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Abstract We present an original narrowing-based proof search method for inductive

theorems in equational rewrite theories given by a rewrite system R and a set E of

equalities. It has the specificity to be grounded on deduction modulo and to rely on

narrowing to provide both induction variables and instantiation schemas. Whenever

the equational rewrite system (R, E) has good properties of termination, sufficient

completeness, and when E is constructor and variable preserving, narrowing at defined-

innermost positions leads to consider only unifiers which are constructor substitutions.

This is especially interesting for associative and associative-commutative theories for

which the general proof search system is refined. The method is shown to be sound and

refutationaly correct and complete. A major feature of our approach is to provide a

constructive proof in deduction modulo for each successful instance of the proof search

procedure.
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1 Introduction

Proof by induction is a main mathematical reasoning principle and is of prime interest

in informatics. Typically in hardware and software verification problems, when dealing

with security protocols or safety properties of embedded systems, reasoning on complex

data structures, with an infinite number of objects or states, makes a prominent use

of induction.

Three main approaches have been developed for mechanizing inductive proofs.

The first one, explicit induction, is used in proof assistants, for instance Nqthm-

ACL2 [KAU 96], Coq [BER 04], Isabelle[NIP 02] or Inka [AUT 99]. Explicit induction

uses structural induction on data types and induction rules as for example Peano in-

duction. These forms of induction are in fact subsumed by the single general schema of

Noetherian induction, called noetherian induction principle. It is based on the noethe-

rianity of a relation < on a set τ stating that there is no infinite decreasing sequence

of elements in τ . The Noetherian induction principle states that if, for any element

x ∈ τ , a proposition P holds for x whenever it holds for all elements x such that

x < x, then P holds for all x ∈ τ . Mechanizing proof by induction [BUN 99] is hard

due to the intrinsic difficulty of finding the most convenient inductive rule to show a

given conjecture. Indeed there is an infinite variety of possible noetherian relations and

choosing an appropriate induction rule introduces a first branching point in the search

space. Furthermore, such proofs involve in general two tasks: generalizing the induction

formula and introducing an intermediate lemma. In Gentzen’s original formalization of

sequent calculus, this is an instance of the cut rule that can be applied to any formula,

thus introducing a second infinite branching point in the search space. Unfortunately,

Kreisel has shown that Gentzen’s cut rule is not redundant for inductive theories. In

fact, cut-elimination is possible in the presence of induction, provided the induction

rule is formulated so as to allow arbitrary induction hypotheses to be introduced (see

e.g McDowel and Miller for the intuitionist case and Brotherston and Simpson for the

classical case [BRO 07]).

The second approach, induction by consistency (or inductionless induction),

roughly works as follows: given a set of clauses E and a set of conjectures C, we add

C to E and run a deduction engine until one gets a saturated and consistent set of

clauses. Historically, this deduction engine was given by the Knuth-Bendix completion

procedure [KNU 70] (see [MUS 80] and [GOG 80]) and worked when E and C were

both sets of equalities. The procedure attempts to complete the initial system C ∪E by

iteratively adding new equalities called critical pairs: these critical pairs are obtained

by superposing an equality of the corresponding system into another one, in all possible

ways. One main problem is that such a completion often loops, generating infinitely

many critical pairs. Fribourg [FRI 86] first observed that only overlaps of axioms on

conjectures are necessary: it is the so-called “linear strategy”. Moreover, whenever E

can be turned into a ground convergent and sufficiently complete rewrite system, over-

laping can be performed at specific positions. Comon and Nieuwenhuis [COM 00] gave

a more general view of the deduction system, without restricting the conjectures to

equalities. The interested reader may refer to [COM 01, section 1.3] for all relevant

references on this approach.

The last approach, implicit induction (or induction by rewriting), is used in au-

tomated theorem provers like Spike [BOU 92] or RRL [KAP 95]. The main idea of

implicit induction is as follows: given a terminating rewrite system, the corresponding

rewrite relation is noetherian and can be used for induction. Reddy [RED 90] provided
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a method to prove equalities in this way. The pragmatic advantage of his method is

that it does not need to explicitly check that the inductive hypothesis is applied to

smaller terms. Kounalis and Rusinowitch [BOU 95] designed a proof technique which

works in conditional rewrite systems and applies to non-Horn clauses as well: it is

the so-called test set induction. It works by computing an appropriate implicit induc-

tion scheme called a test set and then applies a refutation principle using proof by

consistency techniques. Their method is refutationaly complete and can refute false

conjectures even in the cases where the functions are not completely defined. It has

been implemented in the prover Spike.

In this large field of proof by induction, our contribution is three-fold. First, as a

bridge between explicit and implicit induction, we provide a proof search mechanism for

inductive proofs, previously explored in [DEP 03,DEP 02,KIR 06], relying on the de-

duction modulo approach [DOW 03]. This latter semi-decision procedure comes along

with a constructive proof of soundness which associates a proof in deduction modulo

to every successful instance of the algorithm presented here. This major feature opens

the door to formal checking of the algorithm’s results and to its integration as a tactic

in proof assistants that require some proof witness like Coq.

Then, although already quite expressive, this approach was first designed for theo-

ries expressed by rewrite rules and is thus limited by the fact that axioms like commuta-

tivity cannot be oriented as a rule without losing termination of the underlying rewrite

system. The solution consists then of using equational rewriting (also called rewriting

modulo) as pioneered by [PET 81] and [JOU 86] and to extend the proof search method

developed in [DEP 03] in order to perform induction in theories containing such non

orientable axioms. This extension should also be compared to implicit induction tech-

niques used for induction modulo associativity and commutativity as done in [BER 96]

and [AOT 06] who generalizes [RED 90]. The second main contribution of this paper

is to show that under some conditions, it is sufficient to perform unification at defined

innermost positions, i.e. positions the subterms under which are only constituted of

variables and constructor symbols. Hence, serious difficulties, related to the size of

complete sets of unifiers, can be avoided. For instance, it becomes possible to perform

induction modulo non finitary theories. In particular, unification modulo associativity

and commutativity boils down to unification modulo commutativity while unification

modulo associativity is reduced to syntactic unification.

Finally the third important contribution to emphasize is that the procedure is

proved refutationaly correct and complete. In particular this semi-procedure terminates

with failure when launched against some false assertion.

The remainder of this paper is built as follows: the next section provides on a

simple arithmetic example an informal introduction of technical concepts and of the

general method. Section 3 recalls basic results about rewriting and narrowing and

introduces the concepts of constructor preserving theories, defined-innermost positions

and complete sets of constructor unifiers that are used in the following. Section 4

presents the logical framework of deduction modulo which is necessary to understand

the proof construction and the proof search mechanisms. In particular, we explain

how deduction modulo manages the Noetherian induction principle. In Section 5, we

present the proof search system for inductive proofs modulo a general theory E, which

is proved sound and refutationaly correct and complete. Section 6 deals with the special

case of associative-commutative theories or associative theories. The proof system of

Section 5 is instantiated in these cases with more operational proof steps. The method

is implemented in a prototype prover described in Section 7 as well as several examples.
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2 A motivating example

In the following we sketch how our method works on a simple example and show how

it is essentially different from previous ones.

– Sorts: nat;
– constructors: 0 : → nat s : nat → nat
– defined functions: + : nat × nat → nat ∗ : nat × nat → nat
– rules:

x + 0 → x x ∗ 0 → 0 exp(x, 0) → s(0)
x + s(y) → s(x + y) x ∗ s(y) → x ∗ y + x exp(x, s(y)) → x ∗ exp(x, y)

Fig. 1 Simple arithmetic

In the theory Simple arithmetic described in Figure 1, let us try to prove the

proposition

∀x, y, n exp(x ∗ y, n) ≈ exp(x, n) ∗ exp(y, n)

where + and ∗ are also assumed to be associative and commutative (AC). The method

developed in [BER 97] is based on induction schemes. More precisely, it computes a

subset of variables of the goal, the induction variables, and a set of terms, the test set.

The induction variables are replaced by elements of the test set, and such replacements

produce new conjectures which are simplified by rewrite rules of the specification and

smaller instances of the original conjecture (the induction hypothesis). The proof is

completed when all newly generated conjectures are simplified into known or trivial in-

ductive theorems. Algorithms are provided to compute induction variables and test sets.

Notice that Boyer and Moore [BOY 79] were the first to introduce the notion of “ma-

chine” that computes an appropriate subset of variables as induction variables. In our

example, the induction variables are x, y, and n, and the test set is {0, s(x)}. Therefore,

a test instance is exp(s(x′) ∗ s(y′), s(n′)) ≈ exp(s(x′), s(n′)) ∗ exp(s(y′), s(n′)). How-

ever, this last equality can be reduced by rules of the specification into s(x′) ∗ s(y′) ∗

exp(s(x′+y′+x′∗y′), n′) ≈ s(x′)∗exp(s(x′), n′)∗s(y′)∗exp(s(y′), n′), which cannot be

simplified by the induction hypothesis, and the proof attempt may fail. One can avoid

this difficulty if the set of induction variables is restricted. That is why in [BER 97],

the authors have defined an heuristic in order to select good induction variables relying

on observations of the Nqthm-ACL2 system. Using this strategy on the example, only

the variable n is instantiated and the proof search succeeds. However, the method does

not remain refutationaly complete with such an heuristic.

In our approach, the induction step is performed by narrowing at defined-innermost

positions, when the theory is axiomatized by a sufficiently complete and terminating

equational rewrite system. More precisely, it suffices to perform the narrowing step

at only one defined-innermost position. In the above situation, the defined innermost

positions are 1.1, 2.1 and 2.2, which respectively denote the subterms exp(x ∗ y, z),

exp(x, n) and exp(y, n). Now, since ∗ is commutative, the goal remains equivalent by

permuting the variables x and y, therefore two possibilities remain: narrowing at the

defined-innermost position 1.1 where the symbol ∗ occurs, or 2.1 where the symbol

exp occurs. We consider the latter better, since it further creates more reductions,
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we choose to narrow at the position 2.1. After one narrowing step, the subgoals are

exp(x ∗ y, 0) ≈ s(0) ∗ exp(y, 0) and exp(x ∗ y, s(n)) ≈ x ∗ exp(x, n) ∗ exp(y, s(n)). After

normalization, we obtain the trivial subgoal s(0) ≈ s(0) and x ∗ y ∗ exp(x ∗ y, n) ≈

x ∗ y ∗ exp(x, n) ∗ exp(y, n) which can be reduced by the induction hypothesis. This

therefore finishes the proof.

3 Equational rewriting and narrowing : basic concepts and results

For the main notations and classical results on term rewriting, we refer for instance

to [BAA 98] or [KIR 99]. We recall here shortly our main notations.

In a many sorted signature (S, Σ) (or simply Σ, for short) where S is a set of

sorts and Σ is a set of function symbols, each symbol f is given with a rank f :

S1×. . .×Sn → S, where S1, . . . , Sn, S ∈ S and n is the arity of f . We assume moreover

that the signature Σ comes in two parts, Σ = C ∪ D, where C is a set of constructor

symbols, and D is a set of defined symbols. A constructor term is a term built only with

constructor symbols. Let X be a family of sorted variables. The set of well-sorted terms

over Σ (resp. well-sorted constructor terms) with variables in X is denoted by T (Σ,X )

(resp. T (C,X )). The subset of T (Σ,X ) (resp. T (C,X )) of variable-free terms, or ground

terms, is denoted T (Σ) (resp. T (C)). A term t ∈ T (Σ,X ) is identified as usual to a

function from its set of positions (strings of positive integers) Dom(t) to symbols of Σ

and X . We note ε the empty string (root position). The subterm of t at position ω is

denoted by t|ω, and t(ω) denotes its head symbol. The result of replacing t|ω with s

at position ω in t is denoted by t[s]ω. This notation is also used to indicate that s is a

subterm of t and, in this case, the position ω may be omitted. Var(t) denotes the set of

(free) variables of the term t and |Var(t)| its cardinality. We define
−−−−→
Var(t) as the vector

of variables assumed linearly ordered. These notations are extended to formulas of the

form t1#t2 seen as terms with top symbol # of arity 2 and to sets of such formulas.

A substitution is a finite mapping {x1 7→ t1, . . . , xn 7→ tn} where x1, . . . , xn ∈ X

and t1, . . . , tn ∈ T (Σ,X ). We use postfix notation for substitutions application and

composition. The domain of a substitution σ is the set Dom(σ) = {x ∈ X | xσ 6= x},

the set of variables introduced by σ is the set Ran(σ) =
S

x∈Dom(σ) Var(xσ), and the

image of σ is the set Im(σ) = {t ∈ T (Σ,X ) | ∃x ∈ Dom(σ), t = xσ}. A substitution

σ is ground whenever Im(σ) ⊆ T (Σ), and is constructor whenever Im(σ) ⊆ T (C,X ).

Given two terms s and t, a unifier of s and t is a substitution σ such that sσ = tσ, and

a most general unifier of s and t (mgu(s, t) for short) is a unifier σ such that, for any

unifier θ of s and t, there exists a substitution µ such that θ = σµ on the variables of

s and t.

Given a relation → on T (Σ,X ),
+
→ and

∗
→ denote the transitive and the reflexive

transitive closure of → respectively. A normal form of t, denoted t ↓, is such that

t
∗
→ t ↓ and t ↓ cannot be reduced by the relation →. The normalized form σ ↓ of

a substitution σ is defined by x(σ ↓) = (xσ) ↓ for all x ∈ Dom(σ). An equality is

an expression of the form t1 ≈ t2, where t1 and t2 are two terms of the same sort.

Given a set E of equalities, =E denotes the congruence generated by E. Equalities are

symmetric, i.e. we make no difference between t1 ≈ t2 and t2 ≈ t1.

Given two terms s and t, an E-unifier of s and t is a substitution σ such that

sσ =E tσ, and a complete set of E-unifiers of s and t (CSUE(s, t) for short) is a set of

E-unifiers of s and t satisfying: for any E-unifier θ of s and t, there exist σ ∈ CSUE(s, t)
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and a substitution µ such that θ =E σµ[Var(s) ∪ Var(t)], i.e. θ(x) =E σµ(x) for all

x ∈ Var(s) ∪ Var(t).

Definition 1 A set E of equalities is regular if for any equality t1 ≈ t2 ∈ E, Var(t1) =

Var(t2). A set E of equalities is constructor preserving whenever E is regular, and, for

any equality t1 ≈ t2 ∈ E, t1 ∈ T (C,X )⇒ t2 ∈ T (C,X ).

As a consequence of this definition, a set E of equalities is constructor preserving if

and only if two terms cannot be E-equivalent whenever one of them is constructor and

the other is not. Typically, if + ∈ D and 0 ∈ C, E = {0 + x = x} is not constructor

preserving (since 0 + 0 = 0), but associativity or commutativity of + are.

3.1 Equational rewriting and narrowing

Let us turn now to rewriting modulo and we refer to [JOU 86] for a full exposition. A

rewrite rule is an ordered pair of terms l → r such that Var(r) ⊆ Var(l) and l is not

a variable. A conditional rewrite rule c ⇒ l → r moreover satisfies Var(c) ⊆ Var(l).

A rewrite system R is a set of rewrite rules. An equational rewrite system is given by

a set of rewrite rules R and a set of equalities E. Let →R/E (R/E for short) be the

relation =E ◦ →R ◦ =E which simulates the relation induced by R in E-equivalence

classes.

Definition 2 An equational rewrite system (R, E) is terminating modulo E if the re-

lation R/E is Noetherian, i.e. all rewrite derivations are finite. It is ground terminating

modulo E if it is terminating modulo E over the set of ground terms.

Given an equational rewrite system (R, E), the rewriting modulo E relation →R,E

(R, E for short) and the narrowing modulo E relation ❀R,E are defined as follows:

Definition 3 Given two terms s, t ∈ T (Σ,X ), s rewrites modulo E to t, denoted

s →R,E t, whenever there exist a rewrite rule l → r ∈ R, a position ω ∈ Dom(t),

and a substitution σ, such that s|ω =E lσ and t = s[rσ]ω. In this case, s is said R, E-

reducible. In addition, for a conditional rule c⇒ l→ r, cσ must evaluate to true when

applying the rule. Also, s narrows modulo E into t, denoted s ❀R,E t, whenever there

exist a rewrite rule l→ r ∈ R, a position ω ∈ Dom(t), and a substitution σ, such that

s|ωσ =E lσ and t = (s[r]ω)σ.

Since→R⊆→R,E⊆→R/E , termination ofR/E implies termination of→R and→R,E .

Sufficient completeness is a fundamental property which states that it is always possible

to rewrite any ground non-constructor term into a constructor one:

Definition 4 A relation→ is sufficiently complete modulo E when, for any s ∈ T (Σ),

there exists t ∈ T (C), such that s
∗
→ t. The equational rewrite system (R, E) is

sufficiently complete modulo E if the relation →R,E is.

For ground terminating and sufficiently complete modulo E rewrite systems, it

is possible to specify particular positions in terms where reductions must apply, and

where case analysis by rewriting can usefully be done.

Definition 5 For any t ∈ T (Σ,X ), a position ω in t is called defined-innermost, and

we write ω ∈ DI(t), if t(ω) ∈ D and t(ω′) ∈ C ∪ X whenever ω < ω′, where < denotes

the prefix ordering.



7

For instance, considering the Peano’s integers defined in the simple arithmetic

example of Fig. 1, in s((0 + 0) + s(0 + s(x))), the positions 1.1 and 1.2.1 are defined-

innermost but 1 is not.

The following proposition states that defined-innermost positions are ground R, E-

reducible under appropriate assumptions.

Proposition 1 Assume that (R, E) is sufficiently complete modulo E and that E is

constructor preserving. Then, for any term t, for any ground R, E-normalized substi-

tution α, and for any ω ∈ DI(t), tα is R, E-reducible at position ω.

Proof. Let f = t(ω). There exist constructor terms t1, . . . , tn such that t|ω =

f(t1, . . . , tn). Let α be a ground R, E-irreducible instance of t|ω. Since f ∈ D,

(t|ω)α is not a constructor term, and since R, E is sufficiently complete, (t|ω)α

is not a R, E-normal form. Therefore, there exist a position ω′ ∈ Dom((t|ω)α), a

rewrite rule l→ r ∈ R, and a substitution ν, such that ((t|ω)α)
|ω′ =E lν. Now, let

us distinguish two cases.

1. ω′ 6= ε. Then ((t|ω)α)
|ω′ ∈ T (C), since α is ground R, E-normalized, ω ∈ DI(t),

and R, E is sufficiently complete. However, this leads to a contradiction, since

E is constructor preserving.

2. ω′ = ε. Then (t|ω)α =E lν, thus (t|ω)α is R, E-reducible and we are done.

✷

3.2 Constructor E-unifiers

A main difference between previous narrowing or superposition-based approaches and

the one proposed in this paper, is that the unification used here to perform narrow-

ing is quite restricted. For instance, when reasoning modulo associativity, instead of

considering potentially infinite sets of unifiers, we can safely restrict to finitely many

ones.

For a given set E of equalities, constructor E-unifiers are a key to tame the proof

search system IndNarrowModE presented below. Complete sets of constructor E-unifiers

are generating sets of constructor unifiers:

Definition 6 Given two terms s, t ∈ T (Σ,X ), a substitution σ is a constructor E-

unifier of s and t if sσ =E tσ and Im(σ) ⊆ T (C,X ). The set of E-unifiers CSUCE(s, t)

is a complete set of constructor E-unifiers of s and t, if:

Correctness: every σ of CSUCE(s, t) is a constructor E-unifier of s and t;

Completeness: for any constructor E-unifier θ of s and t, there exists σ ∈ CSUCE(s, t)

and a substitution µ, such that θ =E σµ [Var(s) ∪ Var(t)];

Domain: for any σ ∈ CSUCE(s, t), Ran(σ) ∩ Dom(σ) = ∅.

If E is constructor preserving and satisfies syntactic conditions detailed

in [NAH 07], the subset of all constructor elements of CSUE(s, t) is a complete set

of constructor E-unifiers of s and t. This is in particular the case when considering

some associative (A) or associative and commutative (AC) theories. More precisely,

when E is an AC theory involving only defined symbols, if s and t are terms and ω

is a defined-innermost position in s, then CSUCE(s|ω, t) is CSUCC(s|ω, t), where C

denotes the subset of commutativity axioms of E. In other words, in this case AC
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constructor unification reduces to C constructor unification. Similarly if E is an asso-

ciative theory involving only defined symbols, although CSUE(s|ω, t) may be infinite,

CSUCE(s|ω, t) is CSUC∅(s|ω, t) which of course considerably reduces the complexity

of the unification problem.

To conclude this section, the following proposition shows that, whenever E is con-

structor preserving and (R, E) is sufficiently complete modulo E, the narrowing step

at defined-innermost positions is performed with constructor substitutions:

Proposition 2 Assume that (R, E) is sufficiently complete modulo E and that E is

constructor preserving. Then, for all t1, . . . , tn ∈ T (C,X ), for any f ∈ D, for any ground

R, E-normalized instantiation α of f(t1, . . . , tn), and for any set V such that Dom(α) ⊆

V , there exist a rewrite rule l → r ∈ R, a substitution σ ∈ CSUCE(f(t1, . . . , tn), l)

and a substitution µ such that: σµ =E α [V ].

Proof. Since α is ground R, E-normalized, R, E is sufficiently complete modulo E,

f ∈ D, and t1, . . . , tn ∈ T (C,X ), then, by Proposition 1, f(t1, . . . , tn)α is R, E-

reducible at position ε. By the classical lifting lemma [HUL 80,KIR 99], there exist

a rewrite rule l→ r ∈ R, a E−unifier σ of f(t1, . . . , tn) and l, and a substitution µ,

such that σµ =E α[V ]. Now, it remains to show that σ is a constructor substitution.

Let x ∈ V . We have xσµ =E xα, and, since α is ground R, E-irreducible and R, E

is sufficiently complete, this leads to xα ∈ T (C). The conclusion follows, since E is

assumed to be constructor preserving. ✷

Thanks to these settings, we present in what follows an inductive proof search sys-

tem, relying on a main induction rule that uses narrowing to choose both the induction

variables and the instantiation schema.

4 Deduction modulo and inductive proofs

Let us now explain in this section how deduction modulo can provide the description,

at the proof theoretical level, of proof by Noetherian induction.

Because we quantify on propositions, the Noetherian induction principle is by

essence a second-order proposition. Since we want to make a primarily use of first-

order rewrite concepts and techniques and to consider first-order theories, we need a

first-order presentation of higher-order logic. We use the so-called HOLλσ introduced

in [DOW 01] which is based on deduction modulo [DOW 03] and reveals to be particu-

larly well-suited for our concerns. It is clearly out of the scope of this paper to explain

in detail the full approach, and we only sketch here the main ideas. The reader can

refer to [DEP 02] and to [DEP 04] for a detailed exposition.

4.1 Deduction modulo

In deduction modulo, terms but also propositions can be identified modulo a congru-

ence. We use a congruence that can typically be defined by conditional equalities and

that takes into account the application context to evaluate the conditions. Let us con-

sider theories described by a set of axioms Γ and a congruence, denoted ∼, defined on

terms and propositions. The deduction rules of the sequent calculus take this equiv-

alence into account. For instance, the right rule for the conjunction is not stated as

usual
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Γ ⊢ A, ∆ Γ ⊢ B, ∆

Γ ⊢ A ∧B, ∆

but is formulated
Γ ⊢∼ A, ∆ Γ ⊢∼ B, ∆

Γ ⊢∼ D, ∆
if D ∼ A ∧B.

We recall in Figure 2, the definition of the sequent calculus modulo. In these rules, Γ

and ∆ are finite multisets of propositions, P and Q denote propositions. Substituting

the variable x by the term u in Q is denoted Q{u/x}. When the congruence ∼ is

simply identity, this sequent calculus collapses to the usual one [GIR 89]. In that case,

sequents are written as usual with the ⊢ symbol.

4.2 Deduction modulo for inductive proofs

This short introduction to deduction modulo now allows us to give a proof theoretic

understanding of induction by rewriting. In the context of deduction modulo, the in-

duction hypotheses arising from equational goals can be (dynamically) internalized

into the congruence. When doing this, the computational part of the deduction mod-

ulo appears to perform induction by rewriting as done for instance by systems like

Spike [BOU 92] or RRL [KAP 95].

A relation ≺ on a set τ is Noetherian (or well-founded) if all chains are of finite

length. The Noetherian induction principle states that if, for any element x ∈ τ , a

proposition P holds for x whenever it holds for all x such that x ≺ x, then P holds for

all x ∈ τ . Let NoethInd(P,≺, τ) be the following proposition:

∀x (x ∈ τ ∧ ((∀x x ∈ τ ∧ x ≺ x⇒ P (x))⇒ P (x)))⇒ ∀x (x ∈ τ ⇒ P (x))

and the subformula ∀x x ∈ τ ∧ x ≺ x ⇒ P (x) is the induction hypothesis. Well-

foundedness and the principle of noetherian induction are equivalent notions [WEC 92].

The pragmatic advantage is that the principle of noetherian induction based on the

relation ≺, holds for all propositions P , whenever ≺ is noetherian. Formally, it is the

proposition NI below:

NI : ∀ ≺ ∀τ Noeth(≺, τ)⇒ ∀P NoethInd(P,≺, τ).

where Noeth(≺, τ) states that ≺ is a Noetherian relation over τ .

Proving that P inductively holds in a user theory Thu, denoted Thu |=Ind P ,

amounts to derive the sequent NI, Thu ⊢ P and to provide a proof of Noeth(≺, τ).

The whole problem is formalized in HOLλσ. The remainder of this section gives the

main steps which are detailed in [DEP 02].

To fix the ideas, let us consider that the property to prove is of the form ∀x (x ∈

τ ⇒ Q(x)) where Q(x) is an equation t1(x) ≈ t2(x)). We start from the sequent:

∀ ≺ ∀τ (Noeth(≺, τ)⇒ ∀P NoethInd(P,≺, τ)), Thu

⊢

∀x (x ∈ τ ⇒ Q(x))

Choosing a specific relation ≺ (written <) and a set denoted T , we get:

Noeth(<, T )⇒ ∀P NoethInd(P, <, T ), Thu ⊢ ∀x (x ∈ T ⇒ Q(x)).
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Γ, P ⊢∼ Q
axiom if P ∼ Q

Γ, P ⊢∼ ∆ Γ ⊢∼ Q, ∆

Γ ⊢∼ ∆
cut if P ∼ Q

Γ, Q1, Q2 ⊢∼ ∆

Γ, P ⊢∼ ∆
contr-l if (A)

Γ ⊢∼ Q1, Q2, ∆

Γ ⊢∼ P, ∆
contr-r if (A)

Γ ⊢∼ ∆

Γ, P ⊢∼ ∆
weak-l

Γ ⊢∼ ∆

Γ ⊢∼ P, ∆
weak-r

Γ, P, Q ⊢∼ ∆

Γ, R ⊢∼ ∆
∧-l if R ∼ (P ∧ Q)

Γ ⊢∼ P, ∆ Γ ⊢∼ Q, ∆

Γ ⊢∼ R, ∆
∧-r if R ∼ (P ∧ Q)

Γ, P ⊢∼ ∆ Γ, Q ⊢∼ ∆

Γ, R ⊢∼ ∆
∨-l if (B)

Γ ⊢∼ P, Q, ∆

Γ ⊢∼ R, ∆
∨-r if (B)

Γ ⊢∼ P, ∆ Γ, Q ⊢∼ ∆

Γ, R ⊢∼ ∆
⇒-l if (C)

Γ, P ⊢∼ Q, ∆

Γ ⊢∼ R, ∆
⇒-r if (C)

Γ ⊢∼ P, ∆

Γ, R ⊢∼ ∆
¬-l if R ∼ ¬P

Γ, P ⊢∼ ∆

Γ ⊢∼ R, ∆
¬-r if R ∼ ¬P

Γ, P ⊢∼ ∆
⊥-l if P ∼ ⊥

Γ, Q{t/x} ⊢∼ ∆

Γ, P ⊢∼ ∆
(Q, x, t) ∀-l if (D)

Γ ⊢∼ Q{y/x}, ∆

Γ ⊢∼ P, ∆
(Q, x, y) ∀-r if (E)

Γ, Q{y/x} ⊢∼ ∆

Γ, P ⊢∼ ∆
(Q, x, y) ∃-l if (F)

Γ ⊢∼ Q{t/x}, ∆

Γ ⊢∼ P, ∆
(Q, x, t) ∃-r if (G)

A = P ∼ Q1 ∼ Q2, B = R ∼ (P ∨ Q), C = R ∼ (P ⇒ Q), D = P ∼ ∀x Q, E = P ∼
∀x Q, y fresh variable, F = P ∼ ∃x Q, y fresh variable, G = P ∼ ∃x Q.

Fig. 2 The sequent calculus modulo

From this, by the rule ⇒-l of the sequent calculus, we get on one hand the sequent

Thu ⊢ Noeth(<, T ) corresponding to the proof that < is indeed Noetherian on T , on

the other hand the sequent

∀P NoethInd(P, <, T ), Thu ⊢ ∀x (x ∈ T ⇒ Q(x))

corresponding to the use of the induction principle to prove our property.
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We instantiate P as the goal to prove and we get:

∀x ((x ∈ T ∧ ∀x ((x ∈ T ∧ x < x)⇒ Q(x)))⇒ Q(x))

⇒ ∀x (x ∈ T ⇒ Q(x)), Thu ⊢ ∀x (x ∈ T ⇒ Q(x))

A few easy steps of the sequent calculus later, we get:

Thu ⊢ ∀x ((x ∈ T ∧ ∀x ((x ∈ T ∧ x < x)⇒ Q(x)))⇒ Q(x)).

We then instantiate x by a fresh variable called X to emphasize this status, and

we get:

Thu ⊢ (X ∈ T ∧ ∀x ((x ∈ T ∧ x < X)⇒ Q(x)))⇒ Q(X).

The⇒-r and ∧-l rules of the sequent calculus lead to the discovery of the induction

hypothesis:

Thu, X ∈ T , ∀x ((x ∈ T ∧ x < X)⇒ Q(x)) ⊢ Q(X).

In deduction modulo, the induction hypothesis can now be internalized as a conditional

equality denoted in general REind(Q, <, T )(X) or shortly REind(Q):

Q(x) if x ∈ T ∧ x < X. (1)

Note that because of its status of free fresh variable, X behaves like a constant, while

x is universally quantified. Under these settings, we are left to derive the sequent

Thu, X ∈ τ ⊢REind(Q,<,T )(X) Q(X)

in the sequent calculus modulo.

From now on, we instantiate T by the set of ground terms T (Σ), and < by the

proper part of a quasi simplification ordering (see e.g [WEC 92]) 6 defined on the set

of terms T (Σ,X ). In order to compare n-tuples of terms, we use the standard extension

on the Cartesian product 6n of 6: ∀−→u ,−→v ∈ T (Σ,X )n −→u 6n
−→v ⇔ (∀i 1 ≤ i ≤ n⇒

ui 6 vi) (<n denotes the proper part of 6n).

Also, as useful later, the quasi ordering 62 can be used to orient equalities: s ≈ t 62

s′ ≈ t′ if (s, t) 62 (s′, t′).

When using such an ordering, the internalized induction hypothesis becomes:

REind(Q, <n, T (Σ)n)(
−→
X ) : (−→x ∈ T (Σ)n ∧ −→x <n

−→
X )⇒ Q(−→x )

where
−→
X is therefore the vector of free variables of REind(Q, <n, T (Σ)n). To make

it precise and because only the free variables can be instantiated, we denote by

REind(Q)σ the instantiation by σ of the internalized induction hypothesis:

REind(Q)σ : (−→x ∈ T (Σ)n ∧ −→x <n
−→
Xσ)⇒ Q(−→x ).
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5 A proof search system for induction modulo

The powerful principle of the approach used by systems like Spike [BOU 92] or

RRL [KAP 95] is to allow application of rewrite rules of the theory at any position

of the current goal, as well as application of induction hypotheses and current conjec-

ture, provided that the applied formula is smaller in the Noetherian induction ordering

than the current goal. When the ordering contains the relation induced by a terminat-

ing rewrite system, a smaller formula is obtained as soon as a rewrite step is performed.

Moreover, in Spike for instance, the choice of the induction variables and instantiation

schemas is done using pre-calculated induction positions and schemas called test-sets.

In the approach described below, we show how to use narrowing to automatically and

completely perform these choices, thanks to results of Section 3.

The proof search system IndNarrowModE for inductive proofs introduced in this

section is based on narrowing and rewriting. The main rule, called Induce, performs

the induction step. Its intuition is the following: in order to apply the induction hy-

pothesis, one should decrease the size of the goal by rewriting it using a noetherian

rewrite system. Whenever the goal does not rewrite, it should be first instantiated to

be then rewritten, i.e. it should be narrowed. By expressing this in the sequent calcu-

lus modulo, we provide an explicit and constructive bridge between the rewrite-based

implicit and explicit approaches of induction.

5.1 The proof search system IndNarrowModE

In order to provide the notational support for expressing our proof search methodology,

we write sequents

Γ1|Γ2 ⊢RE1|RE2
Q

where RE1, Γ1, RE2, Γ2 are such that:

– RE1 contains non conditional rewrite equalities or rules l → r of the user specifi-

cation such that l is not a constructor term,

– Γ1 contains other axioms of the user specification,

– RE2 contains the induction hypotheses and other required lemmas ( in other words,

RE2 will collect the set of applied instantiations of the induction hypothesis)

– Γ2 contains:

– the Leibniz definition of equality: L(≈) : ∀x ∀y x ≈ y ⇒ (∀P P (x)⇒ P (y));

– crucial propositions for induction: the proposition Noeth(<, T (Σ)) and the

proposition NI defined above.

– Q is an equational goal.

In other words, Γ1 is the deductive part of the user definitions, RE1 is their computa-

tional part; Γ2 is the deductive part for other statements, RE2 is their computational

part. The reader must bear in mind that Γ1|Γ2 ⊢RE1|RE2
Q is a shorthand notation for

sequent Γ1 ∪ Γ2,
−−−−−−−−−−−−→
Var(RE2 ∪ {Q}) ⊢RE1∪RE2

Q in sequent calculus modulo. We may

omit membership conditions for variables occurring in
−−−−−−−−−−−−→
Var(RE2 ∪ {Q}) when they are

not involved in a deduction step. The distinction between Γ1,RE1 and Γ2,RE2 is

needed because only RE1 will be used for narrowing. Moreover, we assume from now

on, that Γ1 contains a constructor preserving theory E, such that (RE1, E) is termi-

nating and sufficiently complete modulo E. Finally, we assume that s′ =E s 6 t =E t′

implies s′ 6 t′ (we say that 6 is E-compatible).
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Induce Γ1|Γ2 ⊢RE1|RE2
Q 

•
l → r ∈ RE1

σ′ ∈ CSUCE(Q′
|ω′ , l)

Γ1|Γ2 ⊢RE1|RE2σ′∪{REind(Q)σ′} (Q′[r]ω′)σ′

if Q′ =E Q and ω′ ∈ DI(Q′)

Rewrite1 Γ1|Γ2 ⊢RE1|RE2
Q  Γ1|Γ2 ⊢RE1|RE2

Q′

if Q→RE1/E Q′

Rewrite2 Γ1|Γ2 ⊢RE1|RE2
Q  Γ1|Γ2 ⊢RE1|RE2

Q′

if Q→RE2/E Q′

Trivial Γ1|Γ2 ⊢RE1|RE2
t ≈ t′  ✸

if t =E t′

Refutation Γ1|Γ2 ⊢RE1|RE2
Q  Refutation

when no other rules can be applied

Fig. 3 The proof search system IndNarrowModE

Example 1 Assume that RE1 contains the rules of simple arithmetic given in Fig-

ure 1. RE1 is terminating and sufficiently complete modulo associativity and com-

mutativity of the ∗ and + operators (denoted AC(+, ∗)). Let Γ1 = AC(+, ∗), Γ2 =

{L(≈), NI, Noeth(<, T (Σ))}, and Q = (x1 +x2 +x3)∗x4 ≈ x1 ∗x4 +x2 ∗x4 +x3 ∗x4.

Then, we can consider the goal Γ1|Γ2 ⊢RE1|∅ Q.

The proof search rules are presented in Figure 3. Sequents are gathered in a mul-

tiset structure modeled with the • operator that is an AC operator on sequents with

✸ as neutral element. The rule Induce performs the induction step. It uses narrowing

to choose both the induction variable(s) and the instantiation schema. Narrowing can

be applied to any Q′ E-equivalent to the current goal Q, always at defined-innermost

positions. Furthermore, any application of the inference rule Induce provides a rule

REind(Q)σ′, gathered in RE2. This rule is namely the induction hypothesis whose for-

mal description was given in Section 4.2. Trivial eliminates a trivial equation, Rewrite

(1 or 2) rewrites using a rule, an equation, or a smaller instance of a previous goal.

Rewrite is duplicated because of the Γ1,RE1 and Γ2,RE2 distinction.

This inference rules set is generic and prepares to more operational versions tailored

for AC and A-theories.

The sequent transformation described by the rules of IndNarrowModE in Figure 3

builds sequent derivations:

Definition 7 A derivation is any sequence of sequents:

Γ1|Γ2 ⊢RE1|RE2
Q IndNarrowModE •i∈I1

Γ i
1|Γ

i
2 ⊢REi

1|REi
2

Qi

IndNarrowModE . . . •i∈Ik
Γ i

1|Γ
i
2 ⊢REi

1|REi
2

Qi . . .

such that all rules Rewrite are applied with rewrite rules or equalities whose left-hand

side is strictly bigger than its right-hand side (w.r.t. the ordering <).
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When considering a derivation, it is important to assume that the proof search does

not “forget” any subgoal. This is expressed formally by a fairness assumption.

Definition 8 A derivation of sequents

Γ1|Γ2 ⊢RE1|RE2
Q IndNarrowModE •i∈I1

Γ i
1|Γ

i
2 ⊢REi

1|REi
2

Qi

IndNarrowModE . . . •i∈Ik
Γ i

1|Γ
i
2 ⊢REi

1|REi
2

Qi . . .

is fair if the set of persisting sequents ∪m ∩n≥m (•i∈In
Γ i

1|Γ
i
2 ⊢REi

1|REi
2

Qi) is empty.

5.2 Properties of IndNarrowModE

Soundness: Proving soundness amounts showing that for each rule of the proof search

system IndNarrowModE of the form S  S′, if S′ is derivable in the sequent calculus

modulo, then one can also build a proof of S. The main delicate point is to prove this

result for the Induce rule, as stated in the next theorem.

Proposition 3 If the sequent

Γ1|Γ2, −→xσ′ ∈ T (Σ)nσ′ ⊢RE1|RE2σ′∪{REind(Q)σ′} (Q′[r]ω′)σ′

is derivable in the sequent calculus modulo, where:

1. Q =E Q′ and ω′ ∈ DI(Q′);

2. l→ r ∈ RE1 and σ′ ∈ CSUCE(Q′
|ω′ , l);

3. RE2σ′ is the rewrite system obtained by the replacement of each free variable x of

any rewrite rule in RE2 by a corresponding xσ′;

4. −→xσ′ ∈ Xnσ′ is the vector of free variables of RE2σ′ ∪ {Qσ′};

5. −→x ∈ Xn denotes the vector of free variables of RE2 ∪ {Q};

then, one can build a proof in the sequent calculus modulo of

Γ1|Γ2,−→x ∈ T (Σ)n ⊢RE1|RE2
Q

Proof. Sketch (for Induce): Let α be any ground instantiation of the variables in

the set Var(RE2 ∪ {Q}), α ↓ one of its RE1, E-normalized form, and V ⊆ X

such that Dom(α ↓) ⊆ V . Since E is regular, Var(Q) = Var(Q′), thus α ↓ is a

ground R, E-normalized instantiation of Q′. Proposition 2 and the assumptions,

there exist a rewrite rule l → r ∈ RE1, σ′ ∈ CSUCE(Q′
|ω′ , l), and a substi-

tution µ′, such that σ′ ∈ CSUCE(Q′
|ω′ , l), and σ′µ′ =E α ↓ [V ]. Now, since

E ⊆ Γ1, it is easy to make a proof in deduction modulo of the following se-

quent: Γ1|Γ2 ⊢RE1|RE2
(∀x x ∈ V ⇒ xα ≈ xσ′µ′) (1). Observe that sequent

Γ1|Γ2,−→xσ′ ∈ T (Σ)nσ′ ⊢RE1|RE2σ′∪{REind(Q)σ′} (Q′[r]ω′)σ′ is assumed, and since

l → r ∈ RE1, this leads to Γ1|Γ2,−→xσ′ ∈ T (Σ)nσ′ ⊢RE1|RE2σ′∪{REind(Q)σ′} Q′σ′,

thus to Γ1|Γ2,−→xσ′ ∈ T (Σ)nσ′ ⊢RE1|RE2σ′∪{REind(Q)σ′} Qσ′ (since E ⊆ Γ1 and

Q =E Q′). (2). Now, xα is ground for any x ∈ Var(RE2 ∪ {Q}), thus xα ↓ is also

ground, which leads to Var(RE2 ∪{Q}) ⊆ Dom(α ↓), hence, since Dom(α ↓) ⊆ V ,

to Var(RE2∪{Q}) ⊆ V . From the equivalence σ′µ′ =E α ↓ [V ] and since E is regu-

lar, xσ′µ′ is ground for any x ∈ Var(RE2∪{Q}). Thus, µ′ is a ground instantiation

of all variables in the set Var(RE2σ′ ∪ {Qσ′}) (3). We have shown in [NAH 07]

that we obtain from (2), (3) and the assumption −→xσ′ =
−−−−−−−−−−−−−−−→
Var(RE2σ′ ∪ {Qσ′}) the
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sequent Γ1|Γ2 ⊢RE1|RE2σ′µ′∪{REind(Q)σ′µ′} Qσ′µ′ (4). From sequents (1) and (4),

and since Var(RE2 ∪{Q}) ⊆ V , we obtain Γ1|Γ2 ⊢RE1|RE2α∪{REind(Q)α} Qα (5).

Observe that sequent (5) is valid for any ground instantiation α of the variables in

the set Var(RE2 ∪ {Q}). Thus we have: Γ1|Γ2,−→x ∈ T (Σ)n ⊢RE1|RE2∪{REind(Q)}

Q (6) (see [NAH 07] for details). Putting together sequent (6) and assumption:

Noeth(<, T (Σ)) ∈ Γ2, we have shown in [NAH 07] that this leads to: Γ1|Γ2,−→x ∈

T (Σ)n ⊢RE1|RE2
Q and we are done. ✷

From Proposition 3, we deduce:

Theorem 1 IndNarrowModE is sound.

Refutational correctness: Proving refutational correctness amounts showing that

for each rule of the proof search system IndNarrowModE of the form S  S′, if S is

derivable in the sequent calculus modulo, then one can also build a proof of S′. Again

the main delicate point is for the Induce rule, and is stated as follows.

Proposition 4 If the sequent Γ1|Γ2,−→x ∈ T (Σ)n ⊢RE1|RE2
Q where −→x ∈ Xn is the

vector of free variables of RE2 ∪ {Q}, admits a proof in the sequent calculus modulo,

then one can build a proof of:

Γ1|Γ2,−→xσ′ ∈ T (Σ)nσ′ ⊢RE1|RE2σ′∪{REind(Q,<)σ′} (Q′[r]ω′)σ′

where Q′ =E Q, l → r ∈ RE1, ω′ ∈ DI(Q′), σ′ ∈ CSUCE(Q′
|ω′ , l), and −→xσ′ ∈ Xnσ′ is

the vector of free variables of RE2σ′ ∪ {Qσ′}.

Proof. Sketch (for Induce): Let l → r ∈ RE1, σ′ ∈ CSUCE(Q′
|ω′ , l), and µ′ be any

ground instantiation of the variables in the set Var(RE2σ′ ∪ {Qσ′}). σ′µ′ is a

ground instantiation of the variables in the set Var(RE2 ∪ {Q}) (1). Now, recall

that −→x =
−−−−−−−−−−−−→
Var(RE2 ∪ {Q}), and that sequent Γ1|Γ2,−→x ∈ T (Σ)n ⊢RE1|RE2

Q is

assumed. Put together with (1), this leads to sequent Γ1|Γ2 ⊢RE1|RE2σ′µ′ Qσ′µ′

(2) (see [NAH 07] for details).

Now, if −→xσ′ =
−−−−−−−−−−−−−−−→
Var(RE2σ′ ∪ {Qσ′}), and since sequent (2) is valid for any ground

instantiation µ′ of the variables in the set Var(RE2σ′ ∪ {Qσ′}), we have shown

in [NAH 07] that we obtain Γ1|Γ2,−→xσ′ ∈ T (Σ)nσ′ ⊢RE1|RE2σ′ Qσ′. Since Q′ =E Q,

E ⊆ Γ1 and l → r ∈ RE1, it is easy to show that sequent Γ1|Γ2,−→xσ′ ∈

T (Σ)nσ′ ⊢RE1|RE2σ′∪REind(Q)σ′ Q′[r]ω′σ′ follows. ✷

Refutational completeness: The idea of Refutational completeness is that the proof

search system will stop in Refutation if the initial conjecture is not an inductive theorem.

Proving refutational completeness is achieved thanks to the Refutation rule which

applies when no other rule of IndNarrowModE can be applied.

Proposition 5 1. If Γ1|Γ2 ⊢RE1|RE2
Q

∗

 Refutation then the sequent Γ1|Γ2, −→x ∈

T (Σ)n ⊢RE1|RE2
Q has no proof in sequent calculus modulo, where −→x ∈ Xn is

the vector of free variables of RE2 ∪ {Q} .

2. If the sequent Γ1|Γ2, −→x ∈ T (Σ)n ⊢RE1|RE2
Q has no proof in sequent calcu-

lus modulo, all fair derivations starting with Γ1|Γ2 ⊢RE1|RE2
Q terminate with

Refutation.
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Proof. Sketch:

1. Let us assume that Γ1|Γ2 ⊢RE1|RE2
Q

∗
IndNarrowModE Refutation

There exist contexts Γ ′
1, Γ ′

2, rewrite systems RE ′1, RE ′2 and an equational goal

Q′ such that:

Γ1|Γ2 ⊢RE1|RE2
Q

∗
IndNarrowModE Γ ′

1|Γ
′
2 ⊢RE′

1|RE′
2

Q′
IndNarrowModE

Refutation

If Q′ contains any defined symbol, then there exists a defined-innermost position

ω′ in Dom(Q′). Let α ↓ be a ground R, E-normalized substitution. By Propo-

sition 2, the set CSUCE(Q′
|ω′ , l) contains at least one element, and Induce

can be applied, which leads to a contradiction. Thus, the equality Q′ does not

contain any defined symbol. However, the rule Trivial cannot be applied either,

thus we have Q′ = s ≈ t, with s, t constructor terms that are not E−equivalent,

and the sequent Γ ′
1|Γ

′
2 ⊢RE′

1|RE′
2

Q′ has no proof, since the constructors are

assumed to be free and ≈ satisfies the axioms of equality. Therefore, by refuta-

tional correctness of IndNarrowModE Γ1|Γ2 ⊢RE1|RE2
Q has no proof either.

2. Let us assume that Γ1|Γ2,−→x ∈ T (Σ)n ⊢RE1|RE2
Q has no proof in sequent

calculus modulo, and consider a fair derivation:

Γ1|Γ2 ⊢RE1|RE2
Q  . . . (2)

One can easily check ([NAH 07]) that there is at least one sub-

goal Γ i
1|Γ

i
2 ⊢REi

1|REi
2

Qi, and one ground substitution αi, such that

Γ i
1|Γ

i
2 ⊢REi

1|REi
2αi∪{REind(Qi)αi} Qiαi has no proof in sequent calculus mod-

ulo. Since <2 is well-founded, these Qiαi have a minimal element, say Qmαm.

Consequently, there is a subgoal Γm
1 |Γ

m
2 ⊢REm

1 |REm
2

Qm such that:

Γm
1 |Γ

m
2 ⊢REm

1 |REm
2 αm∪{REind(Qm)αm} Qmαm has no proof in sequent calculus

modulo
(3)

Since the derivation is fair, an inference rule will be applied to the above subgoal.

– Case 1: Γm
1 |Γ

m
2 ⊢REm

1 |REm
2

Qm
Trivial ⋄, then Qm = sm ≈ tm, with

sm =E tm, and this leads obviously to a contradiction with (3).

– Case 2: Γm
1 |Γ

m
2 ⊢REm

1 |REm
2

Qm
Refutation Refutation, then we are done.

– Case 3: Γm
1 |Γ

m
2 ⊢REm

1 |REm
2

Qm
Rewrite Γm

1 |Γ
m
2 ⊢REm

1 |REm
2

Q′m.

Let us note first that Γm
1 |Γ

m
2 ⊢REm

1 |REm
2

Q′m is a subgoal in a derivation,

second that < is the proper part of a quasi simplification ordering E-compatible

and third, that Q′m =E Qm, we get Q′mαm <2 Qmαm. Thus, by minimality

of Qmαm, the sequent:

Γm
1 |Γ

m
2 ⊢REm

1 |REm
2 αm∪{REind(Q′m)αm} Q′mαm (4)

has a proof in the sequent calculus modulo. However, we have shown

in [NAH 07] that the above sequent leads to:

Γm
1 |Γ

m
2 ⊢REm

1 |REm
2 αm∪{REind(Qm)αm} Qmαm (5)

Finally, since (3) and (5) cannot hold together, we obtain a contradiction.
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– Case 4: Assume that

Induce Γm
1 |Γ

m
2 ⊢REm

1 |REm
2

Qm


• l → r ∈ RE1
σ′ ∈ CSUCE(Q′m

|ω′ , l)

Γm
1 |Γ

m
2 ⊢REm

1 |REm
2 σ′∪{REind(Qm)σ′} (Q′m[r]ω′)σ′

with Q′m =E Qm and ω′ ∈ DI(Q′m)

Now, by Proposition 2, there is σ′m ∈ CSUCE(Q′m
|ω′ , l), and a ground substitution

µm, such that the equivalence xαm =E xσ′mµm holds for any x ∈ Var(REm
2 ∪

{Q′m}). Observe that Γm
1 |Γ

m
2 ⊢REm

1 |REm
2 σ′m∪{REind(Qm)σ′m} (Q′m[r]ω)σ′m is a

subgoal, and (Q′m[r]ω)σ′mµm <2 Q′mαm. Thus, by minimality of Qmαm, the

sequent:

Γm
1 |Γ

m
2 ⊢REm

1 |REm
2 σ′mµm∪{REind(Qm)σ′mµm,REind((Q′m[r]ω)σ′m)µm}

(Q′m[r]ω)σ′mµm

has a proof in the sequent calculus modulo. However, we have shown in [NAH 07])

that the above sequent leads to:

Γm
1 |Γ

m
2 ⊢REm

1 |REm
2 αm∪{REind(Qm)αm} Qmαm (6)

Finally, since (3) and (6) cannot hold together, we obtain a contradiction. ✷

The above proof provides a hint to prove that a conjecture is not an inductive

theorem: the proof search will probably stop sooner if we focus on subgoals whose

ground instances are minimal at each inference step (w.r.t. the ordering <2).

From Propositions 4 and 5, we obtain:

Theorem 2 IndNarrowModE is refutationally correct and complete.

6 Induction modulo AC and A

The general IndNarrowModE proof search system is indeed working directly on equiv-

alence classes modulo E, a situation not directly implementable for most theories E.

To focus on more operational proof search systems, we focus in this section on the

case of associative-commutative or associative theories. We introduce two proof search

systems IndNarrowModAC and IndNarrowModA as special instances of IndNarrowModE

with specific improvements and illustrating examples. Soundness and refutational cor-

rectness and completeness of these systems will be consequences of the properties of

IndNarrowModE.

6.1 More about flattened terms

In associative and associative-commutative theories, equivalence classes of terms are

often represented by flattened terms. We refer for the basic definitions and results

about positions and subterms to [MAR 93]. Intuitively flattening a term amounts to

recursively replace f(f(s, t), u) or f(s, f(t, u)) by f(s, t, u) if f is an associative sym-

bol. This is the key point bridging the proof search systems IndNarrowModAC and

IndNarrowModA on the one hand, and IndNarrowModE on the other hand.

From now on, we assume that some function symbols in a subset V of Σ may have

an unbounded arity. First, let us introduce the following definition:
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Definition 9 For any t ∈ T (Σ,X ), the flattening of t, denoted t, is the normal form

of t wrt the set of rewrite rules:

fx1 . . . xn(fy1 . . . ym)z1 . . . zr → fx1 . . . xny1 . . . ymz1 . . . zr

for any f ∈ V, m, n, r ∈ N such that n ≥ 1 or r ≥ 1, and m ≥ 2.

Hence, t is called flattened term.

Let A(V) = {f(fxy)z ≈ fx(fyz) | f ∈ V} and AC(V) = A(V)∪ {fxy ≈ fyx | f ∈ V}.

In the following, we assume that all symbols in V are defined symbols, that construc-

tor symbols do not have unbounded arities, and that + and ∗ denote symbols with

unbounded arity.

[MAR 93] defines a transformation which associates to each position in a given

term t a position in the flattening t of t, also called the flattening of this position.

However, a position in t is not always the flattening of some position in t, and this led

us to introduce the following definition:

Definition 10 For a flattened term s, a position ω ∈ Dom(s) is flattened if there exist

i, k ∈ N, and a string ω0, s.t. ω = ω0.i or ω = ω0.{i, i + 1, . . . , i + k}.

As an example, t = succ(+(a, b, c, d)) is the flattening of t = succ(((a+ b)+ c)+d).

The position 1.{2, 3} denotes the subterm +(b, c) and is flattened with respect to the

definition above, whereas 1.{1, 3, 4} denotes +(a, c, d) but is not flattened.

The above flattened positions are precisely the flattening of positions in the sense

of [MAR 93], see [NAH 07] for the proof. To define a rewrite relation on the set of

flattened terms, the notion of replacement has to be generalized:

Definition 11 Given two flattened terms s = fs1 . . . sn, t, and a position ω ∈ s, the

replacement by t in s at the position ω is inductively defined by:
– s[t]ε = t

– If ω ∈ {1, . . . , n}

– Case 1: there exist i, k ∈ N, such that ω = {i, i + 1, . . . , i + k}.

s[t]ω = fs1 . . . si−1 t si+k+1 . . . sn

– Case 2: otherwise, let {i1, . . . , ik} = {1, . . . , n} − ω.

s[t]ω = fsi1 . . . sik
t.

– s[t]i.ωi
= fs1 . . . si[t]ωi . . . sn.

Take for instance s = succ(+(a, b, c, d)) and t = +(e, f, g). Then

s[t]1.{2,3} = succ(+(a, b, c, d))[+(e, f, g)]1.{2,3}

= succ(+(a, b, c, d)[+(e, f, g)]{2,3})

= succ(+(a, +(e, f, g), d))

= succ(+(a, e, f, g, d))

s[t]1.{1,3} = succ(+(a, b, c, d))[+(e, f, g)]1.{1,3}

= succ(+(a, b, c, d)[+(e, f, g)]{1,3})

= succ(+(b, d, +(e, f, g))

= succ(+(b, d, e, f, g))

A rewrite relation on the set of flattened terms is now defined as follows:

Definition 12 Given a rewrite system R, s, t two flattened terms. s→R t if there is

a rule c⇒ l→ r ∈ R, a flattened position ω ∈ Dom(s) and a substitution σ such that:



19

InduceAC Γ1|Γ2 ⊢RE1|RE2
Q 

•
l → r ∈ RE1

σ ∈ CSUCAC (Q|ω, l)

Γ1|Γ2 ⊢RE1|RE2σ∪{REind(Q)σ} (Q[r]ω)σ

if ω ∈ DI(Q)

Rewrite1AC Γ1|Γ2 ⊢RE1|RE2
Q  Γ1|Γ2 ⊢RE1|RE2

Q′

if Q→RE1/≡p
Q′

Rewrite2AC Γ1|Γ2 ⊢RE1|RE2
Q  Γ1|Γ2 ⊢RE1|RE2

Q′

if Q→RE2/≡p
Q′

TrivialAC Γ1|Γ2 ⊢RE1|RE2
t ≈ t′  ✸

if t ≡p t′

RefutationAC Γ1|Γ2 ⊢RE1|RE2
Q  Refutation

when no other rules can be applied

Fig. 4 The proof search system IndNarrowModAC

– s|ω = lσ, t = s[rσ]ω
– and the condition cσ is true.

For example, given R = {x + 0→ x}, succ(+(a, b, 0, d))→R succ(+(a, b, d)).

If ≡p denotes the classical equivalence induced on the set of flattened terms by

permutating the arguments of symbols in V, let us consider the extension R/ ≡p of R

on the set of≡p-equivalences. As previously, in order to perform induction by narrowing

at defined-innermost positions, we must define such positions for flattened terms:

Definition 13 For any s ∈ T (Σ,X ), and for any ω ∈ Dom(s), the position ω is called

defined-innermost whenever there exist f ∈ Σ and terms s1, . . . , sn ∈ T (C,X ), such

that s|ω = fs1 . . . sn, and moreover n = 2 if f ∈ V .

Intuitively, the position ω in s is defined-innermost when s|ω coincides with its flattened

form.

For example, if + is a defined symbol, then the position 2.1 is defined-innermost in

f(+(1, 2, 3), g(+(4, 5))) while the position 1 is not.

6.2 The proof search systems IndNarrowModAC and IndNarrowModA

The specific proof search systems IndNarrowModAC and IndNarrowModA are respec-

tively given in Figure 4 and Figure 5.

Soundness, refutational correctness and completeness of IndNarrowModAC and Ind-

NarrowModA are consequences of the following proposition that states a correspondence

between a deduction on a goal Q using IndNarrowModE and a deduction on the corre-

sponding flattened goal using IndNarrowModAC or IndNarrowModA.

Theorem 3 Let E = AC(V) (resp.E = A(V)).
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InduceA Γ1|Γ2 ⊢RE1|RE2
Q 

•
l → r ∈ RE1

σ ∈ CSUCA(Q|ω, l)

Γ1|Γ2 ⊢RE1|RE2σ∪{REind(Q)σ} (Q[r]ω)σ

if ω ∈ DI(Q) and ω flattened.

Rewrite1A Γ1|Γ2 ⊢RE1|RE2
Q  Γ1|Γ2 ⊢RE1|RE2

Q′

if Q→RE1
Q′

Rewrite2A Γ1|Γ2 ⊢RE1|RE2
Q  Γ1|Γ2 ⊢RE1|RE2

Q′

if Q→RE2
Q′

TrivialA Γ1|Γ2 ⊢RE1|RE2
t ≈ t′  ✸

if t = t′

RefutationA Γ1|Γ2 ⊢RE1|RE2
Q  Refutation

when no other rules can be applied

Fig. 5 The proof search system IndNarrowModA

1. If Γ1|Γ2 ⊢RE1|RE2
Q IndNarrowModE Γ1|Γ2 ⊢RE1|RE′

2
R, there exists R′ such that

R′ =AC R, and Γ1|Γ2 ⊢RE1|RE2
Q IndNarrowModAC Γ1|Γ2 ⊢RE1|RE′

2
R′. (resp.

Γ1|Γ2 ⊢RE1|RE2
Q IndNarrowModA Γ1|Γ2 ⊢RE1|RE′

2
R ).

2. If Γ1|Γ2 ⊢RE1|RE2
Q IndNarrowModAC Γ1|Γ2 ⊢RE1|RE′

2
R (resp. Γ1|Γ2 ⊢RE1|RE2

Q IndNarrowModA Γ1|Γ2 ⊢RE1|RE′
2

R), there exists R′ such that R′ =AC R (resp.

R′ =A R), and Γ1|Γ2 ⊢RE1|RE2
Q IndNarrowModE Γ1|Γ2 ⊢RE1|RE′

2
R′

Proof. Sketch: We only consider here the case E = AC(V), the case E = A(V) being

very similar. Let us focus on the most delicate point, which is the case of the rule

Induce and consider the two cases.

1. Γ1|Γ2 ⊢RE1|RE2
Q Induce Γ1|Γ2 ⊢RE1|RE2∪{REind(Q)σ′} (Q′[r]ω′)σ′. By

definition, there exists l → r ∈ RE1 such that σ′ ∈ CSUCAC(Q′
|ω′ , l). Thus,

we have Q′
|ω′σ′ ≡p lσ′, which leads to Q′

|ω′σ
′ ≡p lσ′ (1), since σ′ is a constructor

substitution and it is assumed that constructor symbols do not have unbounded

arities. Now, if flatQ′(ω′) denotes the flattening of the position ω′, we have

Q′
|ω′ = Q′

|flatQ′ (ω′) (2) ([MAR 93]).

From the assumption ω′ ∈ DI(Q′) and the above equality, it is easy to

see that flatQ′(ω′) ∈ DI(Q′). And, since σ′ is a constructor substitution,

Q′
|flatQ′ (ω′)σ

′ can be seen as a term which is equal to its own flattening (3).

From (1), (2) and (3), σ′ is an AC-unifier of Q′
|flatQ′ (ω′) and l. Further-

more, since σ′ ∈ CSUCAC(Q′
|ω′ , l), one can easily show that we have σ′ ∈

CSUCAC(Q′
|flatQ′ (ω′), l). By definition of Induce, Q′ =AC Q, and we have

shown in [NAH 07] that there exists ω ∈ DI(Q) such that Q′
|flatQ′ (ω′) ≡p Q|ω

and Q′[r]flatQ′ (ω′) ≡p Q[r]ω. Therefore σ′ ∈ CSUCAC(Q|ω, l) and we have the

inference step:
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Γ1|Γ2 ⊢RE1|RE2
Q InduceAC Γ1|Γ2 ⊢RE1|RE2∪REind(Q)σ′ (Q[r]ω)σ′ (4).

Let us recall that Q′[r]flatQ′ (ω′) ≡p Q[r]ω (5). Furthermore, we have shown in

[NAH 07] the equality Q′[r]flatQ′ (ω′) = Q′[r]ω′ (6). From (4), (5) and (6), we

obtain (Q[r]ω)σ′ ≡p Q′[r]ω′σ′ and the conclusion follows.

2. Γ1|Γ2 ⊢RE1|RE2
Q InduceAC Γ1|Γ2 ⊢RE1|RE2∪{REind(Q)σ} (Q[r]ω)σ. By

definition of the rule InduceAC, there exist ω ∈ DI(Q) and l → r ∈ RE1,

such that σ ∈ CSUCAC(Q|ω, l). Then, we have shown in [NAH 07] that there

exist an equality Q′ and a position ω′ ∈ Dom(Q′), such that Q′ =AC Q,

Q|ω = Q′
|flatQ′ (ω′), and Q[r]ω ≡p Q′[r]flatQ′ (ω′) (1). Therefore, we have

Q′
|flatQ′ (ω′)σ =AC lσ, and since Q′

|ω′ = Q′
|flatQ′ (ω′) ([MAR 93]), this leads

to Q′
|ω′σ =AC lσ. Since ω ∈ DI(Q), it is not difficult to show that ω′ ∈ DI(Q′),

thus Q′
|ω′ = Q′

|ω′ . Replacing in the previous equality, we obtain Q′
|ω′σ =AC lσ.

Thus, σ is an AC-unifier of Q′
|ω′ and l. Furthermore, one can easily show that

σ is in CSUCAC(Q′
|ω′ , l). Hence we have the inference step:

Γ1|Γ2 ⊢RE1|RE2
Q Induce Γ1|Γ2 ⊢RE1|RE2∪{REind(Q)σ} (Q′[r]ω′)σ

(2). Now, let us observe that we have (Q′[r]ω′)σ = (Q′[r]ω′)σ. Further-

more, since Q′[r]ω′ = Q′[r]flatQ′ (ω′) ([MAR 93]), we obtain (Q′[r]ω′)σ =

(Q′[r]flatQ′ (ω′))σ. Thus, by (1), (Q′[r]ω′)σ ≡p (Q[r]ω)σ, and linking with (2),

we are done.

✷

6.3 Two simple examples

In order to get a better intuition on the way these sets of rules are working, let us look

at two examples. In the following, we always refer to the specification and the set of

rewrite rules given in Figure 1. The first example of proof uses AC properties of + and

∗ induction modulo AC, and the second one uses the same rules but just associativity

of these two symbols.

The case of associativity and commutativity (AC): Recall the context of Ex-

ample 1: RE1 is assumed to contain the rules of simple arithmetic given in Figure 1,

Γ1 = AC(+, ∗), Γ2 = {L(≈), NI, Noeth(<, T (Σ))}, and Q = (x1 + x2 + x3) ∗ x4 ≈

x1 ∗ x4 + x2 ∗ x4 + x3 ∗ x4.

Let us consider the following sequent: Γ1|Γ2 ⊢RE1|∅ Q and first apply the rule

InduceAC. The innermost positions in Q are 1.1.{1, 2}, 1.1.{1, 3}, 1.1.{2, 3}, 2.1, 2.2

and 2.3. Since the goal remains equivalent by permutation of the variables x1, x2 and

x3, only two possibilities remain: narrowing at a position where the symbol + occurs,

or where the symbol ∗ occurs. Since the last choice creates more reductions than the

first one, we arbitrarily choose to narrow at the position 2.1 of the goal. Therefore, we

must compute the set CSUCAC(x1 ∗ x4, l) for any rewrite rule l → r of RE1. This
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restricts to rules such that l(ε) = ∗, and we obtain:

l CSUCAC(x1 ∗ x4, l)

x ∗ 0
σ1 = {x1 → y1; x→ y1; x4 → 0}

σ2 = {x1 → 0; x→ y4; x4 → y4}

x ∗ s(y)
σ3 = {x1 → y1; x→ y1; y → y4; x4 → s(y4)}

σ4 = {x1 → s(y1); x→ y4; y → y1; x4 → y4}

After normalization, this leads us to prove the four sequents:

Γ1|Γ2 ⊢RE1|REind(Q)σ1
0 ≈ 0

Γ1|Γ2 ⊢RE1|REind(Q)σ2
(x2 + x3) ∗ y4 ≈ x2 ∗ y4 + x3 ∗ y4

Γ1|Γ2 ⊢RE1|REind(Q)σ3

(y1 + x2 + x3) ∗ y4 + y1 + x2 + x3

≈ y1 ∗ y4 + y1 + x2 ∗ y4 + x2 + x3 ∗ y4 + x3

Γ1|Γ2 ⊢RE1|REind(Q)σ4
(y1 + x2 + x3) ∗ y4 + y4 ≈ y1 ∗ y4 + y4 + x2 ∗ y4 + x3 ∗ y4

Trivial gets rid of the first one. Since (y1, x2, x3, y4) <4 (y1, x2, x3, s(y4)), the in-

duction hypothesis can be applied on the third one, and since (y1, x2, x3, y4) <4

(s(y1), x2, x3, y4), it can be applied on the fourth one too. Hence, the inference rule

Rewrite2 rewrites the third goal with the induction hypothesis REind(Q)σ3, and the

fourth goal with the induction hypothesis REind(Q)σ4. Thus we get:

Γ1|Γ2 ⊢RE1|REind(Q)σ2
(x2 + x3) ∗ y4 ≈ x2 ∗ y4 + x3 ∗ y4

Γ1|Γ2 ⊢RE1|REind(Q)σ3

y1 ∗ y4 + x2 ∗ y4 + x3 ∗ y4 + y1 + x2 + x3

≈ y1 ∗ y4 + y1 + x2 ∗ y4 + x2 + x3 ∗ y4 + x3

Γ1|Γ2 ⊢RE1|REind(Q)σ4

y1 ∗ y4 + x2 ∗ y4 + x3 ∗ y4 + y4

≈ y1 ∗ y4 + y4 + x2 ∗ y4 + x3 ∗ y4

Trivial gets rid of the two last subgoals. The application of Induce to the first one

at position 2.1 generates four subgoals. Trivial gets rid of the two first ones, the

application of Rewrite2 to the last ones creates two new subgoals which are trivial

and we are done.

The case of Associativity: Assume that RE1 contains the rules of simple arithmetic

given in Figure 1. RE1 is terminating and sufficiently complete modulo associativity

of the ∗ and + operators (denoted A(+, ∗)) Let us prove that distributivity of ∗ over

+ is an inductive theorem.

Let Γ1 = A(+, ∗), Γ2 = Th≈ ∪ {NI, Noeth(<3, T (Σ)3)}, and Q = x1 ∗ (x2 + x3) ≈

x1 ∗ x2 + x1 ∗ x3. Let us start from the sequent: Γ1|Γ2 ⊢RE1|∅ Q.

We can apply InduceA at the innermost positions 1.2, 2.1 and 2.2 in Q and Theorem 3

ensures that each of these choices is correct. Since narrowing at position 2.1 creates

less further reductions than the ones at positions 1.2 or 2.2, we choose to narrow at the

position 2.2 of the goal. Thus, we need to compute CSUCA(x1 ∗ x3, l) for any rewrite

rule l→ r of RE1. This restricts to rules such that l(ε) = ∗, and we obtain:

l CSUCA(x1 ∗ x3, l)

x ∗ 0 σ1 = {x1 → y1; x→ y1; x3 → 0}

x ∗ s(y) σ2 = {x1 → y1; x→ y1; y → y3; x3 → s(y3)}
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After normalization, we obtain the subgoals:

Γ1|Γ2 ⊢RE1|REind(Q)σ1
y1 ∗ x2 ≈ y1 ∗ x2

Γ1|Γ2 ⊢RE1|REind(Q)σ2
y1 ∗ (x2 + y3) + y1 ≈ y1 ∗ x2 + y1 ∗ y3 + y1

Trivial gets rid of the first subgoal. Since (y1, x2, y3) <3 (y1, x2, s(y3)), Rewrite2A

can be applied on the second one. Hence, we get:

Γ1|Γ2 ⊢RE1|REind(Q)σ2
y1 ∗ x2 + y1 ∗ y3 + y1 ≈ y1 ∗ x2 + y1 ∗ y3 + y1

and Trivial gets rid of this last subgoal.

6.4 A proof by refutation example

– Sorts: nat, list;
– constructors: 0 : → nat s : nat → nat :: : nat × list → list
– defined functions: <>: list × list → list
– rules:

< nil, l > → l < x :: l, l′ > → x ::< l, l′ >

Fig. 6 Simple lists

Assume that RE1 contains the rules of Simple lists given in Figure 6. RE1 is

terminating and sufficiently complete modulo associativity of the <> operator (denoted

A(<>)). Let Γ1 = A(<>), Γ2 = {L(≈), NI, Noeth(<, T (Σ))}, and Q =< L, M >≈<

M, L >. Then, we can consider the goal:

Q ∅, A(<>)|Γ2 ⊢RE1|∅< L, M >≈< M, L >

– Let us apply InduceA at position 1.

l CSUCA(<>)(< L, M >, l)

< nil, l > σ1 = {L→ nil; M →M1; l→M1}

< x :: l, l′ > σ2 = {L→ X1 :: L1; M →M1

x→ X1; l→ L1; l′ →M1}

– After normalization, we obtain the subgoals:

Q1 ∅, A(<>)|Γ2 ⊢RE1|REind(Q)σ1
M1 ≈< M1, nil >

Q2 ∅, A(<>)|Γ2 ⊢RE1|REind(Q)σ2
X1 ::< L1, M1 >≈ < M1, X1 :: L1 >

– Let us apply InduceA at position 2 to the first subgoal Q1:

l CSUCA(<>)(< M1, nil >, l)

< nil, l > σ3 = {M1 → nil; l→ nil}

< x :: l, l′ > σ4 = {M1 → X2 :: M2

x→ X2; l→M2; l′ → nil}
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– After normalization, we obtain the subgoals:

Q3 ∅, A(<>)|Γ2 ⊢RE1|REind(Q)σ1σ3,REind(Q1)σ3
nil ≈ nil

Q4 ∅, A(<>)|Γ2 ⊢RE1|REind(Q)σ1σ4,REind(Q1)σ4
X2 :: M2 ≈ X2 ::< M2, nil >

– TrivialA gets rid of subgoal Q3.

– Since M2 < X2 :: M2 (< is assumed to be any quasi simplification ordering showing

termination of the specification Simple lists), the inference rule Rewrite2 can be

applied to Q4 with REind(Q1)σ4, we obtain:

Q′
4 ∅, A(<>)|Γ2 ⊢RE1|REind(Q)σ2,REind(Q1)σ4

X2 :: M2 ≈ X2 :: M2

– TrivialA gets rid of subgoal Q′
4.

– Let us apply InduceA at position 1.2 of subgoal Q2.

l CSUCA(<>)(< L1, M1 >, l)

< nil, l > σ5 = {L1 → nil; M1 →M2; l→M2}

< x :: l, l′ > σ6 = {L1 → X2 :: L2; M1 →M2

x→ X2; l→ L2; l′ →M2}

– After normalization, we obtain the subgoals:

Q5 ∅, A(<>)|Γ2 ⊢RE1|REind(Q)σ2σ5,REind(Q2)σ5
X1 :: M2 ≈< M2, X1 :: nil >

Q6 ∅, A(<>)|Γ2 ⊢RE1|REind(Q)σ2σ6,REind(Q2)σ6
X1 :: (X2 ::< L2, M2 >) ≈

< M2, X1 :: (X2 :: L2) >

– Let us apply InduceA at position 2 of subgoal Q5.

l CSUCA(<>)(< M2, X1 :: nil >, l)

< nil, l > σ7 = {M2 → nil; X1 → X2; l→ X2 :: nil}

< x :: l, l′ > σ8 = {M2 → X3 :: L3; X1 → X2

x→ X3; l→ L3; l′ → X2 :: nil}

– After normalization, we obtain the subgoals:

Q7 ∅, A(<>)|Γ2 ⊢RE1|REind(Q)σ2σ5σ7,REind(Q2)σ5σ7,REind(Q5)σ7

X2 :: nil ≈ X2 :: nil

Q8 ∅, A(<>)|Γ2 ⊢RE1|REind(Q)σ2σ6σ8,REind(Q2)σ6σ8,REind(Q5)σ8

X2 :: (X3 :: L3) ≈ X3 ::< L3, X2 :: nil >

– TrivialA gets rid of subgoal Q7.

– Let us apply InduceA at position 2.2 of subgoal Q8.

l CSUCA(<>)(< L3, X2 :: nil >, l)

< nil, l > σ9 = {L3 → nil; X2 → X4; l→ X4 :: nil}

< x :: l, l′ > σ10 = {L3 → X5 :: L5; X2 → X4

x→ X5; l→ L5; l′ → X4 :: nil}
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– After normalization, we obtain the subgoals:

Q9 ∅, A(<>)|Γ2 ⊢RE1|REind(Q)σ2σ6σ8σ9,REind(Q2)σ6σ8σ9,REind(Q5)σ8σ9,REind(Q8)σ9

X4 :: (X3 :: nil) ≈ X3 :: (X4 :: nil)

Q10 ∅, A(<>)|Γ2 ⊢RE1|REind(Q)σ2σ6σ8σ10,REind(Q2)σ6σ8σ10,REind(Q5)σ8σ10,REind(Q8)σ10

X4 :: (X3 :: (X5 :: L5)) ≈ X3 :: (X5 ::< L5, X4 :: nil >)

– Refutation applies to subgoal Q9.

Thus, by theorem 5, the sequent:

(L, M) ∈ T (Σ)2, A(<>)|Γ2 ⊢RE1|∅< L, M >≈< M, L >

has no proof in the sequent calculus modulo.

Notice that in the above proof, all rules Rewrite have been applied with rewrite rules

or equalities whose left-hand side were strictly bigger than their right-hand side, and

that we have selected the “simplest” goal at each inference step.

7 Prototype and computer experiments

One major advantage of the semi-decision procedure presented in this paper is that

there is a clear correspondence between each proof-search step and the structure of the

goal’s actual proof. Indeed, the proof of Theorem 3 being constructive, it is virtually

possible to extract a proof in deduction modulo from each successful instance of the

IndNarrow procedure. We present now what we have achieved so far to reach this goal.

7.1 Lemuridae

Lemuridae is a prototype proof assistant for Superdeduction Modulo [BRA 07,HOU 08]

in the framework of sequent calculus. It contains in particular classical sequent calcu-

lus modulo and can therefore benefit from IndNarrow. Apart from allowing the user to

build proofs in deduction modulo, it features a proof-term language based on Urban’s

language for sequent calculus [URB 01] and offers some automatic support for defining

inductive types using an impredicative encoding [ALL 08], supported by a first-order

encoding of higher-order logic through the theory of classes [KIR 07]. The expression of

higher-order propositions therefore differs from the one chosen for IndNarrow, i.e. HOL-

λσ. Translating the proof of soundness from one system to another does not however

raise major difficulties, since the higher-order part of the potentially extracted proofs

should be confined to the formulation of the noetherian induction principle.

Lemuridae is written in Tom, a language that adds constructs inspired from rewriting

theory to general-purpose languages, like Java or C. It offers an efficient term structure

generator, associative pattern-matching and strategic programming. While associative

pattern matching eases the development of Lemuridae’s typechecker, the strategy lan-

guage is particularly well-suited for expressing tactics and tacticals of the prover.
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7.2 Prototype implementation of IndNarrow

A first implementation of IndNarrow has been written to give the algorithm a try before

implementing it in Lemuridae or in other proof assistants. The program is very short -

only 500 lines long - and behaves surprisingly well regarding some naive choices that

have been made throughout the code. There are indeed some sources of nondeterminism

we had to tackle, as discussed below. It is written in OCaml but reuses some Tom

idioms in the expression of rewriting strategies, as well as in the idea of reifying the

notion of position. This allows easily describing complex traversal strategies by means

of some basic ones. For example, the topdown strategy is here defined using the fixpoint

combinator mu, the sequence strategy seq and the strategy all that applies x to all the

children of the current node.

let rec topdown s = mu (fun x -> seq s (all x))

What is original compared to strategic programming languages like Stratego [VIS 01]

is that the strategy s always not only receives the current subterm as an argument,

but also the current position. This allows for the concise expression of parts of the

code that explicitly rely on positions.

This implementation work has pointed out the nondeterministic parts of IndNarrow.

There are indeed four of them.

Rules application order. The algorithm does not specify any strategy concerning the

order of rules application. It is therefore a parameter of the program and can be

easily changed. After having experimented the prototype on some examples, it

turned out that a good strategy was to apply the rules Rewrite1, Rewrite2 and

Induce in any order provided that Trivial is applied after each step to constrain

the search space as much as possible. The current version therefore adopts the

following order, as shown by the code.

apply_all [trivial; rewrite1; trivial; rewrite2; trivial; induce] seq

Equality orientation. The current implementation uses the simple subterm ordering to

orient equalities. It does however not apply to every equality, such as x+ y = y +x

for instance. We made here the choice to arbitrarily orient such equalities from left

to right.

Narrowing position. When applying the Induce rule, there may be several potential

positions where to perform the narrowing step, as is the case in the example of

section 2 for instance. We chose some heuristics here: the position where narrowing

applies is the one that entails the biggest substitution.

Rewrite position. The last nondeterminism source of the algorithm is the choice of the

position where Rewrite2 applies. A first solution would be to rewrite the goal

using as many rewrite rules of RE2 as possible at the same time. This is however

not a good strategy since goals like S(x + y) = S(y + x) would be swapped into

S(y + x) = S(x + y) by the rewrite rule x + y → y + x and draw IndNarrow into

an infinite loop. A better solution is to only rewrite one redex at each application

of Rewrite2. One has then to choose between several positions. Choosing it in a

predetermined way, say the leftmost-innermost one, would not be fair though. That

is why we chose to introduce some entropy here by randomly picking the position

where the rewrite step shall occur.
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Despite of the simplicity of the chosen ordering, as well as the naive choices made

to tackle nondeterminism, the prototype solves a pretty wide range of goals out of the

box. Among them commutativity of addition and the fact that the mutually recursive

and straightforward definitions of even coincide. It can be downloaded at http://www.

loria.fr/~brauner/rew.ml.

7.3 Comparison with other methods

The following section contributes to illustrate the well-known fact that in implicit

induction, the selection of good inductive positions can lead to dramatic improvements.

Let us return to our motivating example (section 2). We can easily show the conjecture

with our system (subsection 7.3.1). Informally speaking, the proof attempt succeeds,

because the narrowing step is performed at the “good position”. Conversely, it fails

either if too many variables are replaced, or if the narrowing step is performed at

any “bad” position. We show that it is respectively the case with Spike-AC [BER 96]

(subsection 7.3.2), and with another method based on narrowing at defined-innermost

positions [AOT 06] (subsection 7.3.3). We finally compare our work with the “descente

infinie” approach (subsection 7.3.4).

7.3.1 An AC-example

Let us consider the specification Simple arithmetic (Fig 1) and < be any rewrite

path ordering showing the termination of its set of rules. Assume that + and ∗ are

AC-symbols, and the following goal:

∅, AC(<>)|Γ2 ⊢RE1|∅ exp(X ∗ Y, N) ≈ exp(X, N) ∗ exp(Y, N)

– Let us apply InduceAC at position 2.1.

l CSUCAC(+,∗)(exp(X, N), l)

exp(x, 0) σ1 = {X → X1; N → 0; x→ X1}

exp(x, s(y)) σ2 = {X → X1; N → s(N1);

x→ X1; y → N1}

– After normalization, we obtain the subgoals:

∅, AC(+, ∗)|Γ2 ⊢RE1|REind(Q)σ1

s(0) ≈ s(0)

∅, AC(+, ∗)|Γ2 ⊢RE1|REind(Q)σ2

X1 ∗ Y ∗ exp(X1 ∗ Y, N1) ≈

X1 ∗ exp(X1, N1) ∗ Y ∗ exp(Y, N1)

– TrivialAC gets rid of this first subgoal, and since N1 < s(N1), the induction

hypothesis can be applied to the second one.

7.3.2 The example with a method based on inductive schemes (Spike-AC: [BER 96] )

In this framework, induction schemes are defined first by a function that, given a

conjecture, selects the positions of variables where induction will be applied, and second

by a special set of terms called a test set. In this case, the induction variables are all

the variables: X, Y and N . However, there is a test instance which cannot be simplified

by the induction hypothesis. This is the situation we described in Section 2.

http://www.loria.fr/~brauner/rew.ml
http://www.loria.fr/~brauner/rew.ml
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– Simplify:
< E ∪ {s ≈ t},H >

< E ∪ {s′ ≈ t},H >
s→R∪H s′

– Delete:
< E ∪ {s ≈ t},H >

< E,H >

– Expand:
< E ∪ {s ≈ t},H >

< E ∪ Expdu(s, t),H ∪ {s→ t} >
u ∈ DI(s), s ≻ t

Fig. 7 Aoto’s proof search system

7.3.3 The example with another method based on narrowing at defined-innermost

positions ([AOT 06]])

Aoto [AOT 06] reports that Koike and Toyama [KOI 00] extracted an abstract principle

of implicit induction in terms of abstract reduction systems:

Proposition 6 Let R and H be rewrite systems, and � be a well founded quasi-

ordering on a set A. Suppose:

1. →R∪H ⊆ ≻;

2. →H ⊆ →R ◦
∗
→R∪H ◦

∗
←R∪H;

then
∗
↔R =

∗
↔R∪H.

Aoto designed a proof search system (Figure 7) based on the above result. It starts

by putting conjectures into a set E and letting H = ∅. Then the procedure rewrites

< E,H > by applying one of the inference rules. If it eventually becomes of the form

< ∅,H′ > then the procedure return “success” (this means that the conjectures are

inductive theorems of the underlying rewrite systemR). Observe that the rule Expand

is quite similar to our rule Induce. However, the narrowing step must be performed

in the member of the goal which is greater. Recall that the conjecture was:

exp(X ∗ Y, N) ≈ exp(X, N) ∗ exp(Y, N)

The first member of the goal is greater w.r.t. our ordering <. Thus, the narrowing step

can be performed only at position 1.1. We obtain:

exp(X1 ∗ Y1 + X1, N1) ≈ exp(X1, N1) ∗ exp(s(Y1), N1)

which cannot be simplified by the induction hypothesis. Notice that Aoto has also

provided more sophisticated inference rules, but the narrowing step must always be

performed in the member of the goal which is greater.

7.3.4 Induction in sequent calculus: another approach

Our system can be considered as a customised version of the framework provided in

[DEP 02] tailored for equational goals towards A and AC theories. The aim of basing
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this framework on deduction modulo was to undertake a rigorous proof-theoretic

investigation of the proof principles of mathematical induction. We think that such an

analysis is of special interest since it has implications for the provision of a proof term.

An other choice has been to extend the language of standard first order logic with

an inductive definition schema. More precisely, [BRO 06] has provided an extension

of Gentzen’s LK sequent calculus to obtain canonical sequent calculus proof systems

with an inductive definition schema. This method uses the principle of “descente

infinie” à la Fermat.

One way of stating the “descente infinie” principle is that in order to prove

that P is true for every x, it suffices to demonstrate that if P is not true for a particu-

lar number x, then there is an infinite strictly decreasing chain . . . < xn < . . . < x1 < x

wrt a well founded relation <, which is impossible.

Example 2 [BRO 06] Let the sets E and O of even and odd numbers be given by the

following inductive definition:

0 ∈ E n ∈ E ⇒ s(n) ∈ O n ∈ O ⇒ s(n) ∈ E

Informally, the justification of the result by “descente infinie” is as follows. Let n be

an integer. Assume n = 0, then we are done. The other case is n = s(m). If m = 0

then we are done as n = s(0) is an odd number, so we need only consider the case

where m = s(m′) for some natural number m′. By repeating this argument infinitely

often, we are left only with the case in which we have an infinite descending sequence

n > m > m′ > m′′ > . . ., which leads to a contradiction, since natural numbers are

well-ordered. Thus every natural number must indeed be either even or odd.

Let us see how this proof is formalised in [BRO 06]. First, the induction rule associated

to the predicate “Peano integer” N is defined by:

Γ, t = 0 ⊢ ∆ Γ, t = sx, Nx ⊢ ∆

Γ, Nt ⊢ ∆
Case N

Now, with the notations above, this proof has the following form:

⊢ E0, O0
ER1

x0 = 0 ⊢ Ex0, Ox0
= L

...
Nx1 ⊢ Ex1, Ox1

(Case N )

Nx1 ⊢ Ox1, Osx1
OR1

Nx1 ⊢ Esx1, Osx1
ER2

x0 = sx1, Nx1 ⊢ Ex0, Ox0
= L

Nx0 ⊢ Ex0, Ox0
Case N

Observe that we obtain a tree with exactly one infinite branch. Informally speaking,

the infinite tree above is a proof in this system because the inductive predicate N is

“unfolded infinitely often” along the only infinite branch in the tree.
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8 Conclusion

We have extended the inductive proof search method based on narrowing to the case

where theories contain non-orientable axioms. The main inference rule is based on a

restricted application of narrowing at defined-innermost positions, strongly motivated

by the until now unnoticed fact that a restricted notion of equational unification, based

only on constructors, very significantly reduces the number of unifiers to be considered.

This general approach is proved correct and refutationaly complete. We then applied

it to the specific case of rewriting modulo AC or A axioms and show on two examples

how the method safely restricts the proof search space. This provides a significant

improvement on previous inductive proof search approaches.

An interesting side result of our approach is the introduction of a new kind of

E-unifiers that we called constructor E-unifiers. In the case of associative and/or com-

mutative theories E, they have the nice property to considerably reduce the number of

unifiers to be considered in a standard complete set of unifiers that may be huge or even

infinite in these theories. A natural and challenging question is to build a unification

theory for these specific unifiers.

First motivated by the wish to provide a bridge between explicit and implicit induc-

tion, our approach achieves this goal through a specific instance of the sequent calculus

modulo [DOW 01] that clarifies the respective roles and uses of the noetherian induc-

tion principle and of equational rewriting. Although heuristics for lemma speculation,

generalisation and induction rule choice are always in need of improvement for induc-

tive proof search, it was not the aim of our work. For instance, a suitable noetherian

ordering is implicitly assumed throughout the paper, rather than discovered by the

search strategy like in explicit induction methods. We expect however to have an au-

tomated construction of inductive proofs into the sequent calculus for insertion into

proof assistants. Summing up, we can say that this work takes place in the following

constructive process:1) building a proof of an inductive conjecture with our system; 2)

associating to this proof another proof in sequent calculus modulo; 3) translating the

proof in sequent calculus modulo into a proof term, whose type is the initial conjecture.

Our system is therefore designed to collaborate with other proof assistants in a safe

way, in order: 1) to find the most convenient noetherian ordering and required lemmas;

2) to check the proof. We hope therefore that this work can provide proof assistants

a theoretical foundation based on deduction modulo. An implementation in lemuridæ

which is based on superdeduction modulo [BRA 07] will be an interesting follow up.
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DOW 01. Gilles Dowek, Thérèse Hardin, and Claude Kirchner. HOL-λσ an intentional
first-order expression of higher-order logic. Mathematical Structures in Computer
Science, 11(1):21–45, 2001. 8, 30
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