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Anisotropic Diagrams: Labelle Shewchuk

approach revisited

Jean-Daniel Boissonnat, Camille Wormser ∗, Mariette Yvinec

INRIA, Geometrica, BP 93 06902 Sophia Antipolis, France

Abstract

F. Labelle and J. Shewchuk have proposed a discrete definition of anisotropic
Voronoi diagrams. These diagrams are parametrized by a metric field. Under mild
hypotheses on the metric field, such Voronoi diagrams can be refined so that their
dual is a triangulation, with elements shaped according to the specified anisotropic
metric field.

We propose an alternative view of the construction of these diagrams and a variant
of Labelle and Shewchuk’s meshing algorithm. This variant computes the Voronoi
vertices using a higher dimensional power diagram and refines the diagram as long
as dual triangles overlap. We see this variant as a first step toward a 3-dimensional
anisotropic meshing algorithm.
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1 Introduction

Anisotropic meshes are triangulations of a given domain in the plane or
in higher dimension, with elements elongated along prescribed directions.
Anisotropic triangulations have been shown [8] to be particularly well suited
for interpolation of functions or numerical modeling. They allow to minimize
the number of triangles in the mesh while retaining a good accuracy in com-
putations. For such applications, the elongation directions are usually given
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as quadratic forms at each point. These directions may be related to the cur-
vature of the function to be interpolated, or to some specific directions taken
into account in the equations to be solved.

Various heuristic solutions for generating anisotropic meshes have been pro-
posed. Li et al. [7] and Shimada et al. [9] use packing methods. Bossen and
Heckbert [3] use a method consisting in centroidal smoothing, retriangulating
and inserting or removing sites. Borouchaki et al. [2] adapt the classical De-
launay refinement algorithm to the case of an anisotropic metric. In terms of
applications, the question of tailoring anisotropic meshes to the specific needs
of partial differential equations solvers has been studied by Simpson [10]. An
example of strategy used to adapt anisotropic meshes thanks to a posteriori
computations of the error in finite elements computations has been presented
by Apel et al. [1], and typical examples of applications to fluid dynamics com-
putations have been investigated by Frey and Alauzet [5].

Recently, Labelle and Shewchuk [6] have settled the foundations for a rigorous
approach based on the so-called anisotropic Voronoi diagrams. We present
these ideas in the first two sections, and we propose an alternative view of
the construction of these diagrams in Section 3. After detailing in Section 4
the computations that we need, we expose a variant of the meshing algorithm
of Labelle and Shewchuk in Section 5. This variant computes the Voronoi
vertices using a higher dimensional power diagram and refines the diagram as
long as dual triangles overlap. The last sections prove the correctness of this
approach.

An extension of Labelle and Shewchuk results to the 2-manifold case was
proposed by Cheng et al. [4], where a 3D anisotropic Voronoi diagram is
considered to build an anisotropic mesh of the closed 2-manifold embedded
in 3D.

2 Labelle and Shewchuk’s Approach

Labelle and Shewchuk [6] have proposed a discrete definition of anisotropic
Voronoi diagrams. This section presents the basis of their work. The diagram is
defined over a domain Ω ⊂ R

d, and each point p ∈ Ω has an associated metric.
More specifically, a point p is given a symmetric positive definite quadratic
form represented by a d × d matrix Mp. The distance between two points x

and y as viewed by p is defined as dp(x, y) =
√

(x − y)tMp(x − y), and we
write d(p, q) = min(dp(p, q), dq(p, q)). Note that dp is a distance, whereas d is
not, since it does not necessarily verifies the triangular inequality.

In a similar way, ∠pxqy is defined as arccos (x−q)tMp(y−q)
dp(x,q)dp(y,q)

.
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In order to compare the metric at points p and q, a transfer application is
needed. Given the quadratic form Mp of a point p, we denote by Fp a matrix
such that det(Fp) > 0 and F t

pFp = Mp. Then dp(x, y) = ‖Fp(x − y)‖2 and the
transfer application from p to q is Fp,q = FqF

−1
p . This application Fp,q is in fact

an isometry between the metric spaces (Rd, Mp) and (Rd, Mq). The distortion
between p and q is then defined as γ(p, q) = γ(q, p) = max{‖Fp,q‖2, ‖Fq,p‖2}.
For any points x, y, we have 1/γ(p, q) dq(x, y) ≤ dp(x, y) ≤ γ(p, q) dq(x, y).

Labelle and Shewchuk [6] define the anisotropic Voronoi diagram in the fol-
lowing way (and provide some examples):

Definition 1 Let S be a set of points, called sites hereafter. The Voronoi cell
of a site p in S is Vor(p) = {x ∈ R

d : dp(p, x) ≤ dq(q, x) for all q ∈ S}. Any
subset R ⊂ S induces a Voronoi face Vor(R) = ∩q∈R Vor(q) which is the locus
of points equally close to the sites in R and no closer to any other site. If not
empty, such a face has dimensionality dim(Vor(R)) ≥ d + 1 − |R|, achieving
equality if the sites are in general position. The anisotropic Voronoi diagram of
S is the arrangement of the Voronoi faces {Vor(R) : R ⊂ S, R 6= ∅, Vor(R) 6=
∅}.

It should be noted that

• each site is in the topological interior of its cell, which has dimensionality d;
• the bisectors are quadric surfaces (conic curves in dimension 2);
• the Voronoi faces are not always connected.

For brevity, we use in the sequel the term k-Vface to name Voronoi faces that
have dimensionality k. The label of a Vface Vor(R) is the set R. As noted,
faces are not necessarily connected. In particular, a 0-Vface is not necessarily
a unique point, but may consist of several ones. We call each of these points
a Voronoi vertex.

For any diagram D, and any domain Ω, we denote by DΩ the diagram D
restricted to Ω, i.e. the diagram obtained by intersecting the cells of D with Ω.

Definition 2 The dual complex of the anisotropic Voronoi diagram of S is
the simplicial complex whose set of vertices is the set S, with a simplex asso-
ciated to each subset R ⊂ S such that Vor(R) 6= ∅.

In two dimensions and with points in generic position, the dual complex in-
cludes, for each Voronoi vertex v, a dual triangle whose vertices are the three
sites that compose the label of v. There is no reason why these triangles should
form a triangulation. The two issues to be considered are the combinatorial
planarity of the graph, which depends on the connectivity of the cells, and
the ability to straighten its edges without crossing, which depends on the
curvature of the bisectors.
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The goal of the meshing algorithm is to refine the anisotropic Voronoi diagram
by inserting new sites, so that its geometric dual becomes a triangulation, with
well-shaped triangles.

In order to prove the correctness of their algorithm, Labelle and Shewchuk [6]
have defined the wedge property and have proven the following results to
ensure that their algorithm converges to a triangulation.

Definition 3 The wedge between two sites p and q is the locus of points x
such that the angle ∠pxpq and the angle ∠qxqp are less than π/2, or equiva-
lently dp(x, q)2 ≤ dp(p, x)2 + dp(p, q)

2 and dq(x, p)2 ≤ dq(q, x)2 + dq(p, q)
2.

A k-Vface f , with k < d, is said to be wedged if, for any pair p, q of distinct
sites such that f ⊂ Vor(p) ∩ Vor(q), we have f ⊂ wedge(p, q).

Theorem 4 If every subface of a d-Vface Vor(p) is wedged, then the d-Vface
is star-shaped around p.

The following lemma is only valid in the two-dimensional case, i.e. d = 2.

Lemma 5 Let v be a Voronoi vertex labeled by the sites p, q and r. If v is
wedged, then the orientation of the triangle pqr matches the ordering of the
cells Vor(p), Vor(q), Vor(r) locally around v.

Let Ω be a polygonal domain of the plane and S be a set of sites in Ω that
includes every vertex of Ω. We denote by D the anisotropic Voronoi diagram
of S and DΩ its restriction to Ω. The following result is central to the proof
of correctness of Labelle and Shewchuk’s algorithm.

Theorem 6 Suppose that each 1-Vface of D that intersects the boundary ∂Ω
intersects a single edge of ∂Ω and that each edge of ∂Ω is intersected exactly
once. If all the 1-Vfaces and vertices of DΩ are wedged, then the dual complex
of DΩ is a triangulation of Ω if S is in general position, i.e. if all Voronoi
vertices have degree 3.

If S is not in general position, the geometric dual is a polygonalization of
Ω with strictly convex polygons. Labelle and Shewchuk represent the Voronoi
diagram as the lower envelop of a set of paraboloids. When inserting a new site,
this lower envelop is updated in a lazy way, which amounts to computing only
the connected component of the cell that contains the new site. Theorem 6
validates their lazy computation of the diagram 1 .

1 In fact, there is a slight imprecision in their claim about the triangulation output
by their algorithm: since the algorithm never checks the wedge property for Voronoi
edges that have not been computed, it does not ensure that no disconnected cell
remains in the complete diagram.
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Labelle and Shewchuk’s algorithm consists in incrementally inserting points

• on edges of ∂Ω until these segments appear in DΩ;
• on non-wedged Voronoi edges;
• at the center of triangles that are badly shaped, or are too large, or do

not have the same orientation as the three Voronoi cells around their dual
Voronoi vertices.

3 Relation to Power Diagrams

In this section, we reduce the construction of an anisotropic Voronoi diagram
in R

d to the computation of a power diagram in R
D where D = d(d + 3)/2

and its restriction to a d-manifold. In the following, ‖·‖ denotes the Euclidean
distance.

Definition 7 A power diagram is defined for a set of spheres. Given a sphere
σ centered at y and of radius r, the power distance of a point x with respect
to σ is defined as πσ(x) = ‖x − y‖2 − r2.

The power diagram of a set of hyperspheres Σ of R
D is the subdivision induced

by the power cells of the spheres in Σ, where the power cell Pow(σ) of a sphere
σ is the locus of points with a smaller power distance with respect to σ than
to any other sphere in Σ: Pow(σ) = {x ∈ R

D, πσ(x) ≤ πτ (x), ∀τ ∈ Σ}.

We define the power cell of a set of spheres {σi}i as Pow({σi}i) = ∩iPow(σi).
The dual of the power diagram of Σ is called the regular complex of Σ.

Let D = d(d+3)
2

. Associate to each point x = (x1, . . . , xd) ∈ R
d

• the point x̃ ∈ R
d(d+1)

2 , whose coordinates are xrxs in increasing lexicographic
ordering of (r, s), with 1 ≤ r ≤ s ≤ d;

• the point x̂ = (x, x̃) ∈ P ⊂ R
D.

where P denotes the d-manifold of R
D

{

x̂ ∈ R
D : x ∈ R

d
}

.

Let S = {p1, . . . , pn} be a finite set of sites in R
d. To each point pi of S, we

attach a symmetric positive definite matrix Mpi
, whose elements are denoted

by (M r,s
pi

)1≤r,s≤d, and we define

• the point qi = (qr,s
i , 1 ≤ r ≤ s ≤ d) ∈ R

d(d+1)
2 defined as

· qr,r
i = −1

2
M r,r

pi
, for 1 ≤ r ≤ d ;

· qr,s
i = −M r,s

pi
, for 1 ≤ r < s ≤ d.

• the point p̂i = (Mpi
pi, qi) ∈ R

D ;
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• the sphere σ(pi) ⊂ R
D of center p̂i and radius

√

‖p̂i‖2 − pt
iMpi

pi.

Let Π be the projection (x, x̃) ∈ R
D 7→ x ∈ R

d. Let Σ be the set of spheres
{σ(p), p ∈ S}.

Lemma 8 The anisotropic Voronoi diagram of S ⊂ R
d is the image by Π of

the restriction of the D-power diagram of Σ to the d-manifold P.

PROOF. We have the following equalities:

dpi
(x, pi)

2 = xtMpi
x − 2pt

iMpi
x + pt

iMpi
pi = −2qt

i x̃ − 2pt
iMpi

x + pt
iMpi

pi

= −2p̂i
tx̂ + pt

iMpi
pi.

This implies that dpi
(x, pi) < dpj

(x, pj) if and only if

‖x̂ − p̂i‖2 − (‖p̂i‖2 − pt
iMpi

pi) < ‖x̂ − p̂j‖2 − (‖p̂j‖2 − pt
jMjpj).

It follows that x is closer to pi than to pj if and only if the power of x̂ with
respect to σi is smaller than its power with respect to σj . This proves that,
for a point z ∈ P, being in the power cell of σi is equivalent to Π(z) being in
the cell of pi in the anisotropic diagram of S.

The previous lemma gives a construction of the anisotropic Voronoi diagram.
As is well-known, computing a power diagram in R

D reduces to computing a
lower convex hull in R

D+1. Hence, in the two-dimensional case, the computa-
tion of a six-dimensional convex hull is needed. To get the anisotropic Voronoi
diagram, it remains to compute the intersection of the power diagram with
the manifold P. We detail the computations required by our algorithm in the
following section.

4 Basic Operations and Primitives

Computing the complete anisotropic Voronoi diagram explicitly is not easy.
Our meshing algorithm only requires computing Voronoi vertices. We now
explain how to compute these vertices, in the two-dimensional case. Recall
that a 0-Vface of R

2 may be seen as the projection of a finite subset of R
5.

This set is obtained as the intersection of a linear subspace of codimension 2
(obtained as the intersection of three cells of the power diagram of Σ) with
the 2-dimensional manifold P (see Lemma 8).

The computation of the Voronoi vertices whose label is {a, b, c} consists of the
following steps:
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(1) Compute the power diagram of Σ and consider three sites a, b and c such
that (σ(a), σ(b), σ(c)) corresponds to a triangle in the regular complex of Σ
(see Definition 7), which means that their cells have a common non-empty
intersection.

(2) Compute the hyperplane Hab, which is the bisector of σ(a) and σ(b), and
the hyperplane Hbc, which is the bisector of σ(b) and σ(c), and then their
intersections Dab and Dbc with P. Practically, Dab and Dbc are represented
by their projections by Π, named respectively Cab and Cbc. The curves Cab

and Cbc are conics of R
2, and the equation of Cab in R

2 is:

(xtMax − 2atMax + atMaa) − (xtMbx − 2btMbx + btMbb) = 0

We denote this equation by Cab(x) = 0. The equation of Cbc is obtained
similarly.

(3) Compute the intersection points of Cab and Cbc. This intersection is the
set of Voronoi vertices whose label is {a, b, c} in the Voronoi diagram of
{a, b, c}.

(4) In the previous steps, we have only considered the bisectors of the spheres
σ(a), σ(b), σ(c) corresponding to the three sites involved, or, equivalently,
the Voronoi diagram of {a, b, c} alone. We now consider the bisectors of
a, b, c in the Voronoi diagram of S, or, equivalently, the bisectors of the
spheres σ(a), σ(b), σ(c) in the power diagram of Σ. In the Voronoi diagram
of S, some of the elements of Cab ∩ Cbc are not Voronoi vertices because
they belong to the cell of a closer site. Accordingly, in R

D, the linear
subspace Hab ∩ Hbc may intersect the power cells of some other sphere
σ(x) for x ∈ S \ {a, b, c}. The pre-image by Π of a point z of Cab ∩ Cbc

lies on Hab ∩ Hbc. It belongs to the power cell Pow({σ(a), σ(b), σ(c)}) if
and only if its power to σ(a), σ(b) and σ(c) is smaller than its power to
any other σ(c′) in Σ. We do not have to check this fact for all the other
spheres σ(c′) with c′ ∈ S, but only for the spheres whose cells are incident
to Pow({σ(a), σ(b), σ(c)}), since the cells of a power diagram are always
connected. We realize this computation after projecting onto the plane:

Among the points z of Cab ∩ Cbc, we keep the ones such that for each
tetrahedron of the regular complex defined by σ(a)σ(b)σ(c)σ(f), the in-
equalities Caf (z) < 0, Cbf (z) < 0 and Ccf(z) < 0 are verified. Note that
those three inequalities are equivalent, since z has the same power with
respect to the three spheres σ(a), σ(b) and σ(c)). The points kept are in
fact the Voronoi vertices labeled by {a, b, c}.

Our algorithm takes as input a set of segments which are required to appear in
the final triangulation. These segments are called constraint segments. They
may be refined during the algorithm, by the insertion of sites located on them.
In such a case, the different pieces delimited by the sites inserted on the
constraint segment are called constraint subsegments.
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Most notably, among them are the boundaries of the domain we want to trian-
gulate. We now present how to compute the classical property of encroachment
of a constraint subsegment.

Definition 9 A constraint subsegment e = (a, b) is encroached by a point
p 6∈ {a, b} if Vor(p) ∩ [a, b] 6= ∅ in the Voronoi diagram of {a, b, p}.

During the algorithm, we need to compute whether a constraint subsegment
e = (a, b), that was not previously encroached, is encroached by a point p to
be inserted.

First note that, when inserting a site p, we have a small set of potentially
encroached edges: among the constraint subsegments, it is sufficient to consider
the ones that would have at least one of their endpoints joined to p in the dual
complex, if p were inserted in the diagram. Indeed, if p encroaches e, the cell
Vor(p) is adjacent to the cells of at least one of the endpoints of e: before the
insertion of p, e = [a, b] was not encroached and was covered by Vor(a) and
Vor(b). After the insertion of p, Vor(p) covers a part of e, while Vor(a) and
Vor(b) cover the rest of it.

Practically, let e = [a, b] be such a constraint subsegment. Then, let E be
the intersection Cpa ∩ [a, b] of the bisector of p and a with [a, b]. If some
z ∈ E verifies Cpb(z) < 0, we have in fact z ∈ Vor({a, p}) ∩ [a, b] and Vor(p)
intersects [a, b]. A constraint subsegment may also completely disappear from
the dual when a site p is inserted. Such a segment is obviously encroached
by p.

5 Description of the Algorithm

As above, let Ω be a polygonal domain of the plane, whose boundary is denoted
by ∂Ω. We denote by C the set of constraint subsegments and by S a finite
set of sites in Ω. The set C is updated during the course of the algorithm to
reflect the fact that some constraint segments have been refined into constraint
subsegments. At the beginning, we assume that the edges of ∂Ω belong to C
and that the vertices of ∂Ω belong to S. Refining the Voronoi diagram consists
in adding sites to the set S. We assume that the quadratic form associated to
any point of Ω can be obtained.

We have seen in the previous section how to compute the Voronoi vertices. If
the label of a vertex v is {a, b, c}, the triangle abc is called the dual triangle
of v. We now introduce some properties that will ensure that the dual triangles
define a triangulation of the domain they cover.
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We consider a set of non-degenerate triangles T (that is, triangles with non
collinear vertices) such that

(i) the set of vertices of the triangles in T is exactly S;
(ii) each edge on ∂Ω is the edge of exactly one triangle in T ;
(iii) if e is the edge of some triangle in T and is not an edge on ∂Ω, e belongs

to exactly two triangles in T , which do not overlap 2 .

We prove that under those assumptions, T is a triangulation of Ω.

Definition 10 Let p ∈ S be one of the sites and Tp be the set of triangles
incident to p. Two triangles are said to be adjacent if they share an edge. The
equivalence classes for the transitive closure of the adjacency relation in Tp

are called the umbrellas of p.

The link link(p) of a site p is the set of edges opposite to p in all the triangles
of Tp.

p p

Fig. 1. Two umbrellas (left) and one umbrella winding twice (right) around p

Lemma 11 If the finite set of triangles T verifies Rules (i), (ii) and (iii), we
claim that:

(a) all the triangles in T are inside Ω;
(b) if p is an internal site, its umbrellas are combinatorial disks and p is inside

each of its embedded umbrellas;
(c) if p is a vertex of ∂Ω, p has a unique umbrella, and p is on the boundary of

this umbrella. Furthermore, the triangles of the umbrella do not overlap.

PROOF. For the sake of simplicity, we prove the result under the hypothesis
that Ω is simply connected. The result is still true without this hypothesis.
However the proof would be more complicated.

(a) We consider an edge e of the boundary of the union U of all the triangles.
From Rules (ii) and (iii), e has to be an edge of ∂Ω. Thus the boundary of
U is included in the boundary ∂Ω. Since Ω is a simply connected polygon,

2 Since all triangles are non-degenerate, the overlapping is well-defined.
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∂Ω is a topological circle embedded in the plane. The set U is closed, and
so is its boundary ∂U . It follows that ∂U is a closed non empty subset
of the topological circle ∂Ω, which implies that ∂Ω = ∂U . Finally, both
U and Ω are bounded domains, with the same circle as boundary, hence
U = Ω.

(b) If p is an internal site, Rule (iii) implies that link(p) is a union of closed
polygonal curves (non necessarily simple curves), since Rule (iii) prevent
any vertex of degree different from 2 to appear on the link. An umbrella
is then obtained by choosing one of those closed curves, and linking p to
every vertex of it. This proves that an umbrella is a combinatorial disk,
since it has a combinatorial circle as boundary.

Consider an embedded umbrella, i.e. the union U of the triangles of an
umbrella. Assume for a contradiction that p is not in the interior of this
union. Then p is on the boundary ∂U and both edges of this boundary
that are incident to p belong to two triangles of the umbrella which have
to overlap. This contradicts Rule (iii). In other words, we have proved
that if there is a closed curve in the link of p, p is enclosed by it.

(c) If p is a vertex of ∂Ω, link(p) may a priori contain some closed curves and
some curves joining the two neighbors of p on ∂Ω. As seen in the proof
of (b), the closed curves have to enclose p. Thanks to (a) and to the fact
that p is on ∂Ω, this is not possible. Therefore, the link of vertex p cannot
include a closed curve. Rule (ii) then implies that all curves in link(p)
have the same first and last segment and because Rule (iii) prevents any
branching vertex in link(p), the link link(p) is a single curve. The fact
that the triangles of the unique umbrella do not overlap follows from (iii)
too.

Theorem 12 Under assumptions (i), (ii), (iii), T is a triangulation of Ω.

PROOF. A priori, an internal site may have multiple umbrellas and each of
those umbrellas may wind more than once around p. To prove that T is a
triangulation, we now glue the triangles of T along their common edges and
vertices to build a surface: we denote by T = {(x, t) ∈ Ω × T | x ∈ t} the set
of points associated to the triangles they belong to, and we define on T the
equivalence relation ∼ by setting (x, t) ∼ (x′, t′) if x = x′, x ∈ ∂t and x′ ∈ ∂t′,
so that taking the quotient of the set T by the equivalence relation ∼ amounts
to gluing the common edges and vertices. The final glued space is denoted
by G = T / ∼.

Let h : (x, t) ∈ G 7→ x be the first projection, mapping G to Ω. The correctness
of the triangulation is equivalent to h being a homeomorphism. Let Ωp be the
punctured space obtained by removing from Ω the vertices of the triangles of
T , and let Gp be h−1(Ωp).

10



From assumption (iii), the restriction hp of h to Gp is a local homeomorphism.
Using the fact that Gp is a separated space, that hp is a proper map, and that
Ωp is connected, it follows that hp is a covering of Ωp. As the points close to
∂Ω have only one pre-image, from assumption (ii), hp : Gp → Ωp has only one
sheet and is in fact a homeomorphism.

This shows that each site p has a unique umbrella, which is well embedded and
that hp may be extended to G as a homeomorphism. Thus, Ω is triangulated
by T .

In order to present the refinement algorithm, we need to define a shape crite-
rion. Let v be a Voronoi vertex of an anisotropic Voronoi diagram. The label
of v consists of three sites that form a dual triangle tv = abc. The radius of v is
r(v) = da(a, v) = db(b, v) = dc(c, v) (we define the radius of the center instead
of the radius of the triangle, because the triangle may have multiple centers).
The length of an edge (a, b) is d(a, b) = min(da(a, b), db(a, b)). We denote the
shortest edge of tv by δ(tv). The radius-edge ratio of v is β(v) = r(v)/δ(tv).

For a given shape bound B, a vertex v or the associated triangle are said to
be badly-shaped if β(v) > B. Otherwise, they are said to be well-shaped.

Let us now present the algorithm, which refines an anisotropic Voronoi di-
agram V until the set of triangles dual to the Voronoi vertices of VΩ, the
restriction of V to Ω, have a good shape and satisfy conditions (i), (ii) and
(iii) (stated in Section 5), and therefore form a triangulation of Ω, by Theo-
rem 12.

First recall that, thanks to the monotonicity of the distance function associ-
ated to each point, there is always a unique point on a line segment that is
equidistant from both of its endpoints.

Definition 13 Assume that a constraint subsegment e = (p, q) is encroached.
The breakpoint of the edge (p, q) is defined as the point of [p, q] \ (Vor(p) ∪
Vor(q)) closest to the midpoint of [p, q] (this point is independent of the consid-
ered metric). By midpoint, we mean the intersection of [p, q] with the bisector
of p and q, i.e. the point z of [p, q] such that dp(p, z) = dq(q, z).

We now present our refinement algorithm. We are given a shape bound B. At
each step of the algorithm, we maintain the set T of dual triangles, obtained as
the labels of the computed Voronoi vertices that are inside Ω (see Section 4).
We define a procedure of conditional insertion, needed for the presentation of
the algorithm:

Conditionally Insert(x): if x encroaches some constraint subsegment e,
insert a site at the breakpoint of e. Otherwise, insert x.

11



e

a

b

Fig. 2. Edge e is a constraint segment, with the cell of a being completely included
in the cell of b. Voronoi bisectors are represented by dashed curves.

The algorithm inserts points iteratively, applying the following rules. Rule i is
applied only if no Rule j with j < i applies:

Rule (1) if some constraint subsegment e ∈ C does not appear as the edge of a
dual triangle because it is encroached, insert a site at the breakpoint
of edge e;

Rule (2) if some constraint subsegment e ∈ C does not appear as the edge
of a dual triangle, because its dual Vface is a complete ellipse (it
can happen if the constraint subsegment has a free endpoint, i.e. an
endpoint which is not incident to any other constraint subsegment,
see Figure 2 for an example), denote by ∆ the support line of e.
Then conditionally insert a site located at the intersection of ∆ \ e
with the ellipse;

Rule (3) if a Voronoi vertex v is badly shaped (see Section 5), conditionally
insert a site located at that vertex;

Rule (4) if a triangle abc is the dual of several Voronoi vertices, conditionally
insert a site located at the vertex that is the furthest from a, b and
c;

Rule (5) if two triangles share an edge and overlap, conditionally insert a site
at the dual Voronoi vertex of one of them: choose the triangle which
contains the edge (x, y) such that γ(x, y) is maximal (γ(x, y) is the
distortion between x and y defined in Section 2).

We will now prove that if the algorithm terminates, Conditions (i), (ii) and
(iii) of Section 5 are verified. By Theorem 12, the dual complex is therefore a
triangulation, without any badly-shaped vertex.

Lemma 14 Upon termination of the algorithm, the dual triangles in T form
a triangulation of the domain Ω and all the constraint subsegments appear in
this triangulation.

PROOF. First, let us prove that each constraint subsegment is incident to at
least one triangle in T . Consider some constraint subsegment s with endpoints
a and b.

12



• Thanks to Rule (1), s is not encroached and therefore lies in the union of
the cells of its endpoints.

• Since each site lies in its own cell, s cannot be included in one cell only. This
proves that the dual edge Vor({a, b}) is not empty and intersects s and the
domain Ω.

• If the bisector of a and b is an ellipse, Rule (2) implies that the Voronoi edge
Vor({a, b}) has endpoints within Ω. In all cases, observe that Vor({a, b}) is a
union of curved segments, with an even number of endpoints. Furthermore,
owing to the monotonicity of the distance da(a, x) along ab, Vor({a, b})
intersects s in at most one point (and at least once, thanks to Rule (1)).
Consider the curved segment ℓ of Vor({a, b}) which intersects s. One of the
two endpoints of ℓ has to be inside Ω because Vor({a, b}) cannot intersect
any other constraint subsegment, since the other constraint subsegments are
not encroached either. It follows that Vor({a, b}) has at least one endpoint
in Ω.

Therefore in any case the dual edge Vor({a, b}) has endpoints in Ω, and the
dual triangles of those endpoints are incident to s.

We still have to ensure that the three hypotheses (i), (ii) and (iii) of Theo-
rem 12 are verified. (i) is obviously verified and (iii) is implied by Rule (5).
Let us now prove (ii): consider a constraint subsegment s of ∂Ω. From the
first part of the proof, we know that the dual Voronoi edge e of s intersect
∂Ω in one point and therefore has an odd number of endpoints within Ω. If
e had more than one endpoint, i.e. if s had more than one incident triangle,
it would in fact have at least three, and s would have at least three incident
triangles, contradicting Rule (5). This proves that s has exactly one incident
triangle, as required by hypothesis (ii). All three hypothesis are verified. In
case of termination, Theorem 12 shows that the set T is a triangulation of Ω.

Note that Rule 2 can be omitted if we assume that the graph consisting of all
constraint segments of C has no vertex of degree 1. Indeed, in such a case, if
no constraint subsegment is encroached, none of them can have an ellipse as
a dual Vface.

6 Termination of the Algorithm

We now consider the conditions needed to ensure the termination of the algo-
rithm. These conditions depend on the shape bound K and on the geometry
of the initial set of constraint segments C.

Let us prove that two well-shaped dual triangles (as defined in Section 5)
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cannot overlap if the relative distortion between adjacent sites is small enough.
In the following, abc and abc′ are two adjacent triangles that are respectively
dual to Voronoi vertices qc and qc′ . The points qc and qc′ lie inside Ω, otherwise,
their dual triangles would not be considered. We define γ as the maximum
of the distortion γ(x, y) (see Section 2) where the maximum is taken over all
edges (x, y) of the two triangles, and δ = max(δ(abc), δ(abc′)) (as defined in
Section 5).

If qc and qc′ are well-shaped, i.e. β(qc) ≤ K and β(qc′) ≤ K, we have the
following inequalities:

dc(c, qc′) ≤ dc(c, qc) + dc(qc, a) + dc(a, qc′) (triangular ineq.)

≤ dc(c, qc) + γ(a, c)da(qc, a) + γ(a, c)da(a, qc′) (distortion)

≤ (1 + γ(a, c))Kδ(abc) + γ(a, c)Kδ(abc′)

≤ (1 + 2γ)Kδ

The same inequality holds when c and c′ are exchanged.

In the same way, we have

dc(c, a) ≤ dc(c, qc) + dc(qc, a) ≤ dc(c, qc) + γ(a, c)da(a, qc)

≤ (1 + γ)Kδ(abc) ≤ (1 + γ)Kδ

and

db(b, a) ≤ (1 + γ)Kδ(abc) (*)

and

dc(c, c
′) ≤ dc(c, qc′) + dc(qc′ , c

′) ≤ (1 + 2γ)Kδ + γ(c, c′)dc′(c
′, qc′)

≤ (1 + γ)2Kδ

Let r = (1 + γ)2Kδ. We consider the zones Z3 = B(a, r) ∩ B(b, r) ∩ B(c, r),
Z ′

3 = B(a, r)∩B(b, r)∩B(c′, r) and Z4 = B(a, r)∩B(b, r)∩B(c, r)∩B(c′, r),
where B(p, r) = {x ∈ R

2, dp(p, x) ≤ r}. As shown by the previous inequalities,
the four sites a, b, c and c′ are in Z4, as well as the two centers qc and qc′ .

Lemma 15 If a triangle abc is well-shaped, any point q 6∈ Z3, is far from
each of the three sites a, b and c. More precisely, for any x ∈ {a, b, c}, we have
dx(x, q) > 2Kδ(abc).

PROOF. Assume that q 6∈ B(b, r) for example. We then have

da(a, q) ≥ db(a, q)/γ ≥ (db(b, q) − db(a, b))/γ

≥ (r − (1 + γ)Kδ(abc))/γ (by (*))

≥ ((1 + γ)2Kδ(abc) − (1 + γ)Kδ(abc))/γ > 2Kδ(abc)

14



Let VZ4 be the restriction of the Voronoi diagram to Z4. We now establish a
sufficient condition on the bound K and on the distortion bound γ so that the
vertices and the edges of the Voronoi diagram VZ4({a, b, c, c′}) are wedged.

Definition 16 The three following conditions are called condition (H):

(i) K > 1 and K4(γ2 − 1)(1 + γ)6 ≤ 1
(ii) the triangles are well-shaped (for the bound K);
(iii) γ is an upper bound on the distortion between the considered sites.

Lemma 17 Under condition (H), all the 0 and 1-Vfaces of the Voronoi di-
agram of VZ3({a, b, c}) and all the 0 and 1-Vfaces of the Voronoi diagram of
VZ′

3
({a, b, c′}) are wedged.

PROOF. Let x, y ∈ {a, b, c} with x 6= y. Let z be a point of Z4 on the
bisector of x and y. We want to ensure that dx(z, y)2 ≤ dx(x, z)2 + dx(x, y)2.
We have dx(z, y)2 ≤ γ2dy(y, z)2 and since z is on the bisector between x and
y, dx(x, z) = dy(y, z). †

Now, if [x, y] is the common edge of the two triangles, we have dx(x, y) ≥ δ.
Otherwise, we have by (*) dx(x, y) ≥ δ(abc) ≥ d(a, b)/(K(1 + γ)) ≥ δ/(K(1 +
γ)). ‡

Finally, by inequalities † and ‡, dx(x, z)2+dx(x, y)2 ≥ dy(y, z)2+ δ2

K2(1+γ)2
. And

if γ2dy(y, z)2 ≤ dy(y, z)2 + δ2

K2(1+γ)2
, we have dx(z, y)2 ≤ dx(x, z)2 + dx(x, y)2.

Thus, a sufficient condition for z to be wedged is γ2dy(y, z)2 ≤ dy(y, z)2 +
δ2

K2(1+γ)2
(and the condition obtained by swapping x and y). The domain Z4

was chosen so that dy(y, z) < r = (1 + γ)2Kδ. Hence, a sufficient condition
for the point z to be wedged is (γ2 − 1)(1 + γ)2(1 + γ)4K4 ≤ 1, i.e. (γ2 −
1)(1 + γ)6K4 ≤ 1.

Lemma 18 Under condition (H), the cells of a, b and c in VZ3({a, b, c}) are
connected.

PROOF. Under condition (H), the proof of Theorem 4 (Theorem 4 in [6])
can easily be adapted to show that every cell is connected in Z3, by showing
that it is star-shaped around its site: let y be some point of the cell of a in
VZ3({a, b, c}). The segment [ay] is entirely included in Z3 because Z3 is convex,
as an intersection of ellipses. In order to show that y is visible from site a, we
only need to consider the Voronoi edges that are intersected by the segment
[ay]. Those intersection points lie inside Z3. From Lemma 17, the intersection
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points are wedged, and the proof of Theorem 4 [6] shows that the cell of a in
VZ3({a, b, c}) is star-shaped.

Lemma 19 Consider three connected components of distinct 2-Vfaces, whose
topological interiors are denoted by A, B and C. On the boundary of C, we
cannot find four points α, β, α′, β ′ in this order such that α, α′ ∈ ∂A and
β, β ′ ∈ ∂B (see Figure 3).

PROOF. Assume to the contrary that α, β, α′, β ′ exist. Then, since C and A
are connected, there exists a simple path πC in C and a simple path πA in A
joining α and α′. The union of those two paths forms a closed curve π. As B is
connected, there is also a path πB in B joining β and β ′. By Jordan theorem, β
and β ′ should therefore be in the same connected component delimited by π.
However, if we follow the boundary of C from β to β ′, we cross π exactly once.
So β and β ′ do not belong to same connected component, which contradicts
our hypothesis.

Vor(c)

β′

Vor(b)
Vor(a)

α

β
Vor(b)

πA

Vor(a)

πB

α′

Fig. 3. Impossible case described in Lemma 19

Lemma 20 If (H) is verified and if all the Voronoi vertices in Z3 are well-
shaped, there is a unique Voronoi vertex with label {a, b, c} in VZ3({a, b, c}).

PROOF. Assume for a contradiction that two Voronoi vertices v and v′ of
VZ3({a, b, c}) have the same label {a, b, c}. By Lemma 5, the cells around v
and v′ have the same cyclic order.

By Lemma 18, the three cells Vor(a) ∩ Z3, Vor(b) ∩ Z3 and Vor(c) ∩ Z3 are
connected. By considering the neighborhoods of v and v′, we can find four
points α, β, α′, β ′ in this order on the boundary of Vor(c) ∩Z3 such that α, α′

belong to the boundary of the cell of a and β, β ′ belong to the boundary of
the cell of b. This contradicts Lemma 19 (see Figure 3).
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Lemma 21 If (H) is verified and if all the Voronoi vertices labeled by {a, b, c}
and {a, b, c′} in Z4 are well-shaped, there is exactly one Voronoi vertex labeled
by {a, b, c} and one Voronoi vertex labeled by {a, b, c′} in VZ4({a, b, c, c′}).

PROOF. The result follows from Lemma 20, because Z4 ⊂ Z3 and any vertex
labeled by {a, b, c} in Z4 is also a vertex in VZ3({a, b, c}).

The following lemma states that under low distorsion of the metric, the cells
are arranged along the border of Z4 in the same order as the vertices of the
convex hull of {a, b, c, c′}. This topological property will help us prove that we
have a triangulation in Z4.

Lemma 22 Let x be a, b or c. If (H) holds, the cell Vor(x) in VZ3({a, b, c})
contains a segment that joins x to a point on the boundary of Z3 and does not
intersect the convex hull of the sites.

PROOF. Let us assume that x = a in the following. As proved in Lemma 17,
under condition (H), any point in Z3 equidistant to b and a is in the wedge
defined by b and a. Therefore the cell of a in VZ3(a, b) contains the intersec-
tion of Z3 with a half-plane H+

b defined as follows. H+
b is the half-plane not

containing b and bounded by the hyperplane Hb that goes through a and is
normal to [ab], from the point of view of a. Since a is on the boundary of the
convex hull of a, b, c, the domain H+

b ∩ H+
c contains at least one half-line r

with origin a: this half-line is any half-line contained in the cone orthogonal
(in the sens of the metric of a) to the cone delimited by the tangents to the
convex hull at point a. This ray r does not intersect the convex hull of the
three sites, and it is inside the cell of site a in the three-sites-diagram.

Lemma 23 If (H) is verified and if all the Voronoi vertices labeled by {a, b, c}
and {a, b, c′} in Z3 and Z ′

3 respectively are well-shaped, the 1-Vface of the
restricted diagram VZ4({a, b, c, c′}) labeled {a, b} is connected.

PROOF. Let e be the dual 1-Vface of (a, b) in VZ4({a, b, c, c′}). If e does
not intersect the boundary of Z4 or intersects it once, e has to be connected.
Indeed, thanks to Lemma 21, e has at most two endpoints, labeled {a, b, c}
and {a, b, c′}, within Z4.

We now prove that e does not touch the boundary of Z4. From Lemma 18
and 20, the 1-Vface A labeled by {a, b} in VZ3({a, b, c}) is connected. Since
a vertex labeled by {a, b, c′} exists in VZ4({a, b, c, c′}), it has to belong to A.
Consider the arc ℓ ⊂ A of the bisector of {a, b} which links the vertex qc

labeled by {a, b, c} and the vertex qc′ labeled {a, b, c′}. Let us prove that ℓ is
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entirely included in Z4. Assume to the contrary that ℓ is not entirely included
in Z4. The boundary of Z ′

3 has to intersect it twice, because Z4 = Z3 ∩ Z ′
3. It

follows that the 1-Vface A′ labeled by {a, b} in VZ3({a, b, c′}), which contains
ℓ ∩ Z4, intersects the boundary of Z ′

3 twice. Since there is only one vertex
labeled {a, b, c′} in Z ′

3, there is a sub-arc ℓ′ of A′ without any vertex on it. ℓ′

cuts Z3 into two parts (called the two sides of ℓ′ in the following). The cell of
c′ is connected, and is on one side of ℓ′. The other side of ℓ′ belongs to another
cell. Let us assume, without loss of generality, that it belongs to the cell of
a. This part of the cell of a is not adjacent to the cell of c′, which implies
that the cell of a is disconnected. This contradicts the fact that the cells of
VZ3({a, b, c′}) are connected. We have proved that ℓ is entirely included in Z4.
Then, since there is only one vertex labeled by {a, b, c′} in Z4, ℓ is exactly the
1-VFace labeled by {a, b} in VZ4({a, b, c, c′}). This concludes the proof.

Lemma 24 If (H) is verified and if all the Voronoi vertices in Z4 are well-
shaped, the two triangles abc and abc′ do not overlap each other.

PROOF. From Lemma 23, the 1-Vface labeled {a, b} in the restricted dia-
gram VZ4({a, b, c, c′}) is connected. The two endpoints of the 1-Vface labeled
{a, b} are the Voronoi vertices qc and qc′. It follows that the cells of a, b and
c around qc and the cells of a, b and c′ around qc′ have opposite cyclic or-
ders. Lemma 5 applied to VZ3({a, b, c}) and VZ′

3
({a, b, c′}) then implies that

the triangles abc and abc′ do not overlap each other.

We now consider the algorithm at some point during its execution. The proof
makes use of an arbitrary shape bound K and a distortion coefficient G, chosen
so that the following condition (C) is satisfied: any pair of adjacent segments
of C forms an angle of at least 2 arcsin(G2/2) and (G2 − 1)(1 + G)6K4 ≤
1. (C)

This section aims at proving a lower bound on the insertion radius dw
min of

the next inserted site w. By insertion radius, we mean the shortest Euclidean
distance between the new site and all the previously inserted sites. It may
depend on the current shortest anisotropic distance dmin between the sites, on
the shape bound K, on the geometry of the constraint segments and on the
metric field on Ω. The distortion coefficient G is used as a way to discriminate
different configurations inside the proof. As we have seen, no such coefficient
intervenes in the algorithm itself.

The following definitions are taken from [6]:

Definition 25 The bounded distortion radius bdr(p, γ) is defined as sup{ℓ :
dp(p, q) ≤ ℓ ⇒ γ(p, q) ≤ γ} and bdrmin(γ) is the lower bound of these radii:
bdrmin(γ) = inf{bdr(p, γ) : p ∈ Ω}.
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Definition 26 Given some bound G > 0, two points q and q′ that belong to
constraint segments in C are said to be G-intertwined if they lie on a common
segment of C or if they lie on two edges e and e′ of C that share an endpoint
b and are such that γ(q, b) < G and γ(q′, b) < G. For a set of constraint
segments C, the local feature size lfsG

min(C) is the upper bound on the distances
r such that x < r implies that for all p ∈ Ω, B(p, x) does not contain two
non-G-intertwined points of ∪C.

The following four lemmas are Lemma 5, 14, 16 and 17 of [6]:

Lemma 27 Let w be a point on the bisector of a and b that lies outside
the wedge of a and b, on the side of b. Let G ≥ 1 be a constant for which
γ(a, b) ≤ G. Then the proximity of w to a and b is bounded by da(a, w) =
db(b, w) ≥ db(b, a)/

√
G2 − 1.

Lemma 28 Let a and b be two sites of a Voronoi diagram D, and w a point on
the bisector Vor({a, b}) in D. Assume that there exists some G > 1 such that
da(a, b) ≥ bdr(a, G). Then for any site x of D, d(x, w) ≥ bdrmin(G)/(G3 +G).

Lemma 29 Let p be a point in Ω. For any G > 1 and for every site x,
dp(p, x) ≥ min

(

dx(x,p)
G

, bdr(p, G)
)

.

Lemma 30 Assume that any pair of adjacent segments of C forms an angle
of at least 2 arcsin(G2/2), as measured by the common endpoint. Let e = (a, b)
be a subsegment of C. Let s be a site that encroaches e. Let w be a point in
Vor(s)∩e. Let m = min{da(a, s), db(b, s)}. Then for any site x of the diagram,
d(x, w) ≥ min(m, lfsG

min(C)/G, bdrmin(G)).

We study now the inter-site distances created while inserting a new site w
along the five rules of the algorithm, as presented in Section 5. Recall that G
is assumed to satisfy Condition (C).

Rule 1: If Rule 1 applies, the inter-site distances created by the insertion
of the breakpoint of the encroached subsegment are bounded by Lemma 30:
for any site x of the diagram, d(x, w) ≥ min(m, lfsG

min(C)/G, bdrmin(G)).

We call original refinement point the point passed as argument to the con-
ditional insertion procedure. We now consider the cases of Rules 2, 3, 4 and
5 when the inserted point w is the original refinement point and not a point
lying on an encroached edge.

Rule 2: If Rule 2 applies, the inserted site w lies on an edge Vor(a)∩Vor(b)
but outside wedge(a, b). We have two cases to consider. If γ(a, b) ≤ G, we can
apply Lemma 27 so that for every site x, dx(x, w) ≥ da(a, w) = db(b, w) ≥

dmin√
G2−1

, and Lemma 29 then implies d(x, w) ≥ min
(

dmin

G
√

G2−1
, bdrmin(G)

)

. If

γ(a, b) > G, Lemma 28 implies d(x, w) ≥ bdrmin(G)
G3+G

.
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Rule 3: If Rule 3 applies, w is located at a Voronoi vertex dual to the
triangle abc and at distance dx(x, w) ≥ r = da(a, w) > Kδ(abc) from any site
x. Lemma 29 implies that for every site x and any coefficient G, d(x, w) ≥
min

(

K
G

dmin, bdrmin(G)
)

.

Rule 4: If Rule 4 applies, no vertex is badly shaped, and w is one of the
vertices dual to triangle abc. Because w is located at the furthest vertex from
a, b and c, Lemma 20, implies that either the distortion between the sites
a, b and c is greater than G, or w does not belong to the zone Z3. If the
distortion is greater than G, we can use Lemma 28. If w is not in Z3, thanks
to Lemma 15, for every site x, dx(x, w) ≥ Kδ(abc) ≥ Kdmin, so that, using

Lemma 29, d(x, w) ≥ min
(

K
G

δ(abc), bdrmin(G)
)

. In summary, if w is inserted

by Rule 4, d(x, w) ≥ min
(

K
G

dmin,
bdrmin(G)

G3+G

)

.

Rule 5: Finally, if Rule 5 applies, w is located at the Voronoi vertex of
a triangle abc overlapping another triangle abc′. Rule 4 implies that abc has
a unique dual vertex. Lemma 24 proves that this is only possible if γ, the
maximum of the distortion γ(x, y) where the maximum is taken over all edges
(x, y) of the two triangles abc and abc′ is greater than G, since both abc and
abc′ are well shaped. Then we have the bound given by Lemma 28 for every
site x: d(x, w) ≥ bdrmin(G)

G3+G
.

Summary for Rules 2,3,4,5 without encroachment:

We have proven that, if the original refinement point is inserted, the minimal
distance dw

min after insertion of w verifies dw
min ≥ min

(

dmin

G
√

G2−1
, K

G
dmin,

bdrmin(G)
G3+G

)

where K is the shape bound and G is any value satisfying Condition (C), as
stated at the beginning of Section 6.

Rules 2,3,4,5 with encroachment: Denote by e = (a, b) the constraint
subsegment encroached by s. Since s encroaches e, we insert the correspond-
ing breakpoint w on e. First recall the following fact, extracted from the proof
of Lemma 23 in [6]: if w belongs to Vor(a) and if for some G > 1, we have
ds(s, a) ≥ bdr(s, G), then for any site x, d(x, w) ≥ bdrmin(G)/(G3 + G). Oth-
erwise, we have dx(x, w) ≥ da(a, s)/(G

√
G2 + 1). We use now the bounds

established for Rules 2, 3 and 4 (with w replaced by s):

dx(x, s) ≥ min
(

dmin√
G2−1

,Kdmin,
bdrmin(G)

G3+G

)

, and dx(x, w) ≥ min
(

dmin

G
√

G4−1
, Kdmin

G
√

G2+1
,

bdrmin(G)

(G4+G2)
√

G2+1

)

. Lemma 29 then implies that d(x, w) ≥ min
(

dmin

G2
√

G4−1
, Kdmin

G2
√

G2+1
,

bdrmin(G)

(G5+G3)
√

G2+1

)

.

Termination

In order to handle the first two terms in the previous equation and to respect
the condition of Lemma 17, let assume that K > 1 and G > 1 satisfy (C) and
the two additional conditions G2

√
G4 − 1 ≤ 1 and G2

√
G2 + 1 ≤ K.
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Note that for any K >
√

2, a suitable G > 1 may be found, since all con-
ditions are verified when G → 1+. We also demand that any pair of inci-
dent edges of C forms an angle of at least 2 arcsin(G2/2), so that it com-
plies to the requirements of Lemma 30. Under those conditions, the minimal
inter-distance d′

min after the insertion of a new site is bounded from below:

dmin ≥ min
(

bdrmin(G)

(G5+G3)
√

G2+1
,

lfsG
min(C)

G

)

. Finally, if we can find G satisfying the

conditions and such that bdrmin(G) > 0, the above bound is not trivial, and
an easy induction shows that we indeed have a lower bound on the minimal
inter-distance. This proves that the algorithm will not insert sites indefinitely,
by a classical volume argument. Moreover, because (G2−1)K2 < 1, the shape
condition parametrized by K may be translated into a condition in terms of
a lower bound on the angles of the triangles, as measured by any point inside
the triangle (see Corollary 10 of [6]).

Theorem 31 Let K >
√

2 be a constant, and let C be a set of constraint
segments which bounds a polygonal domain of the plane such that incident
segments always form an angle greater than 60◦. Under these assumptions,
the algorithm presented in Section 5 terminates and provides a triangulation
whose dual Voronoi vertices respect the shape bound K.

PROOF. Let G > 1 be such that (G2−1)(1 + G)6K4 ≤ 1 and G2
√

G4 − 1 ≤
1 and G2

√
G2 + 1 ≤ K. We can also assume that G is close enough to 1, so

that incident segments of C always form an angle greater than 2 arcsin(G2/2).
We have seen that such a G can always be found. And if bdrmin(G) > 0,
which is always the case if the field of metrics is continuous, the algorithm
terminates.

7 Conclusion and Future Work

The approach that we have presented is built upon the work of Labelle and
Shewchuk. Instead of using a lower envelop of paraboloids, computed in a
greedy way, we rely on a power diagram in higher dimension. As we have
shown, we do not need all the combinatorial informations given by such a
diagram, but only the zero-dimensional intersections of it with a 2-manifold.
Indeed, we present the algorithm by focusing on the overlapping condition
on dual triangles, thus minimizing the dependence over the Voronoi diagram
itself, apart from the computation of the Voronoi vertices. As an aside, we also
rely only on the Voronoi vertices that are inside the domain Ω, while Labelle
and Shewchuk compute the whole diagram.

The simplicity of the structure of our algorithm makes it a good candidate
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for an extension to the 3-dimensional case, especially because of the absence
of topological considerations. However, we currently cannot prove that this
meshing algorithm terminates in three dimensions because sliver tetrahedra
may overlap their neighbors, without inducing a large insertion distance for
the new refining point. This may happen even in the case of low distortion
of the metric field. The extension to the 3-dimensionnal case, while relying
on a simple framework, raises interesting issues in terms of complexity of the
computation of the restriction of a high dimensional power diagram, and in
terms of termination conditions and proper embedding of a three-dimensional
triangulation.
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