
HAL Id: inria-00338062
https://hal.inria.fr/inria-00338062

Submitted on 10 Nov 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Extended Recursion-Based Formalization of Virus
Mutation

Philippe Beaucamps

To cite this version:
Philippe Beaucamps. Extended Recursion-Based Formalization of Virus Mutation. EICAR’08, Jun
2008, Laval, France. �inria-00338062�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/50212233?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00338062
https://hal.archives-ouvertes.fr

Extended recursion-based formalization of virus

mutation

Philippe Beaucamps∗

Loria, France

philippe.beaucamps_at_loria_dot_fr

July 6, 2008

Abstract

Computer viruses are programs that can replicate themselves by infect-
ing other programs in a system. Bonfante, Kaczmarek and Marion have
recently proposed a classification of viruses which relies on the recursion
theory and its recursion theorems. We propose an extension of their for-
malism to consider in a more practical way the mutation of viruses. In
particular, we are interested in modelling any depth of mutation, not just
the first two levels. We show that this formalism still relies on recursion
theorems, whatever the depth of mutation, even in the case of infinite
depth. We also extend furthermore this formalism to model the viability
of viral replication, which ensures that an infected program still can prop-
agate the virus. An application of the proposed formalism to the class
of combined viruses (multi-part viruses) is studied. Finally, given that
metamorphic viruses can be modelled by grammars operating on gram-
mars, we study a recursion-based approach of formal grammars and show
that the recursion theorems of the recursion theory can be ported to the
formal grammars theory.

Keywords: Computer viruses, virus mutation, polymorphism, metamor-
phism, recursion theory, formal grammars, combined viruses

1 Introduction

Computer infections are a serious concern in nowadays IT infrastructures. These
infections are carried out using miscellaneous types of malware, among which
computer viruses: such programs replicate themselves in a host environment,
possibly mutating during the replication and possibly carrying a payload. These
viruses have been modelled very early by F. Cohen [Coh86] using Turing ma-
chines, and then by Adleman [Adl88] using recursive functions. Lately, Fil-
iol [Fil05] and Bonfante, Kaczmarek and Marion [BKM05, BKM07] have pro-
posed a new formalization of computer viruses which encompasses any previous

∗also École Supérieure et d’Application des Transmissions, Rennes, France.

1

approach and allows a classification where the existence of each class relies on
a variant of Kleene’s recursion theorem [Kle38].

The major stake in detecting viruses is virus mutation. Simple viruses are
detected by pattern-matching. However, some viruses mutate their code along
any replication: polymorphic viruses encrypt their code and mutate the decryp-
tion function only, whereas metamorphic viruses mutate the whole code. Thus
simple polymorphic viruses always replicate using the same code: their muta-
tion function is fixed. Metamorphic viruses however mutate their code and thus
are able to mutation their mutation function.

In this paper, starting from the work of Bonfante & al, we adopt a more
practical approach by considering directly in our formalism these mutation func-
tions. However, rather than limiting ourselves to one mutation function, we
hypothetically consider the case of mutation at any depth. We study this for-
malism according to two approaches, one being behavioural, which corresponds
to Bonfante & al’s work, the other one being syntactic. After formalizing these
approaches, we consider the case of infinite depth of mutation and conclude with
the problem of viability of the replication: how do we ensure that an infected
program continues replication. This formalism is finally illustrated by the case
of combined viruses, which are multi-part viruses.

Poly/metamorphic viruses can also be modelled using formal grammars [Fil07].
Metamorphic viruses are in particular modelled by grammars operating on other
grammars: the parallel with recursive functions seen as integers operating on
integers is straightforward. Thus we investigate in the end a recursion approach
of the theory of formal grammars.

2 Viruses in the recursion theory

2.1 Notations

In the recursion theory, programs are represented by integers (using Gödel’s
numbering). For a given program p ∈ N, ϕp is the semi-recursive function
computed by p. Encoding of tuples of integers into integers is denoted by 〈· · · 〉.
When unambiguous, brackets may be omitted.

2.2 Recursion theorems

Self-reproduction of programs relies on two fundamental theorems, established
by Kleene [Kle38]:

Theorem 1 (Iteration theorem). There exists a semi-recursive function S :
N× N→ N which verifies:

For any program p, for any integer x, the program S(p, x) verifies:

∀y ∈ N, ϕS(p,x)(y) = ϕp(x, y)

S(p, x) is said to specialize program p on input x.

2

S is called the iteration function or the s-m-n function.

Theorem 2 (Recursion theorem). For any recursive function f , there exists a
program e such that:

∀x ∈ N, ϕe(x) = f(e, x)

This theorem proves the existence of self-reproducing programs. For in-
stance, Quine programs1 merely correspond to the function: f(p, x) = p.

Subsequently, Smullyan extended the recursion theorem to two recursive
functions [Smu93]:

Theorem 3 (Double recursion theorem). For any recursive functions f and g,
there are programs e1 and e2 such that:

∀x, ϕe1
(x) = f(e1, e2, x)

ϕe2
(x) = g(e1, e2, x)

These theorems, along with their variants, provide a basis to Bonfante &
al’s formalism, as detailed in the next section.

2.3 Current formalism

Bonfante, Kaczmarek and Marion defined a virus with respect to a semi-recursive
function B, which is called propagation function [BKM07]. This function de-
scribes how a virus can infect (insert itself into) a program. We here recall the
different classes of viruses they defined and their associated results.

Definition 1 (Virus). A program v is a virus wrt a semi-recursive function B
iff:

∀p, ∀x, ϕv(p, x) = ϕB(v,p)(x)

Existence of such viruses comes from a simple application of Kleene’s recur-
sion theorem. Since the proof of this theorem is constructive, a virus can be
constructed for any propagation function [BKM07].

Moreover, Bonfante & al proved that this generic definition encompasses any
previous definition of viruses by Cohen [Coh86], Adleman [Adl88] and Zuo and
Zhou [ZZ04].

2.3.1 Blueprint viruses

A blueprint virus [BKM07] is defined wrt a semi-recursive function g which
specifies the behaviour of the virus in an environment. Such viruses simply
duplicate their code when replicating.

Definition 2 (Blueprint virus). A program p is a blueprint virus wrt a semi-
recursive function g iff:

1A Quine program is a program that outputs its own code.

3

• v is a virus wrt some propagation function.

• ∀p, x, ϕv(p, x) = g(v, p, x)

Definition 3 (Distribution engine). A semi-recursive function dv is a distribu-
tion engine iff there exists a fixed propagation function B such that, for any i,
dv(i) is a virus wrt B.

Bonfante & al. show that there exists a blueprint distribution engine which
yields a blueprint virus for any semi-recursive function g and wrt a fixed prop-
agation function, which happens to be the iteration function S.

In order to allow the mutation of blueprint viruses during replication, evolv-
ing blueprint viruses are defined:

Definition 4 (Evolving blueprint virus). A program dv is a distribution of
evolving blueprint viruses wrt a semi-recursive function g iff:

• dv is a distribution engine.

• ∀i, p, x, ϕdv(i)(p, x) = g(dv, i, p, x)

The existence of such viruses relies on a parameterized variant of Kleene’s
recursion theorem.

2.3.2 Smith viruses

Evolving blueprint viruses are defined wrt a fixed propagation function. We
now define smith viruses wrt a specification function which depends on their
propagation function. Thus a smith virus corresponds to the couple of the virus
and its propagation function:

Definition 5 (Smith virus). Two programs v and B are a smith virus iff:

• v is a virus wrt B

• ∀p, x, ϕv(p, x) = g(B, v, p, x)

Existence of smith viruses relies on the double recursion theorem (theo-
rem 3).

Definition 6 (Virus distribution). A virus distribution is a pair (dv, dB) such
that for any i,ϕdv

(i) is a virus wrt ϕdB
(i).

Again, as for blueprint distribution engines, there exist smith virus distri-
butions which are virus distributions operating on specification functions and
yielding smith viruses wrt these specification functions.

Finally, the class of smith distributions is defined by the viruses which can
mutate their code along with their propagation function (metamorphic viruses):

Definition 7 (Smith distribution). Two programs dv and dB are a smith dis-
tribution wrt a semi-recursive function g iff:

4

• (dv, dB) is virus distribution.

• ∀i, p, x, ϕϕdv (i)(p, x) = g(dB, dv, i, p, x)

Existence of such viruses relies on a parameterized version of the double-
recursion theorem.

3 Recursion and vertical mutation

3.1 Vertical mutation chains

First, let’s consider the seeming equivalence between blueprint viruses and smith
distributions. A blueprint virus (along with its propagation function) can be
seen as a smith distribution, with constant virus distribution. Same goes for
evolving blueprint viruses. Conversely, a smith distribution can be seen as a
distribution of evolving blueprint viruses. Let (dv, dB) be a smith distribution
wrt a specification function g: each virus generated by dv is a virus wrt its own
propagation function. However, if we consider the semi-recursive function g′

defined by the specialization of g for dB (g′ = S(g, dB)), then dv is an evolving
blueprint virus distribution wrt g′ and the propagation function S (iteration
function). Thus the classes of evolving blueprint viruses and of viruses generated
by smith distributions are formally identical.

Moreover, the proposed formalism only considers two levels of mutation: a
given virus can mutate its code and its propagation function. We thus extend
this formalism to model any depth of mutation. This mutation is vertical, as
opposed with horizontal mutation which occurs on a given depth of mutation
between different virus generations.

Let’s call mutation function at level n the function that models the mutation
of the n − 1-mutation function, given an environment and mutation functions
at lower levels. At level 0, the mutation function yields the infected program
when given as input the virus, a target program and an environment. These
functions will be formally defined later.

We are also interested in the number of mutation levels from which the
mutation functions can be considered fixed and we will more particularly study
the case of infinite (vertical) mutation chains, as well as the notion of viable
replication (i.e. an infected program can still effectively replicate).

From a syntactic perspective, let’s now suppose that a virus has no access
to its propagation function: then considering this propagation function isn’t
justified in a sense and we could consider that this propagation function is the
iteration function. So the number of mutation levels is motivated by the actual
ability to extract the mutation function on any of these levels. Similarly viruses
that mutate their code in a fixed way can actually be considered as strictly
mutating their mutation function. For instance, consider a virus v0 which yields
its own code (using a self reference provided by the environment) plus a space,
and a virus v1 which is a variant of a Quine program (a program that outputs

5

its own code) modified in such a way that it appends a space at the end of its
code. v0 and v1 have then the same behaviour when replicating, but v0 has
a fixed mutation function whereas v1 has a variable mutation function since it
actually depends on the current virus code.

3.2 Notations

Let v be a given virus, p a program to infect and x an environment. In the
following, when program p and environment x are unambiguous, we will denote
by v′ the result of infection of program p by virus v in environment x (i.e. the
resulting infected program).

We recursively define the mutation functions of the virus v by:

µ0,v(v, p, x) = v′

∀i, µi,v(µi−1,v, · · · , µ0,v, p, x) = µi−1,v′

For sake of clarity, we may denote by φv the ground level mutation function
and by ψv the level 1 mutation function.

3.3 Behavioural and syntactic equations

The following results respond to two of the previous questions. When can we
consider that a mutation function is fixed? And, supposing we can consider that
a mutation function is fixed, on what basis should we actually consider that it
is not? The first question will explain the prior considerations on evolving
blueprint viruses and smith distributions, while the second question will make
more explicit the reasons why in some cases it remains interesting to consider
the behaviour of mutation functions. Having answered these questions, we can
formalize in more details the mutation on any level.

Mutation functions can be studied from two approaches: a behavioural one
and a syntactic one. The behavioural approach corresponds to the one adopted
by Bonfante & al.

Lemma 1. Let n be a given depth. If there exists a recursive function gn−1

such that:
∀v, gn−1(v) = µn−1,v(µn−2,v, · · · , µ0,v, v)

Then:

1. There exists a fixed mutation function µn such that, for any virus v (usu-
ally of a given strain), its mutation function µn−1,v mutates according to
µn.

2. Any deeper mutation function is fixed, being equal to the identity.

Proof. µn,v verifies:

∀v, p, x µn,v(µn−1,v, · · · , µ0,v, v, p, x) = µn−1,µ0,v(v,p,x) = µn−1,v′

6

The new mutation function must be valid wrt the infected form of the virus,
v′, which is expressed by:

∀v, p, x

µn(µn−1,v, · · · , µ0,v, v, p, x)(µn−2,v′ , · · · , µ0,v′ , v′)

= µn−1,v′(µn−2,v′ , · · · , µ0,v′ , v′)

= gn−1(µ0,v(v, p, x))

Since the constraints on µn are local (for a given v, µn must yield a function
that is valid at least on the v′ specific input), taking µn(µn−1,v, · · · , µ0,v, v, p, x) =
µn−2,w, · · · , µ0,w, w 7→ gn−1(µ0,v(v, p, x)) ends the proof.

This lemma allows us to consider relations that characterize the local be-
haviour of a mutation function, that is equations expressing that a given function
locally behaves as the considered mutation function. If such a characterization
exists, then it is represented by the function gn−1. For instance, in the case of
the ground level mutation function φv, we can characterize this function by the
relation: φv(v) = π1 ◦ v, which corresponds to the function g0 = v 7→ π1 ◦ v
(where π1 corresponds to the projection on the first component, assuming that
this component contains the infected program). Then lemma 1 tells us that
the first level mutation function ψv can be considered fixed. This result has a
local extent, that is wrt the propagation. If for instance we are also able to
characterize the result of the mutation function ψv with respect to a virus v,
then the previous result would be discarded. Yet it remains locally valid, which
amounts to the following consistency property:

∀v, p, x, g1(v)(p, x)(v
′) = g0(v

′)

Thus, on a strictly functional perspective, we can consider a single level of
mutation, as deeper mutation functions can be approximated. Nevertheless, in
general, it makes sense to consider the mutation of φ, since g0 is defined by:
g0 = v 7→ π1 ◦ v.

As was previously explained, we also want to consider the case of the mu-
tation functions being explicitly and syntactically enclosed into (and thus ex-
tractable from) the virus. Then we would like to relate both perspectives and
make them compatible with each other. This second case leads to the following
lemma (derived from lemma 1):

Lemma 2. Let n be a given depth. If there exist two recursive functions h0 and
hn−1 such that:

∀v, h0(v) = µ0,v and hn−1(v) = µn−1,v

Then:

1. There exists a fixed mutation function µn such that, for any virus v (usu-
ally of a given strain), its mutation function µn−1,v mutates according to
µn.

7

2. Any deeper mutation function is fixed, being equal to the identity.

Proof. Simply define µn as:

∀v, p, x µn(µn−1,v, · · · , µ0,v, v, p, x) = hn−1(h0(v)(v, p, x))

Thus functions hi are similar to functions gi but operate at a deeper level
and no longer on a local scale. Rather than characterizing the behaviour of
mutation functions wrt the behaviour of the virus, they characterize the fact
that mutation functions can be syntactically and globally extracted from the
virus. This is the case for instance of viruses where the mutation grammars
of level 1 and possibly deeper are directly encoded into the data of the virus,
allowing us to define h0, h1, etc. Thus, for a given virus strain, there is no limit
to the depth of mutation we should consider, since any mutation function at
any level could be hard-coded into the virus.

Both perspectives yield consistent equations.
Given the recursive functions gi, we get the following behavioural equations:

∀p, x µi,v(µi−1,v, · · · , µ0,v, v, p, x) = gi(v)(p, x)

Also, given the recursive functions hi, we get the following syntactic equa-
tions:

∀p, x µi,v(µi−1,v, · · · , µ0,v, v, p, x) = hi(v)(µi−1,v , · · · , µ0,v, v, p, x)

We finally redefine2 our original equation on v, for a given depth n− 1:

∀p, x v(p, x) = f(µ0,v, · · · , µn−1,v, v, p, x)

Then application of the (n + 1)-ary recursion theorem (see appendix B.1)
to these equations, in any perspective, entails the existence of v and of such
mutation functions.

Thus the first perspective entails the existence of the mutation functions
but at a limited level as it is related to the characterization of the correspond-
ing mutation functions. Deeper mutation functions must be approximated by
fixed ones. And the second perspective also entails existence of the mutation
functions, this time at any level – as long as the corresponding mutation func-
tion can be extracted from the virus – but then there is no proof that the
mutation functions are locally compatible with the actual ones. Thus, to make
both perspectives compatible with each other, we simply add the following local

2Note that this equation is furthermore justified by the fact that existence of these functions
gi or hi relies precisely on the ability of the virus to be able to access and alter its mutations
functions, thereby justifying the dependency of f on those.

8

constraints on the hi functions:

h0(v)(v) = g0(v)

= π1 ◦ v

∀p, x, hi(v)(µi−1,v , · · · , µ0,v, v, p, x) = µi−1,v′

= hi−1(h0(v)(v, p, x))

These constraints are common sense as the hi functions could return any-
thing unrelated to the mutation functions. Supposing the ground level mutation
grammar is encoded into the virus, then this constraint simply requires that the
grammar returned by h0 is the grammar being actually used to mutate the
virus.

The original propagation function concept was thus extended by a more gen-
eral consideration of mutation functions at any level, whereas the requirement
of a correlation between a virus and its propagation function, as expressed in
the original definition3, is now an intuitive formulation of the characterization
of a mutation function with respect to a virus. The latter approach also al-
lows to directly infer these mutation functions from the virus. Although that
inference is easily understood in the case of the ground level mutation function
φ, as it can be computed directly from the execution of a virus in a controlled
environment, it mostly depends on the virus internal (programming) structure
for deeper levels.

These results, that require an analysis of viruses from a more syntactic (im-
plementation related) perspective, motivate their study from a grammar per-
spective, though some concepts are still easier to comprehend from the recursion
theory perspective.

3.4 Infinite Vertical Mutation Chains

Finally, we might want to consider the case of an infinite vertical mutation
chain – i.e. in the mutation functions. As was shown previously, no limit can
be enforced on the depth of mutation. However, apart from the practice where
mutations are usually limited to the first two levels, the case of an infinite set
of mutations in the mutation functions is interesting to consider, with regards
to its consistence as well as its theoretical basis. One can actually show that,
using the previous equations and a countable version of the recursion theorem
(see appendix B.2), we are able generalize the previous results to any number
of mutation functions. Indeed, this theorem entails the existence of a countable
sequence of mutation functions that follow the previous specifications.

Thus, although the previous results were corroborated by the existence of
actual implementations and thereby provided a theoretical background to these
ones, this precise result actually shows that, even though there is currently no
implementation of a virus with an infinite vertical mutation chain, such viruses
theoretically do exist. Their practical existence is an open problem.

3namely: ∀p, x, v(p, x) = B(v, p)(x)

9

Also, when considering these mutation functions on a vertical scale, one
could wonder if this does not actually correspond to a recursion structure, on
a higher abstraction level. Indeed, for any finite number of mutation functions,
the multary recursion theorem is derived from the basic recursion theorem and
remains on an horizontal scale. Looking at the countable recursion theorem
and its proof, one can actually see that it precisely corresponds to moving to a
1-higher abstraction level: the proof considers semi-recursive functions F and
E that operate directly on the space of mutation functions. Then the recursion
theorem is applied in this dimension. Thus the basic recursion theorem ma-
nipulates functions, while the countable recursion theorem manipulates sets of
functions, and one could even go further in the abstraction levels.

And necessarily, the previous remarks raise the question of a new recursion
level that would operate directly on the scale of those F and E functions. This
has not been investigated in this article.

3.5 Viable replication

To conclude with this formalism, we consider the problem of viable replication:
how to make sure that the mutated form of a virus will continue replication.
This is the very basis of virus theory. The case of basic viruses that simply
replicate by copying themselves is straightforward. However mutating viruses
do not anymore verify the equations that gave birth to their strains. Though
this is not explicitly mentioned in Bonfante & al.’s article [BKM07], they bring
an answer for the case n < 2 with the evolving blueprint viruses and the smith
distributions. We merely generalize their result to the previous formalism, for
any depth of mutation, including infinite depth.

Since the replication is linear, and rather than adding extra-requirements,
Bonfante & al. index the viruses by a parameter i: thus all mutated forms of
a virus are gathered into a so-called distribution engine, as explained in sec-
tion 2.3. Then the recursion theorem is applied on this distribution engine
rather than on a given virus. In a sense, this is an application of the countable
recursion theorem to the countable set of all mutated forms of the virus. Such a
distribution engine can be generalized to take into account any depth of muta-
tion. Let’s denote by dv the distribution engine of v and by dj

µ the distribution
engine of the mutation function µj,∗: dj

µ(i) ≡ µj,dv(i).
Then the equations these distributions must verify are the following:

∀p, x dv(i, p, x) = f(d0
µ, · · · , d

n−1
µ , dv, i, p, x)

∀p, x d0
µ(dv, i, p, x) = f0(d

0
µ, · · · , d

n−1
µ , dv, i, p, x)

· · ·

∀p, x dn−1
µ (dn−2

µ , · · · , d0
µ, dv, i, p, x) = fn−1(d

0
µ, · · · , d

n−1
µ , dv, i, p, x)

where the functions fi are functions gi or hi from lemmas 1 and 2 (be-
havioural and syntactic functions).

10

Thus the (n + 1)-ary recursion theorem still applies. The same goes for an
infinite depth of mutation.

3.6 Application: combined viruses

Combined viruses, also called k-ary viruses [Fil07], are a particular class of
viruses that are composed of several parts, which operate together, in a sequen-
tial or parallel way. Filiol decomposed these viruses into several classes [Fil07],
depending on whether they operate independently (without any references to
each other) or not. Class A contains strongly dependent codes, class B contains
independent codes and class C contains weakly dependent codes (one-way de-
pendency). Such viruses, whatever their class, are not compatible at first sight
with our previous model.

Each virus part vi might behave according to its own mutation function
fi. Thus each part might have its own independent horizontal and vertical
mutation chain. Fully independent combined viruses are the simplest case:
they correspond to the action of independent viruses. We will consider the two
following cases:

3.6.1 Class B viruses – independent parts

First we shall note that a combined virus can be made of k parts and repli-
cate into k′ parts, which prevents us from considering mutation functions on
the scale of each part. In the present case, the fi functions have two arguments:
the part vi and the environment p, x that we will denote by x for sake of sim-
plicity. However they must be considered as taking part to interactions with
the other parts: depending on the virus, a part may be waiting for another part
to complete a task or to answer a query. Consequently, we will consider the
functions f∗

i that take a third and fourth argument, namely the execution state
(subsequently denoted by j), which allows to resume function fi at any stage
of its execution, and a number of execution steps (subsequently denoted by n)
to perform before being suspended. We could consider this execution state to
be the instruction pointer eip (along with viral data contained in other regis-
ters and the memory). Repeated application of Kleene’s recursion theorem now
yields:

∃v∗1 , ∀j, n, x, v∗1(j, n, x) = f∗

1 (v∗1 , j, n, x) (1a)

· · ·

∃v∗k, ∀j, n, x, v∗k(j, n, x) = f∗

k (v∗k, j, n, x) (1k)

Then the viral part vi is simply defined by: ∀x, vi(x) = v∗i (0,∞, x), where 0
represents the initial execution state.

Execution of the combined virus v = {v1, · · · , vk} on an environment x can
be represented by an execution sequence: E(v, x) = N 7→ Steps, where Steps

11

is defined by: Steps = {〈i, j, n, x′〉 |i ∈ [1, · · · , k] , j, n ∈ N, x′ ∈ Env}. i is the
index of the part to be executed, j is the execution state it will start at, n is
the number of execution steps to perform, and x′ is the environment it will be
executed into. We do not detail the consistence properties like js being required
to match the last je of the current part (or 0 on the first execution) and similar
sequence properties on x′.

Let’s denote by v(x) the result of the execution of v on environment x and
suppose that (where of course x0 = x):

E(v, x) = (〈i0, j0, n0, x0〉, 〈i1, j1, n1, x1〉, · · · , 〈im, jm, nm, xm〉)

Then:

v(x) = v∗im
(jm, nm, v

∗

im−1
(jm−1, nm−1, · · · v

∗

i0
(j0, n0, x) · · ·))

The miscellaneous interruptions are either the result of manual ones or the
result of interactions with the environment like waiting for resources or for a
response to a query, etc.

Finally, we represent this global interaction process as the result of an in-
teraction function f which, given the k viral parts, represents the result of the
execution of v on an environment x. Since no physical entity is associated to
the global virus v, this function f can only consist of executing a part, inter-
rupting it, executing another one, interrupting it, resuming the first one, and
so on. Thus this function f is merely the execution function associated to the
execution sequence of the virus. We suppose that this execution sequence is
normalized in the sense that a viral part is executed until it is automatically
interrupted because of a resource need. We express the viral property of v by:

v(x) = f(v1, · · · , vk, x) (2)

Since f consists of the action of a given part, followed by the action of
another part and so on, we have:

f(v1, · · · , vk, x) = f∗

im
(v∗im

, jm, nm, f
∗

im−1
(v∗im−1

, jm−1, nm−1, · · · f
∗

i0
(v∗i0 , j0, n0, x))

Using the previous equations 1a-1k, one can then easily verify that equation 2
is verified. Note that this result directly comes from the very restrictive design
of f , which models the behaviour of v.

Other abstractions have also been studied that try to reconcile the theo-
ries of recursive functions and of interaction [JFD07]. Although they would
be interesting to investigate with respect to our model, our current choice is
only motivated by the simplicity of the present abstraction with regards to our
problem.

Consideration of the mutation functions is a bit more tricky. First, we have
to review our definition of µ0,v ≡ φv. As told previously, in the general case,
the mutation function only makes sense on the scale of the whole virus. So if v

12

replicates into v′, we want: µ0,v(v, x) = v′, where v and v′ are actually multi-
part viruses. As for the case of simple viruses, v′ can be computed from the
execution of v. The number of parts depends on v and the environment only
(whether this number is randomly generated or not). Let κ denote the function
returning the new k′ from the current virus and the environment: κ(v, x) = |v′|.
Then, with the same simplification as in the previous sections (for common
viruses):

µ0,v(v, x) = 〈π1(v(x)), · · · , πκ(v,x)(v(x))〉

In other words: g0 = v 7→ x 7→ 〈π1(v(x)), · · · , πκ(v,x)(v(x))〉, where g0 is the
function defined in lemma 1.

Deeper mutation functions are unchanged, apart from the fact that their
argument v denotes the k parts of the virus.

Then equations 1a-1k must be adapted:

∃v∗1 , ∀j, n, x, v∗1(j, n, x) = f∗

1 (v∗1 , {µi,v}i, j, n, x) (3a)

· · ·

∃v∗k, ∀j, n, x, v∗k(j, n, x) = f∗

k (v∗k, {µi,v}i, j, n, x) (3k)

as well as equation 2:

v(x) = f(v1, · · · , vk, {µi,v}i, x) (4)

Thus, we’re back with a similar system as previously. Adding the equations
on the µi,v – using the gi or hi functions –, the polyadic recursion theorem
entails the existence of the v∗j and of the µi,v. Finally, using equations 3a-3k,
one can ensure that equation 4 is still verified.

3.6.2 Class A viruses – dependent parts

The case of dependent parts is very similar, in its formalization, to the inde-
pendent one. This merely amounts to adding a dependency of the fi (resp. f∗

i)
on all vi (resp. v∗i). Then, together with the equations on the mutation func-
tions µi,v, we can apply the polyadic recursion theorem, which entails existence
of these functions.

The final equation must take into account these new dependencies, in the
f∗

i expressions, but, as one can check, it remains verified.

Also, Filiol defined another class of combined viruses, namely the class C,
which corresponds to weakly dependent codes, where the dependency only exists
in one direction – v1 is aware of v2 but this is not true conversely. This class is a
specific case of dependent parts where the function fi (resp. f∗

i) does not depend
on the parts vj<i (resp. v∗j<i). In that particular case and when not considering
the mutation functions, Kleene’s recursion theorem can be repeatedly applied

13

k times – starting from the last part – in order to yield the existence of parts
vi, thanks to the special form of these equations:

∃v∗1 , ∀j, n, x, v∗1(j, n, x) = f∗

1 (v∗1 , · · · , v
∗

k, {µi,v}i, j, n, x)

· · ·

∃v∗k, ∀j, n, x, v∗k(j, n, x) = f∗

k (v∗k, {µi,v}i, j, n, x)

Theoretically speaking, class C viruses are thus, despite what we could have
thought, closer to class B viruses (independent parts) than to class A viruses.
This similarity actually motivated the choice of distinguishing into separate
classes weakly dependent codes from strongly dependent codes.

However this property is no longer verified when considering mutation func-
tions – as one would expect since these mutation functions strictly depend on
all parts.

Finally, a particular case of such dependent viruses consists of executing only
the first virus part v1, which will in turn execute the other parts when needed.
This is the behaviour of sequential class A combined viruses, which are, along
with class C viruses, the most common combined viruses. This case corresponds
to the following equation:

v(x) = f1(v1, · · · , vk, {µi,v}i, x)

which corresponds to a particular case of the execution sequence of v (and
hence of its execution function f).

Thus, this difference between class A (dependent parts) and class B viruses
(independent parts) results – when not considering the mutation functions – in
a unique application of the k-ary recursion theorem, for the first case, wrt to k
independent applications of the basic recursion theorem, for the second case. In
a sense, “viral dimensions” are preserved in the recursion theory.

4 Formal Grammars and Recursion

Viral mutation can be modelled by formal grammars, as detailed in [Fil07].
Syntactic polymorphism can consist in transforming groups of instructions in
other groups of instructions: detection of a mutated form of a virus then relies
on the complexity of the associated formal grammar. Functional polymorphism
can also be modelled by formal grammars, where the terminal symbols are
behaviours instead of instructions. More generally, metamorphic viruses trans-
form their code entirely. Thus, a metamorphic virus can be represented by
a grammar which operates on other grammars. Filiol proposes the following
definition [Fil07]:

Definition 8 (Metamorphic virus). A metamorphic virus is represented by a
grammar G = (N,T, S,R) where T is a set of grammars (over programs) and
S is the initial grammar (first generation of the virus). Each generation of the
virus corresponds to a word of a grammar G′ such that G′ ∈ L(G).

14

Thus, when the form vi of a metamorphic virus represented by a grammar
G replicates into a form vi+1, we have:

vi ⇒G vi+1 and vi ⇒vi
vi+1

This definition involves that a grammar Gi associated to generation i must
behave locally (on Gi) as the grammar G, since G represents the global be-
haviour of the virus v for any generation. Thus we perceive a first notion
of recursion. Also, grammars that operate on grammars are a second, more
straightforward, notion of recursion: in the recursion theory, recursive functions
can indeed be seen as integers operating on integers.

Also, the equivalence between formal grammars and Turing machines gives
sense to the study of recursion inside the theory of formal grammars. We first
consider the example of Quine grammars which illustrates even more the interest
of considering formal grammars from a recursive point of view.

4.1 Quine grammars

Quine programs are programs that exactly output their own source code. For
instance, a basic trick is to define a function that outputs a string which contains
a recursive reference to itself: the program calls this function with its code,
replacing this very call with a recursive reference.

void print (char *s) {

... /* this outputs s and replaces any occurence of %% by s.

}

void main () {

print ("void print (char *s) {"

...

"}"

"void main () {"

" print (\"%%\");"

"}");

}

Thus we can also imagine formal grammars that output – in an encoded way
– their own code – meaning an unambiguous encoding of their set of rewriting
rules. Such Quine grammars can follow the same algorithmic principles as for
Quine programs. We give a constructive example of such a grammar in ap-
pendix A.

4.2 Recursion theorems

Existence of Quine programs comes from Kleene’s recursion theorem (theo-
rem 2), applied to function f : x, y 7→ x, which entails the existence of a program
p such that:

∀x, ϕp(x) = p

15

Thus it seems legitimate to define a recursion theorem for formal grammars,
given the equivalence between type 0 grammars (unrestricted grammars) and
recursively enumerable languages (recognizable by Turing machines).

Theorem 4 (First Recursion Theorem). Given a formal grammar G = (∆, N, T),
there exists a grammar G′ = (∆′, N, T) such that:

∀X ∈ (N ∪ T)∗, ∃α ∈ T ∗ ∪∞, X
G′

−→∗ α ∗ G
←− 〈G′, X〉

X
G
−→∗ ∞ means that X cannot rewrite into any terminal sequence (either

because of an infinite sequence of rewritings, denoting a loop in a program, or
because no rewriting rule can be applied). 〈G′, x〉 denotes the encoded pair of
a representation [G′] of G′ and x (using some appropriate encoding).

A second recursion theorem can also be inferred:

Theorem 5 (Second Recursion Theorem). Given a formal grammar G, there
exists a grammar G′ such that:

∀x, x ∈ L(G′) ⇐⇒ 〈G′, x〉 ∈ L(G)

Both theorems are direct formulations of Kleene’s recursion theorem. The
first theorem transforms a semi-recursive function into a grammar which rewrites
an input into an output and conversely. The second theorem transforms a semi-
recursive function into a grammar recognizing the words on which this function
is defined and conversely (since any recursively enumerable language can be
recognized by a semi-recursive function).

Then, the existence of Quine grammars comes from theorem 4 applied to
the grammar G with the following rule:

〈X,Y 〉 ⇒ X

We get:

∃G′, ∀X, X
G′

−→∗ [G′]

Theorem 5 could also have been used with the grammar G recognizing all
couples 〈w,w〉. Thus G′ recognizes only one word, which is the representation
of itself [G′].

4.3 Iteration function

The iteration function, also called S-m-n function and denoted by S, is easily
transposable to formal grammars. Consider a grammar G, that takes an input
〈x, y〉. Specialization of G for input x can be simply defined by the grammar
G′ that first transforms y in 〈x, y〉 and then uses the rules of G. Note that this
is similar to the common programming way which would specialize f(x, y) for
its input x by defining the function: g(y) = f(x, y). Thus this formal grammars
perspective allows us to match the theory with its algorithmic counterpart.

16

Theorem 6 (Iteration theorem). There exists a formal grammar S which ver-
ifies:

For any grammar G, for any word X ∈ (N ∪ T)∗, S transforms 〈G,X〉 into
the representation [G′] of a grammar G′ such that:

∀Y ∈ (N ∪ T)∗, ∃α ∈ T ∗ ∪∞, 〈X,Y 〉
G
−→∗ α ∗ G′

←− Y

This section has highlighted the analogy between recursive functions and
formal grammars and built a bridge between abstract virology studied from
the somehow semantic point of view based on the formal grammars theory
and abstract virology studied from the functional point of view based on the
recursion theory.

5 Discussion

Studying viruses in the frameworks of recursion theory and of formal grammars
allows to identify more precisely mechanisms on which virus reproduction relies
or mechanisms that it involves. While Bonfante & al. were more interested in
the replication itself, we were concerned with mutation aspects that occur during
this replication. Knowing these mechanisms is then helpful in the following
scopes:

• Understanding the underlying stakes and logic in viral detection and pro-
tection. This is a necessary preliminary step to the next application:

• Defining new detection models in which those mechanisms are controlled
and/or restricted, and studying their viability, the involved limitations,
etc.

• And last but not least: identifying new threats. The recursion framework
is well studied and allows, as our results demonstrated it, to discover
viral behaviours that are valid from a theoretical perspective but have
no equivalent (yet) in the real world. Consider for instance the case of
infinite vertical mutation chains. Also, applying the current results to a
new compatible framework (like a network configuration, etc.) may also
appear to be useful in order to assess the security of this framework and
identify threats that could plague it in a near future.

Thus, though this study might seem a bit abstract with regard to the actual
antiviral defense, the theories of recursion and of formal grammars are very
powerful frameworks where viral techniques can be both modelled and studied.
Furthermore, studying viruses in such theories plays a key role in the necessary
proactive approach that aims to identify tomorrow’s evolution of today’s threats.

17

6 Conclusion

We have extended the relation between the recursion theory and the concept
of viral replication and mutation to any depth of mutation, showing by the
way the theoretical existence of viruses with an infinite vertical mutation. This
formalism considers a behaviour-based approach, as was done in Bonfante &
al seminal work, along with a syntax-based approach which allows for more
practical considerations, namely accessing the mutation functions of a virus.
Also we introduced some basic notions of recursion in the theory of formal
grammars: the formalization of metamorphic viruses by grammars operating
on other grammars makes this approach somehow promising. Future work will
investigate this new approach in regards of virus behaviour and virus detection.

We did not consider interactions in our formalism, although actual viruses
tend to use it more and more: the study of combined viruses also showed the
practical interest of considering such interactions. Some work has already been
done to address this need, like in [JFD07]. Future work will thus try to reconcile
this formalism with the theory of interactions.

References

[Adl88] Leonard M. Adleman. An abstract theory of computer viruses. In
Advances in Cryptology - CRYPTO’88, volume 403, pages 354 – 374.
Springer, 1988.

[BKM05] Guillaume Bonfante, Matthieu Kaczmarek, and Jean Yves Marion.
Toward an abstract computer virology. In Lecture Notes in Computer
Science, volume 3722, pages 579 – 593. Springer, October 2005.

[BKM07] Guillaume Bonfante, Matthieu Kaczmarek, and Jean Yves Marion. A
classification of viruses through recursion theorems. In International
Workshop on the Theory of Computer Viruses, May 2007.

[Coh86] Fred Cohen. Computer Viruses. PhD thesis, University of Southern
California, January 1986.

[Fil05] Éric Filiol. Computer viruses: from theory to applications. Springer
Verlag, 2005.

[Fil07] Éric Filiol. Advanced Viral Techniques. Springer-Verlag France, 2007.
An english translation is pending.

[JFD07] Grégoire Jacob, Éric Filiol, and Hervé Debar. Malwares as interactive
machines: A new framework for behavior modelling. In 2nd Workshop
on the Theory of Computer Viruses, 2007.

[Kle38] Stephen Cole Kleene. On notation for ordinal numbers. Journal of
Symbolic Logic, 3(4):150 – 155, December 1938.

18

[Smu93] Raymond Smullyan. Recursion Theory for Metamathematics. Oxford
University Press, 1993.

[ZZ04] Zhihong Zuo and Mingtian Zhou. Some further theoretical results
about computer viruses. The Computer Journal, 2004.

A Quine grammars

Consider the following example of a Quine program:

void print (char *s) {

... /* this outputs s and replaces any occurence of %% by s. */

}

void main () {

print ("void print (char *s) {"

...

"}"

"void main () {"

" print (\"%%\");"

"}");

}

A Quine grammar can now use the same principle. Let’s denote the initial
non terminal symbol by S. We want our grammar G to rewrite S in a represen-
tation of G. This representation is free and should allow encoding and decoding
of any grammar. We will use the following convenient representation:

• a sequence of rules δ1, · · · , δn is represented by [δ1]; [· · ·]; [δn], where [δ] is
the representation of the rule δ.

• a rule A⇒ B is represented by [A] : [B].

• a word X.W is represented by x.[W], where x is a terminal symbol asso-
ciated to X .

This representation actually needs a slight modification to build a Quine
grammar. Let’s consider a rule A.x⇒ B, where x must match any possible non
terminal symbol used by the representation of this rule. Then, we will have the
rule: A.a ⇒ B but we now need to represent a, say by a′. This requires the
rule A.a′ ⇒ B, A.a′′ ⇒ B and so on. To overcome this, we introduce terminal
symbols n, t, s for non terminal symbols, terminal symbols and special symbols
(like ; and :). Thus, we will have the following rules:

• A.a⇒ B, represented by na.ta : [B].

• A.n⇒ B, represented by na.tn : [B].

• A.t⇒ B, represented by na.tt : [B].

19

• A. :⇒ B, represented by na.s :: [B].

• A.s⇒ B, represented by na.ts : [B].

Such a representation allows unique encoding and decoding.
Since our grammar will work as defined by our example Quine program,

we define a print macro, represented by the non-terminal symbol P and the
special symbol � to denote the recursive reference. P must then replace this
reference by the original word, so we need to duplicate this word: P.a.b.�.c.�
is transformed in a.b.♦′.c.⋆.a.b.♦.c.� and finally in a.b.a.b.♦.c.c, with ♦ being
the terminal representation of �.

The following rules represent the print macro:

• Duplication rules:

– P ⇒⋆.P ′

– P ′.x ⇒≺ .x.x.P ′, foreach non terminal symbol x appearing in the
final representation of these rules.

– P ′.�⇒ �.

– P ′.�⇒≺ .♦′.♦.P ′.

– ⋆. ≺ .y ⇒ y.⋆ and x. ≺ .y ⇒≺ .y.x, foreach non terminal symbols
x and y appearing in the final representation of these rules.

• Substitution rules:

– x.⋆.y ⇒≺ .y.x.⋆.

– x.⋆.�⇒≺ .�.x.

– x. ≺ .y ⇒≺ .y.x.

– ♦′. ≺ .y ⇒ y.♦′.

– ♦′. ≺ .�⇒.

The final rule looks like: S ⇒ P. · · · .; .ns. : .np.�.s.�.�, where · · · contains
the linear representation of the print macro (previous rules). This grammar will
first rewrite S in P. · · · .; .ns. : .np.�.s�.�, then in · · · .; .ns. : .np.♦′.s.�.⋆. · · · .; .ns. :
.np.♦.s.�.� and finally in · · · .; .ns. : .np. · · · .; .ns. : .np.♦.s.�.s.�, which will
be interpreted as the P rules followed by S ⇒ P. · · · .; .S. : .P.⋆.s.�.�.

B Recursion Theorems

B.1 Polyadic (or n-ary) Recursion Theorem

We generalize Smullyan’s double recursion theorem to any number of recur-
sive functions. First it can be extended to any finite set of semi-computable
functions.

20

Theorem 7 (Polyadic Recursion Theorem). Let f1, . . . , fn be n semi-recursive
functions, where n ≥ 1. Then there exist n semi-recursive functions e1, . . . , en

such that:

∀x, e1(x) = f1(e1, · · · , en, x)

· · ·

en(x) = fn(e1, · · · , en, x)

Proof. Let p, q be two semi-computable functions: 〈p, q〉 denotes the function
that returns 〈p(x), q(x)〉 on an input x.

We will show this result for n = 3. The general case follows by an easy induc-
tion. Let f1, f2, f3 be three semi-computable functions, with inputs (p, q, r, x).
We define the semi-computable functions g1 and g2 by:

g1(p, 〈q, r〉, x) = f1(p, q, r, x)

g2(p, 〈q, r〉, x) = 〈f2(p, q, r, x), f3(p, q, r, x)〉

Then there exists e′1, e
′
2 such that: e′1(x) = g1(e

′
1, e

′
2, x) and e′2(x) = g2(e

′
1, e

′
2, x).

Finally we define e1, e2, e3 by: e1 = e′1, 〈e2, e3〉 = e′2.

Note that this proof uses Smullyan’s double recursion theorem though we
could have used Kleene’s recursion theorem by considering functions of N×N

n.

B.2 Countable recursion theorem

The polyadic recursion theorem is defined for finite cases but can be extended
to the countable case.

Theorem 8 (Countable Recursion Theorem). Let {fi} be a countable (recur-
sive) set of semi-recursive functions. Then there exists a countable set of semi-
recursive functions {ei}, accessible through a semi-recursive function E, such
that:

∀x, e1(x) = f1(E, x)

e2(x) = f2(E, x)

· · ·

Proof. Let F be the semi-recursive function such that: ∀i, F (i) = fi. Then the
existence of E, and hence of the corresponding ei’s, comes from the recursion
theorem applied to the function f = 〈i, x〉 7→ F (i)(E, x).

21

