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Abstract

This paper focuses on improving the stability as well as the approximation proper-
ties of Reduced Order Models (ROM) based on Proper Orthogonal Decomposition
(POD). The ROM is obtained by seeking a solution belonging to the POD sub-
space and that at the same time minimizes the Navier-Stokes residuals. We propose
a modified ROM that directly incorporates the pressure term in the model. The
ROM is then stabilized making use of a method based on the fine scale equations.
An improvement of the POD solution subspace is performed thanks to an hybrid
method that couples direct numerical simulations and reduced order model simu-
lations. The methods proposed are tested on the two-dimensional confined square
cylinder wake flow in laminar regime.

Key words: Proper Orthogonal Decomposition, Reduced Order Model,
Stabilization, Functional subspace improvement

1 INTRODUCTION

1.1 Reduced Order Models based on Proper Orthogonal Decomposition

These last decades, the conception and the optimization of the aerodynam-
ics/aeroacoustics of ground vehicles and airplanes has been pursued by numer-
ical simulation. The applications mainly concern unsteady turbulent flows that
develop at high Reynolds numbers. The numerical simulation of such flows,
as well as their control, requires massive computational resources. Indeed, af-
ter discretization of the governing equations, i.e. the Navier-Stokes equations
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in fluid mechanics context, one must then solve a system of equations whose
complexity algebraically grows with the number of degrees of freedom of the
system to be solved. Now, and despite of the considerable progress made in the
numerical field (power of the computers, new and more efficient algorithms), it
is still very difficult to solve such large problems for complex flows in real time,
that is, in fine, a major stake for industrials. To overcome this difficulty, it is
possible to determine a reduced order model of the flow dynamics keeping only
few adapted modes. The choice of these modes is not unique, and it strongly
depends on the characteristics of the flow that one wants to approximate, or
even might depend on some expected outputs (Goal-oriented models [1]). Sev-
eral methods are commonly used, among them Proper Orthogonal Decompo-
sition (POD) [2–4], balanced truncation [5–7], global eigenmodes [8], Galerkin
modes [9] etc. Due to the energetic optimality of its basis, the POD is chosen
in this study. By this technique it is possible to extract the dominant char-
acteristics (POD modes) of a given database, and the ROM is then obtained
thanks to a Galerkin projection of the governing equations onto these modes.
Although this method for reducing the order of a system can be very efficient
in some flow configurations, it also presents several drawbacks. Besides the
possible inherent lack of numerical stability of POD/Galerkin methods, even
for simple systems [10], the main shortcomings are the following:

• Since in most of the POD applications for incompressible flows the POD
ROM is built from a velocity database 1 it is necessary to model the pressure
term. Usually, in many closed flows, the contribution of the pressure term
formally drops out due to fortunate choices of boundary conditions in the
POD ROM. However, for convectively unstable shear layers, as the mixing
layer or the wake flow, it was proved in [11] that neglecting the pressure
term may lead to large amplitude errors in the Galerkin model. Therefore,
to accurately model such flows, the pressure term [11,12] must be modeled.
To overcome this difficulty, a pressure extended Reduced Order Model is
introduced in §3, so that the pressure term can be directly approximated
using the pressure POD mode.
• Due to the energetic optimality of the POD basis functions, few modes

are sufficient to give a good representation of the kinetic energy of the
flow 2 . For model reduction purpose, we only keep these few modes that
are associated to the large eddies of the flow (as the vortices of the Von
Kármán street that usually develop behind bluff bodies). But since the main
amount of viscous dissipation takes place in the small eddies represented by
basis functions that are not taken into account, the leading ROM is not
able to dissipate enough energy. It is then necessary to close the ROM
by modeling the interaction between the calculated modes and the non

1 In almost all experimental works the pressure field is unavailable.
2 This is true for 2-D periodic laminar flows, but thousands of POD modes could
be necessary to describe the fluctuation energy of a fully developed turbulent flow.
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Fig. 1. Flow configuration and vorticity snapshot at Re = 200.

resolved modes. This problem is similar to that of Large Eddy Simulation
(LES) [13] of turbulent flows. In this study, the ROM is closed using Navier-
Stokes equations residuals and exploiting ideas similar to Streamline Upwind
Petrov-Galerkin (SUPG) and Variational Multiscale (VMS) methods [14].
• Since POD basis functions are optimal to represent the main characteris-

tics included in the snapshot database of the flow configuration used to
build them, the same basis functions are a priori not optimal to efficiently
represent the main characteristics of other flow configurations. Indeed, for
flow control purpose, it was demonstrated [15–17] that POD basis functions
built from a flow database generated with a given set of control parameters
is not able to represent the main features of a flow generated with another
set of control parameters. To overcome this problem, we propose to derive
methods allowing to adapt the POD basis functions at low numerical costs.
This is the central question of §5.

1.2 Flow configuration

In this study the confined square cylinder wake flow (figure 1) is chosen as a
prototype of separated flow. This flow is interesting since it presents detach-
ments of the boundary layer, wake and vortices interactions with walls. The
Navier-Stokes equations, written in their dimensionless and conservative form,
write:

∂u

∂t
+ (u ·∇)u = −∇p +

1

Re
∆u, (1a)

∇ · u = 0, (1b)

where Re = U∞L/ν denotes the Reynolds number, with U∞ = u(0, H/2) the
maximal inflow velocity, L the lenght of the side of the square cylinder and ν
the kinematic visosity. In what follows, we consider Re = 100 and Re = 200,
that is to say, the laminar regime. Otherwise, the same parameters as those
introduced in [12] are used in this study, i.e. the blockage ratio β = L/H is
equal to 0.125 and the domain Ω is (0, 4H) × (0, H). The same numerical
method as that described in [12] is used. A vorticity representation of a flow
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snapshot is presented in figure 1 (dashed lines represent negative values). The
boundary layer detachment, the wake and the vortex interactions with top
and bottom walls are visible.

The paper is organized as follows. Section 2 presents the Proper Orthogonal
Decomposition (POD, §2.1) and the standard velocity POD/Galerkin Reduced
Order Model (POD ROM, §2.2) for incompressible flows. A pressure extended
reduced order model is introduced in section 3. Different stabilization methods
of the POD ROM are presented in section 4. A residuals based stabilization
method (§4.1), and Streamline Upwind Petrov-Galerkin (SUPG) as well as
the Variational Multiscale (VMS) methods (§4.2) are introduced. Section 5
presents methods to adapt the functional subspace when input system pa-
rameters change. A Krylov like method (§5.1) and an hybrid DNS/POD ROM
method (§5.2) are presented. Finally, section 6 is dedicated to conclusions.

2 Standard reduced order model based on proper orthogonal de-
composition

2.1 Proper Orthogonal Decomposition

The Proper Orthogonal Decomposition (POD) was first introduced in tur-
bulence by Lumley [18] in 1967 as an unbiased definition of the coherent
structures widely known to exist in a turbulent flow. A comprehensive review
of the POD can be found in Refs [2–4]. The POD, also known as Karhunen-
Loève decomposition, principal component analysis or empirical eigenfunc-
tions method, consists of looking for the deterministic function Φ(x) that is
most similar in an average sense to the realizations U(x, t). For instance, the
realizations U(x, t) can be velocity fields, pressure fields, temperature fields,
etc. Since in this study the data are issued from numerical simulations, the
method to compute POD modes introduced by Sirovich [3] is adopted (see [4]
for justifications). In this case, the constrained optimization problem reduces
to the following Fredholm integral eigenvalue problem:

∫ T

0
C(t, t′)an(t′) dt′ = λnan(t) (2)

where the temporal correlation tensor C(t, t′) is defined by:

C(t, t′) =
1

T
(U(x, t),U(x, t′))Ω. (3)
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The inner product (., .)Ω between two fields U and V is computed as:

(U ,V )Ω =
∫

Ω
U · V dx =

∫

Ω

nc∑

i=1

U iV i dx,

where U i represents the ith component of the vector U with dimension nc.

The eigenvalues λn (n = 1, 2, . . . ) determined in (2) are all real and positive
and form a decreasing and convergent series. Each eigenvalue represents the
contribution of the corresponding mode Φn to the information content of the
original data. Note that if U are the velocity fields, the information content
reduces to the kinetic energy.

In Eq. (2), an are the time-dependent POD eigenfunctions of order n. These
modes form an orthogonal set, satisfying the condition:

1

T

∫ T

0
an(t)am(t) dt = λnδnm. (4)

The associated eigenvectors Φn (also called empirical eigenfunctions) form a
complete orthogonal set and are normalized, so that they verify (Φn,Φm)Ω =
δnm.

The spatial basis functions Φi
n can then be calculated from the realizations U i

and the coefficients an with:

Φi
n(x) =

1

T λn

∫ T

0
U i(x, t)an(t) dt. (5)

Since the POD eigenfunctions can be represented as linear combinations of the
realizations, they inherit all the properties of the original data. For instance,
the eigenfunctions are divergence free for incompressible flows. Moreover, the
eigenfunctions verify the boundary conditions of the numerical simulation used
to determine the flow realizations.

The set of POD modes {Φn}
NPOD

n=1 is complete in the sense that any realization
U(x, t) contained in the original data set, can be expanded with arbitrary
accuracy (in function of NPOD ≥ 1) in the eigenfunctions as

U(x, t) ≃ Û [1,··· ,NPOD](x, t) =
NPOD∑

n=1

an(t)Φn(x). (6)

For later convenience, the estimation Û [1,··· ,NPOD] ofU is introduced, where the
brackets contain the indices of all employed modes. Hereafter, we consider that
the ensemble used to determine the POD modes consists ofNs flow realizations
(called time snapshots) U(x, ti), x ∈ Ω, taken at ti ∈ [0, T ] , i = 1, · · · , Nt.
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The energetic optimality of the POD basis functions suggests that only a very
small number of POD modes may be necessary to describe efficiently any flow
realizations of the input data i.e. Nr ≪ Ns. In practice, Nr is usually deter-
mined as the smallest integer M such that the Relative Information Content,
RIC(M) =

∑M
i=1 λi/

∑Ns

i=1 λi, is greater than a predefined percentage of energy,
δ. So that NPOD = Nr, and the approximation (6) becomes

U(x, t) ≃ Û [1,··· ,Nr](x, t) =
Nr∑

n=1

an(t)Φn(x). (7)

2.2 Classical reduced order model and drawbacks

To derive a classical reduced order model only the velocity fields are used, so
that U(x, t) ≡ u(x, t). Thus, decomposition (7) becomes:

u(x, t) ≃
Nr∑

n=1

an(t)φn(x), (8)

where φn denote the velocity POD basis functions. A low dimensional dy-
namical system is obtained via a Galerkin projection of the Navier-Stokes
equations (1). The Galerkin projection formally writes:

(
φi,

∂u

∂t
+ (u · ∇)u

)

Ω

= − (φi, ∇p)Ω +
(
φi,

1

Re
∆u

)

Ω
. (9)

Note that since the pressure term (φi, ∇p)Ω can not be evaluated using the
standard velocity POD formulation, it is usually neglected (see discussion be-
low). After some algebraic manipulations using decomposition (8), the reduced
order model writes (see [19] for more details):

dai(t)

dt
=Ai +

Nr∑

j=1

Bij aj(t) +
Nr∑

j=1

Nr∑

k=1

Cijk aj(t)ak(t) i = 1, · · · , Nr. (10a)

with initial conditions

ai(0) = (u(x, 0), φi(x))Ω i = 1, · · · , Nr. (10b)

It is well known that when equations (10) are integrated in time a gradual
drifting from the full-state solution to another erroneous state may arise after
several vortex shedding periods, precluding a correct description of the long-
term dynamics [20]. Even worse, in some cases, the short-term dynamics of
the POD ROM may not be sufficiently accurate to be used as a surrogate
model of the original high-fidelity model. Essentially, three sources of numer-
ical errors can be identified. As it was already mentioned, the POD/Galerkin
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method can first present a lack of inherent numerical stability even for very
simple problems [10]. Secondly, the pressure term is often neglected in the
POD ROM. It is possible to model this term, but to avoid this modelisa-
tion, a pressure extended Reduced Order Model is introduced in §3. The third
source of instability is the truncation involved in the POD-Galerkin approach.
Indeed, since only the most energetic POD modes are kept, the POD ROM
is not sufficiently dissipative to prevent erroneous time amplifications of its
solution. This problem is similar to that of Large Eddy Simulation where the
energy transfers between the resolved scales and the subgrid scales have to be
modelled [13]. For instance, 4 modes are sufficient to restore more than 99%
of the kinetic energy of the circular cylinder wake flow (2D, laminar regime),
but the solution of the such reduced order model does not converge towards
the numerical solution of the Navier-Stokes equations [21]. It is thus necessary
to stabilize the POD ROM. In this study, thanks to the pressure extended re-
duced order model, the POD ROM can be stabilized using the Navier-Stokes
operator residuals evaluated with the POD flow fields reconstructions (§4).

3 A pressure extended Reduced Order Model

It is demonstrated that the contribution of the pressure term vanishes in many
closed flows. However, Noack [11] proved that neglecting the pressure term for
convectively unstable shear layers (as the mixing layer or the wake flow) can
lead to large amplitude errors in the Galerkin model. A solution is to model this
pressure term [11,12]. One aim of this study is to invoke the least modelisation
as possible. The purpose of this section is thus to derive a pressure extended
Reduced Order Model, i.e. a ROM that allows to build both the velocity
and the pressure fields. The pressure term can thus be easily calculated using
p = p̃ (see decomposition (11b)). Another key issue is that, knowing the
pressure field, it is possible to evaluate the Navier-Stokes residuals 3 . Indeed,
the Navier-Stokes residuals will be used to both stabilize (§4) the ROM and
to improve (§5) the POD subspace.

3.1 Construction of the pressure extended POD ROM

As it was mentioned in §2.2, reduced order modeling is based on the restriction
of the weak form of the Navier-Stokes equations to the subspace SPOD

Nr
spanned

by the first Nr spatial eigenfunctions Φi. Here, we develop a global basis for
both the velocity and pressure fields (see [22] for justification and numerical

3 Only the velocity field is necessary to evaluate the residuals of the Navier-Stokes
operator written in its vorticity formulation.
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demonstration). The exact flow fields u and p are then approximated by:

ũ(x, t) =
Nr∑

i=1

ai(t)φi(x) (11a)

p̃(x, t) =
Nr∑

i=1

ai(t)ψi(x). (11b)

The velocity and the pressure basis functions, φi and ψi respectively, are
determined using U(x, t) = (ũ(x, t), p̃(x, t))T to calculate the temporal cor-
relation tensor (3). The basis functions φi and ψi are determined as Φ(x, t) =
(φ(x, t), ψ(x, t))T , Φ(x, t) being obtained from (5).

The substitution of equations (11) in the Navier-Stokes momentum equa-
tions (1a) leads to:

Nr∑

j=1

daj

dt
φj +




Nr∑

j=1

ajφj ·∇




Nr∑

k=1

akφk = −
Nr∑

j=1

aj∇ψj +
1

Re

Nr∑

j=1

aj∆φj, (12)

that is:

Nr∑

j=1

φj

daj

dt
+

Nr∑

j=1

Nr∑

k=1

(φj ·∇)φk ajak = −
Nr∑

j=1

∇ψj aj +
1

Re

Nr∑

j=1

∆φj aj . (13)

A Galerkin projection of the momentum equations (13) yields:


φi,

Nr∑

j=1

φj

daj

dt
+

Nr∑

j=1

Nr∑

k=1

(φj ·∇)φk ajak +
Nr∑

j=1

∇ψj aj −
1

Re

Nr∑

j=1

∆φj aj




Ω

= 0.

(14)
The Reduced Order Model is then:

Nr∑

j=1

L
(m)
ij

daj

dt
=

Nr∑

j=1

B
(m)
ij aj +

Nr∑

j=1

Nr∑

k=1

C
(m)
ijk ajak, (15)

where the coefficients 4 Lm
ij , B

m
ij and Cm

ijk are given by:

L
(m)
ij = + (φi, φj)Ω , (16a)

B
(m)
ij = −

(
φi,

1

Re
∆φj −∇ψj

)

Ω
, (16b)

C
(m)
ijk = − (φi, (φj ·∇)φk)Ω . (16c)

Here the superscript m stands for momentum equations.

4 In a general way, we have (Φi, Φj)Ω = δij , but not (φi, φj)Ω = δij . So, L
(m)
ij 6= δij.

8



In this reduced order model we used global basis functions built by POD, but
this methodology could be transposed to other modal decompositions such as
decomposition onto stability modes [8]. Moreover it could be interesting to
use non divergence free modes, as Navier-Stokes residuals modes. Such modes
can be used to stabilize (§4) and to improve (§5) the POD ROM. Hence,
if model (15) is built using non divergence free modes, it does not satisfy
the continuity equation (mass conservation). It is thus necessary to add a
constraint in the reduced order model.

A modified ROM that satisfies both momentum and continuity equations can
be obtained starting from the weak form of the Navier Stokes equations:

(
wi,

∂u

∂t
+ ∇ · (u⊗ u) + ∇p−

1

Re
∆u

)

Ω

+ (qi, ∇ · u)Ω = 0, (17)

where wi and qi belong to appropriate functional spaces. The velocity and
pressure fields are expanded onto the POD basis functions {φi}

Nr

i=1 and {ψi}
Nr

i=1

using equations (11a) and (11b), respectively.

One approach is then to use a Galerkin projection where wi = φi and qi = ψi

as done before (equation (14)). Another approach is to use wi = φi and
qi = α(∇ · φi)

T . This choice would correspond to the minimization of the
continuity residuals,

∑Nr

j=1 aj∇ · φj , in a least squares sense, so that in limit
of large α we have:

Nr∑

j=1

Bc
ijaj = 0,

where B
(c)
ij = (∇ ·φi)

T
∇ ·φj and the superscript c stands for continuity equa-

tion. Numerically, this second approach gives better results, and the modified
ROM that we use is thus:

Nr∑

j=1

L
(m)
ij

daj

dt
=

Nr∑

j=1

(
B

(m)
ij + αB

(c)
ij

)
aj +

Nr∑

j=1

Nr∑

k=1

C
(m)
ijk ajak (18)

where the weight α has to be fixed. In this study, we chose α = 10−2.

Since we use the flow-field decompositions (11) the mean flow is solved by
the reduced order model. The mean flow is then U(x, t) = a1(t)Φ1(x). It is
well known that a small drift of the first temporal coefficient a1 can occur.
The flow rate is thus modified. In order to keep the flow rate as constant,
another constraint must be enforced in the reduced order model (18). For the
2D confined flow, the conservation of flow rate writes:

∫

S

u ds = c, (19)

where S is a cross section of the channel and c is a constant. For instance S
could be the inflow or outflow height H of the channel, or, at the abscissa of
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the cylinder with height L, S = H − L (see figure 1). Numerically, the flow
rate has to be constant over each slice Sl ≡ S(xl), 1 ≤ l ≤ NX where NX

is the number of discretisation points in the x-direction (a cartesian mesh is
used).

Denoting φ = (φu, φv)T and using (11a), condition (19) is approximated by 5 :

Nr∑

i=1

aj(t)
∫

Sl

φu
j ds = c, (20)

The constant is initially evaluated by projection of a given snapshot onto the
basis functions φ. Numerically, in this study we have c ≡ 1. The flow rate
conservation writes:

Nr∑

j=1

daj

dt

∫

Sl

φu
j ds = 0.

Denoting by fj the vector with components f l
j =

∫
Sl
φu

j ds, the flow rate
conservation over the whole domain Ω writes:

Nr∑

j=1

daj

dt
fj = 0.

These additional constraints are now taken into account by enlarging the pro-
jection space with βfi. In the limit of large β we have in a least square sense:

Nr∑

j=1

Lr
ij

daj

dt
= 0,

where Lr
ij = fT

i fj. The superscript r stands for flow rate conservation. Then,
the reduced order model writes:

Nr∑

j=1

(
L

(m)
ij + βL

(r)
ij

) daj

dt
=

Nr∑

j=1

(
B

(m)
ij + αB

(c)
ij

)
aj +

Nr∑

j=1

Nr∑

k=1

C
(m)
ijk ajak (21a)

with initial conditions

ai(0) = (U(x, 0), Φi(x))Ω i = 1, · · · , Nr, (21b)

where the weight β has to be fixed. In this study, we chose β = 102. This
reduced order model satisfies the momentum equations, the continuity equa-
tion as well as the conservation of the flow rate, even for non divergence free
modes.

5 If one uses only POD modes, we can taken Nr = 1 since the flow rate is only
given by the mean flow. However, using other modes that do not respect a priori

the flow rate conservation (as the residual modes), Nr 6= 1.
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Fig. 2. Eigenvalues spectrum.

3.2 Numerical results of the pressure extended POD ROM

The reduced order model (21) is tested on a 2D confined square cylinder
wake flow in laminar regime (Re = 200). In this section the POD basis Φ is
built following the POD snapshot method introduced by Sirovich [3]. Here,
80 snapshots uniformly distributed over one vortex shedding period are used
to compute the discrete form of the temporal tensor (3). The corresponding
eigenvalues spectrum is presented in Figure 2. This spectrum is degenerate
presenting pairs of identical eigenvalues for the fluctuating modes (the mean
flow is indexed by 1). The POD basis functions are obtained via a projection of
the temporal tensor eigenvectors on the whole set of snapshots. Some of them
are presented in figure 3 in terms of iso-vorticity (noted ∇∧φi, for velocity
modes φi) and isobars (for pressure modes ψi). The evolution of the RIC
introduced in §2.1 is presented in Figure 4. Only the first 5 modes are sufficient
to represent more than 98% of the total kinetic energy. However, another 5-
modes reduced order basis containing approximatively the same percentage of
energy could be derived using modes 6 and 7 instead of 4 and 5. Indeed, even
if these two pairs of modes are very different (see for instance the topological
differences between φ5 and φ7 in Fig. 3), they have approximatively the same
energetic contribution as one can see in Figure 5 where the Individual Enegetic
Contribution (IEC) is presented. Thus, a judicious choice of the POD modes
is not so evident in this case. Instead of using the RIC criterium, one can
decide to keep all the fluctuating modes presenting an energy contribution
greater than a given threshold (see Fig. 5). Here, all the modes with an energy
contribution greater than 10−2 are kept. This corresponds to 10 fluctuating
modes plus the mean flow mode, i.e. Nr = 11 modes.

After having computed once the operators of the reduced order model (21)
using these Nr = 11 modes, a long time flow prediction over more than 1000
vortex shedding periods is performed. Figure 6 presents the temporal evolu-
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Fig. 3. Representation of some POD modes. Iso-vorticity (left) and isobars (right).
Dashed lines represent negative values (the pressure reference is arbitrarily chosen
to be zero).
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tion of the set of coefficients {ai}
Nr

i=1, solution of the system (21), over the
40 vortex shedding periods. Since the temporal tensor eigenvalues spectrum
is degenerate (it presents pairs of eigenvalues) only the odd-indexed coeffi-
cients are presented (the even ones have the same behavior). It is noticeable
that no divergence occur for the long time prediction. A comparison of the
projected (projection of the Navier-Stokes solution onto the POD basis) and
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Fig. 7. Comparison of the projected (NS: ♦) and the predicted (ROM: −−−) limit
cycles over 1000 vortex shedding periods. 11 modes model.
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Fig. 8. Temporal evolutions of the predicted POD coefficients over 40 vortex shed-
ding periods. 5 modes model.

the predicted (solutions of the ROM (21)) limit cycles over 1000 vortex shed-
ding periods is presented in Figure 7. The predicted limit cycles perfectly
match the projected ones even for small scales (high order modes) where the
high-frequency dynamics is more complex. The good accuracy for all limit
cycles indicates also that no spurious dephasing occurs between modes. The
system (21) with 11 modes is numerically stable for short and long time pre-
dictions so that no calibration procedures are needed. We want to highlight
that a small gradual drifting could be observed using classical POD reduced
order model where the pressure term remains unmodeled. It is thus important
to calculate, or at least to model, the pressure term.

As it was already mentioned (§2.2), when system (21) is integrated in time
a gradual drifting from the full-state solution to another erroneous state may
arise after several vortex shedding periods if only a very small number of modes
are kept. Indeed as it was shown in figures 8 and 9, the solution of model (21)
built with 5 modes reaches erroneous limit cycles, and can even diverge with
3 modes (see figures 10 and 11). In this simple test case, only Nr = 11 modes
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Fig. 9. Comparison of the projected (NS: ♦) and the predicted (ROM: −−−) limit
cycles over 1000 vortex shedding periods. 5 modes model.
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Fig. 10. Temporal evolutions of the predicted POD coefficients over 10 vortex shed-
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Fig. 11. Comparison of the projected (NS: ♦) and the predicted (ROM: −−−) limit
cycles over 1000 vortex shedding periods. 3 modes model.

are sufficient to build a stable ROM. However, in many practical applications
(three dimensional flows, turbulent regimes, complex geometries, etc) the num-
ber of POD modes that represents 99% of the total kinetic energy is large.
Usually, approximatively 60% to 80% of the kinetic energy can be retained, so
that reduced order models are unstable. The following section presents meth-
ods based on the Navier-Stokes residuals to stabilize reduced order models
built with a very low number of modes (namely, 3 or 5 modes in our case).

4 STABILIZATION OF REDUCED ORDER MODELS

To overcome errors due to the truncation involved in the POD-Galerkin ap-
proach, different kind of POD ROM/Galerin stabilization methods are com-
monly used.
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The first class of stabilization methods uses eddy viscosity. Since the early
works on POD ROM, it was shown that artificial viscosity can help stabiliza-
tion [23]. A natural way is to add a constant viscosity acting the same way
on all POD modes: this is called Heisenberg model [24,25]. The global dimen-
sionless viscosity 1/Re is thus replaced by another one defined as (1 + c)/Re.
The problem is then to determine or to adjust the constant c > 0 in order
to obtain a better accuracy for the POD ROM. Rempfer and Fasel [26] and
Rempfer [27] have improved this idea by supposing that the dissipation is not
identical on each of the POD modes. Thus, the global viscosity could be re-
placed by modal viscosities 1/Rei = (1 + ci)/Re on each POD mode Φi. It is
then necessary to determine a set of correction coefficients spanned by ci for
i = 1, . . . , Nr. In [27] it is argued that these eddy viscosities are a function
of the coupled modes index j = 1, . . . , Nr/2. The coefficients cj are such that
cj = K × j where K is the unique constant to determine or to adjust. More
recently, Karniadakis employed a dissipative model called Spectral Vanishing
Viscosity Model (SVVM) to formulate alternative stabilization approaches [28]
and to improve the accuracy of POD flow models [20]. In this spirit, an opti-
mal spectral viscosity model based on parameters identification technique has
been proposed [29].

The second class of stabilization methods consists in calibrating the polyno-
mial coefficients of the POD model [12,30–32]. All the coefficients of tensor B
are determined using a least square or an adjoint method so that the predicted
coefficients ai(t) are as closed as possible to the eigenvectors of the temporal
correlation tensor (see equation (2)). These calibration methods, based on
system identification, are very similar to spectral viscosity closures. However,
calibration methods allow such a representation of the inter-modal transfers.

The third class of stabilization methods uses a penalty term. This consists
in introducing a new term in the reduced order model. Cazemier [33] and
Cazemier et al. [34] used modal kinetic equations to determine viscosities to be
added on each POD mode. Cazemier [33] supposes that the lack of interaction
between the calculated and the non-resolved modes is responsible of a linear
divergence of the temporal POD coefficients. To solve this problem another
artificial linear coefficient is introduced in the POD dynamical system. The
POD ROM writes then:

dai

dt
= Ai +

Nr∑

j=1

Bij aj +
Nr∑

j=1

Nr∑

k=1

Cijk ajak +Hi ai,

where, after some manipulations based on energetic conservation (see [35] for
the derivation of the energetic residual),

Hi = −
1

λi

Nr∑

j=1

Nr∑

k=1

Cijk 〈aiajak〉 − Bii.
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For a compressible flow, Vigo [36] proposed a stabilisation method based on
a cubic penalization term in order to prevent a nonlinear amplification. This
method seems to give good results but the construction of this cubic term
and the resolution of the POD ROM induces high numerical costs. A linear
penalty term can also be added to model the pressure term. The drawbacks
of all penalization methods is the numerical costs involved in computing the
penalization term.

Finally, the last class of stabilization methods that can be found in the liter-
ature introduces dissipation directly in the numerical schemes used to build
the POD ROM [37]. Instead of using the standard L2 inner product in the
POD, the Sobolev norm H1 is used [38]. However, the level of dissipation has
also to be fixed.

The main drawback of all the previous stabilization methods is that there are
always a lot of parameters to fix or to optimize. The aim of this section is to
derive stabilization methods that involve less empirical parameters.

Let A[Nr ] be the model defined by (21) and derived using with Nr modes.
Unstable models correspond to Nr = 3 or Nr = 5.

The two kinds of stabilization methods presented in what follows use the
residual of the Navier-Stokes (NS) operator evaluated with the POD flow
fields. These residuals, called POD-NS residuals, are:

RM(x, t) =
∂ũ

∂t
+ (ũ ·∇)ũ + ∇p̃−

1

Re
∆ũ, (22a)

RC(x, t) = ∇ · ũ, (22b)

where the POD flow fields ũ and p̃ are given by decompositions (11).

We showed that the POD ROM is stable if a sufficient number of modes is
taken into account in the model. For instance, model A[11] is stable. Thus, the
POD ROM is stable if the POD flow fields get close enough to the exact flow
field. The exact flow field writes:

u(x, t) = ũ(x, t) + u′(x, t), (23a)

p(x, t) = p̃(x, t) + p′(x, t), (23b)

where u′ and p′ denote the fine scales that are not resolved by the POD ROM.
Unfortunately, the exact resolution of the fine scales equations (with solutions
u′ and p′) requires computational costs similar to those required for solving
the complete Navier-Stokes equations. The objective of the following section
is thus to derive stabilization methods that make use of approximations of
these fine scales.
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4.1 Residuals based stabilization method: model B[Nr;K]

The goal of this method is to approximate the fine scales u′ and p′ onto some
adapted basis functions. The exact flow field is hence approximated as:

u(x, t) =
Nr∑

i=1

ai(t)φi(x)

︸ ︷︷ ︸
ũ(x, t)

+
Nr+K∑

i=Nr+1

ai(t)φ
′

i(x)

︸ ︷︷ ︸
u
′(x, t)

, (24a)

p(x, t) =
Nr∑

i=1

ai(t)ψi(x)

︸ ︷︷ ︸
p̃(x, t)

+
Nr+K∑

i=Nr+1

ai(t)ψ
′

i(x)

︸ ︷︷ ︸
p′(x, t)

. (24b)

If the basis functions φ′

i and ψ′

i are respectively equal to φi and ψi the ener-
getic representation is improved. Indeed, the more POD modes are retained,
the better is the energetic representation. This is a classical remark of POD.
However, it is not granted that POD modes are optimal to stabilize the ROM.
If we suppose that a sufficient amount of energy is captured with Nr modes,
it is not necessary to add any more energy in the POD ROM, but rather some
viscous dissipation. For instance, model A[5], i.e. model B[3;2] with Φ′ ≡ Φ
in (24), is not stable. However, it will be demonstrated that another 5-modes
model with Nr = 3 and K = 2 is stable using different modes Φ′. It is well
known that the residuals of the governing equations play a major role to sta-
bilize dynamical systems [14]. The leading idea of this section is thus to take
φ′

i and ψ′

i as being the POD basis functions of the POD-NS residuals defined
by (22). The method is the following.

Algorithm 1 (Residuals based stabilization)

(1) Integrate the ROM A[Nr ] to obtain ai(t) and compute Ns coefficients
ai(tk), k = 1, . . . , Ns.

(2) Compute the POD flow fields ũ(x, tk) =
Nr∑

i=1

ai(tk)φi(x), p̃(x, tk) =

Nr∑

i=1

ai(tk)ψi(x), and then the POD-NS residualsRM(x, tk) and RC(x, tk).

(3) Compute the POD modes φ′

i(x) and ψ′

i(x) of the POD-NS residuals
RM(x, tk) and RC(x, tk) .

(4) Add the K first residual modes φ′

i and ψ′

i to the existing POD basis φi

and ψi (using Gram-Schmidt process) and built a new ROM (here the
mass and flow rate constraints are important).

The reduced order model obtained with this algorithm is noted B[Nr ;K] where
Nr is the number of initial POD basis functions and K is the number of POD
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residuals modes. Results of this model are presented in section 4.3.

4.2 SUPG and VMS methods: models C [Nr]and D[Nr]

The Streamline Upwind Petrov-Galerkin (SUPG) and the Variational Multi-
scale (VMS) methods are devised to provide appropriate modeling and stabi-
lizations for the numerical solution of the Navier-Stokes equations. The SUPG
method is a simplified version of the complete VMS method, and the main
steps leading to these models are described in [14].

The main idea of both SUPG and VMS methods is to approximate the fine
scales by:

u′ ≃ −τM RM (25a)

p′ ≃ −τC RC , (25b)

where τM and τc denote some constants to be fixed.

The SUPG and VMS reduced order models can be formally written:

Nr∑

j=1

(
L

(m)
ij + βL

(r)
ij

) daj

dt
=

Nr∑

j=1

(
B

(m)
ij + αB

(c)
ij

)
aj +

Nr∑

j=1

Nr∑

k=1

C
(m)
ijk ajak

+ Fi(t),

(26)

where the ”penalization” term Fi(t) is defined as follows:

• For the SUPG reduced order model, noted C [Nr], we have:

F SUPG
i (t) = (ũ ·∇φi +∇ψi, τM RM(x, t))Ω +(∇ ·φi, τC RC(x, t))Ω. (27)

• For the VMS reduced order model, noted D[Nr], we have:

F V MS
i (t) = F SUPG

i (t) + (ũ · (∇φi)
T , τM RM(x, t))Ω

− (∇φi, τM RM(x, t)⊗ τM RM(x, t))Ω

(28)

The parameters τM and τC can be found using some scaling arguments (see [39]
for more details), so that no modelisation is required. This can lead to an
universal POD ROM closure model. However, in what follows, parameters τM
and τC are determined using an optimal formulation, so that the temporal
coefficients ai(t) fit as best as possible the eigenvectors of the correlations
tensor (3).

For clarity reasons, table 1 summarizes the different ROM introduced above,
where Nr denotes the number of POD modes used to compute the ROMs.
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ROM Method

A[Nr] No stabilization

B[Nr,K] Stabilization with K residuals POD modes

C [Nr] SUPG stabilization

D[Nr] VMS stabilization

Table 1
Brief description of the different ROMs. Nr denote the number of the retained POD
modes.

∇∧φ4 ∇∧φ4

∇∧φ5 ∇∧φ5

Fig. 12. Comparison between original POD modes (left, model A[5]) and residuals
modes (right, model B[3;2]). Dashed lines represent negative values.

4.3 Results of stabilization methods

In this section we take exactly the same configuration and parameters than
those used in §3.2. The confined square cylinder wake flow for Re = 200
and the ROMs are built using Ns = 80 snapshots uniformly distributed over
one vortex shedding period. The model based on residual modes, B[Nr ;K], is
integrated following §4.1. The SUPG model, C [Nr], and the VMS model, D[Nr],
are integrated using (27) and (28) respectively. The unstable configurations
observed in §3.2 are studied, i.e. Nr = 5 and Nr = 3. Moreover, for model
B[Nr;K], only K = 2 residual modes are used. These two additional modes
present a different behavior than POD modes 4 and 5 used to build model
A[5] (see figure 12).

The temporal evolutions of the predicted POD coefficients ai(t) obtained with
models B, C and D, over 40 vortex shedding periods, are presented in fig-
ures 13 and 15 for Nr = 5 and Nr = 3 respectively. The three reduced order
models provide an accurate description of the asymptotic attractor (compare
with results in figure 6), and results are indistinguishable between model B,
C and D. The limit cycles obtained with models B, C and D are represented
in figures 14 and 16 for Nr = 5 and Nr = 3 respectively. These limit cycles
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Fig. 13. Temporal evolutions of the predicted POD coefficients over 40 vortex shed-
ding periods. 5 modes model with stabilization. (Indistinguishable difference be-
tween models B[5,2], C [5] and D[5].)
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Fig. 14. Comparison of the projected (NS: ♦) and the predicted (ROM: −−−) limit
cycles over 1000 vortex shedding periods. 5 modes model with stabilization. (Indis-
tinguishable difference between models B[5,2], C [5] and D[5].)
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Fig. 15. Temporal evolutions of the predicted POD coefficients over 40 vortex shed-
ding periods. 3 modes model with stabilization. (Indistinguishable difference be-
tween models B[3,2], C [3] and D[3].)

represent 1000 vortex shedding periods. There are no difference between re-
sults obtained from the three models. These limit cycles are compared to exact
ones obtained by DNS (projection of the snapshots onto the POD basis) in
the figures. Excellent agreements are observed between all these limit cycles,
thus validating all the stabilization methods described in §4.1 and §4.2.

In order to highlight the differences between the stabilization methods pre-
sented above, we study the L2 norm of the POD-NS residuals introduced
in (22). Figures 17(a) and 18(a) show the temporal evolutions of the L2 norms
of the POD-NS residuals obtained initial model A (obtained from (21) or (26)
with Fi = 0) with Nr = 5 and Nr = 3 respectively. For sake of clarity, only
20 vortex shedding periods are represented. An initial growth and then an
asymptotic limit is reached with Nr = 5. This can be explained by the fact
that the dynamic converges towards another attractor (see figure 7). On the
contrary, an exponential divergence occurs with Nr = 3 (see also the diver-
gence in figure 11). We compare the effectiveness of models B, C and D in
figures 17(b) and 18(b). All stabilized reduced order models are accurate (low
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Fig. 16. Comparison of the projected (NS: ♦) and the predicted (ROM: −−−) limit
cycles over 1000 vortex shedding periods. 3 modes model with stabilization. (Indis-
tinguishable difference between models B[3,2], C [3] and D[3].)

values of the POD-NS residuals norm). For the Nr = 5 or Nr = 3, models C
and D are more accurate than model B (lower residuals). Moreover, the VMS
model, D, is better than the SUPG one, C, but without significant differences
between them. In our reduced order modeling the SUPG method seems to
be sufficient to obtain an accurate POD ROM. However, the numerical costs
required for both SUPG and VMS methods are similar. To conclude on the
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Fig. 17. Temporal evolution of the L2 norm of the Navier-Stokes residuals computed
using a 5-modes ROM.

first stabilization method, it is noticeable that although models B[3;2] and A[5]

used 5 modes, only model B[3;2] is stable. It is thus not necessary to include a
lot of modes in the POD basis in order to obtain a stable model, but only to
add some appropriate ”damping” modes (see figure 12).
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Fig. 18. Temporal evolution of the L2 norm of the Navier-Stokes residuals computed
using a 3-modes ROM.

5 IMPROVEMENT OF THE FUNCTIONAL SUBSPACE

Since the POD was first introduced in turbulence by Lumley [18] in 1967 as
an unbiased definition of the coherent structures in a turbulent flow, POD
was used to analyze physical characteristics of turbulent flows. More recently,
Reduced Order Models based on POD are found as being an efficient tool for
flow control purpose (see [40–42,29,17] for examples). Indeed, the use of POD
ROM allows to reduce significantly the CPU time during numerical simulation
and also to reduce the memory storage, an essential feature when adjoint
based optimal control methods are used. Different optimization methods that
couple POD ROM and optimal control have been taken under consideration.
The main drawback for flow control is that the POD basis is only able to give
an optimal representation of the snapshots set from which it was derived. The
approximation properties of the basis can be greatly degraded under variation
of some input system parameters values, as control parameters [15–17] . For
flow control purposes, some special care has to be taken to build the POD
basis functions. One solution is to use an a priori global database composed
by several dynamics. For example, it is possible to use a database composed by
snapshots that correspond to different control laws [17] or different Reynolds
numbers [43]. One efficient way to do that is either by Centroidal Voronoi
Tessellations (CVT) [44] or by using an ad-hoc time-dependent control law
that generates a flow representing a large band of dynamics [45,42,29]. We
privilege the idea of updating the POD basis during the simulation. Trust
Region Proper Orthogonal Decomposition originally introduced by Fahl [46] is
an example of such ideas (see Refs. [47,17]). The main drawback of the TRPOD
method is that the POD basis has to be re-actualized. Each actualization
requires a large computational effort since it involves DNS.
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Fig. 19. Comparison of the iso-vorticity representation of some POD modes. The
initial POD basis at Re1 = 100 (left) and the target POD basis at Re2 = 200
(right). Dashed lines represent negative values.

The aim of this section is thus to present efficient methods to improve - or
actualize - the functional subspace. As it was mentioned, the underlying idea
is to adapt the basis when input system parameters change (Reynolds number,
control parameters, etc). For simplicity reasons, we will only focus on Reynolds
number modifications, but the forthcoming process is easily transposable to
other parameters modifications. Here, for instance, our goal is to obtain the
target basis built at Re2 = 200 starting from the initial basis built at Re1 =
100. These two basis are quite different, especially for the mean flow mode φ1

(see figure 19).

In what follows two methods are considered.

• The objective of the first method is to improve the basis using residuals
based approximations of the missing fields u′ and p′. This is exactly the
same idea that was used in (§4.1), applied iteratively (§5.1).
• The aim of the second method is to modify the POD database by means of

DNS simulations (§5.2).

These two methods are based on an iterative process. The current POD basis
obtained during the actualization process is simply denoted by Φ ≡ Φ(n) where
n is the number of iterations considered (number of POD basis actualization
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cycles). Obviously, Φ(0) = ΦRe1 , and we expect at least that Φ(+∞) = ΦRe2 .
The convergence criterion tested in this study is the best projection of Φ(n)

onto ΦRe2 , noted Φ ·ΦRe2 . For our Navier-Stokes test case with Re1 = 100 and
Re2 = 200, the initial value of the convergence criterion is ΦRe1 ·ΦRe2 ≈ 0.5.
The expected final value is naturally Φ(n) ·ΦRe2 ≈ 1, with the smallest possible
number of iterations n.

5.1 A Krylov-like method

The first method used to improve the functional subspace uses successive
application of the Navier-Stokes operator on the residuals. This method is
nothing but an iterative version of the stabilization process introduced in
§4.1. We have seen that this method does a good job to stabilize POD ROM,
so it is reasonable to investigate its performance to improve the functional
subspace. This subspace adaptation is described by the following algorithm
and is schematically represented in figure 20. The numerical integration of
the ROM (21) is always performed at the target Reynolds number Re ≡ Re2
(the Reynolds number Re is required to evaluate B(m), see equation (16b)).
Otherwise, all the POD coefficients, i.e. L(m), L(r), B(m), B(c), C(m), are built
using the current updated POD basis, Φ = Φ(n), following (16).

Algorithm 2 (Krylov like adaptation method)

Start with the POD basis to be improved, Φi with i = 1, . . . , Nr (in our
case built for Re = Re1). Let N0 = Nr and T = [0, T ] be an observation
period.

(1) Build and solve the corresponding ROM over T with Re = Re2 to ob-
tain ai(t) and extract Ns snapshots ai(tk) with i = 1, . . . , Nr and k =
1, . . . , Ns. Compute the flow fields ũ(x, tk)), p̃(x, tk) from (11).

(2) Compute the POD-NS residuals R(x, tk) = (RM(x, tk), RC(x, tk))
T

from (22).
(3) Compute the POD modes Φ̃(x) = (φ̃(x), ψ̃(x))T from the POD-NS resid-

uals database R(x, tk), k = 1, . . . , Ns.
(4) Add the K firsts residual modes Φ̃(x) to the existing POD basis Φi(x)

(using Gram-Schmidt process)
• Φ← Φ + Ψ
• Nr ← Nr +K
• If Nr is below than a threshold, Nmax, return to 1. Else, go to 5.

(5) Do step (1). From fields ũ and p̃, perform a new POD compression from
with Nr = N0.
• If a convergence criterion is satisfied, stop. Else, return to 1.
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Let Nr = N0. {Φi}
Nr

i=1 for Re1.

Build and solve the ROM(Φ)

Extract Ns snapshots ai(tk)

Compute ũ(x, tk) and p̃(x, tk)

⇒ Coarse scales (Φ)

Compute the residuals R(x, tk)

from ũ(x, tk) and p̃(x, tk)

NS operator evaluated for Re2

⇒ Missing scales (u′ = −τR)

Perform a POD from R(x, tk)

Extract firsts K modes Φ̃i

Add {Φ̃i}
K
i=1 to {Φi}

Nr

i=1

Let Φ← Φ + Φ̃

Let Nr ← Nr +K

Perform a new POD

using ũ(x, tk) and p̃(x, tk)

Extract firsts N0 modes Φi

Let Nr = N0

if Nr < Nmax

if Nr ≥ Nmax

Fig. 20. Schematic representation of the functional adaptation process based on a
Krylov-like method.

This algorithm is a simplified version of a generalized minimal residual (GM-
RES) algorithm for linear system (see [48] for more details about GMRES
method).

Before testing this adaptation method on the two-dimensional confined square
cylinder wake flow governed by the Navier-Stokes equations (§5.1.2), a simple
one dimensional test case is performed on the Burgers equation (§5.1.1).

5.1.1 A one dimensional test case: the Burgers equation

The Burgers equation, in its dimensionless form, writes:

LB(u) =
∂u

∂t
+

1

2

∂u2

∂x
−

1

Re

∂2u

∂x2
= 0, (29)

with initial condition 6

u(x, 0) = sin

(
π

tan(cs(2x− 1))

tan(cs)

)
and cs = 1.3, (30)

and boundary conditions

u(0, t) = 0,

u(L, t) = 0.
(31)

6 This value of cs is chosen to obtain a shock wave in the domain D.
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Fig. 21. Comparison of few POD basis functions obtained for Re1 = 50 (−−−−) and
Re2 = 300 (− −−).

This equation is solved onto the domain D defined by:

D = {(x, t) ∈ [0, 1]× [0, 1]}.

We chose the initial and target POD basis, ΦRe1 and ΦRe2 , such that ΦRe1 ·
ΦRe2 ≈ 0.5, i.e. Re1 = 50 and Re2 = 300 in this context. We used 40 snapshots
uniformly distributed over the whole observation domain T = [0, 1]. Figure 21
shows a comparison between few POD basis functions obtained for Re1 and
Re2. Significant differences are observable. Results of the adaptation process
are presented in figure 22 which shows the evolution of the convergence cri-
terion versus the number of iterations. Convergence is obtained in less than
6 iterations. In other words, the POD basis at Re2 is obtained from that at
Re1 using only 6 integration of the POD ROM, without any DNS. The POD
basis functions at Re2 can even be determined starting from one mode (the
normalized intial condition), or from any given basis. This represents a very
efficient method to actualize a POD basis for the 1D Burgers equation. It is
then of interest to see if this adaptation method can provide as good results
for the Navier-Stokes equations.

5.1.2 The confined square cylinder wake flow

For the confined square cylinder wake flow (2D Navier-Stokes equations), we
take Re1 = 100, Re2 = 200 and we also use 40 snapshots distributed uniformly
over one vortex shedding period T , so that T = [0, T ], of the 2D confined
square cylinder wake flow. During the adaptation process, the vortex shed-
ding period T has to be actualized in consequence. Results are presented in
figure 23. Unfortunately, no convergence is obtained. The algorithm is stopped
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Fig. 22. Evolution of the convergence criterion versus the number of iterations for
the 1D burgers equation.

when the computational costs were estimated to be larger than those neces-
sary using only DNS. Same results are obtained using 400 snapshots uniformly
distributed over an observation period T = [0, 10T ], not presented here. The
information contained into the Navier-Stokes residuals are not sufficient to im-
prove the POD basis functions for a dynamical change, but they are sufficient
to stabilized the ROM for a given dynamic (see §4.1). One possible explana-
tion is that the approximation of the missing scales, u′(x, t) = −τMRM(x, t)
and p′(x, t) = −τCRC(x, t), is only valid for fine scales, i.e. the ones that are
not represented due to the truncation of the POD basis. Residual modes have
just dissipative behavior. We can ask if it is possible to find good values for
parameters τM and τC for ”quite large” missing scale. The answer is not so
clear yet. One solution could be to look for U ′(x, t) = M(t)R(x, t), where
M ∈ R

3×3 for the 2D Navier-Stokes equations.

A step toward the full GMRES algorithm was also made. Few Arnoldi modes,
Φ′′

n = AΦ′
n, Φ′′′

n = AΦ′′
n, ..., have been added to the initial basis. The opera-

tor A denotes the linear operator obtained after an adapted discretization of
the Navier-Stokes equations, so that AU = b(U). The results have not been
really improved. A large Arnoldi basis should be certainly necessary, but the
numerical costs required to generate (and to solve) the POD ROM become
prohibitive.

The following section presents another kind of algorithm that couples POD
ROM with DNS. If the Navier-Stokes solution lives on the same attractor
(no dynamic change), the DNS can be greatly accelerated using POD basis
functions. Indeed, a Galerkin free reduced order model is recently used as DNS
accelerator [49] .
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Fig. 24. Schematic representation of the hybrid method DNS-POD ROM to improve
the POD subspace.

5.2 An hybrid DNS/POD ROM method

It has been demonstrated that the percentage of the reconstruction energy de-
creases rapidly outside the temporal interval defined by the snapshots database
for three dimentional flows [30]. Thus, the aim of the present methodology is
to update the database statistics when time evolves. By doing this, the POD
basis is actualized and represents with high fidelity the current flow. The main
idea is to implement a process allowing to replace older snapshots with new
ones at low numerical costs. These new snapshots can be obtained using few
DNS iterations. Once a new POD basis is available, a new ROM is constructed
and integrated until a new snapshot is needed. Then, the process is repeated.
We chose to take snapshot periodically. A schematic representation of the al-
gorithm is presented in figure 24. Let us denote Re1 the Reynolds number
used to build the initial POD subspace, and Re2 the Reynolds number asso-
ciated to the new desired dynamic. All the simulations (ROM and DNS in
figure 24) are performed at Re2. After few DNS iterations, a new snapshot
is available. To build a new POD subspace, we have to update the database
(§5.2.1), to compute the correlations tensor (§5.2.2) and to compute the new
POD basis (§5.2.3). All the coefficients of the ROM (21), i.e. L(m), L(r), B(m),
B(c), C(m), are built using the current POD basis (corresponding to the mod-
ified database), and the integration is performed using Re ≡ Re2. Indeed,
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the Reynolds number Re is required to evaluate B(m) (see(16b)). In order to
obtain a ”real time” POD basis actualization, efficient methods are developed
for each step.

5.2.1 Database modification

Following equation (7) each snapshot included in the POD database can be
approximated by:

Û [1,··· ,Nr](x, tk) =
Nr∑

n=1

an(tk)Φn(x). (32)

Using one new snapshot, the POD database is modified by either adding this
new snapshot, or by replacing the older snapshot by this new one. The position
of the new snapshot in the database is denoted by s. The number of snapshots
included in the new database is thus N = max(s,Ns). The snapshot Us can
be written as the sum of its projection onto the POD basis plus its orthogonal
part as:

Ũ(x, ts)
[1,··· ,Nr] = Û [1,··· ,Nr ](x, ts) +U⊥

s (x, ts).

Therefore, in general, each snapshot is:

Ũ (x, tk)
[1,··· ,Nr] = Û [1,··· ,Nr](x, tk) + δksU

⊥(x, ts),

where δ represents the Kronecker symbol.

5.2.2 Evaluation of the temporal correlation tensor

In order to reduce the computational costs, the temporal correlation tensor C
is calculated using the snapshots decomposition Ũ

[1,··· ,Nr]
k .

C(tk, tl) =
(
Ũ (x, tk)

[1,··· ,Nr], Ũ (x, tl)
[1,··· ,Nr]

)
Ω

=




Nr∑

i=1

ai(tk)φi(x) + δksU
⊥(x, tk),

Nr∑

j=1

aj(tl)φj(x) + δlsU
⊥(x, tl)




Ω

=
Nr∑

i=1

Nr∑

j=1

ai(tk)aj(tl) (φi(x),φj(x))Ω︸ ︷︷ ︸
=δij

+δksδls
(
U⊥(x, tk),U

⊥(x, tl)
)

Ω

+ δls
Nr∑

i=1

ai(tk)
(
φi(x),U⊥(x, tl)

)
Ω︸ ︷︷ ︸

=0

+δks

Nr∑

j=1

aj(tl)
(
U⊥T

(x, tk)φj(x)
)

Ω︸ ︷︷ ︸
=0

.

Hence, the approximation of the temporal correlation tensor simply writes:

C(tk, tl) =
Nr∑

i=1

ai(tk)ai(tl) + δksδls

∫

Ω

nc∑

i=1

U⊥i
(x, tk)U

⊥i
(x, tl) dx. (33)
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The evaluation of this matrix is very fast. Indeed, it is not necessary to cal-
culate snapshots correlations on the whole mesh, but only correlations on the
retained temporal coefficients. Other than that, it is only necessary to evaluate
one auto-correlation with U⊥

s to evaluate the component Css.

5.2.3 Actualization of the POD basis

All the quantities evaluated before the calculation of the temporal correla-
tion tensor (33) are superscripted by (n). The actualized POD basis could be
evaluated from (see [3] for more details):

φ
(n+1)
k (x) =

1

λ
(n+1)
k

Nr∑

j=1

Ũ (n)(x, tj)a
(n+1)
k (tj)

=
1

λ
(n+1)
k

Nr∑

j=1

(
Nr∑

i=1

a
(n)
i (tj)φ

(n)
i (x) + δjsU

⊥(n)
(x, tj)

)
a

(n+1)
k (tj)

=
1

λ
(n+1)
k

Nr∑

i=1

Nr∑

j=1

a
(n+1)
k (tj)a

(n)
i (tj)φ

(n)
i (x) +

1

λ
(n+1)
k

U⊥(n)
(x, ts)a

(n+1)
k (ts).

Introducing the modal correlation tensor K(n+1) ∈ R
Ns×Ns between old and

new time-dependent POD eigenfunctions,

K
(n+1)
ki =

1

λ
(n+1)
k

Nr∑

j=1

a
(n+1)
k (tj)a

(n)
i (tj),

and the vector

Sk
(n+1)(x) =

1

λ
(n+1)
k

U⊥(n)
(x, ts)a

(n+1)
k (ts),

we have:

φ
(n+1)
k (x) =

Nr∑

i=1

K
(n+1)
ki φ

(n)
i (x) + S

(n+1)
k (x). (34)

Using the matrix S(n+1) with elements S
(n+1)
ij = Sj

i

(n+1)
, the new POD basis

can be obtained from the old one using the linear application ϕ : R
n × R

n 7→
R

n × R
n defined as follows:

ϕ : φ(n) 7→ φ(n+1) = φ(n)K(n+1) + S(n+1). (35)

The actualization of the POD basis is thus much faster than in the classical
way (reconstruction of a new POD basis). Indeed, it is not necessary to make
a sum on the whole set of snapshots (N), but only to make a weighted sum
on the Nr ≪ N old POD modes plus a part of the orthogonal contribution.

This process for the hybrid method can be applied at each new snapshot.
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5.2.4 Numerical results

During the simulation of the confined square cylinder wake flow at Re1 = 100,
40 snapshots are uniformly taken over a vortex shedding period to evaluate
the temporal correlation tensor.

In the first phase, the method to evaluate the temporal correlation tensor
introduced in §5.2.2 is tested. A comparison between eigenvalues of the tem-
poral correlation tensor evaluated from the exact field U and from a Nr-mode
approximated one, Ũ [1,··· ,Nr ], is presented in Fig. (25). For this example we
set Nr = 5 and Nr = 11. In the two cases, the Relative Information Content
RIC(Nr) is greater than 99%. It can be seen that the Nr first eigenvalues
computed from the Nr-approximated temporal correlation tensor accurately
fit the eigenvalues computed from the exact temporal correlation tensor. All
the other approximated eigenvalues for n > Nr are equal to zero except λNr+1

which indicates a non-zero contribution of the orthogonal part U⊥.
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U ≡ Ũ [1,··· ,40]

Nr = 11

U⊥ contribution

(b) Nr = 11.

Fig. 25. Comparison of the temporal correlation tensor eigenvalues evaluated from
the exact field, U , and from the Nr-modes approximated one, Ũ [1,··· ,Nr].

Then, the influence of the linear actualization of the POD basis is considered.
Results of the linear actualization of the POD basis functions introduced in
section 5.2.3 are presented in Fig. 26. Here, one step of the actualization of a
transient flow from Re1 = 100 to Re2 = 200 is presented. As in the previous
illustration, a 40 snapshots database is used to compute the initial POD basis
φ(0).

We consider the results concerning the hybrid method. The initial and target
POD basis, ΦRe1 and ΦRe2 , correspond to Reynolds numbers Re1 = 100 and
Re2 = 200 respectively. Figure 27 shows the evolution of the convergence
criterion Φ ·ΦRe2 versus the number of vortex shedding periods (and so versus
the number of actualization iterations) for different percentages of actual the
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Fig. 26. Modification of the POD basis functions under the application of the linear
transfomation ϕ. Streamline representation of the velocity fields.

DNS. Denoting TNS and TROM the time intervals where we use either DNS
or POD ROM 7 respectively, the percentage of DNS is defined as PNS =
TNS/(TNS + TROM).

The simulation with PNS = 100% does not involve any ROM. It can be seen
that 10 vortex shedding periods are necessary to converge towards the tar-
get POD basis using only DNS. This time corresponds to that required for
perturbations, coming from the dynamics changes Re1 → Re2, to cross the
whole simulation domain Ω and to reach an asymptotic behavior. The same
results can approximatively be obtained with PNS = 90%, PNS = 80% and
with less accuracy 70% DNS. However, no convergence is obtained with less
than PNS = 70%. Hence, a sufficient amount of DNS is necessary to converge
toward the target POD basis. An explanation of this phenomenon is given
in figure 28. Since the POD basis is not well adapted to give a good repre-
sentation of the current flow (there is a delay in the adaptation process), the
solution of the POD ROM moves away from the exact ”desired” solution. The
DNS has to be able to correct this drift. If the DNS is able to correct the error
made by the POD ROM (see figures 28(a) and 28(b)), the convergence is ob-
tained. However, if the DNS is not able to correct this error (see figure 28(c)),
it is not possible to converge toward the target basis.

A few comments about the numerical costs can be given. The computational
cost due to the ROM is negligible in comparison with the DNS ones. Also, the
POD basis update described in sections 5.2.1, 5.2.2 and 5.2.3 generates very
low numerical costs. In practice, our estimation is that taking PNS = 70%,
which still gives good results in terms of approximation, approximatively 20%
of the total numerical costs can be saved as compared to DNS.

7 We do not use the number of iterations because the POD ROM allows to use
greater time steps than the DNS.
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Fig. 28. Schematic explanation for the convergence of the hybrid DNS-POD method.
· · · · exact ”target”; −−− POD ROM ; −−−−− DNS.
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6 CONCLUSIONS

The objective of this paper was to improve reduced order modeling based on
proper orthogonal decomposition. Indeed, the proper orthogonal decomposi-
tion method is a viable technique to build low dimensional models, but it also
presents several drawbacks: (i) since usually only velocity fields are used to
build the reduced order model, the pressure term has to be modeled, (ii) it is
necessary to model the effects of the fine scale that are not explicitly taken
into account in the expansion and that are responsible of the main part of
the viscous dissipation, and (iii) the POD basis functions are only able to give
a good representation of the flow dynamics included in the given snapshots
database.

We have shown how to build a pressure extended reduced order model at no
additional cost in comparison with a standard velocity ROM. Using this pres-
sure extended ROM, it is not necessary to model the pressure term. Since both
the velocity and pressure POD fields are available, it is possible to evaluate the
Navier-Stokes operator residuals using these POD fields. Although this model
gives very good results in term of asymptotic solution, it is still necessary to
model the effects of the unresolved fines scales.

In this respect, different stabilization methods for the reduced order model
were taken under consideration. The stabilization we propose consists in mod-
eling the effect of the missing fine scales. To this end, we made the choice of
using residuals of Navier-Stokes operator evaluated from POD fields. The first
method proposed consists in enlarging the POD subspace with few residuals
modes. If the original number of modes is not large enough to provide appro-
priate dissipation, this method is able to stabilize the model. The stabilization
is not due to the enlargement of the POD subspace, in fact an unstable model
can be stabilized replacing a few number of original POD modes with the
same number of residual modes. No empiric parameter has to be estimated
in this approach. The second approach proposed relies on an approximation
of the fine scale equation. Both SUPG and VMS methods give good results.
In this approach, only two parameters have to be estimated. In some specific
cases [39], these parameters can be approximated using some scaling argu-
ments, leading to an universal model with no empiricism.

Finally, we have tried to improve the POD functional subspace. The goal was
to derive efficient methods to adapt the POD basis when dynamics changes
(with control parameters). The first method is a Krylov-like method. This
method is based on iteratively including in the basis some POD-NS residuals
(this is an iterative version of the first stabilization method). When the size
of the basis becomes too large, a new POD compression is performed. This
method gives very good results for the 1D Burgers equation, but convergence
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is too slow for the 2D Navier-Stokes equations, at least in our configuration.
One explanation is that the ”missing” scales (when dynamics evolves) are not
necessary ”fine” scales, and thus the approximation using POD-NS residuals
is not good. The second method is an hybrid method that couples DNS and
reduced order models. The idea is to modify and update the database when
dynamical evolution occurs, so that the leading basis functions always rep-
resent the updated dynamics. This method, coupled with a fast method to
actualize the POD basis functions using this new database, gives good results
if a sufficient amount of DNS is performed. Approximatively 20% of the total
numerical costs can be saved using such hybrid method.
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