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Abstract

In this report, we consider the problem of scheduling an application
composed of independent tasks on a fully heterogeneous master-worker
platform with communication costs. We introduce a bi-criteria approach
aiming at maximizing the throughput of the application while minimiz-
ing the energy consumed by participating resources. Assuming arbitrary
super-linear power consumption laws, we investigate different models
for energy consumption, with and without start-up overheads. Building
upon closed-form expressions for the uniprocessor case, we are able to
derive optimal or asymptotically optimal solutions for both models.

Keywords: Scheduling, energy, master-worker platforms, communication

Résumé

Dans ce rapport, nous étudions l’ordonnancement d’une application
composée de tâches indépendantes qui doivent être exécutées sur une
plate-forme mâıtre-esclaves hétérogène où le coût des communications
ne peut être négligé. Nous proposons une approche bi-critère visant à
maximiser le débit de l’application tout en minimisant l’énergie dissi-
pée par les ressources de calcul utilisées. En supposant que les lois de
puissance électrique consommée sont super-liméaires, nous considérons
différents modèles de consommation énergétique, avec ou sans coût de
démarrage. À partir de formes clauses pour le cas avec un seul proces-
seur nous construisons une solution asymptotiquement optimale pour les
deux modèles.

Mots-clés: Ordonancement, énergie, plates-formes mâıtre-esclaves, communication
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1 Introduction

The Earth Simulator requires about 12 megawatts of peak power, and Petaflop systems may
require 100 MW of power, nearly the output of a small power plant (300 MW). At $100 per
MegaWatt.Hour, peak operation of a petaflop machine may thus cost $10,000 per hour [12].
And these estimates ignore the additional cost of dedicated cooling. Power consumption is also
a critical factor because most of the power consumed is released by processors as heat. Current
estimations state that cooling solutions are rising at $1 to $3 per watt of heat dissipated [23].
This is just one of the many economical reasons why energy-aware scheduling has proved to
be an important issue in the past decade, even without considering battery-powered systems
such as laptop and embedded systems.

Many important scheduling problems involve large collections of identical tasks [7, 1]. In
this paper, we consider a single bag-of-tasks application which is launched on a heterogeneous
platform. We suppose that all processors have a discrete number of speeds (or modes) of
computation: the quicker the speed, the less efficient energetically-speaking. Our aim is to
maximize the throughput, i.e., the fractional number of tasks processed per time-unit, while
minimizing the energy consumed. Unfortunately, the goals of low power consumption and
efficient scheduling are contradictory. Indeed, throughput can be maximized by using more
energy to speed up processors, while energy can be minimized by reducing the speeds of the
processors, hence the total throughput.

Altogether, power-aware scheduling truly is a bi-criteria optimization problem. A common
approach to such problems is to fix a threshold for one objective and to minimize the other.
This leads to two interesting questions. If we fix energy, we get the laptop problem, which
asks “What is the best schedule achievable using a particular energy budget, before battery
becomes critically low?”. Fixing schedule quality gives the server problem, which asks “What
is the least energy required to achieve a desired level of performance?”.

The particularity of this work is to consider a fully heterogeneous master-worker platform,
and to take communication costs into account. Here is the summary of our main results:

• We use arbitrary super-linear power consumption laws rather than restricting to relations
of the form Pd = sα where Pd is the power dissipation, s the processor speed, and α some
constant greater than 1.

• Under an ideal power-consumption model, we derive an optimal polynomial algorithm to
solve either bi-criteria problem (maximize throughput within a power consumption threshold,
or minimize energy consumption while guaranteeing a required throughput).

• Under a refined power-consumption model with start-up overheads, we derive a polynomial
algorithm which is asymptotically optimal.

These results constitute a major step with regards to state-of-the-art scheduling techniques
on heterogeneous master-worker platforms. The paper is organized as follows. We first present
the framework and different power consumption models in Section 2. We study the bi-criteria
scheduling problem under the ideal power consumption model in Section 3, and under the
more realistic model with overheads in Section 4. Section 5 is devoted to an overview of
related work. Finally, we state some concluding remarks in Section 6.
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2 Framework

We outline in this section the model for the target applications and platforms, as well as the
characteristics of the consumption model. Next we formally state the bi-criteria optimization
problem.

2.1 Application and platform model

We consider a bag-of-tasks application A, composed of a large number of independent, same-
size tasks, to be deployed on a heterogeneous master-worker platform. We let ω be the amount
of computation (expressed in flops) required to process a task, and δ be the volume of data
(expressed in bytes) to be communicated for each task. We do not consider return messages,
instead we assume that task results are stored on the workers. This simplifying hypothesis
could be alleviated by considering the cost of longer messages (append the return message for
a given task to the incoming message of the next one).

The master-worker platform, also called star network, or single-level tree in the literature,
is composed of a master Pmaster, the root of the tree, and p workers Pu (1 ≤ u ≤ p). Without
loss of generality, we assume that the master has no processing capability. Otherwise, we can
simulate the computations of the master by adding an extra worker paying no communication
cost. The link between Pmaster and Pu has a bandwidth bu. We assume a linear cost model,
hence it takes a time δ/bu to send a task to processor Pu. We suppose that the master can
send/receive data to/from all workers at a given time-step according to the bounded multi-
port model [13, 14]. There is a limit on the amount of data that the master can send per
time-unit, denoted as BW. In other words, the total amount of data sent by the master to
all workers each time-unit cannot exceed BW. Intuitively, the bound BW corresponds to the
bandwidth capacity of the master’s network card; the flow of data out of the card can be
either directed to a single link or split among several links, hence the multi-port hypothesis.
The bounded multi-port model fully accounts for the heterogeneity of the platform, as each
link has a different bandwidth.

2.2 Energy model

For processors based on CMOS technology, power consumption is dominated by the dynamic
power dissipation Pd, which is given as a function of the operating frequency, Pd = Ceff ·V 2 ·s,
where Ceff is the average switched capacitance per cycle, V is the operating voltage, and s
is the operating frequency. Among the main system-level energy-saving techniques, Dynamic
Voltage Scaling (DVS) plays a very important role. DVS works on a very simple principle:
decrease the supply voltage to the CPU so as to consume less power. But there is a minimum
voltage required to drive the microprocessor at the desired frequency. So DVS reduces the
power consumption by changing the clock frequency and voltage settings. For this reason,
DVS is also called frequency-scaling or speed scaling [15]. Most authors use the expression
Pd = sα, where α > 1. We adopt a more general approach, as we only assume that power
consumption is a super-linear function (i.e., a strictly increasing and convex function) of the
processor speed. We denote by Pu the power consumption per time unit of processor Pu.

We deal with a discrete voltage-scaling model. The computational speed of worker Pu has
to be picked among a limited number of mu modes. We denote the computational speeds
su,i, meaning that the processor Pu running in the ith mode (noted Pu,i) takes X/su,i time-
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units to execute X floating point operations (hence the time required to process one task of
A of size ω on Pu,i is ω/su,i). The power consumption per time-unit of Pu,i is denoted by
Pu,i. We will suppose that processing speeds are listed in increasing order on each processor
(su,1 ≤ su,2 ≤ · · · ≤ su,mu). Modes are exclusive: one processor can only run at a single mode
at any given time.

There exist many ways to refine the previous model in order to get realistic settings.
Under a fluid model, switching among the modes does not cost any penalty. In real life,
it costs a penalty depending on the modes. There are two kinds of overhead to consider
when changing the processor speed: the time overhead and the power overhead. However,
most authors suppose that the time overhead is negligible, since processors can still execute
instruction during transitions [6], and time overhead is linear in processor speed. We may
also wonder what happens when the utilization of a processor tends to zero. There also exist
two policies: either (i) we assume that an idle processor does not consume any power, so the
power consumption is super-linear from 0 to the power consumption at frequency su,1; or (ii)
we state that once a processor is on, it will always be above a minimal power consumption
defined by its idle frequency, or speed, su,1. We can have any combination of the previous
models.

In addition, there are different problems when dealing with consumption overhead. First of
all, we have to specify when the consumption overhead is paid, as one can have an overhead
only when turning on the worker, when turning it off, or for each transition of mode; a
processor turned on can consume even when idle.

Under the latter (more realistic) models, power consumption now depends on the length
of the interval during which the processor is turned on (we pay the overhead only once during
this interval). We introduce a new notation to express power consumption as a function of
the length t of the execution interval:

Pu,i(t) = P
(1)
u,i · t + P(2)

u (1)

where P
(2)
u is the energy overhead to turn processor Pu on.

To summarize, we consider two models: an ideal model simply characterized by Pu,i,
the power consumption per time-unit of Pu running in mode i, and a model with start-up
overheads, where power consumption is given by Equation 1 for each processor.

2.3 Objective function

As stated above, our goal is bi-criteria scheduling. The first objective is to minimize the
power consumption, and the second objective is the maximization of the throughput. We
denote by ρu,i the throughput of worker Pu,i for application A, i.e., the average number of
tasks of A that Pu,i executes each time-unit. There is a limit to the number of tasks that
each mode of one processor can perform per time-unit. First of all, as Pu,i runs at speed
su,i, it cannot execute more than su,i/ω tasks per time-unit. Second, as all modes of Pu are
exclusive, if Pu,i is at its maximal throughput, no other mode can be requested. So their
is a strong relationship between the throughput of one mode and the maximum throughput
available for all remaining modes. As

ρu,i ω

su,i
represents the fraction of time spent under mode

mu,i per time-unit, this constraint can be expressed by:

∀ u ∈ [1..p],

mu
∑

i=1

ρu,i ω

su,i
≤ 1.
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Under the ideal model, and for the simplicity of proofs, we can add an additional idle mode
Pu,0 whose speed is su,0 = 0. The power consumption per time-unit of Pu,i, when fully used,
is Pu,i (Pu,0 = 0). Its power consumption per time-unit with a throughput of ρu,i is then
ρu,i ω

su,i
Pu,i

We denote by ρu the throughput of worker Pu, i.e., the sum of the throughput of each
mode of Pu (except the throughput of the idle mode), so the total throughput of the platform
is denoted by:

ρ =

p
∑

u=1

ρu =

p
∑

u=1

mu
∑

i=1

ρu,i.

We define problem MinPower (ρ) as the problem of minimizing the power consumption

P =

p
∑

u=1

Pu while achieving a throughput ρ. Similarly, MaxThroughput (P) is the problem

of maximizing the throughput while not exceeding the power consumption P. In Section 3 we
first deal with an ideal model without power nor timing overhead (a processor can be turned
off without any cost). We extend this work to a more realistic model in Section 4.

3 Ideal model

Both bi-criteria problems (maximizing the throughput given an upper bound on power con-
sumption and minimizing the power consumption given a lower bound on throughput) have
been studied at the processor level, using particular power consumption laws such as Pd =
sα [2, 4, 5]. However, we are able to solve these problems optimally using the sole assumption
that the power consumption is super-linear. Furthermore, we also solve these problems at the
platform level, that is, for a heterogeneous set of processors.

A key step is to establish closed-form formulas linking the power consumption and the
throughput of a single processor:

Proposition 1. The optimal power consumption to achieve a throughput of ρ > 0 is

Pu(ρ) = max
0≤i<mu

{

(ωρ− su,i)
Pu,i+1 −Pu,i

su,i+1 − su,i
+ Pu,i

}

,

and is obtained using two consecutive modes, Pu,i0 and Pu,i0+1, such that
su,i0

ω
< ρ ≤ su,i0+1

ω
.

Proof. The minimization of the power consumption is bounded by two types of constraints:
i) The first constraint states that the processor has to ensure a given throughput, ii) The
second constraint states that the processing capacity of Pu,i cannot be exceeded, and that the
different modes are exclusive. So our optimization problem is :











































Minimize Pu =

mu
∑

i=1

ρu,i ω

su,i
Pu,i subject to

mu
∑

i=1

ρu,i = ρ

mu
∑

i=1

ρu,i

su,i
ω ≤ 1

(2)
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A first remark is that the throughput that the processor has to achieve must be lower
than its maximum throughput (ρ ≤ su,mu

ω
), otherwise the system has no solution. Linear

program (2) can easily be solved over the rationals, and the throughput of the modes of the
processor depend on the total throughput that has to be achieved. If 0 < ρ ≤ su,mu

ω
, we

denote by i0 the unique mode of Pu such as
su,i0

ω
< ρ ≤ su,i0+1

ω
. Then, we define S̃ by the

following scheduling:

ρ̃u,i0 =
su,i0(su,i0+1 − ωρu)

ω(su,i0+1 − su,i0)
ρ̃u,i0+1 =

su,i0+1(ωρ− su,i0)

ω(su,i0+1 − su,i0)
ρ̃u,i = 0 if i /∈ {i0, i0 + 1}.

First, one can note that S̃ is feasible, and respects all constraints of Linear program (2).

mu
∑

i=1

ρ̃u,i =
su,i0(su,i0+1 − ωρu) + su,i0+1(ωρ− su,i0)

ω(su,i0+1 − su,i0)
= ρ;

mu
∑

i=1

ρ̃u,iω

su,i
=

(su,i0+1 − ωρu)

su,i0+1 − su,i0

+
(ωρ− su,i0)

su,i0+1 − su,i0

= 1.

Let S ′ be an optimal solution, S ′ = {ρ′u,1, · · · , ρ′u,mu
}. As S ′ is a solution, it respects all the

constraints of Linear program (2). So:

mu
∑

i=1

ρ′u,i = ρ and

mu
∑

i=1

ρ′u,iω

su,i
≤ 1.

Let imin be the slowest mode used by S ′, and imax the fastest. Then we can distinguish three
cases:

• If imin > i0 or imin = i0 and ρ′

u,i0
< ρ̃u,i0: In both cases, ρ′u,i0

< ρ̃u,i0 , so there
exists ǫ > 0, such that ρ′u,i0

= ρ̃u,i0 − ǫ. Then we can look at the power consumption of
S ′:

mu
∑

i=1

ρ′u,iKu,i ≥ ρ′u,i0
Ku,i0 +

(

mu
∑

i=i0+1

ρ′u,i

)

Ku,i0+1

= ρ′u,i0
Ku,i0 + (ρ− ρ′u,i0

)Ku,i0+1

= (ρ̃u,i0 − ǫ)Ku,i0 + (ρ− ρ̃u,i0 + ǫ)Ku,i0+1

= ρ̃u,i0Ku,i0 + ρ̃u,i0+1Ku,i0+1 + ǫ (Ku,i0+1 − Ku,i0)

≥ ρ̃u,i0Ku,i0 + ρ̃u,i0+1Ku,i0+1.

And so our solution does not consume more power, and is thus also optimal.

• If imax < i0 + 1 or imax = i0 + 1 and ρ′

u,i0+1
< ρ̃u,i0+1: In both cases, ρ′u,i0+1 <
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ρ̃u,i0+1, so there exists ǫ > 0, such that ρ′u,i0+1 = ρ̃u,i0+1 − ǫ. Then, we have:

i0
∑

i=1

ρ′u,i = ρ− ρ′u,i0+1 ≥ ρ− ρ̃u,i0+1 + ǫ = ρ̃u,i0 + ǫ

And

imax
∑

i=1

ρ′u,iω

su,i
=

i0
∑

i=1

ρ′u,iω

su,i
+

ρ′u,i0+1ω

su,i0+1

≥
ω
∑i0

i=1 ρ′u,i

su,i0

+
ρ′u,i0+1ω

su,i0+1

≥ ω
ρ̃u,i0 + ǫ

su,i0

+ ω
ρ̃u,i0+1 − ǫ

su,i0+1
≥ 1 + ωǫ

(

1

su,i0

− 1

su,i0+1

)

> 1.

which is in contradiction with the second constraint.

• Otherwise we know that either imin < i0, so ρ′u,imin
≥ ρ̃u,imin = 0, or imin = i0 and

ρ′u,imin
≥ ρ̃u,imin . In both cases ρ′u,imin

≥ ρ̃u,imin , and, for the same reasons, ρ′u,imax
≥

ρ̃u,imax . We also know that (at least) one virtual processor among Pu,i0 and Pu,i0+1 has
a throughput in S ′ strictly smaller than in S̃ (otherwise the power consumption of S ′ is
greater). Let call that processor Pα. The idea of the proof is to give an amount ǫmin of
the work of Pimin to Pα. As Pα is faster than Pimin , it takes less time to Pα to process
ǫmin than to Pimin . During the spared time, Pα has time to do an amount ǫmax of the
work of Pimax . Basically, ǫmin and ǫmax are defined such as the throughput in the new
scheduling S ′′ of either Pimin , or Pimax is set to its throughput in S̃:















ρ′′u,imin
= ρ′u,imin

− ǫmin

ρ′′u,α = ρ′u,α + ǫmin + ǫmax

ρ′′u,imax
= ρ′u,imax

− ǫmax

ρ′′u,i = ρ′u,i otherwise.

ǫmin = min

{

ρ′u,imin
− ρ̃u,imin ;

(ρ′u,imax
− ρ̃u,imax)

λ

}

, ǫmax = ǫminλ, λ =
su,imax(su,α − su,imin)

su,imin(su,imax − su,α)
.

λ gives the relation between the amount of work taken from Pimin and the amount of
work of Pimax that can be performed by Pα during its spared time.
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S ′′ still respects the given constraints:

mu
∑

i=1

ρ′′u,i =

mu
∑

i=1

ρ′u,i = ρ;

mu
∑

i=1

ρ′′u,i

su,i
=







mu
∑

i=1
i6=imin,α,imax

ρ′u,i

su,i






+

ρ′′u,imin

su,imin

+
ρ′′u,α

su,α
+

ρ′′u,imax

su,imax

=

(

mu
∑

i=1

ρ′u,i

su,i

)

+
ǫmin + ǫmax

su,α
− ǫmin

su,imin

− ǫmax

su,imax

=

(

mu
∑

i=1

ρ′u,i

su,i

)

+ ǫmin

(

1 + λ

su,α
− 1

su,imin

− λ

su,imax

)

=

(

mu
∑

i=1

ρ′u,i

su,i

)

+

ǫmin

su,iminsu,α

(

su,imin +
su,imax(su,α − su,imin)

(su,imax − su,α)
− su,α −

su,α(su,α − su,imin)

(su,imax − su,α)

)

=

mu
∑

i=1

ρ′u,i

su,i
≤ 1

ω
.

And the power consumed by the new solution is not greater than the original optimal
one:

mu
∑

i=1

ρ′u,iKu,i −
mu
∑

i=1

ρ′′u,iKu,i = ǫminKu,imin + ǫmaxKu,imax − (ǫmin + ǫmax)Ku,α

= ǫmin(Ku,imin − Ku,α) + λǫmin(Ku,imax − Ku,α)

= ǫmin(su,α − su,imin)

(

Ku,imin − Ku,α

su,α − su,imin

+
su,imax

su,imin

Ku,imax − Ku,α

su,imax − su,α

)

≥ ǫmin(su,α − su,imin)

(

Ku,imax − Ku,α

su,imax − su,α
− Ku,α − Ku,imin

su,α − su,imin

)

≥ 0 because of the convexity of K.

At each iteration, we set the throughput of either imin or imax to its throughput in S̃,
so the number of virtual processors which have different throughputs in S ′′ and S̃ is
strictly decreasing. At the end, either one of the two other cases is reached so S̃ does
not consume more power than S ′′, or S̃ = S ′′. Overall, our scheduling is optimal.
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Then we consider the power consumption of S̃:

Pu(ρ) = ρ̃i,i0Ku,i0 + ρ̃i,i0+1Ku,i0+1

=
su,i0(su,i0+1 − ωρ)

ω(su,i0+1 − su,i0)
Ku,i0 +

su,i0+1(ωρ− su,i0)

ω(su,i0+1 − su,i0)
Ku,i0+1

= ρ
su,i0+1Ku,i0+1 − su,i0Ku,i0

su,i0+1 − su,i0

− su,i0su,i0+1 (Ku,i0+1 − Ku,i0)

ω(su,i0+1 − su,i0)

= ωρ
Pu,i0+1 −Pu,i0

su,i0+1 − su,i0

− su,i0Pu,i0+1 − su,i0+1Pu,i0

su,i0+1 − su,i0

= ωρ
Pu,i0+1 −Pu,i0

su,i0+1 − su,i0

− su,i0

Pu,i0+1 −Pu,i0

su,i0+1 − su,i0

+ Pu,i0

su,i0+1 − su,i0

su,i0+1 − su,i0

= (ωρ− su,i0)
Pu,i0+1 −Pu,i0

su,i0+1 − su,i0

+ Pu,i0

As P is super-linear, we have, if j < k:

Pu,k −Pu,j

su,k − su,j
≥ Pu,j+1 −Pu,j

su,j+1 − su,j
⇒ Pu,k ≥ (su,k − su,j)

Pu,j+1 −Pu,j

su,j+1 − su,j
+ Pu,j

and, if j > k:

Pu,j −Pu,k

su,j − su,k

≤ Pu,j+1 −Pu,j

su,j+1 − su,j
⇒ Pu,k ≥ Pu,j − (su,j − su,k)

Pu,j+1 −Pu,j

su,j+1 − su,j

As su,i0 ≤ ωρu ≤ su,i0+1 and P is super-linear, we have, for all if su,i0 > su,i:

(ωρ− su,i)
Pu,i+1 −Pu,i

su,i+1 − su,i
+ Pu,i = (ωρ− su,i0)

Pu,i+1 −Pu,i

su,i+1 − su,i
+

(

(su,i0 − su,i)
Pu,i+1 −Pu,i

su,i+1 − su,i
+ Pu,i

)

≤ (ωρ− su,i0)
Pu,i+1 −Pu,i

su,i+1 − su,i
+ Pu,i0

≤ (ωρ− su,i0)
Pu,i0+1 −Pu,i0

su,i0+1 − su,i0

+ Pu,i0 = Pu(ρ)
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And, if su,i0+1 ≤ su,i, so we have:

(ωρ− su,i)
Pu,i+1 −Pu,i

su,i+1 − su,i
+ Pu,i ≤ (ωρ− su,i0+1)

Pu,i+1 −Pu,i

su,i+1 − su,i
+

(

Pu,i − (su,i − su,i0+1)
Pu,i+1 −Pu,i

su,i+1 − su,i

)

≤ (ωρ− su,i0+1)
Pu,i+1 −Pu,i

su,i+1 − su,i
+ Pu,i0+1

≤ (ωρ− su,i0+1)
Pu,i0+1 −Pu,i0

su,i0+1 − su,i0

+ Pu,i0+1

(* because (ωρ− su,i0+1) < 0*)

≤ (ωρ− su,i0)
Pu,i0+1 −Pu,i0

su,i0+1 − su,i0

+

(

Pu,i0+1 − (su,i0+1 − su,i0)
Pu,i0+1 −Pu,i0

su,i0+1 − su,i0

)

≤ (ωρ− su,i0)
Pu,i0+1 −Pu,i0

su,i0+1 − su,i0

+ Pu,i0 = Pu(ρ)

Then i0 is the mode that maximizes the formula:

(ωρ− su,i)
Pu,i+1 −Pu,i

su,i+1 − su,i
+ Pu,i

The following result shows how to solve the converse problem, namely maximizing the
throughout subject to a prescribed bound on power consumption. The proof is similar to
that of Proposition 1.

Proposition 2. The maximum achievable throughput according to the power consumption
limit P is

ρu(P) = min

{

su,mu

ω
; max
1≤i≤mu

{

P(su,i+1 − su,i) + su,iPu,i+1 − su,i+1Pu,i

ω(Pu,i+1 −Pu,i)

}}

,

and is obtained using two consecutive modes, Pu,i0 and Pu,i0+1, such that: Pu,i0 < P ≤
Pu,i0+1.

Proof. We define a solution S̃ as follows:

ρ̃u,i0 =
su,i0(Pu,i0+1 −P)

ω(Pu,i0+1 −Pu,i0)
ρ̃u,i0+1 =

su,i0+1(P −Pu,i0)

ω(Pu,i0+1 −Pu,i0)
ρ̃u,i = 0 if i /∈ {i0, i0 + 1}

We first show that S̃ is feasible:

mu
∑

i=1

ρ̃u,i
Pu,iω

su,i
=

Pu,i0(Pu,i0+1 −P) + Pu,i0+1(P −Pu,i0)

Pu,i0+1 −Pu,i0

= P;

mu
∑

i=1

ρ̃u,iω

su,i
=

(Pu,i0+1 −P)

(Pu,i0+1 −Pu,i0)
+

(P −Pu,i0)

(Pu,i0+1 −Pu,i0)
= 1.
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Let S ′ be an optimal solution, S ′ = {ρ′u,1, · · · , ρ′u,mu
}. As S ′ is a solution of the linear

program, it respects all the constraints. So:

mu
∑

i=1

ρ′u,iKu,i ≤ P and

mu
∑

i=1

ρ′u,iω

su,i
≤ 1.

Let imin be the slowest mode used by S ′, and imax the fastest. Then we can distinguish two
cases:

• If imin > i0 or imin = i0 and ρ′

u,i0
= ρ̃u,i0 − ǫ0(ǫ0 > 0): (in both cases, ρ′u,i0

=
ρ̃u,i0 − ǫ) then we have:

(

mu
∑

i=i0+1

ρ′u,i

)

Ku,i0+1 ≤
mu
∑

i=i0+1

ρ′u,iKu,i

≤ P − ρ′u,i0
Ku,i0 = P − (ρ̃u,i0 − ǫ)Ku,i0

≤ (P − ρ̃u,i0Ku,i0) + ǫKu,i0 = ρ̃u,i0+1Ku,i0+1 + ǫKu,i0

≤ Ku,i0+1

(

ρ̃u,i0+1 + ǫ
Ku,i0

Ku,i0+1

)

⇒
mu
∑

i=i0

ρ′u,i ≤ ρ′u,i0
+

mu
∑

i=i0+1

ρ′u,i

≤ (ρ̃u,i0 − ǫ) +

(

ρ̃u,i0+1 + ǫ
Ku,i0

Ku,i0+1

)

≤
mu
∑

i=i0

ρ̃u,i − ǫ

(

1− Ku,i0

Ku,i0+1

)

≤
mu
∑

i=i0

ρ̃u,i

And so our solution does not have a smaller throughput, and is thus also optimal.

• If imax < i0 + 1 or imax = i0 + 1 and ρ′

u,i0+1
= ρ̃u,i0+1 − ǫ1(ǫ1 > 0): (in both

cases, ρ′u,i0+1 = ρ̃u,i0+1 − ǫ) then, we have:

ω
∑i0

i=1 ρ′u,i

su,i0

≤
i0
∑

i=1

ρ′u,iω

su,i
=

imax
∑

i=1

ρ′u,iω

su,i
−

ρ′u,i0+1ω

su,i0+1

≤ 1−
ρ′u,i0+1ω

su,i0+1
=

(

1− ρ̃u,i0+1ω

su,i0+1

)

+
ǫω

su,i0+1

≤ ωρ̃u,i0

su,i0

+
ǫω

su,i0+1

So the throughput of S ′ is:

imax
∑

i=1

ρ′u,i ≤
i0
∑

i=1

ρ′u,i + ρ′u,i0+1

≤
(

ρ̃u,i0 + ǫ
su,i0

su,i0+1

)

+ (ρ̃u,i0 − ǫ)

≤
mu
∑

i=1

ρ̃u,i − ǫ

(

1− su,i0

su,i0+1

)

≤
mu
∑

i=1

ρ̃u,i
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And so our solution does not have a smaller throughput, and is thus also optimal.

• Otherwise we use the same new scheduling S ′′ than is the previous section:















ρ′′u,imin
= ρ′u,imin

− ǫmin

ρ′′u,α = ρ′u,α + ǫmin + ǫmax

ρ′′u,imax
= ρ′u,imax

− ǫmax

ρ′′u,i = ρ′u,i otherwise

with ǫmin = min

{

ρ′u,imin
;
ρ′u,imax

λ

}

, ǫmax = ǫminλ, and λ =
su,imax(su,α − su,imin)

su,imin(su,imax − su,α)
.

From the previous section, we know that S ′′ does not consume more power than S ′, and
so still respects the given constraints. And the throughput achieved is the same than
S ′. By iterating this construction, we can extract an optimal scheduling where imin = α
(each iteration sets the throughput of either imin or imax to zero).

We then conclude using arguments similar to the one used in the proof of Proposition 1.

To the best of our knowledge, these uni-processor formulas, linking the throughput to the
power consumption, are new, even for standard laws. They will prove to be very useful when
dealing with multi-processor problems.

3.1 Minimizing power consumption

Thanks to Propositions 1 and 2, we do not need to specify the throughput for each frequency
on any given processor. We only have to fix a throughput for each processor to know how
to achieve the minimum power consumption on that processor. Furthermore, the bounded
multi-port hypothesis is easy to take into account: either the outgoing capacity of the master
is able to ensure the given throughput (BW ≥ ρ), or the system as no solution. Overall, we
have the following linear program (Equation (3)). This linear program is defined by three
types of constraints:

• The first constraint states that the system has to ensure the given throughput

• The second set of constraints states that the processing capacity of a processor Pu as
well as the bandwidth of the link from Pmaster to Pu are not exceeded

• The last constraint links the power consumption of one processor according to its
throughput























































Minimize P =

p
∑

u=1

Pu subject to

p
∑

u=1

ρu = ρ

∀u, ρu ≤ min

{

su,mu

ω
;
bu

δ

}

∀ u, ∀ 1 ≤ i ≤ mu, Pu ≥ (ωρu − su,i)
Pu,i+1 −Pu,i

su,i+1 − su,i
+ Pu,i

(3)



12 J.-F. Pineau , Y. Robert , F. Vivien

For each value Pu used in the objective function (recall that Pu is the power consump-
tion per time unit of Pu), we have mu equations (see Proposition 1). When looking at the
constraints, we observe that the problem can be optimally solved using a greedy strategy.
We first sort processors in an increasing order according to their power consumption ratio.
This power consumption ratio depends on the different modes of the processors, and the same
processor will appear a number of times equal to its number of modes. Formally, we sort in

non decreasing order the quantities

{

Pu,i+1 −Pu,i

su,i+1 − su,i

}

. The next step is to select the cheapest

mode of the processors so that the system can achieve the required throughput, given that
each processor throughput is limited by its maximal frequency and the bandwidth of the link
between itself and the master. Altogether, we obtain Algorithm 1.

Algorithm 1: Greedy algorithm minimizing power consumption under a given through-
put

Data: throughput ρ that has to be achieved
for u = 1 to p do
T [u]← 0; /* throughput of processor Pu */

Φ← 0; /* total throughput of the system */

L ← sorted list of the Puk,ik such that ∀ j,
Puj,1+ij

−Puj,ij

suj,1+ij
−suj,ij

≤ Puj+1,1+ij+1
−Puj+1,ij+1

suj+1,1+ij+1
−suj+1,ij+1

;

while Φ < ρ do
Puk,ik ← next(L); /* selection of next cheapest mode */
ρ′ ← T [uk]; /* previous throughput of Puk

(at mode ik − 1) */

T [uk]← min
{

suk,ik

ω
;

buk

δ
; ρ′ + (ρ− Φ)

}

; /* new throughput of Puk
(at mode ik) */

if T [uk] =
buk

δ
then

L ← L\{Puk,j}; /* no need to look at faster modes for Puk
*/

Φ← Φ + T [uk]− ρ′;

One can detail more precisely the line labeled /* new throughput */ that gives the new
throughput of Puk

at mode ik. This throughput is bounded by the maximum throughput at
this speed, by the maximum communication throughput, and also by the previous throughput
(ρ′) plus the remaining throughput that has to be achieved (ρ−Φ). We point out that, if the
last selected mode is Puk0

,ik0
, Algorithm 1 will

1. fully use each processor having at least one mode consuming strictly less than Puk0
,ik0

,
and this either at the throughput of the bandwidth if reached (this throughput is
achieved according to Proposition 1), or at the largest single fastest mode that con-
sumes strictly less than Puk0

,ik0
or at the same mode than Puk0

,ik0
;

2. either not use at all or fully use at its first non-trivial mode any processor whose first
non-trivial mode consumes exactly the same than Puk0

,ik0
;

3. not use at all any processor whose first non-trivial mode consumes strictly more than
the mode Puk0

,ik0
;

4. use Puk0
,ik0

at the minimum throughput so the system achieves a throughput of ρ
(according to Proposition 1).
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Theorem 1. Algorithm 1 optimally solves problem MinPower (ρ) (see linear program (3)).

Proof. Let S̃ = {ρ̃u} be the throughput of each processor given by Algorithm 1, and S = {ρu}
be an optimal solution of the problem, different from our solution. We know that there exists
at least one processor whose throughput in S is strictly lower that its throughput in S̃,
otherwise the power consumed by S would be greater than the one of S̃. Let Pm be one of
these processors. Of course, the remaining work of Pm in S̃ has to be performed by (at least)
one other processor, and thus at least one processor has a throughput strictly greater in S
than in S̃ (otherwise, S could not achieve a total throughput of ρ). Let PM be one of these
processors.

The idea is then to transfer a portion of work from PM to Pm. This amount of work ǫ
equals to the minimum of the additional throughput needed by Pm to achieve a throughput
ρ̃m, and of the excess of throughput of PM when compared to S̃:

ǫ = min{ρ̃m − ρm; ρM − ρ̃M}.

What do we know about PM in S̃? We know for sure that Algorithm 1 required from it a
throughput ρ̃M (which may be equal to 0). That means, according to the selection process of
Algorithm 1, that: 1) either PM is saturated by its bandwidth, but in that case, ρ̃M ≥ ρM ,
which contradicts the definition of PM , or 2) PM is saturated at a given mode PM,i, and the
next mode PM,i+1 has a power consumption ratio greater than, or equal to, any other selected
processor, Pm included, or 3) PM is not saturated, but in that case it is the last selected mode
by Algorithm 1 and so has a power consumption ratio greater than, or equal to, any other
selected processor, Pm included. Overall, the power consumption ratio of PM is greater than,
or equal to, the one of Pm.

Let S ′ be the scheduling where:

ρ′m = ρm + ǫ; ρ′M = ρM − ǫ; ρ′i,j = ρi,j otherwise.

Then, the power consumed by S ′ is

p
∑

u=1

P′
u =







p
∑

u=1
u 6=m,M

Pu






+ P′

m + P′
M .

P′
m = max

i

{

(ωρ′m − sm,i)
Pm,i+1 −Pm,i

sm,i+1 − sm,i
+ Pm,i

}

= ρ′m

(

ω
Pm,im+1 −Pm,im

sm,im+1 − sm,im

)

+

(

Pm,im − sm,im

Pm,im+1 −Pm,im

sm,im+1 − sm,im

)

= (ρm + ǫ)λm1 + λm2 = Pm + ǫλm1

and P′
M = (ρM − ǫ)λM1 + λM2 = PM − ǫλM1 .

We also know that
Pm,im+1 −Pm,im

sm,im+1 − sm,im

≤
PM,iM+1

−PM,iM

sM,iM+1
− sM,iM

, because of the Greedy selec-

tion, so λm1 − λM1 ≤ 0, and :

p
∑

u=1

P′
u ≤







p
∑

u=1
u 6=m,M

Pu






+ Pm + PM =

p
∑

u=1

Pu.
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We can iterate these steps as long as S is different of S̃, hence proving the optimality of our
scheduling.

3.2 Maximizing the throughput

Maximizing the throughput is a very similar problem. We only need to adapt Algorithm 1 so
that the objective function considered during the selection process is replaced by the power
consumption:

T [uk]← min

{

Puk,ik ;

(

ω
buk

δ
− suk,ik

)

Puk,ik+1 −Puk,ik

suk,ik+1 − suk,ik

+ Puk,ik ; P′ + (P −Ψ)

}

.

where Ψ is the current power consumption (we iterate while Ψ ≤ P). The proof that this
modified algorithm optimally solves problem MaxThroughput (P) is very similar to that
of Algorithm 1 and can be found in [20].

4 Model with start-up overheads

When we move to more realistic models, the problem gets much more complicated. In this
section, we still look at the problem of minimizing the power consumption of the system with
a throughput bound, but now we suppose that there is a power consumption overhead when
turning a processor on. We denote this problem MinPowerOverhead (ρ). First we need
to modify the closed-form formula given by Proposition 1, in order to determine the power
consumption of processor Pu when running at throughput ρu during t time-units. The new
formula is then:

Pu(t, ρu) = max
0≤i<mu

{

(ωρu − su,i)
Pu,i+1(t)−Pu,i(t)

su,i+1 − su,i
+ Pu,i(t)

}

= max
0≤i<mu

{

(ωρu − su,i)
P

(1)
u,i+1 −P

(1)
u,i

su,i+1 − su,i
· t + P

(1)
u,i · t

}

+ P(2)
u

= P(1)
u (ρu) · t + P(2)

u .

The overhead is payed only once, and the throughput ρu is still obtained by using the same two

modes Pu,i0 and Pu,i0+1 as in Proposition 1. We first run the mode Pu,i0 during
t(su,i0+1−ρuω)

su,i0+1−su,i0

time-units, then the mode Pu,i0+1 during
t(ρuω−su,i0

)

su,i0+1−su,i0
time-units (these values are obtained

from the fraction of time the mode are used per time-unit). We can now prove the following
dominance property about optimal schedules:

Proposition 3. There exists an optimal schedule in which all processors, except possibly one,
are used at a maximum throughput, i.e., either the throughput dictated by their bandwidth, or
the throughput achieved by one of their execution modes.

Proof. Let S be an optimal schedule without that property. We study S during an interval of
arbitrary length, say t time-units. As we have no control on the behavior of S, every processor
can be turned on and off arbitrarily many times. Let ∆u(t) be the communication volume
received by Pu during the t time-units, and Ωu(t) the computational volume performed during
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this interval. Both volumes are not necessary equal, as we chose an arbitrary time interval.
We now compare S and S ′, with S ′ being the schedule identical to S outside of the considered
interval and which, during that interval, sends tasks to each processor Pu at rate ∆u(t)

t
, and

where each processor Pu computes with a throughput of Ωu(t)
t

. We need to check that Pu

does not starve, i.e., that it always has in memory some task ready to be executed, in order to
ensure the computational throughput. The most constrained problem occurs when the total
communication throughput is lower than the total computational throughput. We suppose
that the memory contains, at time t = 0,M0 (which may be equal to zero) tasks:

• Communications under S ′ are feasible: Under S, each processor received a volume
of tasks equals to ∆u(t) during t time-units, so its bandwidth throughput was greater

than or equal to ∆u(t)
t

, which means that S ′ also respects the bandwidth constraints. For
the master’s point of view, the total volume of communication during the t time-units
under S is

∑p
u=1 ∆u(t), so we had:

∑p
u=1 ∆u(t) ≤ t · BW. Consequently,

∑p
u=1

∆u(t)
t

and S ′ respects the bounded capacity of the master.

• Computations under S ′ are feasible: As S is feasible, we have Ωu(t) ≤M0+∆u(t).
According to Proposition 1, we know that, under S ′, the processor needs only two
consecutive modes to perform its computational throughput, Pu,i0 and Pu,i0+1,

su,i0
ω
≤

Ωu(t)
t
≤ su,i0+1

ω
(i0 might be equal to zero). We run at the slowest mode first, in order to

minimize the power consumption and to be sure to have enough tasks in memory to run
at the second mode later and to obtain a feasible schedule. When using the mode Pu,i0

during t1 =
t
“

su,i0+1−
Ωu(t)

t
ω

”

su,i0+1−su,i0
time-units, and the mode Pu,i0+1 during t2 =

t
“

Ωu(t)
t

ω−su,i0

”

su,i0+1−su,i0

time-units, we obtain a feasible solution. Indeed, either the fastest computation rate
is smaller than the communication throughput, and so the number of stored tasks

increases with time, or ∆u(t)
t
≤ su,i0+1

ω
. In that case, after t1 time-units, the processor

has in memory a fraction of tasks equal to: M0 +
(

∆u(t)
t
− su,i0

ω

)

t1. Then, if we look at

the memory M of the processor during the computation under the mode Pu,i0+1 after
t′ time-units (t′ ≤ t2), we have:

M = M0 +

„

∆u(t)

t
−

su,i0

ω

«

t1 −

„

su,i0+1

ω
−

∆u(t)

t

«

t′ ≥ M0 +

„

∆u(t)

t
−

su,i0

ω

«

t1 −

„

su,i0+1

ω
−

∆u(t)

t

«

t2

= M0 +
∆u(t)

t
(t1 + t2) −

„

t1su,i0

ω
+

t2su,i0+1

ω

«

= M0 + ∆u(t) (t1 + t2) − t

0

@

su,i0

“

su,i0+1 −
Ωu(t)

t
ω

”

ω(su,i0+1 − su,i0 )
+

su,i0+1

“

Ωu(t)
t

ω − su,i0

”

ω(su,i0+1 − su,i0 )

1

A

= M0 + ∆u(t) − t
Ωu(t)

t
≥ Ωu(t) − Ωu(t) = 0

So the processor memory always contains some tasks, and then S ′ is feasible.

• S ′ does not consume more power than S: We only pay a power overhead each
time a processor is turned on, and S ′ turned on only once each processor used by S.
Furthermore, the average throughput of each processor is the same under S ′ than under
S. Overall, the power consumption of S ′ is not greater than that of S.

Consider now the throughput of each worker under S ′. If S ′ does not have the desired property,
then there exist (at least) two processors Pm and PM that are not running at a maximum
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throughput (i.e., dictated by one of the modes or by the bandwidth). We know that these
throughputs can be achieved using only two modes PM,iM and PM,iM+1 for PM (PM,iM may
have a throughput of zero), and Pm,im , Pm,im+1 for Pm. Suppose that PM consumes more
power at its throughput than Pm at its own one. This means that:

Pm,im+1(t)−Pm,im(t)

sm,im+1 − sm,im

≤
PM,iM+1

(t)−PM,iM (t)

sM,iM+1
− sM,iM

We now construct a new schedule S ′′ from S ′, with S ′′ equal to:

ρ′′m = ρ′m + ǫ ρ′′M = ρ′M − ǫ and ρ′′u = ρ′u otherwise,

and ǫ = min
{

bu

δ
− ρ′m;

sm,im+1

ω
− ρ′m; ρ′M −

sM,iM

ω

}

. Then, if we compare the power consumed

by S ′′ and S ′:

p
∑

u=1

P′′
u(t) =







p
∑

u=1
u 6=m,M

P′
u(t)






+ P′′

m(t) + P′′
M (t).

As a reminder, we saw in the proof of Theorem 1 that:

P′′
m(t) = P′

m(t) + ǫλm1 and P′′
M (t) = P′

M (t)− ǫλM1 ,

with

λm1 = ω
Pm,im+1(t)−Pm,im(t)

sm,im+1 − sm,im

and λM1 = ω
PM,iM+1

(t)−PM,iM (t)

sM,iM+1
− sM,iM

.

So ǫ(λm1 − λM1) ≤ 0, and:

p
∑

u=1

P′′
u(t) ≤







p
∑

u=1
u 6=m,M

P′
u(t)






+ P′

m(t) + P′
M (t) =

p
∑

u=1

P′
u(t).

Then S ′′ achieves the same throughput as S ′, and does not consume more power than S ′.
As the number of processors that are not at a maximum throughput is strictly smaller in S ′′
than in S ′, we can iterate the process until at most one processor is unsaturated.

Unfortunately, Proposition 3 does not help design an optimal algorithm. However, we
prove that a modified version of the previous algorithm remains asymptotically optimal. The
general principle of the approach is as follows: instead of looking at the power consumption
per time-unit, we look at the energy consumed during d time-units, where d will be defined
later. Let αu be the throughput of Pu during d time-units. Thus, the throughput of each
processor per time-unit is ρu = αu

d
. As all processors are not necessarily enrolled, let U be the

set of selected processors’ index. The constraint on the energy consumption can be written:

∀ u, ∀ 1 ≤ i ≤ mu, Pu · d ≥
(

(ωρu − su,i)
Pu,i+1 −Pu,i

su,i+1 − su,i
+ Pu,i

)

· d + P(2)
u ,

or,

∀ u, ∀ 1 ≤ i ≤ mu, Pu −
P

(2)
u

d
≥ (ωρu − su,i)

Pu,i+1 −Pu,i

su,i+1 − su,i
+ Pu,i
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The linear program is then:



























































Minimize P =
∑

u∈U

Pu subject to

p
∑

u=1

ρu = ρ

∀u, ρu ≤ min

{

su,mu

ω
;
bu

δ

}

∀ u ∈ U , ∀ 1 ≤ i ≤ mu, Pu −
P

(2)
u

d
≥ (ωρu − su,i)

Pu,i+1 −Pu,i

su,i+1 − su,i
+ Pu,i

(4)

However, this linear program cannot be solved unless we know U . So we need to add
some constraints. In the meantime, we make a tiny substitution into the objective function,
in order to simplify one constraint:



























































Minimize P =

p
∑

u=1

(

Pu +
P

(2)
u

d

)

subject to

p
∑

u=1

ρu = ρ

∀u, ρu ≤ min

{

su,mu

ω
;
bu

δ

}

∀ u, ∀ 1 ≤ i ≤ mu, Pu ≥ (ωρu − su,i)
Pu,i+1 −Pu,i

su,i+1 − su,i
+ Pu,i

(5)

The inequalities are stronger than previously, so every solution of (5) is a solution of (4).
Of course, optimal solutions for (5) are most certainly not optimal for the initial problem (4).
However, the larger d, the closer the constraints are from each other. Furthermore, Algo-
rithm 1 builds optimal solutions for (5). So, the expectation is that when d becomes large,
solutions built by Algorithm 1 becomes good approximate solutions for (5). Indeed we derive
the following result:

Theorem 2. Algorithm 1 is asymptotically optimal for problem MinPowerOverhead (ρ)(see
linear program (4)).

Proof. If the application A is composed of B tasks, the optimal scheduling time will be T = B
ρ
,

where ρ is the throughput bound. We note Popt the optimal power consumption that would
be obtained in the ideal model, P∗ the optimal power consumption that can be achieve under
the model with start-up overheads, and P the power consumption given by Algorithm 1.

As the model with start-up overheads is more constrained than the fluid model, the
minimum power consumption under this model is greater than under the fluid model, so
we have Popt ≤ P∗ ≤ P. Also, one can remark that the power consumption of the solution
given by Algorithm 1 is a function of the time interval, as the start-up overheads are paid
only once each d time-units. Thus, during t time-units:

P(t) ≤ Popt · t +

⌈

t

d

⌉ p
∑

u=1

P(2)
u = Popt · t +

⌈

t

d

⌉

· p · p
max
u=1

{

P(2)
u

}

.
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If we fix d =
√
T , we have

P(T ) ≤ P∗ · T +
(

1 +
√
T
)

· p · p
max
u=1

{

P(2)
u

}

. (6)

Then, when comparing P and P∗ during the scheduling of the B tasks of application A, we
obtain:

P(T )

P∗(T )
= 1 +

(

1

T +
1√
T

) p · p
max
u=1

{

P(2)
u

}

P∗

= 1 +O
(

1√
T

)

.

which achieves the proof of optimality of Algorithm 1.

5 Related Work

Several papers have been targeting the minimization of power consumption. Most of them
suppose they can switch to arbitrary speed values. Here is a brief overview:

• Unit time tasks. Bunder in [5] focuses on the problem of offline scheduling unit time
tasks with release dates, while minimizing the makespan or the total flow time on one
processor. He chooses to have a continuous range of speeds for the processors. He
extends his work from one processor to multi-processors, but unlike this paper, does not
take any communication time into account. His approach corresponds to scheduling on
multi-core processors. He also proves the NP-completeness of the problem of minimizing
the makespan on multi-processors with jobs of different amount of work. Authors in [2]
concentrate on minimizing the total flow time of unit time jobs with release dates on one
processor. After proving that no online algorithm can achieve a constant competitive
ratio if job have arbitrary sizes, they exhibit a constant competitive online algorithm and
solve the offline problem in polynomial time. Contrarily to [5] where tasks are gathered
into blocks and scheduled with increasing speed in order to minimize the makespan,
here the authors prove that the speed of the blocks need to be decreasing in order to
minimize both total flow time and the energy consumption.

• Communication-aware. In [24], the authors are interested about scheduling task
graphs with data dependences while minimizing the energy consumption of both the
processors and the inter-processor communication devices. They demonstrate that in
the context of multiprocessor systems, the inter-processor communications were an im-
portant source of consumption, and their algorithm reduces up to 80% the communica-
tions. However, as they focus on multiprocessor problems, they only consider the energy
consumption of the communications, and they suppose that the communication times
are negligible compared to the computation times.

• Discrete voltage case. In [18], the authors deal with the problem of scheduling tasks
on a single processor with discrete voltages. They also look at the model where the
energy consumption is related to the task, and describe how to split the voltage for each
task. They extend their work in [19] to online problems. In [26], the authors add the
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constraint that the voltage can only be changed at each cycle of every task, in order to
limit the number of transitions and thus the energy overhead. They find that under this
model, the minimal number of frequency transitions in order to minimize the energy
may be greater than two.

• Task-related consumption. [3] addresses the problem of periodic independent real-
time tasks on one processor, the period being a deadline to all tasks. The particularity
of this work is that they suppose the energy consumption is related to the task that
is executed on the processor. They exhibit a polynomial algorithm to find the optimal
speed of each task, and they prove that EDF can be used to obtain a feasible schedule
with these optimal speed values.

• Deadlines. Many papers are trying to minimize the energy consumed by the platform
given a set of deadlines for all tasks on the system. In [21], the authors focus on the
problem where tasks arrive according to some release dates. They show that during any
elementary time interval defined by some release dates and deadlines of applications, the
optimal voltage is constant, and they determine this voltage, as well as the minimum
constant speed for each job. [4] improves the best known competitive ratio to minimize
the energy while respecting all deadlines. [8] works with an overloaded processor (which
means that no algorithm can finish all the jobs) and try to maximize the throughput.
Their online algorithm is O(1) competitive for both throughput maximization and en-
ergy minimization. [10] has a similar approach by allowing task rejection, and proves
the NP-hardness of the studied problem.

• Slack sharing. In [27, 22], the authors investigate dynamic scheduling. They consider
the problem of scheduling DAGs before deadlines, using a semi-clairvoyant model. For
each task, the only information available is the worst-case execution time. Their algo-
rithm operates in two steps: first a greedy static algorithm schedules the tasks on the
processors according to their worst-case execution times and the deadline, and reduces
the processors speed so that each processor meets the deadline. Then, if a task ends
sooner than according to the static algorithm, a dynamic slack sharing algorithm uses
the extra-time to reduce the speed of computations for the following tasks. The au-
thors investigate the problem with time overhead and voltage overhead when changing
processor speeds, and adapt their algorithm accordingly. However, they do not take
communications into account.

• Heterogenous multiprocessor systems. Authors in [11] study the problem of
scheduling real-time tasks on two heterogenous processors. They provide a FPTAS
to derive a solution very close to the optimal energy consumption with a reasonable
complexity. In [17], the authors propose a greedy algorithm based on affinity to assign
frame-based real-time tasks, and then they re-assign them in pseudo-polynomial time
when any processing speed can be assigned for a processor. Authors of [25] propose
an algorithm based on integer linear programming to minimize the energy consumption
without guarantees on the schedulability of a derived solution for systems with discrete
voltage. Some authors also explored the search of approximation algorithms for the
minimization of allocation cost of processors under energy constraints [9, 16].
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6 Conclusion

In this paper, we have studied the problem of scheduling a single application with power
consumption constraints, on a heterogeneous master-worker platform. We derived new closed-
form relations between the throughput and the power consumption at the processor level.
These formulas enabled us to develop an optimal bi-criteria algorithm under the ideal power
consumption model.

Moving to a more realistic model with start-up overheads, we were able to prove that our
approach provides an asymptotically optimal solution. We hope that our results will provide
a sound theoretical basis for forthcoming studies.

As future work, it would be interesting to address sophisticated models with frequency
switching costs, which we expect to lead to NP-hard optimization problems, and then look
for some approximation algorithms.
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