
HAL Id: inria-00334705
https://hal.inria.fr/inria-00334705

Submitted on 27 Oct 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the complexity of optimal priority assignment for
periodic tasks upon identical processors

Liliana Cucu

To cite this version:
Liliana Cucu. On the complexity of optimal priority assignment for periodic tasks upon identical
processors. 20th Euromicro Conference on Real-time Systems (ECRTS’08), Work-in-Progress session,
2008, Prague, Czech Republic. �inria-00334705�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/50215094?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00334705
https://hal.archives-ouvertes.fr

On the complexity of optimal priority assignment for periodic

tasks upon identical processors

Liliana Cucu, LORIA-INPL
615 rue du Jardin Botanique

Villers-les-Nancy, France
liliana.cucu@loria.fr

Abstract

In this paper we study global fixed-priority

scheduling of periodic task systems upon iden-

tical multiprocessor platforms. Based on exist-

ing feasibility tests for periodic task systems upon

identical multiprocessor platforms, we show (us-

ing a dummy priority assignment algorithm) that

optimal priority assignment for these systems ex-

ists. Then we provide an algorithm based on RM-

US[m/(3m−2)] that has lower complexity. Finally,

we conjuncture that, contrary to the general opin-

ion, (pseudo-) polynomial optimal priority assign-

ment algorithms for periodic task systems upon

identical processors might exist.

1 Introduction

Real-time systems are generally embedded and

are interacting with the environment. Requests

in real-time environment are often of a recurring

nature. Such systems are typically modeled as

finite collections of simple, highly repetitive tasks.

When the different instances of those tasks are

generated in a very predictable manner, we deal

with periodic tasks. A periodic task τi generates

jobs at each integer multiple of its period Ti with

the restriction that the first job is released at time

Oi (the task offset).

The real-time performances of periodic tasks

on uniprocessor have been extensively studied

since the seminal paper of Liu and Layland [7]

which introduces a model of periodic systems.

The literature considering scheduling algorithms

and feasibility tests for uniprocessor scheduling is

tremendous. In contrast for multiprocessor paral-

lel machines the problem of meeting timing con-

straints is a relatively new research area.

In this work we deal with global scheduling. By

global scheduling, we understand that task mi-

gration is allowed (i.e., different jobs of an individ-

ual task may execute upon different processors)

as well as job migration (an individual job that is

preempted may resume execution upon a pro-

cessor different from the one upon which it had

been executing prior to preemption).

We deal also with identical processors. By

identical processors, we understand that all pro-

cessors have the same computing power for all

tasks.

The scheduling algorithm determines which

job[s] should be executed at each time instant.

When priorities are assigned to the tasks during

the entire life of tasks, we have a fixed-priority

scheduling algorithm. If there is at least one

fixed-priority schedule satisfying all constraints of

the system, then we say that there is at least

a feasible priority assignment. A fixed-priority

scheduling algorithm is optimal if the algorithm

provides a feasible priority assignment, if any.

Related research. The problem of scheduling

periodic task systems on several processors was

originally studied in [6]. Recent studies pro-

vide a better understanding of that scheduling

problem and provide first solutions. E.g., [3]

presents a categorization of real-time multipro-

cessor scheduling problems.

Initial results indicate that real-time multiproces-

sor scheduling problems are typically not solved

by applying straightforward extensions of tech-

niques used for solving similar uniprocessor

problems because of scheduling anomalies [5].

The main fixed-priority algorithm (in the unipro-

cessor case) Rate Monotonic (RM) is no longer

optimal in the multiprocessor case and different

versions of RM were proposed for the multipro-

cessor case [1]. Particular anomalies for fixed-

priority algorithms were also underlined in [2],

e.g., the priority assignment given by Audsley in

the uniprocessor case is no longer optimal in the

multiprocessor case. Moreover, to the best of our

knowledge, the literature does not provide any

optimal priority assignment algorithm for periodic

task systems scheduled using preemption upon

identical processors. This paper is a first step to

fill this gap by using existing feasibility tests for

periodic task systems upon identical processors

[4].

Contribution of this paper In this paper we

study global fixed-priority scheduling of periodic

task systems upon identical multiprocessor plat-

forms. First we propose a dummy algorithm be-

longing to O(n!) that is based on existing feasi-

bility tests for periodic task systems upon identi-

cal multiprocessor platforms. Thus, we show that

optimal priority assignment for these systems ex-

ists. Then we provide an algorithm based on RM-

US[m/(3m − 2)] with lower complexity. Finally, we

conjuncture that, contrary to the general opinion,

(pseudo-)polynomial optimal priority assignment

algorithms might exist.

Organization of the paper The paper is orga-

nized as follows. Section 2 introduces the model

and the notations necessary to the understanding

of the paper. Section 3 provides the main contri-

bution of this paper and we conclude in Section 4.

2 Model and notations [4]

We consider the scheduling of periodic task sys-

tems. A system τ is composed by n periodic

tasks τ1, τ2, . . . , τn, each task is characterized

by a period Ti, a relative deadline Di, an exe-

cution requirement Ci and an offset Oi. Such

a periodic task generates an infinite sequence

of jobs, with the kth job arriving at time-instant

Oi + (k − 1)Ti (k = 1, 2, . . .), having an execution

requirement of Ci units, and a deadline at time-

instant Oi + (k − 1)Ti +Di.

We will distinguish between implicit deadline sys-

tems where Di = Ti,∀i; constrained deadline sys-

tems where Di ≤ Ti,∀i and arbitrary deadline

systems where there is no relation between the

deadlines and the periods.

We consider in this paper a discrete model i.e.,

the characteristics of the tasks and the time are

integers. Moreover, we consider that task paral-

lelism is forbidden: a task cannot be scheduled

at the same instant on different processors.

All scheduling algorithms considered in this pa-

per are deterministic and work-conserving with

the following definitions given below.

Definition 1 (Deterministic algorithm). A

scheduling algorithm is said to be deterministic if

it generates a unique schedule for any given sets

of jobs .

Definition 2 (Work-conserving algorithm). A

work-conserving algorithm is defined to be the

one that never idles a processor while there is

at least one active task.

By default, we consider that all the fixed-priority

schedulers for whom we provide the results in

Section 3 are always deterministic and work-

conserving.

3 Priority assignment

In this section we prove that optimal priority as-

signment algorithm for periodic systems (be they

constrained, implicit or arbitrary deadline task

systems) does exist in the sense that if there

is at least one feasible priority assignment, then

the algorithm will find it. We prove this property

by proposing in Section 3.1 a dummy algorithm

(of n! complexity) which consider all possible se-

quences of priority assignment and test the fea-

sibility of the task system. The feasibility issue is

solved using existing feasibility tests given in [4].

These latter multiprocessor tests have a pseudo-

polynomial complexity and they do not do worse

than uniprocessor tests.

Finally in Section 3.2, we improve the complex-

ity of the dummy algorithm by using a branch &

bound algorithm. This algorithm is based on al-

gorithm RM-US[m/(3m − 2)] given in [1]. More-

over, we discuss the fact that worst-case be-

haviour of this algorithm is probably a rare event

and one can use large deviations approaches to

prove its complexity.

3.1 Optimal priority assignment

We consider a task system τ = {τ1, τ2, · · · , τn} of

n periodic tasks with τi = (Oi,Ci,Ti,Di). Task sys-

tem τ can be an implicit, constrained or arbitrary

deadline task system.

We define a working variable W ∈ {1, 2, · · · ,n}n

such that the i’th element of W is equal to j ∈
{1, 2, · · · ,n} if and only if task τi has priority j.
We consider that all tasks have different priori-

ties, thus the i1’th and the i2’th elements of W

are different if i1 , i2. For instance for a task

system τ = {τ1, τ3, τ2} ordered from the highest

priority task to the lowest priority task, we have

W = (1, 3, 2).

Algorithm 1 Optimal priority assignment algorithm

for periodic task upon identical parallel machines

Require: Task system τ and m identical processors

Ensure: Priority assignment if it exists

1: W := (1, 2, · · · ,n);

2: ntestedcon f ig
:= 1;

3: varBoolean := f alse;
4: while n , n! or varBoolean , true do
5: if Feasibility Test returns true then
6: varBoolean := true;
7: else
8: ntestedcon f ig

:= ntestedcon f ig
+ 1;

9: increaseW;

10: end if
11: end while
12: if varBoolean , f alse then
13: There is no feasible priority assignment;

14: else
15: W is a feasible priority assignment;

16: end if

In Algorithm 1, line 5, we use the feasibility test

given in [4].

Theorem 1. If a periodic task system τ is feasi-

ble under fixed-priority scheduling on m identical

processors, then Algorithm 1 will find a feasible

priority assignment.

Proof. For any periodic task system there are n!

possible sequences of priority assignment. Given

the condition n , n! imposed in Algorithm 1, line 4

the algorithm tests all possible sequences unless

it finds a feasible priority assignment. Thus, Al-

gorithm 1 stops either if it finds a feasible priority

assignment, or if it has visited all possible priority

assignments and none of them is feasible. Given

these two cases, we can conclude that Algorithm

1 will always find a feasible priority assignment, if

it exists. �

Corollary 2. For any periodic system τ that is

feasible under fixed-priority scheduling on m iden-

tical processors, a feasible priority assignment

can be found in O(n!S), where S is the complex-

ity of the feasibility test of a periodic task system

under fixed-priority scheduling.

Proof. The proof is obtained from the fact that

Theorem 1 proves that Algorithm 1 is an optimal

priority assignment algorithm that needs at most

n! steps to decide. �

3.2 Another priority assignment algo-
rithm for implicit deadline tasks

In this section we improve the optimal priority as-

signment algorithm by proposing an algorithm of

lower complexity, that stands only in the case of

implicit deadline tasks.

The main idea of this algorithm comes from the

observation given in [2] that "even if we could use

schedulability tests that are necessary and suffi-

cient, it is no longer possible to find an optimal

priority assignment by using the test for lowest

priority viability approach". This observation is

based on the fact that exchanging the priorities

between higher priority tasks can turn a schedu-

lable system into an unschedulable one. Thus

in the multiprocessor case, we cannot test a fea-

sibility assignment starting from the lowest pri-

ority tasks to the highest ones. Therefore one

maybe should do it from the highest priority tasks

to the lowest ones. Algorithm 2 exploits this idea

by starting to assign first higher priorities. Since

the schedulability of higher priority tasks is not af-

fected by lower priority tasks, we can test at each

new step i the feasibility of the i tasks to whom

priorities have been already assigned. Moreover,

we exploit the feasibility result obtained for RM-

US[m/(3m − 2)] for giving the highest priorities.

Require: Task system τ and m identical processors

Algorithm 2 Another priority assignment

Ensure: Priority assignment for task if it exists

1: Choose a subset τ0 such that m0 =

minm0=1,··· ,m{U(τ0) ≤ m2

3m−2
} ;

2: assign priorities for tasks belonging to τ0 accord-

ing to RM-US[m/(3m − 2)];

3: n0 :=n − card(τ0);

4: i0 :=n0;

5: while n0 , 0 do
6: assign priority n0 to task ;

7: if FeasibilityTest returns true then
8: n0 := n0 − 1;

9: i0 :=i0 + 1;

10: else
11: i0 :=i0 + 1;

12: end if
13: end while

Theorem 3. Algorithm 2 is an optimal priority as-

signment for periodic tasks on m identical proces-

sors.

Proof. Algorithm 2 is obviously optimal. �

Discussion on worst-case behaviour : We

conjecture that Algorithm 2 behaves well in av-

erage situations and that the worst-case situa-

tions are rare events. To conclude on the aver-

age complexity of Algorithm 2 we need to use

rare events theory since it is difficult to find rep-

resentative task systems (large enough and ran-

dom enough). If we can say how much worst-

case complexity deviates from average complex-

ity, this indicates that the following conjecture is

true:

Conjecture 4. There is an optimal priority as-

signment algorithm that has pseudo-polynomial

complexity.

4 Conclusions and future works

In this paper we prove that optimal priority assign-

ment algorithm for periodic tasks upon identical

processor does exist. The proposed dummy al-

gorithm has O(n!) complexity. We improve this

complexity by giving a second algorithm. This

second algorithm is based on RM-US[m/(3m−2)]

algorithm. A first possible extension concerns the

harmonic task systems and it can be obtained

by replacing the latter algorithm with the RM-

USm/(2m − 1) algorithm.

In order to conclude on the complexity of Algo-

rithm 2, we are currently working on the evalua-

tion of its performances on large set of tasks. We

intend then to apply rare event theory to state on

its average complexity. If we can apply this the-

ory, we will obtain the proof that (pseudo-) poly-

nomial optimal priority assignment algorithm for

periodic tasks upon identical processors exists.

References

[1] A, B., B, S., J, J.

Static-priority scheduling on multiprocessors.

Proceedings of the 22nd IEEE Real-Time

Systems Symposium (2001), 193–202.

[2] A, B., J, J. Some insights

on fixed-priority preemptive non-partitioned

multiprocessor scheduling. Proceedings of

the WIP session of IEEE Real-Time Systems

Symposium (RTSS’00) (2000), 53 – 56.

[3] C, J., F, S., H, P., S,

A., A, J., B, S. A catego-

rization of real-time multiprocessor schedul-

ing problems and algorithms. Handbook of

Scheduling (2005).

[4] C, L., G, J. Feasibility intervals

for multiprocessor fixed-priority scheduling of

arbitrary deadline periodic systems. Proceed-

ings of the 10th Design, Automation and Test

in Europe (DATE’07) (2007).

[5] D, S., L, C. On a real-time schedul-

ing problem. Operations Research(26)

(1978), 127–140.

[6] L, C. Scheduling algorithms for multiproces-

sors in a hard real-time environment. JPL

Space Programs Summary 37-60(II) (1969),

28–31.

[7] L, C., L, J. Scheduling algorithms

for multiprogramming in a hard-real-time en-

vironment. Journal of the ACM 20, 1 (1973),

46–61.

