippers; the parsing process can be seen
as a type-checking process in a particular type sys-
tem. We will not present this system here, but we
will give a flavor of the meaning of those types called
syntactic descriptions (Salvati, 2006). In order to
represent the portion of a string between the indices
i and j, we use the zippers (Ci[], vi) and (Cj [], vj)
which respectively represent the position i and j in
the string. The portion of string is represented by
the syntactic description (Cj [], vj) ( (Ci[], vi); this
syntactic description can be used to type functions
which take vj as argument and return vi as a re-
sult. For example, given the syntactic description:
(λx.a(b(c[])), d(e x)) ( (λx.a[], b(c(d(e x)))), it
represents the set of functions that result in terms
that are β-convertible to b(c(d(e x))) when they take
d(e x) as an argument; this set is exactly /bc/. Our
algorithm uses representations of string contexts with
syntactic descriptions such as d = ((C1[], v1) (

(C2[], v2)) ( (C3[], v3) ( (C4[], v4) (in the follow-
ing we write ((C1[], v1) ( (C2[], v2), (C3[], v3)) (

(C4[], v4) for such syntactic descriptions). Assume
that (C1[], v1) ( (C2[], v2) represents /bc/ and
that (C3[], v3) ( (C4[], v4) represents /abcde/,
then d describes the terms which give a result in
/abcde/ when they are applied to an element of /bc/.
Thus, d describes the set of terms β-convertible to
λfy.a(f(d(e y))), the set of terms representing the
string context a[ ]de.

Some of the syntactic descriptions we use may
contain variables denoting non-specified syntactic de-
scriptions that may be instanciated during parsing. In
particular, the syntactic description variable F will al-
ways be used as a non-specified syntactic description
representing strings (i.e. F may only be substituted
by a syntactic description of the form (C1[], v1) (

(C2[], v2)), such syntactic descriptions will represent
the foot of an auxiliary tree. We will also use Y to
represent a non-specifed point in the input sentence
(i.e. Y may only be substituted by syntactic descrip-
tions of the form (C[], v)), such syntactic descriptions
will represent the end of an elementary tree.

As syntactic desccriptions are types for the linear
λ-calculus, we introduce the notion of typing context
for syntactic descriptions.

Definition 4 A typing context Γ (context for short), is
a set of pairs of the form x : d where x is a variable
and d is a syntactic description such that x : d ∈ Γ
and x : e ∈ Γ iff d = e.

If x : d ∈ Γ, then we say that x is declared with
type d in Γ.

Typing contexts Γ must not be confused with con-



0 (λx.[], a(b(c(d(e x))))) 1 (λx.a[], b(c(d(e x))))

2 (λx.a(b[]), c(d(e x))) 3 (λx.a(b(c[])), d(e x))

4 (λx.a(b(c(d[]), e x) 5 (λx.a(b(c(d(e[])))), x)

abcde

Figure 1: Correspondence indices/zippers for the string abcde

texts C[]. If a typing context Γ is the set {x1 :
d1; . . . ;xn : dn} then we will write if by x1 :
d1, . . . , xn : dn. In the present paper, typing contexts
may declare at most two variables.

4 Representing TAG with second order
ACGs

We cannot give here a detailed definition of second
order ACGs here. We therefore directly explain how
to transform TAGs into lexical entries representing a
second order ACG that can be directly used by the
algorithm.

We represent a TAG G by a set of lexical entries
LG. Lexical entries are triples (Γ, t, α) where Γ is
a typing context, t is a linear λ-term and α is either
Na, Ns or Na.1 if N is a non-terminal of the con-
sidered TAG. Without loss of generality, we consider
that the adjunction at an interior node of an elemen-
tary tree is either mandatory or forbidden1 . We adopt
the convention of representing adjunction nodes la-
beled with N by the variable xstr(str

Na
, the substitu-

tion nodes labeled with N ↓ by the variable xstr
Ns

, the
foot node of an auxiliary tree labeled with N ∗ by the
variable f str

Na.1 and the variable y∗ will represent the
end of strings. When necessary, in order to respect the
linearity constraints of the λ-terms, indices are used
to distinguish those variables. This convention being
settled, the type annotation on variables is not nec-
essary anymore, thus we will write xNa

, xNs
, fNa.1

and y. To translate the TAG, we use the function φ
defined by figure 2. Given an initial tree T whose
root is labeled by N and t the normal form of φ(T ),
( , t, Ns)

2 is the lexical entry associated to T ; if T is
an auxiliary tree whose root is labeled by N and t is
the normal form of φ(T ) then ( , λfNa.1.t, Na)

2 is the
lexical entry associated to T . A TAG G is represented
by LG the smallest set verifying:

1. if T is an elementary tree of G then the lexical
entry associated to T is in LG.

2. if ( , t, α) ∈ LG, with α equals to Na or Ns, and

1We do not treat here the case of optional adjunction, but our
method can be straightforwardly extended to cope with it, fol-
lowing ideas from (de Groote, 2002). It only modifies the way
we encode a TAG with a set of lexical entries, the algorithm re-
mains unchanged.

2In that case the typing context is empty.

t = C[xNa
t1t2] then (Γ, t1, Na.1) ∈ LG where

Γ = fMa.1 : F if fMa.1 ∈ FV (t1) otherwise Γ
is the empty typing context.

Given a term t such that xα ∈ FV (t), and (Γ, t′, α) ∈
LG, then we say that t is rewritten as t[xα := t′], t ⇒
t[xα := t′]. Furthermore if xα is the leftmost variable
we write t ⇒l t[xα := t′]. It is easy to check that if
t

∗

⇒ t′ with FV (t′) = ∅, then t
∗

⇒l t′. A string w is
generated by aLG whenever xSs

∗

⇒ t and t ∈ /w/ (S
being the start symbol of G). Straightforwardly, the
set of strings generated by LG is exactly the language
of G.

5 The algorithm

As we want to emphasize the fact that the algorithm
we propose borrows much to type checking, we use
sequents in the items the algorithm manipulates. Se-
quents are objects of the form Γ ` t : d where Γ is a
typing context, t is a linear λ-term, and d is a syntac-
tic description.

The algorithm uses two kinds of items; either
items of the form (α; Γ ` t : d;L) (where L
is a list of sequents, the subgoals, here L contains
either zero or one element) or items of the form
[Na.1; Γ; t; (C1[], v1) ( (C2[], v2)]. All the possible
instances of the items are given by figure 3. The algo-
rithm is a recognizer but can easily be extended into
a parser3 . It fills iteratively a chart until a fixed-point
is reached. Elements are added to the chart by means
of inference rules given by figure 4, in a deductive
parsing fashion (Shieber et al., 1995). Inference rules
contain two parts: the first part is a set of premises
which state conditions on elements that are already in
the chart. The second part gives the new element to
add to the chart if it is not already present. For the
more general algorithm, the rules are not much more
numerous as they can be abstracted into more general
schemes.

An item of the form (α; Γ1 ` t1 : d; Γ2 ` t2 :
(C1[], v1)) verifies:

1. (Γ′

1
, t1, α) ∈ LG where Γ′

1
= fNa.1 : F if Γ1 =

fNa.1 : e or Γ′

1
= Γ1 otherwise.

3Actually, if it is extended into a parser, it will ouput the
shared forest of the derivation trees; (de Groote, 2002) explains
how to obtain the derived trees from the derivation trees in the
framework of ACGs



φ









N

T1 Tn. . .









−→ λy.xNa
(φ(T1) + · · · + φ(Tn))y xNa

and y are fresh

φ









NNA

T1 Tn. . .









−→ φ(T1) + · · · + φ(Tn)

φ(N∗) −→ λy.xNa
(λy.fN.1y)y

φ(N∗

NA) −→ λy.fN.1y

φ(N ↓) −→ λy.xNs
y

φ(a) −→ λy.ay

φ(ε) −→ λy.y

Figure 2: Translating TAG into ACG: definition of φ

General items
(Na ; ` λfNa.1y.t1 : (F, Y ) ( (C1[], v1) ; fNa.1 : F, y : Y ` t2 : (C2[], v2))
(Na ; ` λfNa.1y.t : ((C1[], v1) ( (C2[], v2), Y ) ( (C3[], v3) ; y : Y ` t2 : (C4[], v4))
(Na ; ` λfNa.1y.t : ((C1[], v1) ( (C2[], v2), (C3[], v3)) ( (C4[], v4) ; )
(α ; ` λy.t1 : Y ( (C1[], v1) ; y : Y ` t2 : (C2[], v2))
(α ; ` λy.t : (C1[], v1) ( (C2[], v2) ; )
(Na.1 ; fMa.1 : F ` λy.t : Y ( (C[], v) ; fMa.1 : F, y : Y ` t2 : (C2[], v2)
(Na.1 ; fMa.1 : (C1[], v1) ( (C2[], v2) ` λy.t : Y ( (C3[], v3) ; y : Y ` t2 : (C4[], v4))
(Na.1 ; fMa.1 : (C1[], v1) ( (C2[], v2) ` λy.t : (C3[], v3) ( (C4[], v4) ; )

Wrapped subtrees
[Na.1 ; ; t ; (C1[], v1) ( (C2[], v2)]
[Na.1 ; fMa.1 : (C1[], v1) ( (C2[], v2) ; t ; (C3[], v3) ( (C4[], v4)]

Figure 3: Possible items

2. there is a context C[] such that t1 = C[t2] and
if d is of the form (d1, . . . ,dn) ( (C2[], v2)

(n must be 1, or 2) then C[y]
∗

⇒l t′ so that t′ is
described by (C1[], v1) ( (C2[], v2).

3. if Γ1 = fNa.1 : (C3[], v3) ( (C4[], v4) or if
d = ((C3[], v3) ( (C4[], v4), Y ) ( (C2[], v2)
and t1 = λfNa.1y.v then fNa.1 ⇒l t′′ and t′′ is
described by (C3[], v3) ( (C4[], v4)

An item of the form (α; Γ ` t : d; ) verifies:

1. (Γ′, t, α) ∈ LG where Γ′ = fNa.1 : F if Γ =
fNa.1 : e or Γ′ = Γ otherwise

2. d does not contain non-specified syntactic de-
scriptions4 .

3. t
∗

⇒l t′ and t′ is described by d (d may either
represent a string context or a string).

4. if Γ = fNa.1 : (C3[], v3) ( (C4[], v4) or if
d = ((C3[], v3) ( (C4[], v4), (C1[], v1)) (

(C2[], v2) and t1 = λfNa.1y.t′ then fMa.1
∗

⇒l t′′

and t′′ is described by (C3[], v3) ( (C4[], v4)

4There is no occurence of F or Y in d.

Finally an item of the form
[Na.1; Γ; t; (C1[], v1) ( (C2[], v2)] implies the
existence of t′, (C3[], v3) and (C4[], v4) such that
(Na;` t′ : ((C3[], v3) ( (C4[], v4), (C1[], v1)) (

(C2[], v2); ) and (Na.1; Γ ` t : (C3[], v3) (

(C4[], v4)); ) are in the chart.
An input λy.C[y] is recognized iff when the fixed-

point is reached, the chart contains an item of the form
(Ss; ` t : (λy.C[], y) ( (λy.[], C[y]); ) (where S
is the start symbol of the TAG G.

6 Conclusion and perspective

In this paper, we have illustrated the use for TAGs
of general and abstract tools, syntactic descriptions,
which can be used to parse linear λ-terms. Even
though ACGs are very general in their definition, the
algorithm we describe shows that this generality is not
a source of unefficiency. Indeed, this algorithm, a spe-
cial instance of a general one which can parse any sec-
ond order ACG and it behaves exactly the same way
as the algorithm given by (Schabes and Joshi, 1988)
so that it parses a second order ACG encoding a TAG
in O(n6).

The technique used enables to see generation as
parsing. In the framework of second order ACG, the



The initializer
(λy.t, Ss) ∈ LG

(Ss; ` λy.t : Y ( (λy.[], u); y : Y ` t : (λy.[], u))

The scanner
(α; Γ1 ` t1 : d; Γ2 ` at2 : (C[], av))

(α; Γ1 ` t1 : d; Γ2 ` t2 : (C[a[]], v))

(α; Γ ` t : d; y : Y ` y : (C[], v)) σ = [Y := (C[], v)]

(α; Γ ` t : d.σ; )

The predictor

(α; Γ1 ` t1 : d; Γ2 ` xNa
t2t3 : (C[], v)) ( , λfNa.1y.t,Na) ∈ LG

(Na; ` λfNa.1y.t : (F, Y ) ( (C[], v); fNa.1 : F, y : Y ` t : (C[], v))

(α; Γ1 ` t1 : d; Γ2 ` xNs
t2 : (C[], v)) ( , λy.t,Ns) ∈ LG

(Ns; ` λy.t : Y ( (C[], v); y : Y ` t : (C[], v))

(α; Γ1 ` t1 : d; Γ2 ` fNa.1t2 : (C2[], v2))
(Γ3, λy.t3, Na.1) ∈ LG

(Na.1; Γ3 ` λy.t3 : Y ( (C2[], v2); Γ3, y : Y ` t3 : (C2[], v2))

The completer

(Na; ` t1 : ((C1[], v1) ( (C2[], v2), (C3[], v3)) ( (C4[], v4); )
(Na.1; Γ2; t2 : (C1[], v1) ( (C2[], v2); )

[Na.1; Γ2; t2; (C3[], v3) ( (C4[], v4)]

(α; Γ1 ` t1 : d; y : Y, Γ′

2 ` xNa
t2t3 : (C1[], v1))

[Na.1; Γ2; t2; (C2[], v2) ( (C1[], v1)]
if Γ2 = fMa.1 : f then σ = [F := f ] else σ = Id

(α; Γ1.σ ` t1 : d.σ; Γ2 ` t3 : (C2[], v2))

(α; Γ1 ` t1 : d; fNa.1 : F, y : Y ` fNa.1t2 : (C1[], v1))
(Na.1; Γ2 ` t2 : (C2[], v2) ( (C1[], v1); )
σ = [F := (C2[], v2) ( (C1[], v1)]

(α; Γ1.σ ` t1 : d.σ; y : Y ` t2 : (C2[], v2))

(α; Γ1 ` t1 : d; Γ2 ` xNs
t2 : (C1[], v1))

(Ns; ` t2 : (C2[], v2) ( (C1[], v1); )

(α; Γ1 ` t1 : d; Γ2 ` t2 : (C2[], v2))

Figure 4: The rules of the algorithm

logical formulae on which generation is performed
are bound to be obtained from semantic recipies
coded with linear λ-terms and are therefore not re-
ally adapted to Montague semantics. Nevertheless,
syntactic descriptions can be extended with intersec-
tion types (Dezani-Ciancaglini et al., 2005) in order
to cope with simply typed λ-calculus. With this ex-
tension, it seems possible to extend the algorithm for
second order ACGs so that it can deal with simply
typed λ-terms and without loosing its efficiency in the
linear case.

References

Henk P. Barendregt. 1984. The Lambda Calculus: Its Syn-
tax and Semantics, volume 103. Studies in Logic and
the Foundations of Mathematics, North-Holland Ams-
terdam. revised edition.

Philippe de Groote and Sylvain Pogodalla. 2004. On the
expressive power of abstract categorial grammars: Rep-
resenting context-free formalisms. Journal of Logic,
Language and Information, 13(4):421–438.

Philippe de Groote. 2001. Towards abstract categorial
grammars. In Association for Computational Linguis-
tic, editor, Proceedings 39th Annual Meeting and 10th
Conference of the European Chapter, pages 148–155.
Morgan Kaufmann Publishers.

Philippe de Groote. 2002. Tree-adjoining grammars as ab-
stract categorial grammars. TAG+6, Proceedings of the

sixth International Workshop on Tree Adjoining Gram-
mars and Related Frameworks, pages 145–150.

Mariangiola Dezani-Ciancaglini, Furio Honsell, and Yoko
Motohama. 2005. Compositional Characterization of
λ-terms using Intersection Types. Theoret. Comput.
Sci., 340(3):459–495.

Gérard Huet. 1997. The zipper. Journal of Functional
Programming, 7(5):549–554.

Richard Montague. 1974. Formal Philosophy: Selected
Papers of Richard Montague. Yale University Press,
New Haven, CT.

Sylvain Salvati. 2006. Syntactic descriptions: a type
system for solving matching equations in the linear λ-
calculus. In to be published in the proceedings of the
17th International Conference on Rewriting Techniques
and Applications.

Yves Schabes and Aravind K. Joshi. 1988. An earley-
type parsing algorithm for tree adjoining grammars. In
Proceedings of the 26th annual meeting on Association
for Computational Linguistics, pages 258–269, Morris-
town, NJ, USA. Association for Computational Linguis-
tics.

Stuart M. Shieber, Yves Schabes, and Fernando C. N.
Pereira. 1995. Principles and implementation of
deductive parsing. Journal of Logic Programming,
24(1–2):3–36, July–August. Also available as cmp-
lg/9404008.


