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Abstract 
 

This paper presents an embedded FPGA–based 

architecture to compute navigation trajectories along 

a harmonic potential. The goals and obstacles may be 

changed during computation. Large environments are 

split into blocks. This approach, together with the use 

of an increasing precision, enables an optimization of 

the overall computation time that is theoretically and 

experimentally studied. Implementation results confirm 

outstanding speedup factors. 

 

1. Introduction 
 

Trajectory planning consists in finding a way to get 

from a starting position to a goal position while 

avoiding obstacles within a given environment or 

navigation space.  Harmonic functions may be used as 

potential fields for trajectory planning [1]. Such 

functions do not have local extrema (unlike other 

potential based methods as in [5]), so that navigation 

algorithms may reduce to locally ascend the potential 

until they reach a global maximum, when obstacles 

correspond to minima and goals correspond to maxima. 

Harmonic control has had some impact on the 

robotics community [1,2,4,6,8,9]. This paper presents 

an embedded implementation of this navigation method 

on reconfigurable digital circuits. After the iterated 

computation of the harmonic function, our 

implementation locally computes the direction to 

choose to get to the goal at any point of the 

environment. Dynamic changes in this environment 

may be taken into account. Our implementation has 

been designed to deal with very large environments 

while optimizing computation time. To do so, such 

environments may be split into several so-called 

blocks, and iterated updates are performed in a block-

synchronous mode that takes advantage of large 

embedded SRAM memory resources. Moreover, an 

increasing precision is used throughout the 

convergence process, so as to further optimize 

computing times. Besides all implementation works, 

we have carefully justified our algorithmic and 

technological choices through both theoretical and 

empirical studies of the required precisions and 

convergence times. Section 2 describes the principles 

of harmonic functions and their use for trajectory 

planning. Section 3 introduces our block-synchronous 

algorithm, and its optimization with respect to 

precision and convergence rate. Section 4 describes its 

implementation architecture and results. 

 

2. Harmonic control 
 

A function u is harmonic when it satisfies Laplace’s 

equation within its open definition domain: 
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Harmonic functions have interesting properties: a 

non-constant harmonic function attains its maximum 

and minimum values on the boundary of its definition 

domain, and there can be no local minimum or 

maximum inside a bounded region this domain.  

Planning trajectories with harmonic functions 

consists in finding the function u that is harmonic on 

the navigation space and that has value 0 on obstacle 

positions and value 1 on goal positions. Then a simple 

ascent along the gradient of u provides a trajectory 

towards a given goal from any starting position. The 

properties of harmonic functions ensure that such a 

path exists and it is free of local optima. Using a Taylor 

approximation of the second derivatives we derive the 

following discrete form: 
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where δ  is the sampling of the grid nodes. This 

equation can be solved using relaxation methods that 

iteratively replace each node value with the simple 



average of its four neighbours until convergence. 

Figure 1 shows different trajectories generated by 

simulations. 

The main properties of harmonic control are: 

Global navigation: Complete trajectories may be 

generated towards a goal position from anywhere in the 

environment, since there are no local minima.  

Dynamic navigation: Unexpected updates of goals 

and obstacles (dynamic environments or on-line 

exploration [9]) may be considered, since harmonic 

functions are computed by iterative relaxation methods. 

Parallel computation: These iterative computations 

are massively distributed. Computing node values only 

require local information of the neighbouring nodes 

 
Fig. 1. Generated trajectories (100x100 grid, equally 

spread starting nodes, two goals) 

 

3. Algorithm and optimization 
 

Our aim is to design an embedded system for robot 

navigation, improving computation speed and power 

consumption. Besides, scalability and computation 

precision appear as critical issues for harmonic control. 

 

3.1 Technological and algorithmic choices  
 

3.1.1 Serial arithmetic and precision. Though our 

model needs to compute maxima that may only be 

computed in a MSBF mode, we mostly use standard 

LSBF serial operators to optimize the required area. 

Nevertheless, our implementation simultaneously 

handles a read access in MSBF mode to detect local 

maxima, taking advantage of the two simultaneous read 

addresses of the SRAM blocks. Serial arithmetics was 

choosen in order to privilige distributed low-area 

operators inside the FPGA and since bit-parallel 

hardware resources are not considerable in the 

computation of teh harmonic function for trajectory 

planning. Another advantage of serial operators is to be 

able to handle large precisions without an increased 

implementation area. 

Precision has already been mentioned as a major 

limitation for analog implementations [8]. In case of 

insufficient precision, large areas of the grid may share 

the same value, hence a null gradient that results in 

incomplete trajectories. Connolly [1] argues that the 

precision should at least represent 1/N, where N is the 

total number of grid nodes. We argue that 1/N may not 

be a sufficient precision. More precisely, the precision 

might have to represent at least )(21 LO (therefore 

requiring some O(L) bits), where L is the maximum 

trajectory length in the environment. To prove this, it is 

sufficient to develop equation (2) within a “corridor” of 

length L and width 1, with an obstacle on the left 

( 00 =x ), and the goal at the other side ( )1=Lx .  

Nevertheless, the study of the required precision 

should take “likely” environments into account. We 

have carried out numerous experiments with large 

randomly generated mazes. It follows that in most 

environments, the maximum distance L to the goal is 

close to the square root of the environment size, and 

that a precision proportional to 1/L (i.e. a number of 

bits proportional to log(L)) is generally sufficient to 

ensure that the computation of the harmonic function 

converges such that no local minimum or maximum 

exists (i.e. a trajectory is found from any node).  

 
3.1.2 Block-parallel computation. Despite the use of 

small serial operators for low-area hardware solutions 

at the cost of performance, the size of the discretized 

environment we are able to map in a fully parallel way 

onto FPGAs is limited (around 50x50 nodes in our 

preliminary work in [3]). To handle much larger 

environments (or finer discrete resolutions), we 

propose a block-synchronous (or block-parallel) 

implementation: the environment is partitioned into 

several blocks, each block of nodes being implemented 

in a fully parallel way by the FPGA while the different 

blocks are sequentially handled. Moreover up to I 

consecutive iterations are performed for each block 

before handling the next block. As a mean to 

counterbalance the reduction in performance due to 

serial operators compared to bit-parallel resources, a 

detailed study to optimize I and the increasing scheme 

of the precision is performed. 

 

3.1.3 Increasing precision. The computation time of a 

serial operator depends on the precision, and several 

iterations are required to let our system converge to a 

good approximation of the expected harmonic function. 

We propose to use an increasing precision to optimize 

the convergence time. The first iterations are performed 

goals 



with a chosen reduced precision. When the whole 

system has converged for a given precision (potentials 

within all blocks of nodes have been stabilized), 

iterated updates start again with an increased precision. 

This is repeated until the necessary precision of the 

harmonic function estimation is reached (this is the 

case when no local minimum or maximum exists, 

therefore we stop the algorithm when no such local 

extremum is detected).  

With this approach, first iterations are faster, since 

they handle reduced precisions with serial operators. 

Next iterations use an increased precision, and the 

additional convergence time only corresponds to 

computing the additional bits of the harmonic function 

estimation. Moreover the convergence of each block is 

reached sooner: I consecutive iterations are performed 

for each block before handling the next block, except if 

the computations within this block converge before the 

I iterations, which may happen (and is detected) more 

rapidly with reduced precisions.  

 

3.2 Optimization 
 

In this section, we study the computation time of 

this algorithm, so as to optimize I and the increasing 

scheme of the precision.  

 

3.2.1 Convergence: theoretical results. Though not 

converging in general, we have proved that the iterated 

estimation 
kH  of the harmonic function derived from 

equation (2) converges in some weak sense. Namely it 

leads to oscillations around the fixed point. We have 

also determined the convergence rate: for any 0>λ  
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where e is the maximum round-off error (precision), 

∗H  is the fixed point of the process, 
0H  is the starting 

point and γ  is its contraction coefficient. We may 

consider λ  as a margin that is added to the 
γ−1

e -wide 

asymptotical interval around 
*H . This margin defines a 

wider interval where 
kH  
finally lies.

  

Sketch of proof:

 1. The computation of the harmonic function is 

contracting with coefficient 
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in a N×M environment (proof outline: the update 

equation uses a matrix that is substochastic, and that 

corresponds to a vanishing Markov chain for which we 

know an upper bound of the biggest eigenvalue). 

2. Taking into account both the round-off error 

(maximum e) at each iteration and the properties of a 

contracting function, we prove by recurrence that 
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so that the process is asymptotically 
γ−1

e -close to its 

fixed point. When it is 
γ
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ε

−
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)1( e  -close,  we finally 

get the expected result. 

 

3.2.2 Experimental convergence. Experimentally, the 

convergence of the iterated computation of the 

harmonic function (derived from equation (2)) not only 

converges in a weak sense, but fully converges 

whatever the fixed precision. To validate this assertion, 

we have carried out numerous experiments with various 

environments. They establish that the number of 

required iterations linearly depends on the number of 

nodes in the environment, which validates the above 

estimation of k (that depends on )log(1 γ  which is 

roughly proportional to 2N  and 
2M ). 

 

3.2.3 An increasing precision algorithm. We now 

consider the case where the harmonic function is 

iteratively computed using arithmetics with different 

precisions: Tp

T

pp eee −−− === 2,,2,2 21

21 K . Write 
)0(H  the initial estimate. Writing 

ik  the number of 

required iterations to reach precision ip  from 

precision 1−ip , we show that 
1k  may be estimated as 

an affine function of the initial number of bits
1p :  
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and each 
ik  may be estimated as an affine function of 

the increase in the number of digits: for 2≥i  

       ( ))1log()2log()1( 1 λ++−≤ −iii ppKk  

From this, we derive that the increasing precision 

approach roughly divides the computation time by 2 

when very large precisions are required, assuming that 

the precision increase is arithmetic 
T

p
ipi

max=  (the 

detailed proof is not given here, it involves a first-order 

development of the sum of the 
ik  w.r.t. 

maxp ). 

 

3.2.4 A block-synchronous algorithm. We have 

extended the above result when the environment is split 

into B blocks and all computations are performed with 



serial arithmetics. Nevertheless, the optimization 

provided by our approach does not fully appear in this 

theoretical study, but when experimentally analyzing 

the overall convergence time. Indeed,  besides allowing 

larger environments, this approach takes advantage of 

“still” blocks to converge faster: I iterations are 

performed only for blocks that have not converged so 

far, whereas in most experiments, large parts of the 

environment stay unchanged (still) for several iterations 

while distant blocks slowly propagate the changes.  

We have performed tests on a PC in order to 

compare the overall number of computations when one 

uses several blocks, to the case where there is only one 

block. These experiments show that block-partitioning 

speeds up the computations, although the successive 

iterations are performed by a block without updating 

the neighbouring blocks. This speedup is observed 

provided that I is not too large and an early detection of 

stabilization is performed within each block. Moreover 

the speed-up increases with larger blocks. Following 

our experiments, the block-synchronous approach that 

uses an increasing precision finally divides the 

computation time by some coefficient between 2 and 4. 

 

4. Hardware implementation 
Though harmonic control has been widely used in 

robotics, few hardware implementations have been 

proposed. Their technological choices are mostly 

motivated by the fact that analog resistive grids may 

easily compute the harmonic function as in equation 

(2). For example in [7] an analog implementation of a 

16x16 grid is proposed. The main limitation of this 

work is the precision (as for most analog 

implementations). To our knowledge, we propose here 

the first digital FPGA-based implementation.  

 

4.1 General architecture  
 

Figure 2 illustrates the general architecture of the 

implementation of harmonic control in a given 

environment. Since the environment is split into several 

blocks, this architecture mostly consists of a grid of 

nxm identical node modules surrounded by border 

node modules, a control module, a decision module, 

and a module to interact with the robot. 

Each node module computes its corresponding node 

value within the currently handled block. The control 

of these computations are synchronized in the whole 

block so that node modules serially communicate their 

values to their neighbours. The node modules are split 

in groups of 3x6 nodes that share common storage 

resources (a single dual port SRAM block together 

with the counters used for address control). 

 

 
Fig. 2. General architecture  

  

The border nodes are simpler. They store the values 

of the immediate neighbours of the most outer nodes 

within each block, and they serially generate these 

values when required. We handle the addressing 

scheme so that the values stored within each of the 4 

possible borders are updated when the block that 

contains them is being computed. These updates 

require long-range connections from the node modules 

on each side of the block to the opposite border nodes. 

The interaction with the robot includes a position 

modules, which role is mainly to compute the 

coordinates (B,X,Y) of the closest grid point (block, 

node) around the real coordinates (x,y) of the robot in 

its environment. 

The control module generates the enable signals 

that are sent to all node modules to control their 

individual behaviour when an asynchronous event 

occurs (convergence of the computation of the 

harmonic function, or early detection of the 

convergence of the computation within the currently 

handled block, or detection of an unknown obstacle by 

the robot). It also computes the number B of the current 

block, and it handles the different counters such that an 

increasing precision is used until global convergence. 

 



 

 

 
Fig. 3. Architecture of a node module 

 

The decision module collects the navigation 

information that are provided by the node modules 

(according to block B). Then it extracts the information 

that corresponds to the neighbourhood of the current 

position coordinates (B,X,Y) of the robot, and it 

performs a linear interpolation of the potential values 

around (B,X,Y) to compute the navigation direction 

after convergence of the iterations: it corresponds to 

the maximum slope among the four triangles that are 

defined by the node and two of its immediate 

neighbours. 

 

4.2 Node module implementation  
 

The architecture of a node module uses 1-bit inputs 

and outputs to exchange data among nodes and with the 

global modules. Inputs are mainly used to receive the 

4-connected neighbouring node values (signals h_N, 

h_E, h_W, h_S) and global control signals (standard 

signals clk, reset, enable, signals Sel and Sat 

to indicate obstacle/goal changes, and SRAM controls 

EN, R, W). The local value h of the harmonic function 

is sent to all neighbours (signals to_N, to_E, to_W, 

to_S) and to the global interpolation module so as to 

compute the navigation orientation if the robot is found 

to be located in the area that corresponds to the local 

node. 

The proposed hardware node module is constituted 

by five main sub-modules. Figure 3 shows a block 

diagrama of this architecture, as well as its interaction 

with shared resources that are surrounded by dotted 

lines (the local counters and RAM modules are shared 

by a group/cluster of 3x6 node modules, the Early 

module and Cvg modules are shared by all nodes of 

the block). 

 

Update: This module iteratively computes the 

harmonic function value 
),( jih  where (i,j) are the 

coordinates of the node in the environment. As 

described in 2., each iteration computes: 

4

)()()()(
)1(

)1,()1,(),1(),1(

),(

thththth
th

jijijiji

ji

+−+− +++
=+  

The output value is sent to the RAM with a write 

address delayed by 2 clock cycles (division by 4).  

Stable: This module detects the local convergence of 

this computation (stabilization), by serially comparing 

the output of the iterated computation to the stored 

value. This local convergence test is then sent to a 

global OR gate (in the Early module) to disable the 

computation loop of the block when early stabilization 

has been detected before I iterations. 

Maximum: This module checks for the presence of a 

local maximum. It uses a comparison between all 

neighbouring values and a comparison with the local 

value so as to determine whether the local node 

corresponds to a local maximum. This local 

information is sent to the Cvg module that uses a 

global OR gate so as to check for the presence of any 

local maximum in the current block.  

Mem and Saturation: The node receives orders to 

behave as an obstacle or a goal through the 

Saturation module, and communication with the 

dual port SRAM block that stores the node value is 

controled by the Mem module. A multiplexer selects the 

correct value (output of Update, 0 or 1) with respect 

to a control given by the Saturation module that 

memorizes the Sat value to be the constant value of 

the grid point when the node is selected by the global 

control module (signal Sel). Since multiple blocks m 

handled, these constant values must also be stored in 

and retrieved from the RAM. In order to do that, we 

add a special bit (the MSB) to the values stored in 

memory (this bit is set to 1 when the local value is 

constant). 

Counters: This module is shared by 18 nodes, 

since node modules are gathered together to form a 2D 

grid of 3x6 clusters. The main reason to group in such 

a configuration is due to the 18-bit width of the shared 

block ram. The depth of the block RAMs is 1K. It 

allows handling a wide range of arithmetic precisions 

such as 64-128 bits per word without modifying the 

memory organization. Module Counters generates 

the read (resp. write) addresses for the dual port RAM 

with counters cntR, r_cnt (resp. cntW). 



 

4.3 Implementation results  
 

This work uses a PCI bus board with three FPGAs, 

the largest one being a Virtex-4 XC4VLX160ff1513-

12 FPGA from Xilinx, that contains 135,168 logic 

cells. The design was synthesized, placed and routed 

automatically in Xilinx Foundation ISE 9.2i. Each node 

module requires 26 logic cells, and each cluster of 18 

node modules requires 458 logic cells (counters 

included). Using 264 dual port SRAM, the whole 

architecture may implement a 72x66 grid on less than 

92 % of the logic cells. We use the remaining 24 

SRAM blocks to implement the storage facilities of the 

276 border blocks. A few slices are sufficient  to 

handle addresses for these special blocks. Then the 

Control module (1934 slices) and the Decision module 

are added (3p + 1235 slices for a p-bit precision). So 

that for example 97 % of this FPGA is finally used for 

the implementation of the algorithm with 4 blocks 

(19008 nodes) and p=255 (see below for the speed). 

Software implementations of the harmonic function 

computation on a microprocessor based computer, 

Pentium 4,2 GHz, require around 200 µs per iteration 
with a 72x66 block. In the proposed hardware 

implementation, p+2 clock cycles are required per 

iteration for precision p, with an estimated clock 

frequency of 150 MHz. Thus, the implementation on 

the Virtex-4 provides a speed factor up to 200x (for a 

128-bit precision that corresponds to some average-

sized environments in our reported experiments). 

Moreover larger precisions may be handled by the 

proposed serial implementation when few blocks are 

used (up to 1K bits when only one block is used).  

Following our experiments in section 3, our block-

synchronous approach together with the increasing 

precision reduces the required number of iterations 

before convergence, so that the final speed factor is up 

to 800x. As an example, with a not too complex maze 

with 19008 nodes divided into 4 blocks, a p=255 

precision, and I=6 consecutive iterations for each block 

at most, a speedup of 540x is obtained. Such 

environments experimentally require about 20000 

iterations for the computation of the harmonic function 

(some 4 seconds on a PC). Therefore this acceleration 

fully enables the system to react to changes of goal and 

obstacles in real-time. 

 

6. Conclusion 
 

We have described the FPGA implementation of an 

architecture that computes trajectories along a 

harmonic potential, so as to solve the navigation 

problem in robotics. The goals and obstacles may be 

changed during computation. The proposed 

architecture uses a massively distributed grid of 

identical nodes that interact with each other within 

mutually dependant serial streams of data to perform 

iterative updates of the local harmonic function values 

until global convergence. When the environment size is 

too large for a fully parallel implementation on the used 

FPGA, our implementation takes advantage of the 

available SRAM to handle larger environments that are 

partitioned into blocks. The proposed architecture also 

introduces the use of an increasing precision. This 

approach enables an optimization of the overall 

computation time. We have justified our technological 

and algorithmic choices through both theoretical and 

experimental studies, with respect to both the block-

synchronous approach and the increasing precision 

technique. Implementation results finally validate our 

approach in terms of parallelism, scalability, precision 

and speedup. The main perspective of this work is to 

extend it to optimal control, a more generic (and 

tunable) trajectory planning method, that uses similar 

computations without requiring such huge precisions, 

so that more blocks might be handled. 
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