
HAL Id: hal-00336320
https://hal.archives-ouvertes.fr/hal-00336320

Submitted on 3 Nov 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Duration Pattern for Event-B Method
Joris Rehm

To cite this version:
Joris Rehm. A Duration Pattern for Event-B Method. 2nd Junior Researcher Workshop on Real-Time
Computing - JRWRTC 2008, Oct 2008, Rennes, France. �hal-00336320�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/50213774?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr/hal-00336320
https://hal.archives-ouvertes.fr


A Duration Pattern for Event-B Method

Joris Rehm

Université Henri Poincaré Nancy 1 - LORIA

BP 239 - 54506 Vandœuvre-lès-Nancy - France

E-mail: joris.rehm@loria.fr

Abstract

Event-B is a formal method used to do Model Driven

Engineering certified by theorem proving. We propose

a pattern to handle duration over a predicate in this

method which originally does not have particular tool

to specify and reason about real-time properties.

Keywords: Formal method, Real-time, Event-B
method, Pattern

1 Introduction

Our goal is to be able to work on system with real-
time aspects with “Event-B” formal method.

This formal method allows us to describe models
of dynamic systems (software or hardware) as set of
events modifying the value of model’s variables under
some conditions (called guard). In order to verify the
model, we can prove (by automatic and interactive the-
orem proving) an invariant under the variable. We also
use a relation of refinement between two models: from
an abstraction to a more concrete version of the model.
If the proof obligations of the refinement are done, the
invariant of the abstract model is also valid for the
concrete model. The logic used is a first order classical
logic together with a set theory. For more details of
Event-B method see [4, 3], and for the B notation see
[1]. Tools can be found at Event-B website1.

Event-B does not handle explicitly the real-time
problems, hence we propose here a pattern to handle
duration time over a predicate.

The next section introduces this notion and defines
how it should behave. Section 3 shows the pattern, for
Event-B, derived from this notion. Section 4 illustrates
this by an example and we sketch a case-study in 5.
Finally we conclude in 6.

1http://www.event-b.org

2 Definition

Let P (X) be a predicate over the variables X.

We want to define the duration D(P ), the last du-
ration while the predicate P was true. If P is currently
true, D(P ) is the time since P is true. The duration
D(P ) is defined by:

1. For the initial states: D(P ) = 0.

2. We consider events which can either change value
of the variables X, or make the time progress:

(a) for a transition which makes X change: if we
have ¬P (X) before the event and P (X) after
we reset the duration D(P ) to 0; for all the
other case the value of the duration remains
the same.

(b) for a transition which makes the time
progress of d unit, two possible case: if
P (X) then the new value of the duration is
D(P ) + d; else (we have ¬P (X)) the value of
the duration remains the same.

3 Pattern

To encode the counter D of the definition as variable
of a model, we also need to encode the predicate P as
boolean function, with S a set of elements representing
the predicates. A predicate cannot be used directly in
a B model, because we use a first order logic. This is
present only in the pattern, because in the final model
it will be advisable to replace the predicates by the
real properties which we wish to study. Below we find
variables, invariant and initialisation of the pattern:

http://www.event-b.org


VARIABLES D, P

INVARIANTS

inv1 : D ∈ S → N

inv2 : P ∈ S → BOOL

EVENTS

Initialisation =̂
begin

act1 : D := {x 7→ 0|x ∈ S}
act2 : P :∈ S → BOOL

end

The variable D is a function (D ∈ S → N), which
return the associated duration. The variable P is the
encoding of the predicates as boolean function (P ∈
S → BOOL). The initialisation applies the value zero
for all the durations and place indifferently the value
true or false in all the predicates. The elements of S will
serve as identifiers to represent the studied predicates.

We can now define the event bt (Begin True) who
must be used every time a studied predicate becomes
true:

Event bt =̂
any x where

grd1 : x ∈ S

grd2 : P (x) = FALSE

then

act1 : D(x) := 0
act2 : P (x) := TRUE

end

We thus have, for an identifier x of predicate, the
value P (X) which passes from “truth” to “false”, and
in that case we have to reset the associated duration.

The following event represent the time progression:

Event tic =̂
any s where

grd1 : s > 0
then

act1 : D :| ∀x·x ∈ S ⇒ (
(P (x) = TRUE⇒

D′(x) = D(x) + s)∧
(P (x) = FALSE⇒

D′(x) = D(x)))
end

Where D :| Q(D,D′) denote a substitution where
the new value of D is D′ and where the predicate Q is
true. In tic the time progresses of s units and if a value
P (x) is true then it is necessary to increment of s the
corresponding duration D(x).

In the use of this pattern, it is necessary to be careful
to insert the event bt every time the predicate P change

from false to true. For that purpose, it is possible to
prove, at first, a model which establishes when this
predicate becomes true. And then we can refine this
model to insert bt in the good events.

Indeed it is not possible to quantify on a predicate
(second-order logic) in the notation of the method B. It
is thus advisable to encode this predicate in a variable
of boolean type as it is shown in the pattern. In this
way, we can effectively use the concept of counter of
duration on a predicate in a Event-B model.

4 Example

In order to illustrate our pattern, we show here a
short example of a light switch.

Consider a system of three events: the event push

represents someone pushing a button in order to switch
on the light; the event on actually switches on the light;
and the event off represent the automatic switch off of
the light after a fixed delay c. The variables of the sys-
tem are: the boolean lo (Light On) which denotes the
light; the boolean p which denotes whether someone
has pressed the button.

Now we want to study the duration of the predicate:

P =̂(p = FALSE ∧ lo = TRUE)

This predicate means: “the light is on and nobody has
pressed the button”. Thus we add the variable D with
D(P ) being the duration of P .

At the initialisation, the duration is zero and the
other variables are set to FALSE:

Initialisation =̂
begin

act1 : lo := FALSE

act2 : p := FALSE

act3 : D(P ) := 0
end

The event push just assign TRUE on p in any case:

Event push =̂
begin

act1 : p := TRUE

end

And the event on can be triggered if someone has
pushed the button (see grd1). In this case, we switch
the light on (act1); accept the user request (act2); and
reset the duration to zero (act3) as specified in the
pattern because P changes from FALSE to TRUE.



Event on =̂
when

grd1 : p = TRUE

then

act1 : lo := TRUE

act2 : p := FALSE

act3 : D(P ) := 0
end

Now, with the event off the system switches off
(act1) the light if: the light is on (grd1); nobody
pushed the button (grd2) (otherwise on must take
place before); and the duration while the light was on
(without button pressed) is equal to the constant c.

Event off =̂
when

grd1 : lo = TRUE

grd2 : p = FALSE

grd3 : D(P ) = c

then

act1 : lo := FALSE

end

Finally, the event tic represents the time progres-
sion. We find here a standard part (grd1 to grd3, and
act1) from the pattern. In addition, the guard grd4
makes the event on occurring instantaneously after the
event push. And grd5 forces the event off to occur
when D(P ) = c.

Event =̂ tic
any x where

grd1 : x ∈ N

grd2 : P ⇒ x = D(P ) + 1
grd3 : ¬P ⇒ x = D(P )
grd4 : ¬(p = TRUE)
grd5 : ¬(P ∧ D(P ) = c)

then

act1 : D(P ) := x

end

5 Case study

As a case study for our proposition, we verified an
algorithm of asynchronous communication. It is an al-
gorithm from H. R. Simpson [8] in a version with a
two slots memory. This version is not totally asyn-
chronous, but it requires less space memory than the
full version with four slots memory. The full version
has been studied [2] also with Event-B Method and the
first model of our case study (the more abstract spec-
ification) is equivalent to the first and second models
of this case study. As the asynchronism is not total,

some behaviour of the communicating processes will be
forbidden, to specify it we used real-time constraints.
To take into account those constraint, we used our pat-
tern to specify the durations of some properties of the
system formed by the algorithm. And with this spec-
ification, we have verified that this particular version
with real-time constraint is still correct.

In this paper, because of the lack of space, we are
not going to report the full proved development but we
show the most interesting points.

The purpose of the algorithm is to allow a one-way
asynchronous communication between two entities. As
the communication is made in a one way, we name
one of the entities the “writer” and the other one the
“reader”. Furthermore, the direction of communica-
tion goes from the writer towards the reader. At any
time, the writer can send a new value, and the reader
can obtain it, or not, in an (almost) independent way.
This is implemented with variables (a memory) shared
between both entities.

As an illustration, we can imagine that the writer is
an electronic thermometer regularly updating the tem-
perature and that the reader is another device reading
the current value of the temperature when needed.

As usual in Event-B development, we have a chain
of model which refine each other. The first model is
the most abstract specification, and we consider two
atomic events named read and write. But in the im-
plementation and in the last model, the reading and
writing operations are not atomic (the size of the com-
municated data is not limited). To represent this pe-
culiarity in the first model, there will be a gap between
the read value and the written value. But the algo-
rithm gives guarantees onto the level of freshness of
the read value and we have formalised the value of the
gap. Informally, we can say that the read value is as
recent at least as the last value written at the time of
the previous reading.

We skip here most of the content unrelated to real-
time of the study and we abstract it with the major
point: The key for this algorithm is not to write twice
in a row during the same reading, this would provoke
two actions on the same slot of the (2 slots) memory,
which is undesirable.

To implement this, this version of the algorithm
uses real-time properties. One of the real-time con-
straints is the limitation of reading duration, we thus
put the invariant cr < minbw, with cr being the
duration of the reading operation and minbw a con-
stant used as limit. Another important constraint is
that the duration between two consecutive writing is
equal to minbw, at least. Thus, when the system
is writing, the writer spent at least minbw unit of



time to not write, which corresponds to the invariant
writing 6= ∅ ⇒ cnw ≥ minbw, where writing 6= ∅

means “there are no operation of writing”, and cnw is
the duration of the non-writing.

In this case study, we applied our pattern in order to
obtain (among other) cr, the duration of the reading
operation, and cnw the duration between two opera-
tion of writing.

The proved development was conceived on the
Rodin software tool (from the European project of the
same name) with the prover B4Free of the ClearSy
company. All the proof obligations (PO) were cleared.
The following table gives the details of the number of
proof obligation by models:

Model Total Auto Manual To do
m0 34 25 9 0
m1 12 12 0 0
m2 42 39 3 0
m3 33 28 5 0
m4 33 30 3 0

The PO labelled “Auto” are done without user inter-
vention, while the label “Manual” express an interac-
tive session of proving. We found the interactive proof
quite easy and short.

6 Conclusion

We propose a new pattern which improves Event-B
method in order to reason about duration on predicate.
We have already proposed another pattern [5, 7] which
focuses on the future time of execution of event.

Those two concepts which we have defined are dual,
the previous pattern allows us to force the progress of
a system in the time whereas the counter of duration
allows us to measure the behaviour of a system in the
time.

The concept of duration was defined here as prop-
erties which it has to verify on a system of transition,
then we showed how to obtain a Event-B model which
will serve as pattern of refinement to use these con-
cepts, in practise, in a proved development.

On the topic of the duration, many research work
was carried out on the “duration calculus” [9] and a
way to combine this approach with the (classical) B
Method [1] was done in [6].

We applied our pattern of duration on a case study,
this allowed us to replace the abstract specification by
real-time constraints. This case study is only partially
described here because of the lack of space, but it still
shows an application of our method and shows the re-
use of a generic model of a real-time aspect for model-
ing and proving.

References

[1] J.-R. Abrial. The B Book - Assigning Programs to

Meanings. Cambridge University Press, Aug. 1996.

[2] J.-R. Abrial and D. Cansell. Formal development of
simpson’s 4-slot algorithm. Technical report, Pri-
vate communication, March 2006.

[3] J.-R. Abrial and S. Hallerstede. Refinement, de-
composition, and instantiation of discrete models:
Application to event-b. Fundam. Inform., 77(1-
2):1–28, 2007.

[4] D. Cansell and D. Méry. Foundations of the b
method. Computers and Artificial Intelligence,
22(3):221–256, 2003.

[5] D. Cansell, D. Mèry, and J. Rehm. Time constraint
patterns for event B development. In B 2007: For-

mal Specification and Development in B, volume
4355/2006, pages 140–154. Springer, January 17-19
2007.

[6] S. Colin, G. Mariano, and V. Poirriez. Duration
calculus: A real-time semantic for b. In Z. Liu
and K. Araki, editors, ICTAC, volume 3407 of Lec-

ture Notes in Computer Science, pages 431–446.
Springer, 2004.

[7] J. Rehm and D. Cansell. Proved Development of
the Real-Time Properties of the IEEE 1394 Root
Contention Protocol with the Event B Method. In
F. B. Yamine Aı̈t Ameur and Virginie Wiels, edi-
tors, RNTI ISoLA 2007 Workshop On Leveraging

Applications of Formal Methods, Verification and

Validation, volume RNTI-SM-1, pages 179–190,
Poitiers-Futuroscope France, 12 2007. Cépaduès.

[8] H. Simpson. Four-slot fully asynchronous commu-
nication mechanism. Computers and Digital Tech-

niques, IEE Proceedings -, 137(1):17–30, Jan 1990.

[9] C. Zhou and M. R. Hansen. Duration Calcu-

lus: A Formal Approach to Real-Time Systems.
EATCS: Monographs in Theoretical Computer Sci-
ence. Springer, 2004.


	Introduction
	Definition
	Pattern
	Example
	Case study
	Conclusion

