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Abstract We present in this article a hybrid approach to automatically
tokenize Vietnamese text. The approach combines both finite-state au-
tomata technique, regular expression parsing and the maximal-matching
strategy which is augmented by statistical methods to resolve ambigui-
ties of segmentation. The Vietnamese lexicon in use is compactly repre-
sented by a minimal finite-state automaton. A text to be tokenized is first
parsed into lexical phrases and other patterns using pre-defined regular
expressions. The automaton is then deployed to build linear graphs corre-
sponding to the phrases to be segmented. The application of a maximal-
matching strategy on a graph results in all candidate segmentations of
a phrase. It is the responsibility of an ambiguity resolver, which uses
a smoothed bigram language model, to choose the most probable seg-
mentation of the phrase. The hybrid approach is implemented to create
vnTokenizer, a highly accurate tokenizer for Vietnamese texts.

1 Introduction

As many occidental languages, Vietnamese is an alphabetic script.
Alphabetic scripts usually separate words by blanks and a tokenizer
which simply replaces blanks with word boundaries and cuts off
punctuation marks, parentheses and quotation marks at both ends
of a word, is already quite accurate [5]. However, unlike other lan-
guages, in Vietnamese blanks are not only used to separate words,
but they are also used to separate syllables that make up words. Fur-
thermore, many of Vietnamese syllables are words by themselves, but
can also be part of multi-syllable words whose syllables are separated
by blanks between them. In general, the Vietnamese language creates
words of complex meaning by combining syllables that most of the
time also possess a meaning when considered individually. This lin-
guistic mechanism makes Vietnamese close to that of syllabic scripts,



like Chinese. That creates problems for all natural language process-
ing tasks, complicating the identification of what constitutes a word
in an input text.

Many methods for word segmentation have been proposed. These
methods can be roughly classified as either dictionary-based or sta-
tistical methods, while many state-of-the-art systems use hybrid ap-
proaches [6].

We present in this paper an efficient hybrid approach for the seg-
mentation of Vietnamese text. The approach combines both finite-
state automata technique, regular expression parsing and the maximal-
matching method which is augmented by statistical methods to deal
with ambiguities of segmentation. The rest of the paper is orga-
nized as follows. The next section gives the construction of a minimal
finite-state automaton that encodes the Vietnamese lexicon. Sect. 3
discusses the application of this automaton and the hybrid approach
for word segmentation of Vietnamese texts. The developed tokenizer
for Vietnamese and its experimental results are shown in Sect. 4.
Finally, we conclude the paper with some discussions in Sect. 5.

2 Lexicon Representation

In this section, we first briefly describe the Vietnamese lexicon and
then introduce the construction of a minimal deterministic, acyclic
finite-state automaton that accepts it.

2.1 Vietnamese Lexicon

The Vietnamese lexicon edited by the Vietnam Lexicography Center
(Vietlex4) contains 40, 181 words, which are widely used in contem-
porary spoken language, newspapers and literature. These words are
made up of 7, 729 syllables. It is noted that Vietnamese is an inflex-
ionless language, this means that every word has exactly one form.

There are some interesting statistics about lengths of words mea-
sured in syllables as shown in Table 1. Firstly, there are about 81.55%
of syllables which are words by themselves, they are called single
words; 15.69% of words are single ones. Secondly, there are 70.72%

4 http://www.vietlex.com/



of compound words which are composed of two syllables. Finally,
there are 13, 59% of compounds which are composed of at least three
syllables; only 1, 04% of compounds having more than four syllables.

Table 1. Lengths of words measured in syllables

Length # %

1 6, 303 15.69
2 28, 416 70.72
3 2, 259 5.62
4 2, 784 6.93

≥ 5 419 1.04

Total 40, 181 100

The high frequency of two-syllable compounds suggests us a sim-
ple but efficient method to resolve ambiguities of segmentation. The
next paragraph presents the representation of the lexicon.

2.2 Lexicon Representation

Minimal deterministic finite state automata (MDFA) have been known
to be the best representation of a lexicon. They are not only compact
but also give the optimal access time to data [1]. The Vietnamese
lexicon is represented by an MDFA.

We implement an algorithm developed by J. Daciuk et al. [2]
that incrementally builds a minimal automaton in a single phase by
adding new strings one by one and minimizing the resulting automa-
ton on-the-fly.

The minimal automaton that accepts the Vietnamese lexicon
contains 42, 672 states in which 5, 112 states are final ones. It has
76, 249 transitions; the maximum number of outgoing transitions
from a state is 85, and the maximum number of incoming transi-
tions to a state is 4, 615. The automaton operates in optimal time in
the sense that the time to recognize a word corresponds to the time
required to follow a single path in the deterministic finite-state ma-
chine, and the length of the path is the length of the word measured
in characters.



3 Vietnamese Word Segmentation

We present in this section an application of the lexicon automaton
for the word segmentation of Vietnamese texts. We first give the
specification of segmentation task.

3.1 Segmentation Specification

We have developed a set of segmentation rules based on the principles
discussed in the document of the ISO/TC 37/SC 4 work group on
word segmentation (2006) [3]. Notably, the segmentation of a corpus
follows the following rules:

1. Compounds: word compounds are considered as words if their
meaning is not compound from their sub parts, or if their usage
frequency justifies it.

2. Derivation: when a bound morpheme is attached to a word, the
result is considered as a word. The reduplication of a word (com-
mon phenomenon in Vietnamese) also gives a lexical unit.

3. Multiword expressions: expressions such as “because of” are con-
sidered as lexical units.

4. Proper names: name of people and locations are considered as
lexical units.

5. Regular patterns: numbers, times and dates are recognized as
lexical units.

3.2 Word Segmentation

An input text for segmentation is first analyzed by a regular ex-
pression recognizer for detection of regular patterns such as proper
names, common abbreviations, numbers, dates, times, email addresses,
URLs, punctuations, etc. The recognition of arbitrary compounds,
derivation, and multiword expressions is committed to a regular ex-
pression that extracts phrases of the text.

The regular recognizer analyzes the text using a greedy strategy
in that all patterns are scanned and the longest matched pattern is
taken out. If a pattern is a phrase, that is a sequence of syllables and
spaces, it is passed to a segmenter for detection of word composition.
In general, a phrase usually has several different word compositions;



nevertheless, there is typically one correct composition which the
segmenter need to determine.

A simple segmenter could be implemented by the maximal match-
ing strategy which selects the segmentation that contains the fewest
words [8]. In this method, the segmenter determines the longest syl-
lable sequence which starts at the current position and is listed in the
lexicon. It takes the recognized pattern, moves the position pointer
behind the pattern, and starts to scan the next one. Although this
method works quite well since long words are more likely to be cor-
rect than short words. However, this is a too greedy method which
sometimes leads to wrong segmentation because of a large number
of overlapping candidate words in Vietnamese. Therefore, we need
to list all possible segmentations and design a strategy to select the
most probable correct segmentation from them.

A phrase can be formalized as a sequence of blank-separated syl-
lables s1s2 · · · sn. We ignore for the moment the possibility of seeing
a new syllable or a new word in this sequence. Due to the fact that,
as we showed in the previous section, most of Vietnamese compound
words are composed of two syllables, the most frequent case of ambi-
guities involves three consecutive syllables sisi+1si+2 in which both
of the two segmentations (sisi+1)(si+2) and (si)(si+1si+2) may be cor-
rect, depending on context. This type of ambiguity is called overlap
ambiguity, and the string sisi+1si+2 is called an overlap ambiguity
string.

Figure 1. Graph representation of a phrase

· vi+0 vi+1 vi+2 vi+3 ·
si si+1 si+2

sisi+1

si+1si+2

The phrase is represented by a linearly directed graph G =
(V, E), V = {v0, v1, . . . , vn, vn+1}, as shown in Fig. 1. Vertices v0

and vn+1 are respectively the start and the end vertex; n vertices
v1, v2, . . . , vn are aligned to n syllables of the phrase. There is an arc
(vi, vj) if the consecutive syllables si+1, si+2, . . . , sj compose a word,



for all i < j. If we denote accept(A, s) the fact that the lexicon
automaton A accepts the string s, the formal construction of the
graph for a phrase is shown in Algorithm 1. We can then propose
all segmentations of the phrase by listing all shortest paths on the
graph from the start vertex to the end vertex.

Algorithm 1 Construction of the graph for a phrase s1s2 . . . sn

1: V ← ∅;
2: for i = 0 to n + 1 do

3: V ← V ∪ {vi};
4: end for

5: for i = 0 to n do

6: for j = i to n do

7: if (accept(AW , si · · · sj)) then

8: E ← E ∪ {(vi, vj+1)};
9: end if

10: end for

11: end for

12: return G = (V, E);

As illustrated in Fig. 1, each overlap ambiguity string results in
an ambiguity group, therefore, if a graph has k ambiguity groups,
there are 2k segmentations of the underlying phrase5. For example,
the ambiguity group in Fig. 1 gives two segmentations (sisi+1)si+2

and si(si+1si+2).

We discuss in the next subsection the ambiguity resolver which
we develop to choose the most probable segmentation of a phrase in
the case it has overlap ambiguities.

3.3 Resolution of Ambiguities

The ambiguity resolver uses a bigram language model which is aug-
mented by the linear interpolation smoothing technique.

In n-gram language modeling, the probability of a string P (s)
is expressed as the product of the probabilities of the words that
compose the string, with each word probability conditional on the

5 If these ambiguity groups do not overlap each other.



identity of the last n − 1 words, i.e., if s = w1 · · ·wm we have

P (s) =
m∏

i=1

P (wi|w
i−1

1 ) ≈
m∏

i=1

P (wi|w
i−1

i−n+1
), (1)

where wj
i denotes the words wi · · ·wj. Typically, n is taken to be two

or three, corresponding to a bigram or trigram model, respectively.6

In the case of a bigram model n = 2, to estimate the probabilities
P (wi|wi−1) in (1), we can use training data, and take the maximum
likelihood (ML) estimate for P (wi|wi−1) as follows

PML(wi|wi−1) =
P (wi−1wi)

P (wi−1)
=

c(wi−1wi)/N

c(wi−1)/N
=

c(wi−1wi)

c(wi−1)
,

where c(α) denotes the number of times the string α occurs and N
is the total number of words in the training data.

The maximum likelihood estimate is a poor one when the amount
of training data is small compared to the size of the model being
built, as is generally the case in language modeling. A zero bigram
probability can lead to errors of the modeling. Therefore, a variety of
smoothing techniques have been developed to adjust the maximum
likelihood estimate in order to produce more accurate probabilities.
Not only do smoothing methods generally prevent zero probabili-
ties, but they also attempt to improve the accuracy of the model
as a whole. Whenever a probability is estimated from few counts,
smoothing has the potential to significantly improve estimation [7].

We adopt the linear interpolation technique to smooth the model.
This is a simple yet effective smoothing technique which is widely
used in the domain of language modeling [4]. In this method, the
bigram model is interpolated with a unigram model PML(wi) =
c(wi)/N , a model that reflects how often each word occurs in the
training data. We take our estimate P̂ (wi|wi−1) to be

P̂ (wi|wi−1) = λ1PML(wi|wi−1) + λ2PML(wi), (2)

where λ1 + λ2 = 1 and λ1, λ2 ≥ 0.

6 To make the term P (wi|w
i−1
i−n−1) meaningful for i < n, one can pad the beginning of

the string with a distinguished token. We assume there are n− 1 such distinguished
tokens preceding each phrase.



The objective of smoothing techniques is to improve the perfor-
mance of a language model, therefore the estimation of λ values in
(2) is related to the evaluation of the language model. The most com-
mon metric for evaluating a language model is the probability that
the model assigns to test data, or more conveniently, the derivative
measured of entropy. For a smoothed bigram model that has proba-
bilities p(wi|wi−1), we can calculate the probability of a sentence P (s)
using (1). For a test set T composed of n sentences s1, s2, . . . , sn, we
can calculate the probability P (T ) of the test set as the product of
the probabilities of all sentences in the set P (T ) =

∏n

i=1
P (si). The

entropy Hp(T ) of the model on data T is defined by

Hp(T ) =
− log2 P (T )

NT

= −
1

NT

n∑

i=1

log2 P (si), (3)

where NT is the length of the text T measured in words. The entropy
is inversely related to the average probability a model assigns to
sentences in the test data, and it is generally assumed that lower
entropy correlates with better performance in applications.

Starting from a part of the training set which is called the “val-
idation” data, we define C(wi−1, wi) to be the number of times the
bigram (wi−1, wi) is seen in the validation set. We need to choose
λ1, λ2 to maximize

L(λ1, λ2) =
∑

wi−1,wi

C(wi−1, wi) log2 P̂ (wi|wi−1) (4)

such that λ1 + λ2 = 1, and λ1, λ2 ≥ 0.

The λ1 and λ2 values can be estimated by an iterative process
given in Algorithm 2. Once all the parameters of the bigram model
have been estimated, the smoothed probabilities of bigrams can be
easily computed by (2). These results are used by the resolver to
choose the most probable segmentation of a phrase, say, s, by com-
paring probabilities P (s) which is estimated using (1). The segmen-
tation with the greatest probability will be chosen.

We present in the next section the experimental setup and ob-
tained results.



Algorithm 2 Estimation of values λ
1: λ1 ← 0.5, λ2 ← 0.5;
2: ε← 0.01;
3: repeat

4: bλ1 ← λ1, bλ2 ← λ2;

5: c1 ←
P

wi−1,wi

C(wi−1,wi)λ1PML(wi|wi−1)

λ1PML(wi|wi−1)+λ2PML(wi)
;

6: c2 ←
P

wi−1,wi

C(wi−1 ,wi)λ2PML(wi)

λ1PML(wi|wi−1)+λ2PML(wi)
;

7: λ1 ←
c1

c1+c2
, λ2 ← 1− bλ1;

8: bε←
q

(bλ1 − λ1)2 + (bλ2 − λ2)2;

9: until (bε ≤ ε);
10: return λ1, λ2;

4 Experiments

We present in this section the experimental setup and give a report
on results of experiments with the hybrid approach presented in the
previous sections. We also describe briefly vnTokenizer, an automatic
software for segmentation of Vietnamese texts.

4.1 Corpus Constitution

The corpus upon which we evaluate the performance of the tokenizer
is a collection of 1264 articles from the “Politics – Society” section
of the Vietnamese newspaper Tuổi trẻ (The Youth), for a total of
507, 358 words that have been manually spell-checked and segmented
by linguists from the Vietnam Lexicography Center. Although there
can be multiple plausible segmentations of a given Vietnamese sen-
tence, only a single correct segmentation of each sentence is kept. We
assume a single correct segmentation of a sentence for two reasons.
The first one is of its simplicity. The second one is due to the fact
that we are not currently aware of any effective way of using mul-
tiple segmentations in typical applications concerning Vietnamese
processing.

We perform a 10-fold cross validation on the test corpus. In each
experiment, we take 90% of the gold test set (≈ 456, 600 lexical
units) as training set, and 10% as test set. We present in the next
paragraph the training and results of the model.



4.2 Results

In an experiment, the bigram language model is trained on a training
set. An estimation of parameters λs in the Algorithm 2 is given in
Table 2. With a given error ε = 0.03, the estimated parameters
converge after four iterations.

Table 2. Estimation of lambda values

Step λ1 λ2 ε

0 0.500 0.500 1.000
1 0.853 0.147 0.499
2 0.952 0.048 0.139
3 0.981 0.019 0.041
4 0.991 0.009 0.015

The above experimental results reveal a fact that the smooth-
ing technique basing on the linear interpolation adjusts well bigram
and unigram probabilities, it thus improves the estimation and the
accuracy of the model as a whole. Table 3 presents the values of pre-
cisions, recalls and F -measures of the system on two versions with
or without ambiguity resolution. Precision is computed as the count
of common tokens over tokens of the automatically segmented files,
recall as the count of common tokens over tokens of the manually
segmented files, and F -measure is computed as usual from these two
values.

Table 3. Precision, recall and F -measure of the system

Precision Recall F -measure

0.948 0.960 0.954
0.950 0.963 0.956

The system has good recall ratios, about 96%. However, the use
of the resolver for resolution of ambiguities only slightly improves the
overall accuracy. This can be explained by the fact that the bigram
model exploits a small amount of training data compared to the size
of the universal language model. It is hopeful that the resolver may
improve further the accuracy if it is trained on larger corpora.



4.3 vnTokenizer

We have developed a software tool named vnTokenzier that imple-
ments the presented approach for automatic word segmentation of
Vietnamese texts. The tool is written in Java and bundled as an
Eclipse plug-in and it has already been integrated into vnToolkit,
an Eclipse Rich Client7 application which is intended to be a gen-
eral framework integrating tools for processing of Vietnamese text.
vnTokenizer plug-in, vnToolkit and related resources, include the
lexicon and test corpus are freely available for download8. They are
distributed under the GNU General Public License9.

5 Conclusion

We have presented an efficient hybrid approach to word segmenta-
tion of Vietnamese texts that gives a relatively high accuracy. The
approach has been implemented to produce vnTokenizer, an auto-
matic tokenizer for Vietnamese texts.

By analyzing results of experiments, we found two types of ambi-
guity strings in word segmentation of Vietnamese texts: (1) overlap
ambiguity strings and (2) combination ambiguity strings. A sequence
of syllables s1s2 . . . sn is called a combination ambiguity string if it is
a compound word by itself and there exists its sub sequences which
are also words by themselves in some context. For instance, the word
bà ba (a kind of pajamas) may be segmented into two words bà and
ba (the third wife), and there exists contexts under which this seg-
mentation is both syntactically and semantically correct. Being aug-
mented with a bigram model, our tokenizer is able to resolve effec-
tively overlap ambiguity strings, but combination ambiguity strings
have not been discovered. There is a delicate reason, it is that combi-
nation ambiguities require a judgment of the syntactic and semantic
sense of the segmentation – a task where an agreement cannot be
reached easily among different human annotators. Furthermore, we
observe that the relative frequency of combination ambiguity strings
in Vietnamese is small. In a few ambiguity cases involving bigrams,

7 http://www.eclipse.org/rcp/
8 http://www.loria.fr/∼lehong/projects.php
9 http://www.gnu.org/copyleft/gpl.html



we believe that a trigram model resolver would work better. These
questions would be of interest for further research to improve the
accuracy of the tokenizer.

Finally, we found that the majority of errors of segmentation are
due to the presence in the texts of compounds absent from the lexi-
con. Unknown compounds are a much greater source of segmenting
errors than segmentation ambiguities. Future efforts should there-
fore be geared in priority towards the automatic detection of new
compounds, which can be performed by means either statistical in
a large corpus or rule-based using linguistic knowledge about word
composition.

Acknowledgements

The work reported in this article would not have been possible with-
out the enthusiastic collaboration of all the linguists at the Vietnam
Lexicography Center. We thank them for their help in data prepa-
ration.

References

1. Denis Maurel, Electronic Dictionaries and Acyclic Finite-State Automata: A State
of The Art, Grammars and Automata for String Processing, 2003.

2. Jan Daciuk, Stoyan Mihov, Bruce W. Watson and Richard E. Watson, Incremental
Construction of Minimal Acyclic Finite-State Automata, Computational Linguis-
tics, Vol. 26, No. 1, 2000.

3. ISO/TC 37/SC 4 AWI N309, Language Resource Management - Word Segmenta-
tion of Written Texts for Mono-lingual and Multi-lingual Information Processing
- Part I: General Principles and Methods. Technical Report, ISO, 2006.

4. Frederick Jelinke and Robert L. Mercer, Interpolated estimation of Markov source
parameters from sparse data, Proceedings of the Workshop on Pattern Recognition
in Practice, The Netherlands, 1980.

5. Helmut Schmid, Tokenizing. In: Anke Lüdeling and Merja Kytö, editors: Corpus
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