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KAC-MOODY GROUPS, HOVELS AND LITTELMANN

PATHS

by Stéphane GAUSSENT and Guy ROUSSEAU

Résumé. Nous définissons une sorte d’immeuble I associé à un groupe
de Kac-Moody symétrisable sur un corps K muni d’une valuation
discrète avec un corps résiduel contenant C. Nous l’appelons ma-
sure (hovel) à cause de l’absence d’une propriété importante des
immeubles. Cependant, de bonnes propriétés restent, par exemple
l’existence de retractions de centre un germe de quartier. Cela nous
permet de généraliser plusieurs résultats prouvés par S. Gaussent et
P. Littelmann dans le cas semi-simple. En particulier, si K = C((t)),
les segments géodśiques dans I, d’extrémité un sommet spécial et
se rétractant sur un chemin donné π, sont paramétrés par un ou-
vert de Zariski P de CN . Cette dimension N est maximale quand
π est un chemin LS et alors P est fortement associé à un cycle de
Mirković-Vilonen.

Kac-Moody groups, hovels and Littelmann paths

Résumé. We give the definition of a kind of building I for a sym-
metrizable Kac-Moody group over a field K endowed with a discrete
valuation and with a residue field containing C. Due to the lack of
some important property of buildings, we call it a hovel. Neverthe-
less, some good ones remain, for example, the existence of retractions
with center a sector-germ. This enables us to generalize many results
proved in the semisimple case by S. Gaussent and P. Littelmann. In
particular, if K = C((t)), the geodesic segments in I, ending in a spe-
cial vertex and retracting onto a given path π, are parametrized by a
Zariski open subset P of CN . This dimension N is maximal when π

is a LS path and then P is closely related to some Mirković-Vilonen
cycle.

Keywords: Kac-Moody group, valuated field, building, path.
Math. classification: 22E46 (primary), 20G05, 17B67, 22E65, 20E42, 51E24.



2 STÉPHANE GAUSSENT AND GUY ROUSSEAU

1. Introduction

Let g∨ be a complex symmetrizable Kac-Moody algebra. To capture

the combinatorial essence of the representation theory of g∨, P. Littel-

mann [10, 11] introduced the path model. Particularly, this model gives a

method to compute the multiplicity of a weight µ in an irreducible rep-

resentation of highest weight λ (a dominant weight), by counting some

“Lakshmibai-Seshadri” (or LS) paths of shape λ starting from 0 and end-

ing in µ. When g∨ is semi-simple and G is an algebraic group with Lie

algebra the Langlands dual g of g∨, I. Mirković and K. Vilonen [13] gave a

new interpretation of this multiplicity : it is the number of irreducible com-

ponents (the MV cycles) in some subvariety Xµ
λ of the affine grassmannian

G = G(C((t)) )/G(C[[t]] ).

S. Gaussent and P. Littelmann [5] gave a link between these two theories

(when G is semi-simple). Actually, the LS paths are drawn in a vector

space V which is an apartment A of the Bruhat-Tits building of G (over

any non archimedean valuated field K, in particular K = C((t))). They

replaced the LS paths of shape λ from 0 to µ by “LS galleries” of type

λ from 0 to µ. This gives a new “gallery model” for the representations

of g∨. Moreover, let ρ be the retraction of the Bruhat-Tits building I of

G over K = C((t)) onto A with center some sector-germ S−∞ in A. Then,

the image under ρ of a minimal gallery Γ of type λ starting from 0 in I

is a gallery γ in A of type λ which looks much like a LS gallery : it is

“positively folded”. Conversely, any positively folded gallery γ in A of type

λ from 0 to µ is the image under ρ of many minimal galleries Γ in I. These

galleries are parametrized by a complex variety Xγ combinatorially defined

from γ. Moreover, γ is a LS gallery if, and only if, dim(Xγ) is maximal,

and then Xγ is isomorphic to an open subset of a MV cycle in Xµ
λ .

It was natural (and suggested to us by P. Littelmann) to try to generalize

this when G is a Kac-Moody group. Actually, G. Rousseau [17] had con-

structed some building for a Kac-Moody group over a discretely valuated

field K. But, the apartments of this microaffine building are not appropri-

ate to define LS paths. So, we construct a new set I (see 3.15) associated

to the Kac-Moody group G over K = C((t)) (or, more generally, over any

discretely valuated field K with residue field containing C). By definition,

the group G(K) acts on I, LS paths can be drawn on its apartments and

the action of G(K) on them is transitive. Unfortunately, any two points

in I are not always in a same apartment : this was already noticed (in a

different language and in the affine case) by H. Garland [4], who remarked

that Cartan decomposition is true only after some twist (cf. Remark 6.10).

ANNALES DE L’INSTITUT FOURIER



KAC-MOODY GROUPS, HOVELS AND LITTELMANN PATHS 3

Because of this pathological behaviour, I is called a hovel. Moreover, the

system of walls in an apartment of I is not discrete, so the notion of cham-

ber in I is unusual (but follows an idea of F. Bruhat and J. Tits [3]) and I

is not gallery-connected (see Section 2.2). Therefore, we have to come back

to the path model.

Nevertheless, we get good generalizations of Gaussent-Littelmann’s re-

sults. First, any sector-germ and any point in I are always in a same apart-

ment (this is equivalent to Iwasawa decomposition, Proposition 3.6). Next,

we fix a maximal torus in G and a system of positive roots, this gives us an

apartment A in I and a sector-germ S−∞ in A. So, we get a retraction ρ

of I onto A with center S−∞ (4.4). Following a definition of M. Kapovich

and J. Millson [8], we say that a Hecke path is a piecewise linear path π1

in A which is positively folded along true walls (see Definition 5.2). Now, an

analogue of some results due, in the semisimple case, to Kapovich-Millson

or Gaussent-Littelmann may be proven :

Theorem 1.1 (see 6.2). — If π is a geodesic segment (of shape λ) in I,

then ρπ is a Hecke path (of shape λ) in A.

Conversely, any Hecke path π1 in A is the image under ρ of a geodesic

segment π in I. But, if we want a finite dimensional variety of parameters,

we can no longer look at segments with a given starting point but rather

at segments with a given end. We get (when K = C((t))) :

Theorem 1.2 (see 6.3). — Let π1 be a Hecke path of shape λ in A with

endpoint a special vertex y. Then, there exist geodesic segments π in I

with endpoint y such that ρπ = π1 and they are parametrized by a Zariski

open subset P (π1, y) of CN , stable under the natural action of (C∗)N .

Here, N is the so-called dual dimension of π1 (5.7) and it is maximal

(among Hecke paths of shape λ with the same starting and ending points)

if and only if π1 is a LS path.

This result enables us to state that P (π1, y) is isomorphic to a dense

open subset of some Mirković-Vilonen cycle. In the semi-simple case, this

MV cycle is, up to isomorphism, the classical one associated to the reverse

path of π1.

The paper is organized as follows. In Section 2, we recall some results on

Kac-Moody groups and their affine apartments. Actually, in the literature

one finds many kinds of Kac-Moody groups. We choose the minimal one, the

most algebraic. But (in Section 3.3), we will also have to use the maximal

one which appears to be a formal completion of the minimal one and has

better commutation relations.
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4 STÉPHANE GAUSSENT AND GUY ROUSSEAU

The construction of the hovel I is explained completely in Section 3

and the first properties are developed in Section 4. The proofs are rather

involved but we get all what is needed : in particular, the Iwasawa decom-

position (3.6), the retraction with respect to a sector-germ (4.4), the twin

building structure of the residue of I at some point x (4.5) and, for some

“good” subsets Ω in apartments, the structure of their fixator (i.e. point-

wise stabilizer) GΩ and the transitivity of the action of GΩ on apartments

containing Ω (4.1 to 4.3).

In Section 5, we give the definitions of LS paths, Hecke paths, dual di-

mension and codimension. We prove the characterization of LS paths as

Hecke paths with maximal dual dimension (resp. minimal codimension).

We get in Section 6 the results on paths explained above, in particular

Theorems 1.1 and 1.2. The last theorem (Theorem 6.9) asserts that there

is, on I, a preorder relation which induces, on each apartment, the preorder

given by the Tits cone.

We thank Peter Littelmann for his suggestion to look at these problems

and for some interesting discussions. We also thank Michel Brion for his

careful reading of a previous version of the present paper and his comments.

2. Kac-Moody groups and the apartment

We recall here the main results on Kac-Moody groups (in 2.1). A good

reference is [15], see also [17]. We introduce the model apartment of our

hovel and call it, in analogy with the classical case, the affine apartment

(see 2.2). Because the set of walls is not locally finite anymore, the definition

of faces needs the notion of filter (see Sections 2.2.2 to 2.2.4).

2.1. Kac-Moody groups

2.1.1. Kac-Moody algebras

A Kac-Moody matrix (or generalized Cartan matrix) is a square matrix

A = (ai,j)i,j∈I , with integer coefficients, indexed by a finite set I and

satisfying :

(i) ai,i = 2 ∀i ∈ I,

(ii) ai,j 6 0 ∀i 6= j,

(iii) ai,j = 0 ⇐⇒ aj,i = 0.

ANNALES DE L’INSTITUT FOURIER



KAC-MOODY GROUPS, HOVELS AND LITTELMANN PATHS 5

A root generating system [1] is a 5-tuple S = (A, X, Y, (αi)i∈I , (α
∨
i )i∈I)

made of a Kac-Moody matrix A indexed by I, of two dual free Z−modules

X (of characters) and Y (of cocharacters) of finite rank rk(X), a family

(αi)i∈I (of simple roots) in X and a family (α∨
i )i∈I (of simple coroots) in Y .

They have to satisfy the following compatibility condition : ai,j = αj(α
∨
i ).

The Langlands dual of S is S∨ = (tA, Y, X, (α∨
i )i∈I , (αi)i∈I), where tA

is the transposed matrix of A.

The Kac-Moody algebra g = gS is a complex Lie algebra generated by

the standard Cartan subalgebra h = Y ⊗ C and the Chevalley generators

(ei)i∈I , (fi)i∈I ; we shall not explain here the relations, see for instance [6].

The adjoint action of h on g gives a grading on g : g = h ⊕ (⊕α∈∆ gα),

where ∆ ⊂ X \ {0} ⊂ h∗ is the set of roots of g (with respect to h). For all

i ∈ I, gαi
= Cei and g−αi

= Cfi. If Q+ =
∑

i Nαi, ∆+ = ∆ ∩ Q+ and

∆− = −∆+, one has ∆ = ∆+
⊔

∆−.

N.B. — For simplicity we shall assume throughout the paper the fol-

lowing condition :

F (S) The family (αi)i∈I is free in X and the family (α∨
i )i∈I is free in Y.

See Section 2.1.5.

Starting from Section 3.7, we shall also assume that the Lie algebra g is

symmetrizable, that is, endowed with a nondegenerate invariant C−valued

symmetric bilinear form.

2.1.2. Weyl group and real roots

Let V = Y ⊗ R ⊂ h ; every element in X defines a linear form on this

R−vector space. For i ∈ I, the formula ri(v) = v − αi(v)α∨
i defines an

involution in V (or h), more precisely a reflection of hyperplane Ker(αi).

The (vectorial) Weyl group W v is the subgroup of GL(V ) generated by

the set {ri}i∈I . One knows that W v is a Coxeter group ; it stabilizes the

lattice Y of V . It also acts on X and stabilizes ∆.

One denotes by Φ = ∆re the set of real roots, those which can be written

as α = w(αi) with w ∈ W v and i ∈ I. This set Φ is infinite except in

the classical case, where A is a Cartan matrix and g is finite-dimensional

(reductive). If α ∈ Φ, then rα = w.ri.w
−1 is well determined by α, inde-

pendently of the choice of w and of i such that α = w(αi). For v ∈ V one

has rα(v) = v − α(v)α∨, where the coroot α∨ ∈ Y associated to α satis-

fies α(α∨) = 2. Hence rα is the reflection with respect to the hyperplane

SUBMITTED ARTICLE : GAUSROUS.HYPER10401.TEX



6 STÉPHANE GAUSSENT AND GUY ROUSSEAU

M(α) = Ker(α) which is called the wall of α. The half-apartment associated

to α is D(α) = {v ∈ V | α(v) > 0}.

The set Φ is a system of (real) roots in the sense of [14]. The set ∆

is a system of roots in the sense of [1]. The imaginary roots (those in

∆im = ∆ \ Φ) will not be very much used here. We define Φ± = Φ ∩ ∆±.

A subset Ψ of Φ (or ∆) is said to be closed in Φ (or ∆) if : α, β ∈ Ψ,

α + β ∈ Φ (or ∆) ⇒ α + β ∈ Ψ. The subset Ψ is said to be prenilpotent

if there exist w, w′ ∈ W v such that wΨ ⊂ ∆+ and w′Ψ ⊂ ∆−. Then Ψ is

finite and contained in the subset w−1(Φ+)∩(w′)−1(Φ−) which is nilpotent

(i.e. prenilpotent and closed).

One denotes by Q∨ (resp. P∨, Q ) the “coroot-lattice” (resp. “coweight-

lattice”, “root-lattice”), i.e. the subgroup of Y generated by the α∨
i (resp.

P∨ = {y ∈ Y ⊗ Q | αi(y) ∈ Z, ∀i ∈ I }, Q =
∑

i Zαi) ; one has Q∨ ⊂

Y ⊂ P∨. Actually, Q∨, P∨ or Q is a lattice in V or V ∗ if and only if

the α∨
i generate V i.e. the αi generate V ∗ i.e. |I| = rk(X) = dim(V ). We

define the set of dominant weights X+ = {χ ∈ X | χ(α∨
i ) > 0, ∀i ∈ I}

and X− = −X+. Dually, the set of dominant coweights is Y + = {λ ∈ Y |

λ(αi) > 0, ∀i ∈ I} and Y − = −Y +.

2.1.3. The Tits cone

The positive fundamental chamber Cv
f = {u ∈ V | αi(u) > 0 ∀i ∈ I} is

a nonempty open convex cone. Its closure Cv
f is the disjoint union of the

faces F v(J) = { u ∈ V | αi(u) = 0 ∀i ∈ J ; αi(u) > 0 ∀i /∈ J} for J ⊂ I ;

one has Cv
f = F v(∅). We define V0 = F v(I), it is a vector subspace. These

faces are called vectorial because they are convex cones with base point 0.

One says that the face F v(J) or the set J is spherical (or of finite type) if

the matrix A(J) = (ai,j)i,j∈J is a Cartan matrix (in the classical sense),

i.e. if W v(J) = 〈ri | i ∈ J〉 is finite. This holds for the chamber Cv
f or its

panels F v({i}), ∀i ∈ I.

The Tits cone is the union T of the positive closed-chambers w.Cv
f for

w ∈ W v. Its interior is the open Tits cone T o, disjoint union of the (positive)

spherical faces w.F v(J) for w in W v and J spherical. Both T , T o and their

closure T are convex cones, stable under W v. They may be defined as :

T = {v ∈ V | α(v) < 0 only for a finite number of α ∈ ∆+(or Φ+) },

T o = {v ∈ V | α(v) 6 0 only for a finite number of α ∈ ∆+(or Φ+) },

T = {v ∈ V | α(v) > 0 ∀α ∈ ∆+
im }.

The action of W v on the positive chambers is simply transitive. The

fixator (pointwise stabilizer) or the stabilizer of F v(J) is W v(J).

ANNALES DE L’INSTITUT FOURIER



KAC-MOODY GROUPS, HOVELS AND LITTELMANN PATHS 7

We shall also consider the negative Tits cones −T , −T o, −T and all

negative faces, chambers... which are obtained by change of sign.

Actually, T o ∩−T o = ∅ except in the classical case (where T o = −T o =

V ) and T ∩ −T = {v ∈ V | α(v) = 0 for almost all α ∈ Φ (or ∆)} is

reduced to V0 =
⋂

α∈∆ Ker(α) if no connected component of I is spherical.

2.1.4. The Kac-Moody groups

One considers the (split, complex) Kac-Moody group G = GS associated

to the above root generating system as defined by Tits [22], see also [15,

Chapitre 8]. It is actually an affine ind-algebraic-group [9, 7.4.14].

For any field K containing C, the group G(K) of the points of G in K

is generated by the following subgroups :

– the fundamental torus T (K) where T = Spec(Z[X ]), hence T (K) is

isomorphic to the group (K∗)n = (K∗) ⊗Z Y and the character (resp.

cocharacter) group of T is X (resp. Y ).

– the root subgroups Uα(K) for α ∈ Φ, each isomorphic to the additive

group (K, +) by an isomorphism (of algebraic groups) xα.

Actually, we consider an isomorphism xα : K ≃ gα ⊗K → Uα(K) where

the additive group gα⊗K is identified with K by the choice of a Chevalley

generator eα of the 1−dimensional complex space gα.

Let M be an h−diagonalizable g−module with weights in X , and where

the action of each gα is locally nilpotent (e.g. g itself). Then G(K) acts

on M ⊗ K : the torus T (K) acts via the character λ on Mλ ⊗ K and the

action of xα(a) for a ∈ gα ⊗ K is the exponential of the action of a.

2.1.5. About the freedom condition F (S)

This condition is used in 2.1.3 to show that Cv
f is nonempty, and in 5.3

below for the existence of ρΦ+ . If it fails, then W v as defined in 2.1.2 could

be smaller than wanted (finite), and the roots of gS could not be defined

by the adjoint action of h. But, actually, F (S) is not necessary to define gS

or GS [15].

In [6], [9] and [10], the condition F (S) and a minimality condition for

the rank of X : rk(X) = |I|+corank(A) are assumed. Kumar requires

moreover a simple-connectedness condition :

(SC)
∑

i∈I

Zα∨
i is cotorsion-free in Y.

SUBMITTED ARTICLE : GAUSROUS.HYPER10401.TEX



8 STÉPHANE GAUSSENT AND GUY ROUSSEAU

For a root generating system S, define Ssc = (A, Xsc, Ysc, (αi)i∈I , (α
∗
i )i∈I)

by Xsc = X ⊕ZI , Ysc is the dual of Xsc and α∗
i (x+(nj)j∈I) = α∨

i (x)+ni.

The group GS is a quotient of GSsc
by a subtorus of the torus TSsc

, central

in GSsc
.

Starting from S satisfying F (S), then Ssc satisfies F (Ssc) and (SC). The

group GSsc
is the direct product of a torus and a group with the properties

assumed by Kumar. So, there is no trouble in using the results of [9] for

the groups we define.

2.1.6. Some commuting relations

We present here some relations in the group G, for more details, see [17,

1.5 and 1.6].

If {α, β} is a prenilpotent pair of roots in Φ (hence α 6= −β), one de-

notes by ]α, β[ the finite set of the roots γ = pα + qβ ∈ Φ with p and

q strictly positive integers and [α, β] =]α, β[∪{α, β} ; we choose any to-

tal order on this set. Then, the product map :
∏

γ∈[α,β] Uγ(K) → G(K)

is a bijection onto the group U[α,β](K) generated by these Uγ(K) ; it is

actually an isomorphism of algebraic varieties. The commutator group

[Uα(K), Uβ(K)] is contained in U]α,β[(K). More precisely, for u, v ∈ K,

one has : [xα(u), xβ(v)] =
∏

xγ(Cp,qu
pvq) where the product runs over

the γ = pα + qβ ∈]α, β[ (in the fixed order) and the Cp,q are integers.

The group T (K) normalizes Uα(K) : if t ∈ T (K) and u ∈ K one has

txα(u)t−1 = xα(α(t)u). The subgroup G(α) of G generated by Uα, U−α

and T is, up to its center, isomorphic to PGL2. In particular, for α ∈ Φ

and u ∈ Uα(K), the set U−α(K)uU−α(K) contains a unique element m(u)

conjugating Uβ(K) to Urα(β)(K) for each β ∈ Φ. Moreover, for v, v′ ∈ K∗ :

m(xα(v)) = m(x−α(v−1)) = x−α(−v−1)xα(v)x−α(−v−1) = · · ·

· · · = α∨ (v)m(xα(1)) = m(xα(1))α∨ (v−1)

m(xα(v))xα(v′)m(xα(v))−1 = x−α(v−2v′)

m(xα(v))2 = α∨ (−1).

If N is the normalizer of T in G, then N(K) is the group generated by

T (K) and the m(u) for all α ∈ Φ and all u ∈ Uα(K).

Lemma 2.1. — ( [17] or [15]) There exists an algebraic homomorphism

νv from N onto W v such that νv(m(u)) = ri for u ∈ U±αi
(K) and

Ker(νv) = T . As K is infinite, N(K) is the normalizer of T (K) in G(K)

and all maximal split subtori of G(K) are conjugate of T (K).

The conjugacy action of N on T is given by νv where W v acts on T

through its action on X or Y .

ANNALES DE L’INSTITUT FOURIER



KAC-MOODY GROUPS, HOVELS AND LITTELMANN PATHS 9

2.1.7. Borel subgroups

The subgroup U+(K) of G(K) is generated by the groups Uα(K) for

α ∈ Φ+ ; it is normalized by T (K). We define the same way U−(K) and

U(Ψ)(K) for any subset Ψ of Φ+ or Φ−.

The groups B(K) = B+(K) = T (K).U+(K), B−(K) = T (K).U−(K)

are the standard (positive, negative) Borel subgroups of G(K).

One has U+(K) ∩ B−(K) = U−(K) ∩ B+(K) = {1} ; more generally,

one has the following decompositions.

Bruhat decompositions :

G(K) = U+(K)N(K)U+(K) = U−(K)N(K)U−(K)

Moreover, the maps from N(K) onto U±(K)\G(K)/U±(K) are one to one.

Birkhoff decompositions :

G(K) = U+(K)N(K)U−(K) = U−(K)N(K)U+(K)

Moreover, the maps from N(K) onto U±(K)\G(K)/U∓(K) are one to one.

2.2. The affine apartment

The affine apartment A is V considered as an affine space.

2.2.1. Affine Weyl group and preorder relation

The group W v acts Z−linearly on Y , hence it acts R−linearly on A = V .

One has also an action of V by translations. Finally, one obtains an affine

action on A of the semi-direct product WR = W v ⋉ V .

For α ∈ Φ and k ∈ Z, M(α, k) = {v ∈ A | α(v) + k = 0} is the wall

associated to (α, k), it is closed in A. One has M(α, k) = M(−α,−k).

For α ∈ X\{0} and k ∈ Z, we define D(α, k) = {v ∈ A | α(v)+k > 0},

it is closed in A. When α ∈ Φ, we call D(α, k) the half-apartment associated

to (α, k) and the set D◦(α, k) = D(α, k) \M(α, k) = V \D(−α,−k) is the

open-half-apartment associated to (α, k).

The reflection associated to the wall M(α, k) is rα,k : A → A given by

the formula :

rα,k(y) = rα(y) − kα∨.

The group generated by the rα,k is W = W v ⋉ Q∨ ⊂ WR.

The subgroup of WR of all elements stabilizing the set of walls is WP =

W v ⋉ P∨. One defines also WY = W v ⋉ Y and one has :

W ⊂ WY ⊂ WP ⊂ WR = W v ⋉ V.

SUBMITTED ARTICLE : GAUSROUS.HYPER10401.TEX



10 STÉPHANE GAUSSENT AND GUY ROUSSEAU

Definition 2.2. — The affine space A together with its walls and its

Tits cone is the affine apartment of G associated to T , its (affine) Weyl

group W = W (A) is generated by the reflections with respect to the walls.

As the Tits cone T is convex, we can define a preorder-relation on A

given by x 6 y ⇔ y − x ∈ T . This is a genuine (= antisymmetric) order

relation only when Φ generates V and the Kac-Moody matrix A has no

factor of finite type.

For x ∈ A, the set ∆x of all roots α such that α(x) ∈ Z is a closed

subsystem of roots of ∆ in the sense of [1] Section 5.1. The associated

Weyl group Wmin
x is the subgroup of W generated by all the reflections

associated to the walls containing x. It is isomorphic to its image W v
x in

W v and is a Coxeter group, as shown in [loc. cit. ; 5.1.12]. The canonical

generators of W v
x are the rα for α simple in Φ+

x = ∆x ∩ Φ+ ; their number

may be infinite.

The point x is special when Φx = ∆x ∩ Φ is equal to Φ, i.e. when

W v
x = W v.

2.2.2. Faces

The faces in A are associated to the above systems of walls and half-

apartments. As in [3], they are no longer subsets of A, but filters of subsets

of A.

Definition 2.3 ( [3], [18] or [17]). — A filter in a set E is a nonempty

set F of nonempty subsets of E, such that, if S, S′ ∈ F then S ∩ S′ ∈ F

and, if S′ ⊃ S ∈ F then S′ ∈ F . If Z is a nonempty subset of E, the set

F (Z) of subsets of E containing Z is a filter (usually identified with Z). If

E ⊂ E′, to any filter F in E is associated the filter FE′ in E′ consisting of

all subsets of E′ containing some S in F ; one usually makes no difference

between F and FE′ .

A filter F is said to be contained in another filter F ′ : F ⊂ F ′ (resp. in a

subset Z in E : F ⊂ Z) if and only if any set in F ′ (resp. if Z) is in F . The

union of a family of filters in E is the filter consisting of subsets which are

in all the filters. Note that these definitions are opposite the natural ones.

A group Γ acting on E fixes pointwise (resp. stabilizes) a filter F , if and

only if every γ in Γ fixes pointwise some S ∈ F (resp. for all γ in Γ and

all S in F , γS ∈ F ).

If E is a topological space, the closure of a filter F in E is the filter F

consisting of all subsets of E containing the closure of a set in F .
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If F is a subset of E containing an element x in its closure, the germ

of F in x is the filter germx(F ) consisting of all subsets of E which are

intersections of F and neighbourhoods of x.

If E is a real affine space and x 6= y ∈ E, then the segment-germ [x, y)

is the germ of the segment [x, y] in x.

All the above definitions for filters are compatible with the correspond-

ing definitions for subsets and the identification of a subset Z with the

filter F (Z).

We say that a family F of filters generates a filter Ω if : a set S is in Ω

if and only if it is in some filter F ∈ F . If B is a basis of the filter Ω, then

the (filters canonically associated to the) sets in B generate Ω.

The enclosure cl(F ) of a filter F of subsets of A is the filter made of the

subsets of A containing any intersection of half-spaces D(α, k) (for α ∈ ∆

and k ∈ Z), which is in F . With this definition, the enclosure of a subset

Ω is the closed subset intersection of all D(α, k) (for α ∈ ∆ and k ∈ Z)

containing Ω. For P a non empty subset of X \ {0}, we define also the

P−enclosure clP(F ) by the same definition, just replacing ∆ by P .

Definition 2.4. — A face F in the apartment A is associated to a point

x ∈ A and a vectorial face F v in V ; it is called spherical according to the

nature of F v. More precisely, a subset S of A is an element of the face

F (x, F v) if and only if it contains an intersection of half-spaces D(α, k) or

D◦(α, k) (for α ∈ ∆ and k ∈ Z) which contains Ω ∩ (x + F v), where Ω

is an open neighborhood of x in A. The enclosure of a face F = F (x, F v)

is its closure : the closed-face F ; it is the enclosure of the local-face in x,

germx(x + F v).

Actually, in the classical case where Φ is finite, this definition is still

valid : F (x, F v) is a subset Z of A (more precisely : is the filter of subsets

containing a subset Z of A), and this subset Z is a face in the sense of [3, §1]

or [2, 6.1].

Note that the union of the faces F (x, F v) is not always the filter of

neighborhoods of x ; it is contained in (x + T ) ∪ (x − T ) if x is special.

2.2.3. Chambers, panels...

There is an order on the faces : the assertions “F is a face of F ′ ”, “F ′

covers F ” and “F 6 F ′ ” are by definition equivalent to F ⊂ F ′.

Any point x ∈ A is contained in a unique face F (x, V0) which is minimal

(but seldom spherical) ; x is a vertex if and only if F (x, V0) = {x}. When Φ
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12 STÉPHANE GAUSSENT AND GUY ROUSSEAU

generates V (i.e. rk(X) = |I| ), a special point is a vertex, but the converse

is not true.

The dimension of a face F is the smallest dimension of an affine space

generated by some S ∈ F . The (unique) such affine space E of minimal

dimension is the support of F . Any S ∈ F contains a non empty open

subset of E.

A chamber (or alcove) is a maximal face, or, equivalently, a face such that

all its elements contain a nonempty open subset of A or a face of dimension

rk(X) = dim(A).

A panel is a spherical face maximal among faces which are not chambers,

or, equivalently, a spherical face of dimension n − 1. Its support is a wall.

So, the set of spherical faces of A completely determines the set H of

walls.

A wall of a chamber C is the support M of a panel F covered by C. Two

chambers are called adjacent (along F or M) if they cover a common panel

(F of support M). But there may exist a chamber covering no panel, and

hence having no wall. So, A is far from being “gallery-connected”.

2.2.4. Sectors

A sector in A is a V −translate s = x + Cv of a vectorial chamber Cv =

±w.Cv
f (w ∈ W v), x is its base point and Cv its direction. Two sectors have

the same direction if and only if they are conjugate by V −translation, and

if and only if their intersection contains another sector.

The sector-germ of a sector s = x+Cv in A is the filter S of subsets of A

consisting of the sets containing a V −translate of s, it is well determined

by the direction Cv. So the set of translation classes of sectors in A, the set

of vectorial chambers in V and the set of sector-germs in A are in canonical

bijection.

The sector-germ associated to the positive (resp. negative) fundamental

chamber Cv
f (resp. −Cv

f ) is called the positive (resp. negative) fundamental

sector-germ and is denoted by S+∞ (resp. S−∞).

A sector-face in A is a V −translate f = x + F v of a vectorial face F v =

±wF v(J). The sector-face-germ of f is the filter F of subsets containing a

translate f′ of f by an element of F v (i.e. f′ ⊂ f). If F v is spherical, then f

and F are also called spherical. The sign of f and F is the sign of F v.
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3. The hovel, definition

To define something like an affine building associated to the Kac-Moody

group G and the apartment A of T (K), we have to define the action of

N(K) on A and the fixator P̂x in G(K) of a point x in A, i.e. the associated

parahoric subgroup. This fixator P̂x should contain the fixator N̂x of x in

N(K) and the groups Uα,k for x ∈ D(α, k). When x is 0 (“origin” of A),

the group P̂x should be G(O), so that the orbit of 0 in the “building” is

the affine grassmannian G = G(K)/G(O) (see Example 3.14 below).

But, we have also to define and study parahoric subgroups associated to

more general points or faces in A and this will lead to difficulties. Moreover,

the expected Bruhat decomposition for parahoric subgroups is actually false

in our case (see Remark 6.10). So, the “building” we can construct has bad

properties, therefore, we call it an hovel (in french “masure”).

Here, we give an overview of the present section. First, we describe the

action of N(K) on the apartment A (3.1). Then, given a filter of subsets

Ω in A, we define a subgroup Pmin
Ω of G(K) (3.2), in the same way as

in [3]. But, due to some bad commutation relations in G(K), we have to

work in larger groups, the formal completions of G. There are two ways

of doing it which lead to two groups P pm
Ω and Pnm

Ω (still in G(K)) both

containing Pmin
Ω (see 3.4). All these groups are defined by generators. The

ideal situation is when they coincide, but in general, we need another group

to compare them. So, we define a fourth group P̃Ω as the stabilizer of some

subalgebra and some submodule for the action of G(K) on highest weight

representations (in 3.6) ; it contains all the previous ones. However, P̃Ω is

a bit too big to be the fixator of Ω for the action of G(K) on the hovel.

We get the “parahoric group” PΩ by assuming that g is symmetrizable and

by taking the fixator of some subalgebra for the action of P̃Ω. Finally, the

“right candidate”, as a fixator of Ω, is the group P̂Ω obtained by adding to

PΩ the fixator N̂Ω of Ω in N(K) (for its action on A), see 3.7.

3.1. Action of N(K) on A

We suppose now the field K endowed with a discrete valuation ω, as-

sumed normalized : ω(K∗) = Z. The ring of integers is O ; we choose a

uniformizing parameter ̟, so ω(̟) = 1, O∗ = O \ ̟O and the residue

field is κ = O/̟O. Moreover, we assume that κ contains C (so, if K is

complete for ω, then K = κ((̟)) and O = κ[[̟]]). For the definition of the
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14 STÉPHANE GAUSSENT AND GUY ROUSSEAU

hovel for a Kac-Moody group G over any valuated field, one needs more

knowledge about G, it should appear in [19].

For α ∈ Φ, u ∈ Uα(K), u 6= 1, we define : ϕα(u) = ω(t), if u = xα(t) with

t ∈ K. For all k ∈ R ∪ {+∞}, the set Uα,k = ϕ−1
α ([k, +∞]) is a subgroup

of Uα(K) and Uα,∞ = {1}. See also [17, 2.2].

The group T (K) acts on A by translations : if t ∈ T (K) , ν(t) is

the element in V such that χ(ν(t)) = −ω(χ(t)) , ∀χ ∈ X . This action is

W v−equivariant.

The following lemma is a trivial consequence of the corresponding result

2.9.2 in [17].

Lemma 3.1. — There exists an action ν of N(K) on A which induces

the preceding one on T (K) and such that for n ∈ N(K), ν(n) is an affine

map with associated linear map νv(n).

Remarks 3.2. — 1) The image of N(K) in Aut(A) is ν(N) = WY .

The kernel H = Ker(ν) ⊂ T (K) is H = O∗ ⊗ Y = T (O).

2) By construction ν(N(C)) fixes 0, the origin of A, so, ν(m(xα(1))) is

the reflection rα = rα,0 with respect to the wall M(α, 0). Moreover,

m(xα(u)) = α∨(u)m(xα(1)), hence the image ν(m(xα(u))) is the

reflection rα,ω(u) with respect to the wall M(α, ω(u)), as by defini-

tion one has : α(ν(α∨(u))) = −ω(α(α∨(u))) = −ω(u2) = −2ω(u).

3.2. First objects associated to Ω and the group Pmin
Ω

Let Ω be a filter of subsets in A. For α ∈ ∆, let fΩ(α) = inf{k ∈ Z |

Ω ⊂ D(α, k)} = inf{k ∈ Z | α(Ω) + k ⊂ [0, +∞)} ∈ Z ∪ {+∞} ; by

this second equality, fΩ is defined on X . The function fΩ is concave [3] :

∀α, β ∈ X , fΩ(α + β) 6 fΩ(α) + fΩ(β) and fΩ(0) = 0 ; in particular

fΩ(α) + fΩ(−α) > 0. We say that Ω is narrow (resp. almost open) if and

only if fΩ(α) + fΩ(−α) ∈ {0, 1} (resp. 6= 0), ∀α ∈ Φ. The filter Ω is almost

open if and only if it is not contained in any wall, this is true for a chamber.

A point or a face is narrow. Actually, in the classical case, Ω is narrow if

and only if it is included in the closure of a chamber.

We define UΩ as the subgroup of G(K) generated by the groups Uα,Ω =

Uα,fΩ(α) for α ∈ Φ, and U±
Ω = UΩ ∩ U±(K). For α ∈ Φ, U

(α)
Ω (⊂ UΩ)

is generated by Uα,Ω and U−α,Ω ; N
(α)
Ω = N(K) ∩ U

(α)
Ω . The group Nu

Ω

(⊂ N(K) ∩ UΩ) is generated by all N
(α)
Ω for α ∈ Φ.
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All these groups are normalized by H . In particular, one can define the

groups Nmin
Ω = H.Nu

Ω and Pmin
Ω = H.UΩ. These groups depend only on the

enclosure of Ω (not on Ω itself).

Lemma 3.3. — Let Ω be a filter of subsets in A and α ∈ Φ a root.

1) U
(α)
Ω = Uα,Ω.U−α,Ω.N

(α)
Ω = U−α,Ω.Uα,Ω.N

(α)
Ω .

2) If fΩ(α) + fΩ(−α) > 0, then N
(α)
Ω ⊂ H . If fΩ(α) = −fΩ(−α) = k,

then ν(N
(α)
Ω ) = rα,k.

3) N
(α)
Ω fixes Ω i.e. ∀n ∈ N

(α)
Ω , ∃S ∈ Ω pointwise fixed by ν(n).

Consequence. — The group Wmin
Ω = Nmin

Ω /H is isomorphic to its image

W v
Ω in W v, it is generated by the reflections rα,k for which Ω ⊂ M(α, k)

(α ∈ Φ, k ∈ Z). The group Nmin
Ω is included in the group N̂Ω, fixator in

N(K) of Ω which normalizes H , UΩ and Pmin
Ω . The group ŴΩ = N̂Ω/H is

also isomorphic to a subgroup of W v.

Démonstration. — Parts 1) and 2) are proved by an easy computation

in SL2 or PGL2 ; one can also refer to [3, 6.4.7] where a more complicated

result (non split case) is proved. Clearly, 3) is a consequence of 2). �

We define gΩ = hO
⊕

(⊕α∈∆ gα,Ω), where hO = h ⊗C O, gα,Ω = gα,fΩ(α)

and (in general) gα,k = gα ⊗C {t ∈ K | ω(t) > k}. This is a sub-O-Lie-

algebra of gK = g ⊗C K.

The Lie algebra gΩ depends only on the enclosure of Ω (not on Ω itself).

This is also true for the algebras and groups defined above in the Conse-

quence of Lemma 3.3 (except for N̂Ω and ŴΩ) and below in Sections 3.3

and 3.4.

If Ω is bounded, then gΩ is a lattice in gK .

Let M be a g-module of highest weight (resp. lowest weight) Λ ∈ X ,

then M is the sum of its weight spaces : M = ⊕λ∈X Mλ. We define MΩ =

⊕λ∈X Mλ,Ω, where Mλ,Ω = Mλ,fΩ(λ) and (in general) Mα,k = Mα ⊗C {t ∈

K | ω(t) > k}. This is a sub−gΩ−module of M ⊗ K, and a lattice when Ω

is bounded.

If the module is integrable, then Λ ∈ X+ (resp. Λ ∈ X−) and G(K)

acts on M ⊗ K. As we are in equal characteristic 0, it is clear that UΩ

stabilizes MΩ.

3.3. Maximal Kac-Moody groups

1) The positively-maximal Kac-Moody algebra associated to g is the

Lie algebra ĝp = (⊕α∈∆− gα) ⊕ h ⊕ n̂+ where n̂+ =
∏

α∈∆+ gα is

the completion of n+ = ⊕α∈∆+ gα [9].
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16 STÉPHANE GAUSSENT AND GUY ROUSSEAU

2) The positively-maximal Kac-Moody group Gpmax is defined in [9]

(under the name G) ; it contains G as a subgroup (G is denoted

by Gmin by Kumar). For any closed subset Ψ of ∆+, Gpmax con-

tains the pro-unipotent pro-group Umax(Ψ) with Lie algebra n̂(Ψ) =∏
α∈Ψ gα ; i.e. Umax(Ψ)(K) =

∏
α∈Ψ Uα(K) where Uα(K) is iso-

morphic, via an isomorphism xα, to gα ⊗ K (already defined when

α is real).

One has the Bruhat decomposition :

Gpmax(K) =
∐

n∈N(K)

Umax(∆+)(K)nUmax(∆+)(K),

and the Birkhoff decomposition :

Gpmax(K) =
∐

n∈N(K)

U−(K)nUmax(∆+)(K).

Moreover,

U−(K) ∩ N(K)Umax(∆+)(K) = N(K) ∩ Umax(∆+)(K) = {1}.

N.B. — In all the preceeding or following notations, a sign +

may replace (Ψ) when Ψ = ∆+.

3) The following subalgebras or subgroups associated to a filter Ω are

also defined :

– ĝ
p
Ω = n−

Ω ⊕ hO ⊕ n̂+
Ω , where n−

Ω = ⊕α∈∆− gα,Ω and n̂Ω(Ψ) =

∪S∈Ω (
∏

α∈Ψ gα,S) ;

– Umax
Ω (Ψ) = ∪S∈Ω (

∏
α∈Ψ Uα,S), where Uα,S = Uα,fS(α) is

xα(gα,S) ; as we are in equal characteristic zero, the Campbell-

Hausdorf formula proves that this is a subgroup of Umax(Ψ)(K) ;

– Upm
Ω (Ψ) = G(K) ∩ Umax

Ω (Ψ), actually Upm
Ω (Ψ) = U+(K) ∩

Umax
Ω (Ψ) because by [9, 7.4.3], U+(K) = G(K)∩Umax(∆+)(K).

We have Upm
Ω (Ψ) = ∪S∈Ω Upm

S (Ψ) and Upm
Ω∪Ω′(Ψ) = Upm

Ω (Ψ)∩

Upm
Ω′ (Ψ).

4) Let α be a simple root, then by [9, 6.1.2, 6.1.3], Umax+(K) =

Uα(K) ⋉ Umax(∆+ \ {α})(K). Using the same proof, one can show

that Umax+
Ω = Uα,Ω⋉Umax

Ω (∆+\{α}) and, intersecting with G(K),

one gets Upm+
Ω = Uα,Ω ⋉ Upm

Ω (∆+ \ {α}).

The groups Umax
Ω (∆+ \ {α}) and Upm

Ω (∆+ \ {α}) above are nor-

malized by H.U
(α)
Ω and Umax(∆+ \ {α})(K) is normalized by

G(α)(K) = 〈T (K), Uα(K), U−α(K) 〉.
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5) One has also to consider the negatively-maximal Kac-Moody alge-

bra associated to g, ĝn = (⊕α∈∆+ gα) ⊕ h ⊕ (
∏

α∈∆− gα) and

the associated negatively-maximal Kac-Moody group Gnmax. More

generally, one can change p to n and ± to ∓ in 1),2),3), and 4)

above in order to obtain similar groups (with similar properties) in

the negative case.

3.4. The groups P pm
Ω and Pnm

Ω

Proposition 3.4. — Let Ω be a filter of subsets in A. We have 3 sub-

groups of G(K) associated to Ω and independent of the choice of a set of

positive roots in its W v−conjugacy class :

1) The group UΩ (generated by all Uα,Ω) is equal to UΩ = U−
Ω .U+

Ω .Nu
Ω =

U+
Ω .U−

Ω .Nu
Ω.

2) The group Upm
Ω generated by the groups UΩ and Upm+

Ω is equal to

Upm
Ω = Upm+

Ω .U−
Ω .Nu

Ω.

3) Symmetrically, the group Unm
Ω generated by UΩ and Unm−

Ω is equal

to Unm
Ω = Unm−

Ω .U+
Ω .Nu

Ω.

4) One has :

i) UΩ ∩ N(K) = Nu
Ω

ii) Upm
Ω ∩ N(K) = Nu

Ω

iii) UΩ ∩ (N(K).U±(K)) = Nu
Ω.U±

Ω

iv) Upm
Ω ∩ (N(K).U+(K)) = Nu

Ω.Upm+
Ω

v) UΩ ∩ U±(K) = U±
Ω

vi) Upm
Ω ∩ U+(K) = Upm+

Ω

and symmetrically for Unm
Ω .

Remarks 3.5. — The group H = T (O) normalizes also Upm
Ω and Unm

Ω ,

moreover, Pmin
Ω is contained in P pm

Ω = H.Upm
Ω and in Pnm

Ω = H.Unm
Ω . The

group U++
Ω generated by the Uα,Ω for α ∈ Φ+ is included in U+

Ω , itself

included in Upm+
Ω . The first inclusion may be strict even for Ω reduced to a

special point and A of affine type. The equality U+
Ω = Upm+

Ω is equivalent to

UΩ = Upm
Ω , it may be false for Ω large (e.g. a negative sector). The situation

should be better for Ω narrow. Actually, we shall prove that P pm
Ω = Pnm

Ω

when Ω is reduced to a special point or is a spherical face (3.7). The problem

is then to know if this group is generated by its intersections with the torus

and the (real) root groups.
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In the classical case of reductive groups, one has G = Gpmax = Gnmax

and

U++
Ω = U+

Ω = Umax+
Ω = Upm+

Ω ,

U−−
Ω = U−

Ω = Umax−
Ω = Unm−

Ω ;

moreover UΩ (= Upm
Ω = Unm

Ω ) is the same as the group defined in [3, 6.4.2,

6.4.9]. The group Pmin
Ω is called PΩ by Bruhat and Tits.

Démonstration. — after [3, 6.4.9]

a) Let U = Upm
Ω (∆+).Unm

Ω (∆−).Nu
Ω ⊂ G(K). By 3.3.4) and Lemma 3.3,

for α simple, one has :

U = Upm
Ω (∆+ \ {α}).Unm

Ω (∆− \ {−α}).Uα,Ω.U−α,Ω.Nu
Ω

= Upm
Ω (∆+ \ {α}).Unm

Ω (∆− \ {−α}).U−α,Ω.Uα,Ω.Nu
Ω

= Upm
Ω (∆+ \ {α}).U−α,Ω.Unm

Ω (∆− \ {−α}).Uα,Ω.Nu
Ω

= Upm
Ω (rα(∆+)).Unm

Ω (rα(∆−)).Nu
Ω.

So U does not change when ∆+ is changed by the Weyl group W v.

b) Hence U is stable by left multiplication by Upm+
Ω and all Uα,Ω for

α ∈ Φ. Moreover, it contains these subgroups, so U ⊃ Upm
Ω ⊃ UΩ.

c) In Gpmax(K), let us prove that U ∩ Umax+(K) = Upm+
Ω : if xyz ∈

Umax+(K) with x ∈ Upm+
Ω , y ∈ Unm−

Ω and z ∈ Nu
Ω, then yz ∈

Umax+(K) and by the Birkhoff decomposition (3.3.2) one has y =

z = 1.

d) So Upm
Ω ∩ U+(K) = Upm

Ω ∩ Umax+(K) = Upm+
Ω .

The group UΩ(∆+ \{α}) := UΩ∩Upm
Ω (∆+ \{α}) = U+

Ω ∩Upm
Ω (∆+ \

{α}) is normalized by Uα,Ω and U−α,Ω. By 3.3.4), U+
Ω = Uα,Ω ⋉

UΩ(∆+ \ {α}) and symmetrically for U−
Ω .

e) Now we are able to argue as in a), b) above with a new U , where

Upm
Ω (∆+) is changed to U+

Ω and/or Unm
Ω (∆−) to U−

Ω . This proves 1),

2) and 3).

f) Concerning 4), v) holds by definition, and vi) was proved in d). We

prove now iv) and ii) ; iii) and i) are similar. Let n ∈ N(K) and

v ∈ U+(K) be such that nv ∈ Upm
Ω . There exist n′ ∈ Nu

Ω, u′ ∈ U−
Ω

and v′ ∈ Upm+
Ω such that nv = n′u′v′. Now n′−1n = u′v′v−1 and by

the Birkhoff decomposition n = n′ ∈ Nu
Ω, v = u′v′, so, u′ = 1 and

v = v′ ∈ Upm+
Ω .

�
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3.5. Iwasawa decomposition

Proposition 3.6. — Suppose Ω narrow, then

G(K) = U+(K).N(K).UΩ.

Suppose, moreover, Ω almost open. Then the natural map from WY =

N(K)/H onto U+(K)\N(K)/UΩ is one to one.

Remarks 3.7. — We also have G(K) = U−(K).N(K).UΩ and simi-

larly with the maximal groups Gpmax(K) = Upmax+(K).N(K).UΩ and

Gnmax(K) = Unmax−(K).N(K).UΩ.

As a consequence, when Ω is narrow, every subgroup P of G(K) con-

taining UΩ may be written P = (P ∩ (U+(K).N(K))).UΩ. If, moreover,

P ∩(U+(K).N(K)) = U+
P .NP with U+

P = P ∩U+(K) and NP = P ∩N(K)

normalizing UΩ, then P = U+
P .NP .U−

Ω . We shall use this to (almost) iden-

tify Upm
Ω and Unm

Ω (see Section 3.7).

The idea of the proof of the Iwasawa decomposition goes back to Stein-

berg. We follow [3, 7.3.1], see also [7, 3.7] and [4, 1.6]. We first need a

lemma.

Lemma 3.8. — Let α be in Φ, then Zα := Uα(K).{1, rα}.T (K).U
(α)
Ω

contains G(α)(K).

Démonstration. — By the Bruhat decomposition,

G(α)(K) ⊂ Uα(K).{1, rα}.T (K).Uα(K).

So it suffices to prove that, for mα ∈ N(K) such that νv(mα) = rα and

u ∈ Uα(K), mαu ∈ Zα. If ϕα(u) > fΩ(α), it’s clear : u ∈ Uα,Ω. Otherwise

ϕα(u) 6 fΩ(α) − 1 6 −fΩ(−α) and u = v′mv” with νv(m) = rα, v′, v′′ ∈

U−α,−ϕα(u) ⊂ U−α,Ω. So mαu = mαv′mv” ∈ Uα(K).T (K).U−α,Ω ⊂ Zα,

and the lemma is proved.

Proof of Proposition 3.6. — The set Z = U+(K).N(K).UΩ is stable by

left multiplication by U+(K) and T (K). It remains to prove that it is stable

by left multiplication by U−α(K) for α a simple root. Let U(Φ+\{α})(K) =

G(K)∩Umax(∆+\{α})(K) ⊂ U+(K), using the Lemma 3.3 and discussion
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in Section 3.3.4), one gets :

U−α(K)Z = U−α(K).U(Φ+ \ {α})(K).Uα(K).N(K).UΩ

⊂ U(Φ+ \ {α})(K).G(α)(K).N(K).UΩ

⊂ U(Φ+ \ {α})(K).Uα(K).{1, rα}.T (K).U
(α)
Ω .N(K).UΩ

⊂ U+(K).T (K).U−α(K).N(K).UΩ

∪ U+(K).T (K).rα.U−α(K).Uα(K).N(K).UΩ

⊂ U+(K).T (K).U−α(K).N(K).UΩ.

It remains to show that U−α(K).N(K) ⊂ Z. But un = n.n−1un ∈

nUβ(K) ⊂ nU−β(K).{1, rβ}.T (K).U
(β)
Ω with β = −νv(n−1)α. So un ∈

Uα(K).n.{1, rβ}.T (K).U
(β)
Ω ⊂ Uα(K).N(K).UΩ.

With obvious notation, suppose n′ ∈ U+(K)nUΩ. Then, by Lemma 3.3

and Proposition 3.4 one has : n′−1n ∈ UΩn−1U+(K)n. But, n−1U+(K)n =

U(n−1Φ+). Further, UΩ.U(n−1Φ+)(K) ⊂ H.UΩ(n−1Φ−).U(n−1Φ+)(K) ⊂

U(n−1Φ−)(K).H.U(n−1Φ+)(K).

Finally, by the Birkhoff decomposition, n′−1n ∈ H .

�

3.6. The group P̃Ω

In this section Ω is asked to be a nonempty set.

Clearly, Umax+
Ω stabilizes ĝ

p
Ω and G(K) stabilizes gK ; so Upm+

Ω = G(K)∩

Umax+
Ω stabilizes gΩ = ĝ

p
Ω∩gK . Finally, Upm

Ω and also Unm
Ω (or H) stabilize

gΩ. If M is a highest weight integrable g−module, then Umax+
Ω stabilizes

MΩ. The group Umax−
Ω stabilizes M̂Ω =

∏
λ∈X Mλ,Ω and G(K) stabilizes

M ⊗ K. Finally, Upm
Ω and also Unm

Ω (or H) stabilize MΩ for every highest

(or lowest) weight integrable g−module M .

Definition 3.9. — The group P̃Ω is the subgroup of all elements in

G(K) stabilizing gΩ and MΩ for every highest (or lowest) weight integrable

g−module M .

Hence, P̃Ω contains Upm
Ω , Unm

Ω , UΩ and H . When Ω is narrow, we have

P̃Ω = (P̃Ω ∩ U+(K).N(K)).UΩ = (P̃Ω ∩ U−(K).N(K)).UΩ.

Lemma 3.10. — Let ÑΩ = P̃Ω ∩ N(K), then P̃Ω ∩ (U+(K).N(K)) =

Upm+
Ω .ÑΩ and P̃Ω∩(U−(K).N(K)) = Unm−

Ω .ÑΩ. Moreover, ÑΩ normalizes

UΩ and is the stabilizer (in N(K) for the action ν on A) of the P−enclosure
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clP(Ω) of Ω, where P ⊂ X is the union of ∆ and the set of all weights of

h in all the modules M above.

Démonstration. —

a) Let n ∈ N(K) and u ∈ U+(K) be such that un ∈ P̃Ω and w = νv(n).

For M = MΩ or gΩ, g ∈ P̃Ω and µ, µ′ ∈ h∗, we define µ′ |g|µ as the

restriction of g to Mµ followed by the projection onto Mµ′ (with kernel

⊕µ′′ 6=µ′ Mµ′′). Now for all µ, wµ|un|µ = wµ|n|µ and n = ⊕µ wµ|n|µ
(in an obvious sense) ; so n ∈ ÑΩ. We have P̃Ω ∩ (U+(K).N(K)) =

(P̃Ω ∩ U+(K)).ÑΩ and it remains to determine ÑΩ and P̃Ω ∩ U+(K)

(or P̃Ω ∩ U−(K)).

b) P̃Ω∩U+(K) = Upm+
Ω : the inclusion ⊃ is already proved in the discus-

sion before Definition 3.9. So, consider u =
∏

α∈∆+ uα ∈ Umax+(K)

such that u stabilizes gΩ (the order on the uα ∈ Uα(K) is chosen such

that the height of α is increasing from right to left). We shall prove

by induction that each uα is in Uα,Ω. We may suppose uα′ ∈ Uα′,Ω

for uα′ on the right of uα ; moreover, as Uα′,Ω stabilizes gΩ, we may

suppose these uα′ equal to 1. So u = (
∏

β 6=α uβ).uα where the uβ are

in Uβ(K) and ht(β) > ht(α). But α|u|0 = α|uα|0 sends hO into gα,Ω,

so uα ∈ Uα,Ω. Now if u ∈ P̃Ω ∩U+(K), it is in Umax+(K)∩G(K) and

stabilizes gΩ ; by the above argument, u ∈ Umax+
Ω ∩ G(K) = Upm+

Ω .

c) Let n = n0t, n0 ∈ N(C), νv(n) = w and t ∈ T (K), then nMλ,k =

Mwλ,k+ω(λ(t)). Consider now the action on A : nD(λ, k) = n0D(λ, k +

ω(λ(t))) = D(wλ, k+ω(λ(t))). But, gΩ is generated by hO and the gα,Ω

for α ∈ ∆, so n is in P̃Ω if and only if, for all λ ∈ P fΩ(λ) + ω(λ(t)) =

fΩ(wλ) if and only if, for all λ ∈ P , nD(λ, fΩ(λ)) = D(wλ, fΩ(wλ)).

This is equivalent to the fact that n stabilizes the set clP(Ω). Moreover,

as ÑΩ stabilizes gΩ, it normalizes UΩ.

�

We know that Nmin
Ω = H.Nu

Ω ⊂ ÑΩ. So, to determine ÑΩ, we only have

to determine the subgroup W̃Ω = ÑΩ/H = ν(ÑΩ) of ν(N(K)) ; it contains

Wmin
Ω = ν(Nmin

Ω ).

Examples 3.11. — 1) Let us now assume that Ω is bounded. As P ⊃

∆∪X+∪X−, it is easy to prove that each χ ∈ X is a positive linear

combination of some λ ∈ P . Hence, the intersection clP(Ω) of all

D(λ, fΩ(λ))’s (for λ ∈ P) is a nonempty convex compact set. But

ÑΩ stabilizes clP(Ω) and, as it acts affinely, it fixes a point xΩ in

clP(Ω).
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2) Suppose now Ω narrow, then

P̃Ω = Upm+
Ω .ÑΩ.UΩ = Upm+

Ω .UΩ.ÑΩ = Upm+
Ω .U−

Ω .ÑΩ

and

P̃Ω = Unm−
Ω .ÑΩ.UΩ = Unm−

Ω .UΩ.ÑΩ = Unm−
Ω .U+

Ω .ÑΩ.

In particular P̃Ω, which contains always P pm
Ω and Pnm

Ω , is not much

greater than them in this case.

3.7. The (parahoric) group PΩ and the “fixator” P̂Ω

From now on, we suppose g symmetrizable.

As gΩ is generated by hO and the gα,Ω for α ∈ ∆, the derived algebra

of gΩ is g′Ω = (
∑

α∈∆ [gα,Ω, g−α,Ω]) ⊕ (⊕α∈∆ gα,Ω). Consider the quotient

algebra gΩ = gΩ/̟gΩ = (h⊗ κ)⊕ (⊕α∈∆ gα,Ω/̟gα,Ω). As g is symmetriz-

able, [gα, g−α] = Cα∨ for all α ∈ ∆, so the derived algebra of gΩ is g′Ω =

(
∑

α∈∆Ω
κα∨)⊕(⊕α∈∆ gα⊗κ), where ∆Ω = {α ∈ ∆ | fΩ(α)+fΩ(−α) = 0}

is the set of α ∈ ∆ such that α(Ω) is reduced to a point in Z.

As g is symmetrizable, the orthogonal (g′Ω)⊥ of g′Ω in gΩ is {x ∈ h ⊗ κ |

α(x) = 0, ∀α ∈ ∆Ω}. If Ω is a set, the action of P̃Ω (by inner automor-

phisms) is compatible with the invariant bilinear form ; so P̃Ω stabilizes gΩ,

gΩ, g′Ω and (g′Ω)⊥. Let P̃ ′
Ω be the fixator of (g′Ω)⊥ for this action of P̃Ω.

Definition 3.12. — For a filter Ω, PΩ = ∪S∈Ω (∩S′⊂S P̃ ′
S′) is a ”para-

horic” group associated to Ω.

An element g of UΩ (or Upm+
Ω , Unm−

Ω ) is in some US (or Upm+
S , Unm−

S ) for

S ∈ Ω, hence in US′ (or Upm+
S′ , Unm−

S′ ) for any S′ ⊂ S. But Umax+
S′ and H

induce the identity on hO, so P̃ ′
S′ contains H , Upm+

S′ and also Unm−
S′ . More-

over US′ is generated by elements in Upm+
S′ or Unm−

S′ . Finally PΩ contains

UΩ, Upm+
Ω , Unm−

Ω and H .

The group NΩ = PΩ∩N(K) contains Nmin
Ω (and is often equal to it, as we

shall see). The quotient group WΩ = NΩ/H contains Wmin
Ω and is included

in W̃Ω := ∪S∈Ω W̃S . Actually, WΩ = ∪S∈Ω (∩S′⊂S W̃ ′
S′) with W̃ ′

S′ =

(N(K)∩P̃ ′
S′)/H . If S′ is a non empty bounded set , then, by Example 3.11,

W̃S′ fixes a point xS′ in clP(S′) ⊂ {x ∈ A | α(x) = α(S′) ∀α ∈ ∆S′} ⊂

{x ∈ A | α(x) = α(S) ∀α ∈ ∆S} (if S′ ⊂ S) ; in particular, it is isomorphic

to its image in W v. But, by definition, the image in W v of W̃ ′
S′ is the fixator

(in the image of W̃S′) of the direction of the affine space {x ∈ A | α(x) =
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α(S′) ∀α ∈ ∆S′} ⊃ clP(S′). Hence, by Lemma 3.10, W̃ ′
S′ is the fixator in

WY of {x ∈ A | α(x) = α(S′) ∀α ∈ ∆S′}. It follows that WΩ is always

the fixator in WY of {x ∈ A | α(x) = α(Ω) ∀α ∈ ∆Ω}. In particular NΩ

normalizes UΩ.

When there exists x, y ∈ {x ∈ A | α(x) = α(Ω) ∀α ∈ ∆Ω} such that

y − x is in the open-Tits-cone (in particular when Ω is a spherical face), it

is known that WΩ = Wmin
Ω .

When Ω is narrow, PΩ = Upm+
Ω .U−

Ω .NΩ = Unm−
Ω .U+

Ω .NΩ = Upm
Ω .NΩ =

Unm
Ω .NΩ.

In particular, when Ω is a spherical face (or a special point), NΩ = Nmin
Ω

and PΩ = P pm
Ω = Pnm

Ω is called the parahoric subgroup associated to Ω.

Definition 3.13. — The ”fixator” P̂Ω associated to Ω is the group

generated by PΩ and the fixator N̂Ω (in N(K) for the action ν) of Ω.

Actually, N̂Ω is also the fixator of the support of Ω : the smallest affine

subspace of A generated by a set in Ω. Clearly supp(Ω) ⊂ {x ∈ A | α(x) =

α(Ω) ∀α ∈ ∆Ω}, so N̂Ω ⊃ NΩ. As N̂Ω normalizes PΩ (and all the groups

previously defined), we have P̂Ω = PΩ.N̂Ω. Clearly, P̂Ω ∩ N(K) = N̂Ω and

P̂Ω ⊃ Upm+
Ω , Unm−

Ω .

When Ω is narrow, P̂Ω = Upm+
Ω .U−

Ω .N̂Ω = Unm−
Ω .U+

Ω .N̂Ω.

This group should be the fixator of Ω for the action of G(K) on the

“ugly-building” we shall build now. But this will be proved only for some

Ω, see 4.2 below.

Examples 3.14. — An explicit computation : Suppose Ω reduced to the

special point 0, the origin of V = A chosen as in Remark 3.2.2). Then

f0(α) = 0, ∀α, g0 = g ⊗C O and M0 = M ⊗C O. Hence, the definition of

the ind-group structure of G [9, 7.4.6 and 7.4.7] tells us that P̃0 ⊂ G(O).

Moreover, Lie(G) = g and the highest or lowest weight modules are defined

by morphisms of ind-varieties [loc. cit. ; 7.4.E(6) and 7.4.13] so P̃0 = G(O).

Now g0 = g ⊗C κ and (as 0 is special) N̂0 = Nmin
0 , (g′0)

⊥ = c ⊗C κ where

c is the center of g ; so G(O) = P̃0 = P0 = P̂0 (= G0 with the notation

of 4.1).

In the classical case of reductive groups, WΩ is always equal to Wmin
Ω .

If Ω is narrow (i.e. included in a closed-face), PΩ = Pmin
Ω and P̂Ω are as

defined by Bruhat and Tits (cf. Remark 3.5). In particular, P̂x is the same

as in Bruhat-Tits and the following definition gives the (pretty) Bruhat-

Tits building.

SUBMITTED ARTICLE : GAUSROUS.HYPER10401.TEX
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3.8. The hovel and its apartments

Definition 3.15. — The hovel I = I(G, K) of G over K is the quotient

of the set G(K) × A by the relation :

(g, x) ∼ (h, y) ⇔ ∃n ∈ N such that y = ν(n)x and g−1hn ∈ P̂x.

One proves easily [3, 7.4.1] that ∼ is an equivalence relation. Moreover,

P̂x ∩ N(K) = N̂x. So, the map x 7→ cl(1, x) identifies A with its image

Af = A(T, K), the apartment of T in I(G, K).

The left action of G(K) on G(K) × A descends to an action on I. The

apartments of I are the g.Af for g ∈ G(K). The action of N(K) on A = Af

is through ν ; in particular, H fixes (pointwise) Af . By construction, the

fixator of x ∈ A is P̂x and, for g ∈ G(K), one has gx ∈ A ⇔ g ∈ N(K)P̂x.

From the definition of the groups P̂x, it is clear that, for α ∈ Φ and

u ∈ K, xα(u) fixes D(α, ω(u)). Hence, for k ∈ Z, the group H.Uα,k fixes

D(α, k).

4. The hovel, first properties

First, we define the notion of good fixator for a filter Ω of A. It formalizes

the fact that the fixator GΩ of Ω for the action of G(K) on I has a nice

decomposition and the fact that GΩ acts transitively on the apartments

containing Ω (4.1). Thanks to a technical proposition (Proposition 4.3), we

can show, in particular, that faces, sectors, sector-germs, walls and half-

apartments in A do have a good fixator (4.2). This, in turn, gives a lot of

applications (4.3), like the retraction associated to a sector-germ. We finish

this section with the structure of the residue buildings (4.5).

4.1. Good fixators

When Ω ⊂ Ω′ ⊂ A, then P̂Ω ⊃ P̂Ω′ . As P̂x is the fixator of x ∈ A, P̂Ω is

included in the fixator GΩ of Ω (for the action of G(K) on I ⊃ A). Actually,

when Ω is a set GΩ =
⋂

x∈Ω P̂x, and when Ω is a filter GΩ =
⋃

S∈Ω GS .

We have GΩ∩N(K) = N̂Ω and GΩ ⊃ P̂Ω which contains Upm+
Ω .Unm−

Ω .N̂Ω

and Unm−
Ω .Upm+

Ω .N̂Ω.

For Ω a filter of subsets in A, the subset of G(K) consisting of the

g ∈ G(K) such that g.Ω ⊂ A is : G(Ω ⊂ A) =
⋃

S∈Ω (
⋂

x∈S N(K).P̂x).

Indeed g.Ω ⊂ A ⇔ ∃S ∈ Ω, g.S ⊂ A ⇔ ∃S ∈ Ω, ∀x ∈ S, gx ∈ A ⇔

(by 3.15) ∃S ∈ Ω, ∀x ∈ S, g ∈ N(K).P̂x.
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Definition 4.1. — Consider the following properties :

(GF+) GΩ = P̂Ω = Upm+
Ω .Unm−

Ω .N̂Ω,

(GF−) GΩ = P̂Ω = Unm−
Ω .Upm+

Ω .N̂Ω,

(TF) G(Ω ⊂ A) = N(K).GΩ.

We say that Ω in A has a good fixator if it satisfies these three properties.

We say that Ω in A has an half-good fixator if it satisfies (TF) and (GF+)

or (GF−).

We say that Ω in A has a transitive fixator if it satisfies (TF).

By point a) in the proof of Proposition 3.4, this definition doesn’t depend

on the choice of ∆+ in its W v−conjugacy class and N(K) permutes the

filters with good fixators and the corresponding fixators. By 3.13 and 3.15,

a point has a good fixator.

In the classical case of reductive groups, every Ω has a good fixator and

P̂Ω is as defined by Bruhat and Tits [3, 7.1.8, 7.1.11, 7.4.8].

Remark 4.2. — If Ω in A has a transitive fixator. Then GΩ is transitive

on the apartments containing Ω : if g ∈ G(Ω ⊂ A), there exists n ∈ N(K)

such that g|Ω = n|Ω ; moreover if g.A ⊃ Ω, then g−1Ω ⊂ A and g−1 = np ∈

N(K).GΩ, so g.A = p−1n−1.A = p−1.A. In particular GΩ and all invariant

subgroups of GΩ do not depend of the particular choice of the apartment

A containing Ω.

Proposition 4.3. — 1) Suppose Ω ⊂ Ω′ ⊂ cl(Ω). If Ω in A has a

good (or half-good) fixator, then this also holds for Ω′ and GΩ =

N̂Ω.GΩ′ , N(K).GΩ = N(K).GΩ′ . In particular, any apartment con-

taining Ω contains its enclosure cl(Ω).

Conversely, if supp(Ω) = A (or supp(Ω′) = supp(Ω), hence N̂Ω′ =

N̂Ω), Ω has an half-good fixator and Ω′ has a good fixator, then Ω

has a good fixator.

2) If a filter Ω in A is generated by a family F of filters with good

(or half-good) fixators, then Ω has a good (or half-good) fixator

GΩ =
⋃

F∈F GF .

3) Suppose that the filter Ω in A is the union of an increasing sequence

(Fi)i∈N of filters with good (or half-good) fixators and that, for some

i, the space supp(Fi) has a finite fixator W0 in WY , then Ω has a

good (or half-good) fixator GΩ =
⋂

i∈N
GFi

.

4) Let Ω and Ω′ be two filters in A. Suppose Ω′ satisfies (GF+)

(resp. (GF+) and (TF)) and that there exist a finite number of

positive, closed, vectorial chambers Cv
1 , · · · , Cv

n such that : Ω ⊂
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∪i=1,n Ω′ + Cv
i . Then Ω ∪ Ω′ satisfies (GF+) (resp. (GF+) and

(TF)) and GΩ∪Ω′ = GΩ ∩ GΩ′ .

Remark 4.4. — In 4) above, the same results are true when changing

+ to −.

If Ω′ has a good fixator, Ω ⊂ ∪i=1,n Ω′ + Cv
i and Ω ⊂ ∪i=1,n Ω′ − Cv

i ,

then Ω ∪ Ω′ has a good fixator.

If Ω satisfies (GF−), Ω′ satisfies (GF+), Ω or Ω′ satisfies (TF), Ω ⊂

∪i=1,n Ω′ + Cv
i and Ω′ ⊂ ∪i=1,n Ω − Cv

i , then Ω ∪ Ω′ has a good fixator.

Démonstration. —

1) When Ω ⊂ Ω′ ⊂ cl(Ω), we always have Upm+
Ω = Upm+

Ω′ = Upm+
cl(Ω) ,

Unm−
Ω = Unm−

Ω′ = Unm−
cl(Ω) , GΩ′ ⊂ GΩ, G(Ω′ ⊂ A) ⊂ G(Ω ⊂ A)

and N̂Ω′ = N(K) ∩ GΩ′ ⊂ N̂Ω (with equality when supp(Ω′) =

supp(Ω)) ; so the first assertion of 1) is clear. The second assertion

is a consequence of Remark 4.2.

For the last assertion we know that GΩ′ = Upm+
Ω .Unm−

Ω .N̂Ω′ =

Unm−
Ω .Upm+

Ω .N̂Ω′ , N̂Ω′ = N̂Ω and GΩ′ = GΩ ; so the fixator GΩ is

good.

2) If Ω is generated by the family F of filters, we have

GΩ =
⋃

F∈F

GF , Upm+
Ω =

⋃

F∈F

Upm+
F ,

Unm−
Ω =

⋃

F∈F

Unm−
F , N̂Ω =

⋃

F∈F

N̂F

and G(Ω ⊂ A) =
⋃

F∈F G(F ⊂ A) ; so 2) is clear.

3) If Ω in A is the union of an increasing sequence (Fi)i∈N of filters, we

have GΩ =
⋂

i∈N
GFi

, Upm+
Ω =

⋂
i∈N

Upm+
Fi

, Unm−
Ω =

⋂
i∈N

Unm−
Fi

and G(Ω ⊂ A) =
⋂

i∈N
G(Fi ⊂ A). By hypothesis we may suppose

that all supp(Fi) have the same finite fixator W0, so, N̂Ω = N̂Fi
=

W0.H .

If g ∈
⋂

i∈N
GFi

=
⋂

i∈N
Upm+

Fi
.Unm−

Fi
.H.W0, by extracting

a subsequence, there exists n0 ∈ N(K) such that gn−1
0 ∈

⋂
i∈N

Upm+
Fi

.Unm−
Fi

.H , and, because U±(K) ∩ B∓(K) = {1} (2.1.7), this

intersection is equal to Upm+
Ω .Unm−

Ω .H . So, GΩ = Upm+
Ω .Unm−

Ω .N̂Ω.

If g ∈ G(Ω ⊂ A) =
⋂

i∈N
N(K)GFi

, then, for all i, g ∈ wiGFi
for

some wi ∈ Ŵ , unique modulo W0 as GFi
∩ N(K) = N̂Fi

= W0.H .

Extracting a subsequence, we may suppose that wi is independent

on i, so g ∈ wi.(
⋂

j GFj
) = wi.GΩ and G(Ω ⊂ A) ⊂ N(K).GΩ.
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4) By induction, we may suppose Ω ⊂ Ω′ + Cv
1 . We may also assume

that Cv
1 is the closed positive fundamental chamber Cv

f .

Suppose (GF+) and (TF) for Ω′. Let u ∈ Upm+
Ω′ , v ∈ Unm−

Ω′

and n ∈ N(K) be such that uvn ∈ (GΩ.N(K)) ∩ (GΩ′ .N(K)) ; we

now replace Ω and Ω′ by appropriate sets in these filters. Clearly,

Upm+
Ω′ = Upm+

Ω′+C
v

f

⊂ Upm+
Ω∪Ω′ ⊂ Upm+

Ω . So, for all x ∈ Ω, vn ∈

Gx.N(K) and, as a point has a good fixator, we may write vn =

v′xu′
xn′

x with v′x ∈ Unm−
x , u′

x ∈ Upm+
x and n′

x ∈ N(K). Hence

n′
xn−1 = (u′

x)−1(v′x)−1v and, by Birkhoff (2.1.7), n′
x = n, u′

x = 1,

v′x = v ∈ Unm−
Ω′ ∩ Unm−

x = Unm−
Ω′∪{x}. Now, we have u ∈ Upm+

Ω∪Ω′

and v ∈ ∩x∈Ω Unm−
Ω′∪{x} = Unm−

Ω∪Ω′ , so uvn ∈ Upm+
Ω∪Ω′ .U

nm−
Ω∪Ω′ .N(K) ⊂

(GΩ ∩ GΩ′).N(K).

Suppose (GF+) for Ω′. Let uvn as above be in GΩ ∩ GΩ′ , we

have still the same results, but moreover n ∈ N̂Ω′ and n′
x ∈ N̂x.

So n = n′
x ∈ N̂Ω′∪{x}, ∀x ∈ Ω, hence n ∈ N̂Ω∪Ω′ . Therefore we get

uvn ∈ Upm+
Ω∪Ω′ .U

nm−
Ω∪Ω′ .N̂Ω∪Ω′ .

�

4.2. Examples of filters with good fixators

1) If x 6 y in A, then {x, y}, [x, y] and cl({x, y}) have good fixators

and G{x,y} = G[x,y]. Moreover, if x 6= y, ]x, y] = [x, y] \ {x} has a

good fixator : it satisfies (GF-) and (TF) by Proposition 4.3 4) and,

as ]x, y] ⊂ [x, y] ⊂ cl(]x, y]), it has a good fixator by Proposition

4.3 1).

2) A local face in A has a good fixator : germx(x + F v) is generated

by the sets Fn = (x + F v) ∩ (yn − F v) for yn = x + 1
nξ, ξ ∈ F v

and n ∈ N ; moreover (for F v 6= {0}) ]x, yn] ⊂ Fn ⊂ cl(]x, yn]), so

by 1) above and Proposition 4.3 (1) and 2)) Fn and the local face

have a good fixator. Now germx(x + F v) ⊂ F (x, F v) ⊂ F (x, F v) =

cl(germx(x + F v)) ; so, by Proposition 4.3 1), any face or closed

face has a good fixator.

3) A sector in A has a good fixator : x+Cv is the increasing union of the

sets Fn = (x+Cv)∩cl(]x, yn]) where yn = x+nξ, ξ ∈ Cv and n ∈ N.

Moreover these Fn have A as support and ]x, yn] ⊂ Fn ⊂ cl(]x, yn]),

so Fn and x + Cv have good fixators.
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4) A sector-germ has a good fixator. The fixator of S±∞ is H.U±(K),

since every element in U±(K) is a finite product of elements in

groups Uα(K) for α ∈ Φ±.

On the contrary, Umax+(K) is not the union of the Umax+
Ω for

Ω ∈ S+∞.

5) The apartment A itself has a good fixator GA = H : A is the

increasing union of cl({−nξ, nξ}) for ξ ∈ Cv
f .

6) For the same reasons, a wall M(α, k) has a good fixator which is

Uα,k.U−α,−k.{1, rα,k}.H.

7) Exercise : An half-apartment D(α, k) has a good fixator HUα,k. If

x+ − x− ∈ T o, then cl({F (x−, F v
−), F (x+, F v

+)}) has a good fixator

for all vectorial faces F v
ε (where ε = ±).

4.3. Applications

1) By 4.2.5), the fixator (resp. stabilizator) of the apartment A =

Af is H (resp. N(K)). In particular, the maps g 7→ g.A and g 7→

g.T.g−1 give bijections {apartments of I(G, K)} ↔ G(K)/N(K) ↔

{maximal split tori of G(K)}.

Moreover, the action of N(K) on A preserves the affine structure

of A, its lattice of cocharacters Y , T and T o. So, any apartment

A in I(G, K) is endowed with a canonical structure of real affine

space, an affine action of a Weyl group W (A), a lattice Y (A) of

cocharacter points, Tits cones and a preorder relation. More gen-

erally, all structures in A invariant under N(K) are transferred to

any apartment by the G(K)−action : in an apartment, the notions

of (spherical) face, special point, cocharacter point, wall, sector,

sector-germ or filter with good fixator are well defined (indepen-

dently of the apartment containing them, as they all have good

fixators).

When we speak of an isomorphism between apartments, we mean

an affine isomorphism exchanging the walls and the Tits cones.

2) Let A1, A2 be two apartments and x, y be two points in A1 ∩ A2.

If x 6 y in A1, then, by Remark 4.2 and 4.2.1), there exists g ∈

P̂cl(x,y), such that A2 = g.A1, hence A1 ∩ A2 ⊃ cl(x, y) and x 6 y

in A2. In particular, the relation 6 is defined on the whole hovel

I(G, K) (note that x 6 y implies by definition that x and y are in
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a same apartment). We shall see below (6.5) that this relation is

transitive, so it is a preorder-relation (reflexive, transitive, perhaps

not antisymmetric).

The intersection of two apartments A1, A2 is order-convex : if

x, y ∈ A1∩A2 and x 6 y, then the segment [x, y] of A1 is in A1∩A2

and equal to the corresponding segment in A2. In particular, any

affine subspace of A1 whose direction meets the open Tits cone

T ◦(A1) and which is contained in A1∩A2 is also an affine subspace

of A2.

3) For any face (or any narrow filter) F and any sector germ S in

I(G, K), there exists an apartment A containing F and S : Using

the G(K)−action one may suppose S = S±∞. Now F = g.F ′

with F ′ a face in A. By the Iwasawa decomposition, g = unv with

u ∈ U±(K) ⊂ GS, n ∈ N(K) and v ∈ UF ′ ⊂ GF ′ . So F = un.F ′ ⊂

un.A = u.A and S ⊂ u.A.

By order-convexity, any apartment containing F and S = germ

(y + Cv) contains F + Cv (and even cl(F + Cv) ⊃ F + Cv, when F

has a good fixator, by 1) and 4) of Proposition 4.3). In particular,

any apartment containing x and S contains the sector s of direc-

tion S and base point x. By 4.2.3) and Remark 4.2, any two such

apartments are conjugated by Gs.

4) If Ω1 = F (x, F v
1 ) is a face of base point x and Ω2 a narrow filter

containing x, there exists an apartment A containing both of them :

in an apartment A1 containing Ω1 we choose a vectorial chamber

Cv such that Cv ⊃ F v
1 ; now an apartment A containing Ω2 and the

germ of the sector x+Cv contains Ω1 and Ω2. If moreover Ω2 is also

a face, then GΩ1∪Ω2 acts transitively on the apartments containing

Ω1 and Ω2 by 4.2.2, Proposition 4.3 4) and Remark 4.2. Actually,

one can prove that Ω1 ∪ Ω2 has a good fixator when the faces Ω1

and Ω2 are of opposite signs or if one of them is spherical.

If C = F (x, Cv) is a chamber (in A) and M(α, k) one of its walls

(with C ⊂ D(α, k)), then Uα,k = Uα,C acts transitively on the

chambers C′ adjacent to C along M(α, k) : this is a consequence of

4.2.2 and Remark 4.2 as GC may be written

Uα,C .Upm
C (Φ+ \ {α}).Unm−

C .H

and, in this decomposition, all factors but Uα,C fix the chamber C′
0

in A adjacent to C along M(α, k). In particular, any such chamber

C′ and D(α, k) are contained in a same apartment.
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4.4. Retraction with respect to a sector-germ

Let S be a sector-germ in an apartment A of I(G, K). For x ∈ I(G, K),

choose an apartment A′ containing S and x. As S has a good fixator, there

exists a g in P̂S such that A = g.A′. If g and g′ are two such elements,

then g−1g′ induces an automorphism of A′ fixing the sector germ S, hence

this automorphism is the identity : the map A′ → A, y 7→ g.y is unique.

Moreover, S∪ {x} has a good fixator (see Remark 4.4), so P̂S∪{x} is tran-

sitive on the possible apartments A′ : the point g.x does not depend on the

choice of A′. So, one may define ρA,S(x) = g.x.

Definition 4.5. — The map ρ = ρA,S : I → A, x 7→ ρA,S(x) is the

retraction of I onto A with center S. It depends only on A and S.

The restriction of ρ to A is the identity. It is clear that, up to canonical

isomorphisms, ρA,S depends only on S. We set ρ±∞ = ρA,S±∞
.

A segment-germ [x, y) for x 6= y in an apartment A (cf. 2.2.2) is a narrow

filter. When x 6 y (resp. y 6 x), its enclosure is a closed-face and [x, y)

has a good fixator (4.2.1) and 3) of Proposition 4.3) ; we say that [x, y) is

positive (resp. negative) and that [x, y] and [x, y) are generic.

For any sector-germ S and any segment-germ [x, y), there exists an

apartment containing S and [x, y), i.e. containing [x, z] for some z ∈

[x, y] \ {x}.

A segment [x, y] in an apartment is compact and, for z ∈ [x, y], the set

[z, x)∪ [z, y) is an open neighbourhood of z. So, if S is a sector-germ, there

exist an integer n, points x0 = x, x1, . . . , xn = y ∈ [x, y] and apartments

A1, A2, . . . , An such that Ai contains S and [xi−1, xi]. As a consequence,

for all apartments A′ containing S, ρA′,S([x, y]) is the piecewise linear path

[ρx0, ρx1] ∪ [ρx1, ρx2] ∪ · · · ∪ [ρxn−1, ρxn].

We shall give a better description of this piecewise linear path when

x 6 y in the last section.

Remark 4.6. — The fixator of some spherical sector-face-germ F =

germ(x + F v) contains clearly the group P (Fµ) associated in [17] to a mi-

croaffine face Fµ = F v × F (for some F containing x) ; and it was proved

in [loc. cit. ; 3.5] that G = P (Fµ).N.P (Eµ) for any microaffine faces Fµ

and Eµ of the same sign. Actually, using Proposition 3.6 above, the proof

of this result is still valid if only one among Ev and F v is spherical and the

signs of Ev and F v may be opposite. So, any two sector-face-germs in I are

contained in a same apartment, if at least one of these sector-face-germs is

spherical. For an abstract definition of affine hovels, this property is used
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in [20] as a good substitute to axioms (A3) and (A4) in Tits’ definition of

affine buildings [21], see also [16, Appendix 3].

4.5. Residue buildings

Let us denote the set of all positive (resp. negative) segment-germs [x, y)

with x < y (resp. y < x) by I+
x (resp. I−

x ). The set I+
x (resp. I−

x ) can

be given two structures of a building. An apartment a+ in I+
x (resp. a−

in I−
x ) is the intersection A ∩ I+

x (resp. A ∩ I−
x ) of an apartment A of I

containing x with I+
x (resp. I−

x ) (or, more precisely, the set of all [x, y) for

y ∈ A and x < y (resp. x > y)). Now, on any apartment a±, one can put

two structures of a Coxeter complex :

– the restricted one, modelled on (Wmin
x , Sx), where Wmin

x is the sub-

group of W generated by all reflections with respect to true walls

passing through x, and where

Sx = {sH | H is a wall of F (x, Cv
f ) containing x}

may be infinite. We restrain the action of Wmin
x on a±. The faces of

this structure are the faces F (x, F v) with F v positive (resp. negative)

(or, more precisely, the set of all segment-germs [x, y) contained in

F (x, F v)).

– the unrestricted one, modelled on (W v, Sv), where we force x to be a

special point and consider the faces germx(x+F v) (local-face in x) with

F v positive (resp. negative) (note that germx(x+F v) ⊂ F (x, F v)). So

we add new (ghost) walls M(α, k) for α ∈ Φ and k ∈ R\Z, α(x)+k = 0.

Proposition 4.7. — The set I+
x or I−

x , endowed with its apartments

with their restricted (resp. unrestricted) structures of Coxeter complex, is

a building.

Démonstration. — We have to verify the last two axioms of a building

(as in [2, IV.1] or [15, 2.4.1]). We focus on the positive case, the negative one

is obtained in the same way. In both Coxeter structures, 4.3.4) shows that,

given two faces F1 and F2, there exists an apartment containing x and both

of them. Further, the group GF1∪F2 acts transitively on the apartments

containing F1 ∪ F2. Hence, for any two such apartments A and A′, there

exists an element g ∈ GF1∪F2 such that A′ = g · A which also gives an

isomorphism a+ ≃ a′+ fixing F1 ∪ F2. �

Note that the unrestricted building structure can be thick only when it

coincides with the restricted one, i.e. when x is special (thick means that
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any panel is a face of at least three chambers). The buildings I±
x may be

spherical for the restricted structures, as Wmin
x may be finite when x is not

special.

Now, we consider I±
x endowed with the unrestricted structure. On the

set of chambers Ch(Iε
x) of Iε

x (for a sign ǫ ∈ {+,−}), we have a distance

dε : Ch(I±
x ) × Ch(I±

x ) → W v defined as follows, cf. [15, 2.2 to 2.4].

If c, c′ ∈ Ch(Iε
x), choose an apartment A containing c, c′ and a chamber

c0 = germx(x + εC0) in aε = A ∩ Iε
x ; identify (A, C0) to (Af , Cv

f ) ; this

enables us to identify W v(A) to W v = W v(Af ). Now, if c = wc0 and

c′ = w′c0 for some w, w′ ∈ W v, then dε(c, c
′) = w−1w′. Note that if we

choose c0 = c, then c′ = dε(c, c
′).c.

Now, we define a codistance

d∗x :
(
Ch(I+

x ) × Ch(I−
x )

)
∪

(
Ch(I−

x ) × Ch(I+
x )

)
→ W v

in the following way. If (c, e) ∈ Ch(Iε
x) × Ch(I−ε

x ), by 4.3.4), there exists

an apartment A containing x, c and e, unique up to isomorphism. If c′ =

germx(x + C′) is a chamber in A, we denote the chamber opposite c′ in A

by −c′, i.e. −c′ = germx(x − C′). Choose a chamber c0 = germx(x ± εC0)

in a±ε = A ∩ I±ε
x and identify (A, C0) to (Af , Cv

f ). If c = ±w1.c0 and

e = ∓w2.c0, the codistance between c and e is then d∗x(c, e) = d−ε(−c, e) =

dε(c,−e) = w−1
1 w2. It does not depend on the choices.

Proposition 4.8. — The two buildings I+
x and I−

x , endowed with their

unrestricted structures of buildings and the codistance d∗x, form a twinned

pair of buildings.

N.B. — With analogue arguments, one shows that this still holds if I+
x

and I−
x are endowed with the restricted structures.

Démonstration. — We have to check the axioms of twinning as given

in [23, 2.2], see also [15, 2.5.1].

Indeed, the first axiom (Tw1) is fulfilled : d∗x(e, c) = w−1
2 w1 = d∗x(c, e)−1.

Let now c ∈ Ch(Iε
x) and e, e′ ∈ Ch(I−ε

x ) be chambers such that d∗x(c, e) =

w and d−ǫ(e, e
′) = s ∈ Sv with ℓ(ws) = ℓ(w) − 1. Let A be an apartment

containing x, c and e and choose c0 = −c ; since ℓ(ws) = ℓ(w)−1, the wall H

generated by the panel of e of type {s} separates the latter from −c. In

other words, c and e are on the same side of H . Therefore, by 4.3.4) there

exists an apartment A′ containing c, e and e′. In this apartment, e = w.(−c)

and e′ = (wsw−1).e, so, e′ = ws.(−c) and d∗x(c, e′) = ws. This is the second

axiom (Tw2).

To check the third axiom (Tw3), let again c and e be two chambers such

that d∗x(c, e) = w, and let s ∈ Sv. In an apartment A containing c and e, the

ANNALES DE L’INSTITUT FOURIER



KAC-MOODY GROUPS, HOVELS AND LITTELMANN PATHS 33

chamber h adjacent to e along the panel of type {s} satisfies d−ǫ(e, h) = s

and d∗x(c, h) = ws. �

An apartment A of I containing x gives a twin apartment a = a+ ∪ a−,

where a± = A∩I±
x . If c0 is a chamber in a, there is (as in any twin building)

a retraction ρ of center c0 of I+
x onto a+ and of I−

x onto a− ; it preserves

the distances or codistances to c0.

5. Littelmann paths

In this paragraph, we give a brief account and some new results on Lit-

telmann’s theory of paths [10], [11], [12]. First, we recall the definitions of

λ−paths, billiard paths, LS paths, and Hecke paths ; we then compare the

last two notions (see Section 5.1). In analogy with [5] where the dimen-

sion of a gallery is defined, we introduce some statistics on paths used to

characterize the LS paths (see Section 5.2 and 5.3). Note that the sym-

metrizability of g assumed since 3.7 is useless in this section.

5.1. λ−paths

We consider piecewise linear continuous paths π : [0, 1] → A such that

each (existing) tangent vector π′(t) is in an orbit W v.λ of some λ ∈ Cv
f

under the vectorial Weyl group W v. Such a path is called a λ−path ; it is

increasing with respect to the preorder relation of 2.2.1. If π(0), π(1) and λ

are in Y , we say that π is “in Y ”.

For any t 6= 0 (resp. t 6= 1), we let π′
−(t) (resp. π′

+(t)) denote the de-

rivative of π at t from the left (resp. from the right). Further, we de-

fine w±(t) ∈ W v to be the smallest element in its W v
λ−class such that

π′
±(t) = w±(t).λ (where W v

λ is the fixator in W v of λ). Moreover, we

denote by π−(t) = π(t) − [0, 1)π′
−(t) = [π(t), π(t − ε) ) (resp. π+(t) =

π(t) + [0, 1)π′
+(t) = [π(t), π(t + ε) ) (for ε > 0 small) the positive (resp.

negative) segment-germ of π at t (cf. 2.2.2).

The reverse path π defined by π = π(1 − t) has symmetric properties, it

is a (−λ)−path.

If, for all t, w+(t) ∈ W v
π(t).w−(t), we shall say that π is a billiard path.

This corresponds to what is stated in [8, Lemma 4.4], but seems stronger

than the definition given in [loc. cit. ; 2.5] which looks more like our defini-

tion of λ−path.
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For any choices of λ ∈ Cv
f , π0 ∈ A, r ∈ N \ {0} and sequences τ =

(τ1, τ2, . . . , τr) of elements in W v/W v
λ and a = (a0 = 0 < a1 < a2 < · · · <

ar = 1) of elements in R, we define a λ−path π = π(λ, π0, τ , a) by the

formula :

π(t) = π0 +

j−1∑

i=1

(ai − ai−1)τi(λ) + (t − aj−1)τj(λ) for aj−1 6 t 6 aj .

Any λ−path may be defined in this way. We shall always assume τj 6= τj+1.

5.1.1. LS and Hecke paths

We consider now more specific paths.

Definition 5.1. — [10] A Lakshmibai-Seshadri path (or LS path) of

shape λ ∈ Y + is a λ−path π = π(λ, π0, τ , a) starting in π0 ∈ Y and such

that : for all j = 1, . . . , r − 1, there exists an aj−chain from τj to τj+1 i.e.

a sequence of cosets in W v/W v
λ :

σj,0 = τj , σj,1 = rβj,1τj , . . . , σj,sj
= rβj,sj

. . . rβj,1τj = τj+1

where βj,1, . . . , βj,sj
are positive real roots such that, for all i = 1, ..., sj :

i) σj,i < σj,i−1, for the Bruhat-Chevalley order on W v/W v
λ ,

ii) ajβj,i(σj,i(λ)) ∈ Z,

iii) ℓλ(σj,i) = ℓλ(σj,i−1) − 1, here ℓλ(−) is the length in W v/W v
λ .

N.B. — Actually Littelmann requires the following additional con-

dition

iv) π is normalized i.e. π0 = 0.

Definition 5.2. — [8, 3.27] A Hecke path of shape λ is a λ−path

such that, for all t ∈ [0, 1] \ {0, 1}, π′
+(t) 6W v

π(t)
π′
−(t), which means that

there exists a W v
π(t)−chain from π′

−(t) to π′
+(t), i.e. finite sequences (ξ0 =

π′
−(t), ξ1, . . . , ξs = π′

+(t)) of vectors in V and (β1, . . . , βs) of positive real

roots such that, for all i = 1, . . . , s :

v) rβi
(ξi−1) = ξi,

vi) βi(ξi−1) < 0,

vii) rβi
∈ W v

π(t) i.e. βi(π(t)) ∈ Z : π(t) is in a wall of direction Ker(βi).

Remarks 5.3. — Conditions v) and vii) tell us that π is a billiard path.

More precisely, the path is folded at π(t) by applying successive reflections

along the walls M(βi,−βi(π(t)) ). Moreover condition vi) tells us that the

path is “positively folded” (cf. [5]).

The definition of affine paths in [Littelmann-98] is a little bit different ;

in particular, it is stable by concatenation.
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5.1.2. LS versus Hecke

Let π = π(λ, π0, τ , a) be a λ−path. The conditions in Definition 5.2 are

trivially satisfied for t 6= a1, . . . , ar−1. So, we compare conditions i), ii), iii)

to conditions v), vi), vii) at t = aj , 1 6 j 6 r − 1, for s = sj and βi = βj,i.

As π′
−(t) = τj(λ), the condition v) tells us that ξi = σj,i(λ).

Lemma 5.4. — Conditions i) and vi) are equivalent. If they are satisfied

(for all i = 1, . . . , sj), then w+(t) < w−(t) in the Bruhat-Chevalley order

of W v/W v
λ .

Démonstration. — This is clear as σj,i = rβj,i
σj,i−1 and ξi−1 = σj,i−1(λ).

�

Remark 5.5. — When λ is in Y , the conditions i) and ii) tell us that

aj ∈ Q (as required by Littelmann for LS paths).

Lemma 5.6. — Suppose that π0 ∈ Y , λ ∈ Y + and that conditions ii)

are satisfied for 1 6 j′ < j and 1 6 i 6 sj′ . Then the set of conditions ii)

for 1 6 i 6 sj (and this j) is equivalent to the set of conditions vii) for

1 6 i 6 sj (and t = aj). If π0 ∈ Y , λ ∈ Y + and conditions ii) (or vii)) are

satisfied for all 1 6 j 6 r − 1 and 1 6 i 6 sj, then π(1) ∈ Y , hence π is

in Y .

Démonstration. — From the definition, one has

π(aj) = π0 +

j∑

i=1

(ai − ai−1)τi(λ) = π0 + ajτj(λ) +

j−1∑

i=1

ai(τi(λ) − τi+1(λ))

and (with the σj,i as in Definition 5.1) :

aj(τj+1(λ)−τj(λ)) =

sj∑

i=1

aj(σj,i(λ)−σj,i−1(λ)) =

sj∑

i=1

ajβj,i(σj,i(λ))β∨
j,i.

Hence, the conditions (ii) for 1 6 i 6 sj imply that aj(τj+1(λ) − τj(λ)) ∈

Q∨ ⊂ Y . In particular, conditions ii) for all i, j imply that π(1) ∈ Y .

One has ajβj,i(σj,i(λ)) = rβj,1 · · · rβj,i
(βj,i)(ajτj(λ)), so the condition ii)

above for i = 1, . . . , sj may be written :

rβj,1 · · · rβj,i
(βj,i)(ajτj(λ)) ∈ Z.

It is easy to verify that these conditions, for all i = 1, . . . , sj, mean that

the roots βj,i satisfy βj,i(ajτj(λ)) ∈ Z. If we assume ii) for each j′ < j and

i 6 sj′ , this is equivalent to βj,i(π(aj)) ∈ Z. �
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Any LS path π is a Hecke path in Y . The reverse path π has symmetric

properties. The reverse path of a Hecke path in Y has also symmetric

properties.

Conversely, any Hecke path π of shape λ in Y is not far from being a LS

path. Condition iii) only is missing. Actually, by condition i) one has sj 6

ℓλ(τj) − ℓλ(τj+1) ; so condition iii) is equivalent to sj = ℓλ(τj) − ℓλ(τj+1).

Hence π is a LS path if and only if the W v
π(t)−chains are of maximal lengths.

See [8, Proposition 3.24] for a more precise statement.

5.2. Statistics on paths

We define two statistics on λ−paths and compare them with the one one

would have defined inspired by [5].

5.2.1. Dual and co-dimension

Definition 5.7. — The dual dimension of a λ−path π, denoted by

ddim(π) and the codimension of π, denoted by codim(π), are the non neg-

ative integers :

ddim(π) =
∑

t>0

ℓπ(t)(w−(t)), codim(π) =
∑

t<1

ℓπ(t)(w+(t)),

where ℓπ(t)( ) is the relative length function on the Coxeter group W v

with respect to W v
π(t) defined as follows : ℓπ(t)(w) is the number of walls

M(α) for α ∈ Φ+
π(t) separating the fundamental chamber Cv

f from wCv
f ; it

coincides with the usual length on W v
π(t).

It seems that the sums are infinite, but, actually, there are only a finite

number of possible w−(t) or π′
−(t) = w−(t)λ (resp. w+(t) or π′

+(t) =

w+(t)λ). Moreover, for any t, ℓπ(t)(w−(t)) (resp. ℓπ(t)(w+(t))) is the number

of roots β ∈ Φ+
π(t) such that β(π′

−(t)) < 0 (resp. β(π′
+(t)) < 0). Hence

ddim(π) (resp. codim(π)) is the number of pairs (t, M(β, k)) consisting of

a t > 0 (resp. t < 1) and a wall associated to β ∈ Φ+ such that π(t) =

π(1− t) ∈ M(β, k) and π(t− ε) = π(1− t+ ε) ∈ D◦(β, k) = A \D(−β,−k)

(resp. π(t + ε) /∈ D(β, k)), for all small ε > 0 ; this number is clearly finite.

To be short, ddim(π) is the number (with multiplicities) of all walls

positively leaved by the reverse path π (load-bearing walls for π as in [5]) ;

and codim(π) is the number (with multiplicities) of all walls negatively

leaved by π.
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In the following, for β ∈ Φ+ and π a λ−path, we define posβ(π) (resp.

negβ(π)) as the number (with multiplicities) of walls of direction Ker(β)

leaved positively (resp. negatively) by π. Hence :

ddim(π) =
∑

β>0

posβ(π) and codim(π) =
∑

β>0

negβ(π)

5.2.2. Classical case

Let π be a λ−path in Y and set ν = π(1) − π(0). If Φ is finite, [5]

suggests us to define the dimension of π as : dim(π) =
∑

β>0 posβ(π) (so,

ddim(π) = dim(π)) and to prove (for Hecke paths) that dim(π) 6 ρ(λ + ν)

where ρΦ+ = ρ is defined by 2ρ =
∑

β>0 β.

Actually, β(ν) = posβ(π) − posβ(π) = negβ(π) − negβ(π). So, dim(π) 6

ρ(λ+ ν) if and only if
∑

β>0 posβ(π) 6 ρ(λ− ν)+
∑

β>0 β(ν) = ρ(λ− ν)+∑
β>0 posβ(π) −

∑
β>0 posβ(π) if and only if ddim(π) 6 ρ(λ − ν).

First, one has posβ(π)+negβ(π) = negβ(π)+posβ(π). Further, dim(π)+

codim(π) =
∑

β>0(posβ(π) + negβ(π)) =
∑

β>0(negβ(π) + posβ(π)) is the

number of pairs (t, M(β, k)) consisting of a t < 1 (resp. t > 0) such that

π(t) ∈ M(β, k) and π+(t) 6⊂ M(β, k) (resp. π−(t) 6⊂ M(β, k)). This number

is invariant if we replace π by π1 defined by : π1(t) = π(t) for t 6 t1
and π1(t) = wπ(t) for t > t1, for some t1 ∈ [0, 1] and w ∈ Wmin

π(t1). In

addition, any billiard path of shape λ is obtained by a sequence of such

transformations starting from the straight λ−path πλ (πλ(t) = tλ). So,

dim(π) + codim(π) = dim(πλ) + codim(πλ) = dim(πλ) =
∑

β>0 β(λ) =

ρ(2λ). Therefore, for any billiard path π in Y , dim(π) 6 ρ(λ + ν) if and

only if codim(π) > ρ(λ − ν).

5.3. A new characterization of LS paths

The goals of this section are to prove, in case Φ is infinite, the inequalities

codim(π) > ρ(λ− ν) > ddim(π) for Hecke paths in Y , and to obtain a new

characterization of LS paths. We choose ρΦ+ = ρ ∈ X such that ρ(α∨) = 1

for all simple roots α. It is clear that λ − ν is a linear combination of

coroots ; so ρ(λ − ν) does not depend on the choice of ρ.

5.3.1. The characterization

Proposition 5.8. — Let π be a Hecke path of shape λ in Y and ν =

π(1) − π(0). Then

ddim(π) 6 ρ(λ − ν) 6 codim(π) and ddim(π) + codim(π) = 2ρ(λ − ν)
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with equality if and only if π is a LS path.

The proof of Proposition 5.8 follows the same strategy as the proof of

Proposition 4 in [5] and occupies the next three subsections.

Corollary 5.9. — Let y0, y1 ∈ Y and λ ∈ Y +. Then the number of

Hecke paths π of shape λ starting in y0 and ending in y1 is finite.

N.B. — Using Littelmann’s path model, it was already clear that the

number of LS paths satisfying the same conditions is finite, but our proof

is purely combinatorial.

Démonstration. — By Proposition 5.8 and the definition of codim, ℓπ(0)(w+(0)) 6

codim(π) 6 2ρ(λ−ν), with ν = y1−y0. As π(0) is a special point, this means

that there is a finite number of possible w+(0). So there is a finite number

of possible w±(t), or σj,i , or βj,i , or aj satisfying conditions i) and ii) of

Definition 5.1. In conclusion, the number of Hecke paths π = π(λ, y0, τ , a)

is finite (perhaps zero). �

5.3.2. The operator ẽα

Definition 5.10. — Let π be a λ−path and α a simple root. Set Q =

min{α(π([0, 1])) ∩ Z}, the minimal integral value attained by the function

α(π( )) and let q be the greatest number in [0, 1] such that α(π([0, q])) > Q.

If q < 1 (i.e. if Q > min{α(π([0, 1]))}), let θ > q be such that

α(π(q)) = α(π(θ)) = Q and α(π(t)) < Q for q < t < θ.

We cut the path π into three parts in the following way. Let π1, π2 and π3

be the paths defined by

π1(t) = π(tq); π2(t) = π(q+t(θ−q))−π(q); π3(t) = π(θ+t(1−θ))−π(θ)

for t ∈ [0, 1]. Then, by definition, π = π1 ∗ π2 ∗ π3, where ∗ means the

concatenation of paths as defined in [10, 1.1]. The path ẽαπ is equal to

π1 ∗ rα(π2) ∗ π3. After a suitable reparametrization ẽαπ is a λ−path in Y .

We use also the operators eα and fα (α simple) defined by Littelmann in

[10, 1.2 and 1.3]. We do not recall the complete definition here, but note that

when they exist, eαπ = π1 ∗rα(π2)∗π3 (resp. fαπ = π1 ∗rα(π2)∗π3), where

the path π is cut into well-defined parts π = π1 ∗π2 ∗π3. Further, eαπ(1) =

π(1) + α∨ and fαπ(1) = π(1) − α∨. After a suitable reparametrization,

eαπ and fαπ are λ−paths in Y . More importantly, Littelmann obtains a

characterization of LS paths by using these operators. He proves [10, 5.6]
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that a λ−path π with π(0) = 0 is a LS path if, and only if, there exist some

simple roots αi1 , ..., αis
such that

eαi1
◦ · · · ◦ eαis

(π) = πλ,

where for all t ∈ [0, 1], πλ(t) = tλ.

Lemma 5.11. — i) If π is a Hecke path in Y and eαπ (resp. ẽαπ) is

defined, then ddim(eαπ) = ddim(π) − 1 and codim(eαπ) = codim(π) − 1

(resp. ddim(ẽαπ) = ddim(π)+1 and codim(ẽαπ) = codim(π)−1), and, sim-

ilarly, if fαπ is defined, then ddim(fαπ) = ddim(π) + 1 and codim(fαπ) =

codim(π) + 1.

ii) If π is a Hecke path in Y such that ẽαπ is defined, then ẽαπ is again

a Hecke path in Y .

iii) If π is a Hecke path in Y such that ẽαπ is not defined but eαπ (resp.

fαπ) is, then eαπ (resp. fαπ) is again a Hecke path in Y .

We prove the Lemma in Section 5.3.4.

5.3.3. Proof of Proposition 5.8

By translation, we may (and shall often) suppose π normalized, i.e.

π(0) = 0. It is clear that ddim(πλ) = codim(πλ) = 0. As a corollary

of i) and the characterization of LS paths, if π is a LS λ−path then

ddim(π) = codim(π) = ρ(λ − ν). The other implication is obtained by

induction on ρ(λ − ν). We suppose π(0) = 0. There is only one λ−path π

such that π(1) = λ ; it is πλ. And in this case, ddim(πλ) = 0.

If ν 6= λ, then w+(0) 6= id and there exists a simple root α such that

eαπ or ẽαπ is defined. If, for all β simple, ẽβπ is not defined, then the

claim follows immediately by induction and by Lemma 5.11. Otherwise, we

apply all possible operators ẽβ to π to end up with a Hecke path η such that

η(1) = π(1) = ν, ddim(η) = ddim(π)+k, codim(η) = codim(π)−k (k > 0)

and there still exists α such that eαη is defined. But then, by induction,

ddim(η)−1 = ddim(eαη) 6 ρ(λ−eαη(1)) = ρ(λ−ν)−1, which implies that

ddim(π) < ρ(λ−ν). Moreover, codim(π)+ddim(π) = codim(η)+ddim(η) =

codim(eαη)+ddim(eαη)+2 = 2ρ(λ−eαη(1))+2 = 2ρ(λ−ν) (by induction).

Suppose now that ddim(π) = ρ(λ − ν) > 0, then for dimension reasons,

ẽαπ is never defined. But eαπ is and ddim(eαπ) = ρ(λ− ν)− 1. Repeating

the same argument leads to a sequence of simple roots αi1 , ..., αis
such that

eαi1
◦ · · · ◦ eαis

(π) = πλ, in other words, π is a LS path. This proves the

proposition. �
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40 STÉPHANE GAUSSENT AND GUY ROUSSEAU

Remark 5.12. — This proof implies also that a Hecke path in Y is LS

if and only if, for all simple roots αj , αi1 , ..., αis
, the minimum of αj(eαi1

◦

· · · ◦ eαis
(π)) is in Z, cf. [11, 4.5].

5.3.4. Proof of Lemma 5.11

We suppose π(0) = 0. Let us start with the operator eα and dual dimen-

sions. The paths π and eαπ are cut into three parts, meaning that



π(t) = π1(t), eαπ(t) = π1(t) if 0 6 t 6 1/3

π(t) = π2(t) + π(1/3), eαπ(t) = rα(π2)(t) + π1(1/3) if 1/3 6 t 6 2/3

π(t) = π3(t) + π(2/3), eαπ(t) = π3(t) + eαπ(2/3) if 2/3 6 t 6 1.

For the first part of π, that is for t 6 1/3, there is nothing to prove.

Because α is a simple root, if 1/3 < t 6 2/3, the relative position of

π−(t) with respect to a wall M(β, k) (with β 6= α) is the same as the

relative position of eαπ−(t) with respect to rαM(β, k). Further, if 2/3 <

t 6 1, eαπ(t) = π(t) + α∨. So, again, up to translation the relative po-

sitions are the same. It remains to check the positions relatively to the

walls M(α,−Q), M(α,−Q − 2) at t = 2/3. But 2/3 is the smallest real

number t such that π(t) ∈ M(α,−Q), therefore π−(2/3) 6⊂ D(−α, Q),

eαπ(2/3) ∈ M(−α, Q + 2) and eαπ−(2/3) ⊂ D(−α, Q + 2). Therefore,

ddim(eαπ) = ddim(π) − 1.

For the formulas ddim(ẽαπ) = ddim(π)+1 and ddim(fαπ) = ddim(π)+1,

similar arguments show that it suffices to look at the case t = 2/3 in the

corresponding cuts of the path π. For the operator ẽα, one has π(2/3) =

ẽαπ(2/3) ∈ M(−α, Q) and π−(2/3) ⊂ D(−α, Q) whereas ẽαπ−(2/3) 6⊂

D(−α, Q). This proves the formula for the operator ẽα. And for the opera-

tor fα one has : π(2/3) ∈ M(−α, Q + 1), π−(2/3) ⊂ D(−α, Q + 1) whereas

fαπ(2/3) ∈ D(−α, Q− 1) and fαπ−(2/3) 6⊂ D(−α, Q − 1). The proof of i)

for the dual dimensions is then complete.

For the codimensions, similar arguments show that it suffices to look at

the case t = 1/3 and the root α. For the operator eα, eαπ(1/3) = π(1/3) ∈

M(α,−Q−1), π+(1/3) 6⊂ D(α,−Q−1), eαπ+(1/3) 6⊂ D(−α, Q+1) ; there-

fore codim(eαπ) = codim(π)−1. For the operator fα (resp. ẽα), fαπ(1/3) =

π(1/3) ∈ M(α,−Q) (resp. ẽαπ(1/3) = π(1/3) ∈ M(α,−Q) ), π+(1/3) 6⊂

D(−α, Q) and fαπ+(1/3) 6⊂ D(α,−Q) (resp. π+(1/3) 6⊂ D(α,−Q) and

fαπ+(1/3) 6⊂ D(−α, Q) ), therefore codim(fαπ) = codim(π) + 1 (resp.

codim(ẽαπ) = codim(π) − 1 ).

Concerning ii), using the same arguments again, one has to take only

care of the places t = 1/3 and t = 2/3 in the path π. For t = 1/3, the
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W v
π(1/3)−chain for ẽαπ is obtained from the one for π just by adding ξs+1 =

ẽαπ′
+(1/3) = rα(π′

+(1/3)) and βs+1 = α ; as α(π′
+(1/3)) < 0 the conditions

are satisfied. For t = 2/3, the W v
π(2/3)−chain for ẽαπ is obtained from the

one for π just by adding ξ−1 = ẽαπ′
−(2/3) = rα(π′

−(2/3)) and β0 = α ; as

α(π′
−(2/3)) > 0 the conditions are satisfied (after a shift of the indices of

the chain). Therefore, ẽαπ is a Hecke path and ii) is proved.

It remains to prove iii). Let us start with eα. Once again, it suffices to

check the values t = 1/3 and t = 2/3. The situation around the point π(1/3)

is the same as above. Because ẽαπ is not defined, α(π′
+(2/3)) > 0. Let

(ξ0, . . . , ξs), (β1, . . . , βs) be the W v
π(2/3)−chain from π′

−(2/3) to π′
+(2/3). If

α = βu, 1 6 u 6 s (and u is minimal for this property), then

(rαξ0, rαξ1, . . . , rαξu−1 = ξu, ξu+1, . . . , ξs),

(rαβ1, . . . , rαβu−1, βu+1, . . . , βs)

is the W v
eαπ(2/3)−chain from eαπ′

−(2/3) to eαπ′
+(2/3). If no such u exists

and α(π′
+(2/3)) > 0 (resp. α(π′

+(2/3)) = 0), then this chain is (rαξ0, . . . ,

rαξs, ξs+1 = ξs), (rαβ1, . . . , rαβs, βs+1 = α) (resp. (rαξ0, . . . , rαξs = ξs),

(rαβ1, . . . , rαβs) ). This proves that eαπ is still a Hecke path. The proof

for fαπ follows similar lines and is left to the reader ! �

6. Segments in the hovel

This section contains the most important application of the definition of

the hovel I. We first prove that the retraction of any segment [x, y] (with

x 6 y) in I is a Hecke path in A (see Theorem 6.2). Then, we give a

parametrization of all segments retracting on a given Hecke path sharing

the same end (Theorem 6.3 and Corollary 6.5). The algebraic structure of

the set of parameters is studied in 6.3 and allows us to define a generaliza-

tion of Mirković-Vilonen cycles. Then, we state another characterization of

LS paths in terms of a new statistic, but depending on extra data and not

solely on the path (6.4). To finish, we prove a result on the structure of I

(Theorem 6.9).

The field K is as in Section 3.1. Note however that, in the classical case

where G is a split reductive group, all what follows holds for any field K

endowed with a discrete valuation ; we just have to use the Bruhat-Tits

building instead of the hovel constructed in Section 3.
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6.1. Retracting segments

We consider a negative sector germ S and denote by ρ the retraction

of center S without specifying on which apartment A (containing S) ρ

maps I, as ρ does not depend on A up to canonical isomorphisms. Actu-

ally we identify any pair (A, S) of an apartment A containing S with the

fundamental pair (Af = A, S−∞), this is well determined up to translation.

We consider two points x, y in the hovel with x 6 y. The segment [x, y] is

the image of the path π : [0, 1] −→ I defined by π(t) = x + t(y − x) in any

apartment containing x and y (4.3.2). As each segment in [x, y] has a good

fixator, the derivative π′(t) is independent of the apartment containing a

neighbourhood of π(t) in [x, π(t)] or [π(t), y], up to the Weyl group W v.

We saw in 4.4 that the image ρπ is a piecewise linear continuous path

in A. By the previous paragraph, there exists a λ in the fundamental closed-

chamber Cv
f such that ρπ′(t) = wt.λ for each t ∈ [0, 1] (different from

π−1(xi) for xi as in 4.4) and some wt ∈ W v (chosen minimal with this

property). Hence ρπ is a λ−path (in particular the map ρ is increasing with

respect to the “preorder” of 4.3.2) and may be described as π(λ, ρπ(0), τ , a).

We shall prove that ρπ is a Hecke path and often a LS path.

We choose some t ∈]0, 1[= [0, 1] \ {0, 1} and we set z = ρπ(t). We denote

by ρπ′
− (resp. ρπ′

+) the left (resp. right) derivative of ρπ in t and w− (resp.

w+) the minimal element in W v such that ρπ′
− = w−λ (resp. ρπ′

+ = w+λ).

Proposition 6.1. — We have ρπ′
+ 6W v

z
ρπ′

− (cf. Definition 5.2) and

w+ 6 w− in the Bruhat-Chevalley order of W v/W v
λ . More precisely, there

exist s ∈ N and a sequence β1, . . . , βs of positive real roots such that :

– for 1 6 i 6 s, there exists a wall of direction Ker(βi) containing

z = ρπ(t),

– if one defines ξ0 = ρπ′
−, ξ1 = rβ1 .ξ0, . . ., ξs = rβs

. . . . .rβ1 .ξ0, one has

ξs = ρπ′
+ and βk(ξk−1) < 0 for 1 6 k 6 s,

– if one defines σ0 = w−, σ1 = rβ1 .w−, . . ., σs = rβs
· · · rβ1 .w−, then

ρπ′
+ = σsλ and, for 1 6 k 6 s, one has σk < σk−1 in the Bruhat-Chevalley

order of W v/W v
λ ,

– there exists in a+ = A∩I+
z an (unrestricted) gallery δ = (c0, c

′
1, . . . , c

′
n)

from c0 = germz(z + Cv
f ) to c′n = germz(z + w+Cv

f ) ⊃ z + [0, 1)ρπ′
+, the

type of which is associated to a (given) reduced decomposition of w−. The

panels along which this gallery is folded (actually, positively folded : see

the proof) are successively the walls z + Ker(β1), . . ., z + Ker(βs).

Démonstration. — Let A0 be an apartment containing [x, y] ; set π− =

[π(t), x) and π+ = [π(t), y). By 4.3.3 and 4.4 there exist apartments A+
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and A− containing the sector s (of direction S and base point π(t)) and

respectively π+ and π−. We choose A− for the image A of ρ, so π(t) =

ρπ(t) = z and π− = ρπ− = z − [0, 1)π′
−.

As A0 and A− contain π−, there exists g ∈ P̂π−
such that A0 = g.A−. In

the decomposition P̂π−
= Unm−

π−
.Upm+

π−
.N̂π−

, the group N̂π−
fixes π− and

stabilizes A−, so, one has A0 = u−u+A− with u− ∈ Unm−
π−

and u+ ∈ Upm+
π−

.

Let us consider the apartment A1 = (u−)−1A0 = u+A− ; it contains π− =

(u−)−1(π−) and π1
+ = (u−)−1(π+), which are opposite segment germs ;

moreover ρ(π1
+) = ρ(π+). On the other side, A1 contains the chamber

C0 = F (z, Cv
f ) in A−, which is opposite s. We replace in the following π+

by π1
+ and A0 by A1.

In A−, π− ∈ w−s, hence, the germ opposite π− is in w−C0. So, in A1,

π1
+ ∈ w1

−C0, where w1
− corresponds to w− in the identification of W v(A−)

and W v(A1) via u+.

We choose in a1
+ = A1 ∩ I+

z (an apartment of I+
z endowed with the un-

restricted building structure) a minimal gallery m = (c0, c1, ..., cn) between

c0 = germz(z + Cv
f ) and cn ⊃ π1

+ = z + [0, 1)w1
−λ of type τ = (i1, ..., in),

ij ∈ I ; hence w1
− = ri1 · · · rin

is a reduced decomposition. The restriction

of ρ to the residue twin building (I+
z , I−

z , d∗z) (with the unrestricted struc-

ture) preserves the codistance to s = germz(s), which is a chamber in I−
z .

Therefore, this restriction is the retraction ρz : I+
z → a−+ = A− ∩ I+

z of

centre s. We have ρπ1
+ = ρzπ

1
+.

The retracted gallery δ = ρz(m) = (c0, c
′
1 = ρz(c1), ..., c

′
n = ρz(cn))

in A = A− is a positively folded gallery, meaning that ρz(cj) = ρz(cj+1)

implies that ρz(cj) is on the positive side of the wall Hj spanned by the

panel of type {ij} of ρz(cj) (note that Hj is a wall for the unrestricted

structure). Otherwise, suppose that ρz(cj) = ρz(cj+1) is on the negative

side of Hj . Then, because s is the opposite fundamental chamber in z, it

is always on the negative side of Hj . Further, let a be a twin apartment

containing s and cj , as the retraction preserves the codistance to s, we

also have that s and cj are on the same side of the wall spanned by the

panel of type {ij} of cj in a. Therefore, 4.3.4) implies that, modifying the

latter if needed, we can assume that cj+1 is still in a. But, on one side,

cj 6= cj+1 then, computing in a, ℓ(d∗z(s, cj+1)) = ℓ(d∗z(s, cj)) − 1 ; on the

other side, ℓ(d∗z(s, cj+1)) = ℓ(d∗z(s, ρzcj+1)) = ℓ(d∗z(s, ρzcj)) = ℓ(d∗z(s, cj)).

Contradiction !

If the wall H1
j separating cj from cj+1 in a1

+ is a ghost wall i.e. not a

true wall (for the restricted structure), then the enclosure of cj in the hovel
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contains cj+1 and there is an apartment of I containing s, cj and cj+1, so

ρz(cj) 6= ρz(cj+1).

Let us now denote by j1, ..., js the indices such that c′j = ρz(cj) =

ρz(cj+1) = c′j+1. For any k ∈ {1, ..., s}, Hjk
is a true wall spanned by

the panel ρ(H1
jk

∩ cj) and we denote the positive real root associated with

Hjk
by βk (i.e. Hjk

is of direction Ker(βk)). Actually, the gallery δ is ob-

tained from the minimal gallery δ0 = (c0
0 = c0, c

0
1, . . . , c

0
n) of type (i1, ..., in)

beginning in c0, ending in c0
n = w−(c0) and staying inside A− by apply-

ing successive (positive) foldings along the walls associated to the indices

{j1, ..., js}, starting with Hj1 , then folding along Hj2 ... At each step, one

gets a positively folded gallery δk = (ck
0 = c0, c

k
1 , . . . , ck

n) ending closer and

closer to the chamber c0. So, this proves the last assertion of the proposi-

tion.

Let us denote ξ0 = π′
− = ρπ′

− = w−λ (in A−) and ξk = rβk
· · · rβ1ξ0.

As ρz(cn) ⊃ ρπ+ = z + [0, 1)ρπ′
+ and ρπ′

+ ∈ W vρπ′
− one has ξs = ρπ′

+,

and more generally, z + [0, 1)ξk ⊂ ck
n. As δ0 is a minimal gallery from c0 to

z + [0, 1)π′
−, c0

j+1, . . . , c
0
n and z + [0, 1)π′

− are on the same side of any wall

separating c0
0 from c0

j+1 ; in particular, (ck
jk+1, . . . , c

k
n) is a minimal gallery,

entirely on the same side of Hjk
and z+[0, 1)ξk 6⊂ Hjk

. But ck
jk

= ρz(cjk
) =

ρz(cjk+1) = ck
jk+1 and we saw that this chamber is on the positive side of

the wall Hjk
(of direction Ker(βk)). So, ck

jk+1, . . . , c
k
n are on the positive

side of Hjk
; this means that βk(ξk) > 0 i.e. βk(ξk−1) < 0. Hence, the

sequences (ξ0, ξ1, . . . , ξs) and (β1, . . . , βs) give a W v
z −chain from π′

− = ρπ′
−

to ρπ′
+. This proves the proposition, in view of Lemma 5.4. �

Theorem 6.2. — Let π = [x, y] be a segment in an apartment A′ with

x < y, and ρ the retraction of I with center the fundamental sector-germ

S−∞ onto an apartment A. Then the retracted segment ρπ is a Hecke path

in A.

If moreover x and y are cocharacter points (i.e. x, y ∈ Y (A′)), then ρπ

is a Hecke path in Y (A).

Démonstration. — The path ρπ is Hecke by Proposition 6.1 and Defi-

nition 5.2. If x, y ∈ Y (A′), computing in A′, λ = W v(y − x) ∩ Cv
f is in

Y +(A′). Moreover, by 4.3.1, ρ(Y (A′)) ⊂ Y (A), so ρπ is in Y (A). �

6.2. Segments retracting on a given Hecke path

If we consider all segments π = [x, y] from some x ∈ A to some y ∈ I

(i.e. π(t) = x+ t(y−x)) whose retraction ρπ is a given Hecke path π1 in A
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starting at x, then, there are too many of them. For example, take for π1

the path t 7→ tλ (with λ dominant), then, already at 0, one has infinitely

many choices to define a segment starting at 0 and retracting onto π1.

Therefore, in this subsection, we fix y = π(1).

More precisely, let y ∈ I and π1 a Hecke path in A with π1(1) = ρ(y), we

define S(π1, y) as the set of all segments π = [x, y] in I such that π1 = ρπ.

Theorem 6.3. — The set S(π1, y) is nonempty and is parametrized by

exactly N = ddim(π1) parameters in the residue field κ. More precisely,

the set P (π1, y) of parameters is a finite union of subsets of κN , each being

a product of N factors either equal to κ or to κ∗.

Remark 6.4. — In particular, P (π1, y) is a Zariski open subset of κN

stable under the natural action of the torus (κ∗)N , in other words, a quasi-

affine toric variety.

Démonstration. — We shall prove that, for t ∈ [0, 1], the segments πt :

[t, 1] → I with πt(1) = y, retracting onto πt
1 = π1|[t,1]

, are parametrized

by exactly
∑

t′>t ℓπ1(t)(w−(t)) parameters. This is clear for t = 1. Suppose

the result true for some t. So, π(t) is given and we shall prove now that the

number of parameters for the choice of the segment-germ π−(t) of origin

π(t) is ℓπ1(t)(w−(t)). This result and arguments after the Definition 5.7

imply that π−(t) determines π|[t′,t]
where t′ (< t) is 0 or the next number

in [0, 1] such that π1 leaves positively a wall in t′.

Now, π(t) is given and we want to find out how many parameters gov-

ern the choice of π−(t). We choose A so that it contains S and π+(t) ; so

π+(t) = ρπ+(t) and we set z = π(t). There is an apartment A− containing

S and π−(t), thus, ρ is an isomorphism from A− to A. The (unrestricted)

chamber c−0 = germz(z − Cv
f ) (cf. 4.5) is in A ∩ A−. We choose a re-

duced decomposition w−(t) = ri1 . . . . .rin
in W v. The associated minimal

(unrestricted) gallery of type (i1, . . . , in) from c−0 to π−(t) is denoted by

m− = (c−0 , c−1 , . . . , c−n ). Clearly, π−(t) is entirely determined by the gallery

m−, so it seems to depend on n = ℓ(w−(t)) parameters in κ. But actually,

if the wall separating c−j−1 from c−j (or ρc−j−1 from ρc−j ) is a ghost wall i.e.

not a true wall (see Section 4.5), the chamber c−j is determined by c−j−1 ;

whereas, if this wall is true (some M(α, k) for some α ∈ Φ−), then the

choice of c−j depends on an element in U×
α,k = Uα,k/Uα,>k ≃ κ (cf. 4.3.4).

Hence, the true number of parameters is ℓπ1(t)(w−(t)).

But, we forgot to check that π−(t) is opposite π+(t). Actually, as we shall

see now, removing at most one value for each parameter, this condition is

fulfilled. This proves the first part of the theorem.
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As π1 is a Hecke path, conditions i), v), vi) and vii) of Definitions 5.1

and 5.2 are satisfied for some roots β1,. . .,βs and we can use the results

of Section 5.1.2. Let δ0 = (c0, c
0
1, . . . , c

0
n) be the minimal gallery of type

(i1, . . . , in) in a+ = A ∩ I+
x starting from c0 = germz(z + Cv

f ) ; its end

c0
n = w−c0 contains z + [0, 1)π′

−(t). We shall fold this gallery stepwise.

Since rβ1w− < w−, the wall z+Ker(β1) separates c0 from c0
n : it is the wall

between some adjacent chambers c0
j−1 and c0

j . We define δ1 = (c0, c
1
1 =

c0
1, . . . , c

1
j−1 = c0

j−1, c
1
j = rβ1c

0
j , . . . , c

1
n = rβ1c

0
n), so c1

j−1 = c1
j and c1

n =

rβ1w−c0. But rβ2rβ1w− < rβ1w−, so the wall z +Ker(β2) separates c0 from

c1
n : it is the wall between some adjacent chambers c1

k−1 and c1
k. We define

δ2 = (c0, c
2
1 = c1

1, . . . , c
2
k−1 = c1

k−1, c
2
k = rβ2c

1
k, . . . , c2

n = rβ2c
1
n). At the end

of this procedure, we get a gallery δs = (c0, c
s
1, . . . , c

s
n) of type (i1, . . . , in)

in A starting from c0 and ending in cs
n = w+(t)c0

n ⊃ π+(t). Moreover, this

gallery is positively folded along true walls.

As π′
+(t) ∈ W vπ′

−(t), to prove that π−(t) = z − [0, 1)π′
−(t) and π+(t) =

z + [0, 1)π′
+(t) are opposite segment-germs, it suffices to prove that cs

n and

c−n are opposite chambers. For this, we prove that, except perhaps for one

choice of each parameter, cs
j and c−j are opposite for 0 6 j 6 n. This is

true for j = 0. Suppose c−j−1 opposite cs
j−1. Then c−j (resp. cs

j) is adjacent

to c−j−1 (resp. cs
j−1) along an (unrestricted) panel of type ij. If the wall

containing these two panels is not true (i.e. restricted), then c−j and cs
j are

automatically opposite. Now, if this wall is true, by 4.5 and the general

properties of twin buildings (see [15, 2.5.1]) among the chambers adjacent

(or equal) to c−j−1 along the panel of type ij , there is a unique chamber not

opposite cs
j . Hence, all but (perhaps) one choice for c−j is opposite cs

j ; and

the corresponding parameter has to be chosen in κ or in κ∗. Therefore, the

set S(π1, y) is nonempty.

Let us have a closer look at the set of parameters. Choose π ∈ S(π1, y)

and t ∈ [0, 1]. We show now that π−(t) is obtained with the above pro-

cedure. We have the gallery (c−0 , . . . , c−n ) as above in A−. We choose the

apartment A containing S and a chamber cn ⊃ π+(t) opposite c−n . Using

the same properties of twin buildings, we find a gallery δ = (c0, c1, . . . , cn)

of type (i1, . . . , in) in A, folded only along true walls, and such that, for all

j, cj and c−j are opposite. In particular, c0 is as defined above. So, using δ

instead of δs, π−(t) is defined as before. Moreover, the number of possibili-

ties for δ is finite. Hence, the set of parameters for S(π1, y) is a finite union

of subsets of κN , each being a product of N factors either κ or κ∗. �
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Corollary 6.5. — Suppose π1 is a Hecke path in Y (A). Then the

number ddim(π1) of parameters for S(π1, y) is at most ρΦ+(λ − π1(1) +

π1(0)), with equality if and only if π1 is a LS path.

Démonstration. — This is a simple consequence of Proposition 5.8 and

Theorem 6.3. �

6.3. Algebraic structure of S(π1, y) and Mirković-Vilonen cycles

To simplify notation, we suppose that y = 0 in A and (as before) λ ∈ Y +.

Moreover, we suppose that K = C((̟)).

1) The set Gλ of segments π in I of shape λ and ending in 0 may be

identified with the set of its starting points π(0) i.e. with G0.(−λ) =

G(O).(−λ). For ν ∈ Y , let us define Gλ,ν as the subset of Gλ con-

sisting of the segments π with ρ(π(0)) = −ν. Thus, Gλ,ν is identified

with U−(K).(−ν) ∩ G0.(−λ). As −λ ∈ G(K).0, we can see Gλ,ν as

a subset of the affine grassmannian G = G(K)/G(O), cf. Exam-

ple 3.14. We shall view the algebraic structure of Gλ,ν as inherited

from U−(K).

By Theorem 6.2 and Corollary 5.9, Gλ,ν is the finite (disjoint)

union of the subsets S(π1, 0) for π1 a Hecke path of shape λ in A

from −ν to 0.

2) Now, we better describe the parameters for S(π1, 0) found in The-

orem 6.3. Let 0 < t1 < · · · < tm 6 1 be the values of t such that

ni = ℓπ1(ti)(w−(ti)) > 0 and t0 = 0, tm+1 = 1. For 1 6 i 6 m given,

there exist negative roots αi,j and integers ki,j , 1 6 j 6 ni, such

that M(αi,ni
, ki,ni

), . . . , M(αi,1, ki,1) are the true walls successively

crossed by a minimal gallery from c−0 = germπ1(ti)(π1(ti) − Cv
f ) to

π1−(ti). Further, for any a ∈ C, let us set xi,j(a) = xαi,j
(a̟ki,j ) ∈

U×
αi,j ,ki,j

. Moreover, let π ∈ S(π1, 0) and g ∈ U−(K) such that

π(ti) = gπ1(ti) ; since g−1π−(ti) is also the end of a minimal gallery

from c−0 of the same type, for any t ∈ [ti−1, ti[,

g−1π(t) = xi,ni
(ai,ni

) · · ·xi,1(ai,1)π1(t)

for some parameters ai,ni
, ..., ai,1 that have to be chosen in C or C∗

according to the proof of Theorem 6.3.

Iterating this procedure, one obtains that if π ∈ S(π1, 0), then

there exists some (ai,j) ∈ P (π1, 0) ⊂ CN such that

π(0) = (
∏

i>1;j6ni

xi,j(ai,j)).(−ν)
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where the product is taken in lexicographical order from right to

left. More generally, for ti0−1 6 t 6 ti0 ,

π(t) = (
∏

i>i0;j6ni

xi,j(ai,j)).(π1(t)).

Thus, we define a map

µ : CN ⊃ P (π1, 0) → U−(K), (ai,j)i6m;j6ni
7→

∏

i6m;j6ni

xi,j(ai,j)

such that the composition

µ = proj ◦ µ : CN ⊃ P(π1, 0) → U−(K)/U−(K)−ν

is injective. But,

U−(K) ⊂ Unmax−(K) =
∏

α∈∆−

Uα(K) =
∏

α∈∆−

C((̟))

and, as µ involves finitely many groups Uα,k with α ∈ Φ−, there

exists y in Y such that the image of µ is contained in U−(K)y ⊂

Unmax−(K)y =
∏

α∈∆− Uα,−α(y) =
∏

α∈∆− C[[̟]]. This last group

has the structure of a pro-group in the sense of [9] and the map µ

is clearly a morphism for this algebraic structure.

3) Hence, Gλ,ν is a finite (disjoint !) union of sets S(π1, 0) each in bijec-

tion with a quasi-affine irreducible variety P (π1, 0) and these sets

are indexed by the Hecke paths π1 of shape λ from −ν to 0 in A.

The maximal dimension of these varieties is ρΦ+(λ−ν), and the va-

rieties of maximal dimension correspond to LS paths from −ν to 0

in A. A Mirković-Vilonen cycle inside Gλ,ν should be the closure of

a set S(π1, 0) (for π1 a LS path) and P (π1, 0) should be isomorphic

to a dense open subvariety of this cycle.

This holds in the classical case of reductive groups. These cycles

in Gλ,ν are dense in the Mirković-Vilonen cycles corresponding to

−λ and −ν and described by using the reverses of the paths above,

cf. [5].

6.4. Another characterization of LS paths

Suppose π1 is a Hecke path of shape λ in the apartment A. For each

t, 0 < t < 1, let w−(t) (resp. w+(t) ) be the minimal element in W v

such that π′
1−(t) = w−(t)λ (resp. π′

1+(t) = w+(t)λ ). By Proposition 6.1

and Theorem 6.3, there exists an unrestricted gallery δt = (d0, . . . , dn)
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in a+ = A ∩ I+
π1(t), of type (i1, . . . , in) associated to a (given) reduced

decomposition of w−(t), starting from d0 = c0 = germπ1(t)(π1(t)+Cv
f ) and

ending in dn ⊃ π1(t) + [0, 1)π′
1+(t). Moreover, this gallery may be taken

positively folded along true walls. For each t, we choose such a gallery and

we set π̃1 = (π1, (δt)0<t<1).

The gallery δt is minimal for almost all t (when π′
1−(t) = π′

1+(t) ). Let

us define neg(δt) as the number of all unrestricted walls Hj (containing the

panel of type ij in dj or dj−1) which are true walls and separate dj from

d0. Actually, as δt is positively folded, such an Hj separates dj from dj−1

i.e. dj 6= dj−1.

Definition 6.6. — The codimension of π̃1 is :

codim(π̃1) = ℓπ(0)(w+(0)) +
∑

0<t<1

neg(δt).

By the same arguments as for Definition 5.7, codim(π̃1) is a nonnegative

integer ; actually, codim(π̃1) 6 ℓπ(0)(w+(0)) + ddim(π1) − ℓπ(1)(w−(1)).

Proposition 6.7. — Let π1 be a Hecke path in Y . For each choice of

π̃1, codim(π̃1) > codim(π1). Further, π1 is a LS path if and only if there is

equality for (at least) one choice of π̃1.

Remark 6.8. — Therefore, codim(π̃1) > codim(π1) > ρΦ+(λ − ν) >

ddim(π1), with equalities if and only if π1 is a LS-path (for good choices

of π̃1).

Démonstration. — It is clear that any true wall H separating d0 from

π1+(t) = π1(t) + [0, 1)π′
1+(t) is among the walls Hj , and, if j is chosen

maximal for this property, H separates d0 from dj . So ℓπ1(t)(w+(t)) 6

neg(δt) for 0 < t < 1 and codim(π̃1) > codim(π1).

Suppose ℓπ1(t)(w+(t)) = neg(δt), then every true wall H separating d0

from π1+(t) is leaved negatively once and only once by the gallery δt ; in

particular δt cannot be negatively folded along such a wall and cannot

cross it positively. Moreover δt cannot leave negatively any other true wall.

As, by hypothesis, δt may only be folded along a true wall, this gallery

remains inside the (unrestricted) enclosure of d0 and π1+(t). The number

of foldings of δt is s = ℓπ1(t)(w−(t)) − ℓπ1(t)(w+(t)) and δt is positively

folded. One can now argue as at the end of the proof of Proposition 6.1.

One obtains positive roots β1, . . . , βs such that conditions (i) and (ii) of

Definition 5.1 are fulfilled ; condition (iii) is then a consequence of s =

ℓπ1(t)(w−(t)) − ℓπ1(t)(w+(t)) and π1 is a LS path.

Conversely, if π1 is a LS path, the construction of δt as in Theorem 6.3

may be performed by using a set (β1, . . . , βs) of positive roots with s =
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ℓπ1(t)(w−(t))− ℓπ1(t)(w+(t)). This gallery δt is folded exactly s times (pos-

itively and along true walls), its length is n = ℓπ1(t)(w−(t)) ; so, once

we get rid of the stutterings, we get a minimal gallery δns
t from c0 to

π1+(t) = π1(t) + [0, 1)w+(t)λ. Hence, as the foldings were positive,

neg(δt) = neg(δns
t ) = ℓπ1(t)(w+(t)),

so codim(π̃1) = codim(π1). �

6.5. Preorder relation on the hovel

Theorem 6.9. — On the hovel I, the relation 6 (defined in 4.3.2) is a

preorder relation. More precisely, if three different points x, y and z in I

are such that x 6 y and y 6 z then x 6 z and, in particular, x and z are

in a same apartment.

Remark 6.10. — This result precises the structure of the hovel I. It is a

generalization of Lemme 7.3.6 in [3]. It may also be seen as a generalization

of the Cartan decomposition proved by Garland for p−adic loop groups [4],

even if it is weaker than this decomposition in the affine case. As Garland

asserts, the Cartan decomposition holds only after some twisting ; this is

more or less equivalent to the fact that not any two points in I are in a

same apartment.

More precisely, let us look at the simplest affine Kac-Moody group G =

SL
(1)
2 . If K = C((̟)) and O = C[[̟]], then, up to the center (which

is in T (K)), the group G(K) = SL
(1)
2 (C((̟))) is a semidirect product

G(K) = K∗ ⋉ SL2(K[u, u−1]), with K∗ ⊂ T (K). We saw in Example 3.14

that G0 = P̂0 = G(O) = O∗ ⋉ SL2(O[u, u−1]) (up to the center). The

Cartan decomposition would tell that G(K) = G(O)T (K)G(O), hence

SL2(K[u, u−1]) = SL2(O[u, u−1])T1(K)SL2(O[u, u−1]), where T1(K) is the

torus of diagonal matrices in SL2(K). The four coefficients of a matrix in

the right hand side span the same sub−O[u, u−1]−module of K[u, u−1] as a

matrix in T1(K). So, this module is generated by h and h−1, i.e. by a single

element of K∗. But, the O[u, u−1]−module spanned by the coefficients of

g =

(
1 ̟−1(1 + u)

0 1

)
is not generated by a single element. Hence, Cartan

decomposition fails and the points 0 and g.0 are not in a same apartment.

If they were in an apartment A′, then A′ = h1.Af and g−1.A′ = h2.Af for

h1, h2 ∈ G0 (by Remark 4.2), hence h−1
1 gh2 ∈ N(K) (by 4.3.1), contradic-

tion !
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Lemma 6.11. — In the situation of Theorem 6.9, there exists an apart-

ment A containing x and [y, z). Moreover, this apartment is unique up to

isomorphism.

Démonstration. — In an apartment A1 containing x and y, there exists

a vectorial chamber Cv such that x ∈ y + Cv. Moreover, there exists an

apartment A containing S = germ(y + Cv) and [y, z) ; this apartment also

contains y + Cv ∋ x (cf. 4.3.3). The uniqueness is a consequence of 4.2.2,

4.2.4, Proposition 4.3 4) and Remark 4.2. �

Proof of the theorem. —

1) For z′ ∈ [y, z[ such that x 6 z′, we choose an apartment A con-

taining [z′, x) and [z′, z) (4.3.4) ; this apartment has an associated

system of real roots Φ(A) and we define the finite set Φ(z′) of the

roots α ∈ Φ(A) such that α(z′) > α(x1) and α(z′) > α(z1) for some

x1 ∈ [x, z′] ∩ A and some z1 ∈ [z, z′] ∩ A. As [z′, x) and [z′, z) are

generic, 4.3.4) shows that Φ(z′) depends, up to isomorphism, only

on [z′, x) and [z′, z) but not on A.

By Lemma 6.11 (mutatis mutandis), there exists an apartment

Az′ containing z and [z′, x) and this apartment is unique up to

isomorphism. We define Nz′ as the finite number of walls (in Az′)

of direction Ker(α) for some α ∈ Φ(z′) and separating z′ from z (in

a strict sense). We shall argue by induction on (|Φ(y)|, Ny) (with

lexicographical order).

2) By Lemma 6.11, there is an apartment A1 containing x and [y, z).

We choose a vectorial chamber Cv in A1 such that its associated

system of positive roots Φ+(Cv) contains the roots α ∈ Φ(A1) such

that α(y) > α(x) or α(y) = α(x) and α(z1) > α(y) (for some

z1 ∈ [y, z]∩A1) ; in particular [x, y] ⊂ y−Cv. Now if α ∈ Φ+(Cv) is

such that α(z1) < α(y) (for some z1 ∈ [y, z]∩A1) then α(y) > α(x) ;

hence Φ(y) (computed in A1) is the set of roots α ∈ Φ+(Cv) such

that α(z1) < α(y) (for some z1 ∈ [y, z] ∩ A1).

Let S be the sector-germ associated to −Cv in A1 and ρ the

retraction of center S onto A1.

3) Suppose z1 ∈]y, z] is such that no wall (in Ay or any apartment con-

taining z1 and [y, x)) of direction Kerα for some α ∈ Φ(y) separates

y from z1. We shall prove that the enclosure of S and z1 contains y

and x, so, there is an apartment containing x, y, z1 and S. Hence,

the theorem is true if z1 = z and this gives the first step of the

induction when Φ(y) = ∅ or Ny = 0.
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As in 4.4) we get a sequence y0 = y, y1, . . . , yn = z1 ∈ [y, z1] and

apartments A1, A2, . . . , An such that Ai contains S and [yi−1, yi].

The characterization of Φ(y) in 2) above and the hypothesis on the

walls prove that y is in the enclosure of y1 and S, then x is also

in this enclosure. So A2, which contains y1 and S contains also y

and x. We can replace y1 by y2 and A1 by A2 ; by induction on n

we obtain the result of 3).

4) We choose for z1 ∈]y, z] the point satisfying the hypothesis of 3)

which is the nearest to z, it exists as Φ(y) and Ny are finite. We may

(and do) suppose z1 6= z. We choose for A1 the apartment contain-

ing x, y, z1 and the S explained in 3). An apartment A2 containing

S and [z1, z) is sent isomorphically by ρ onto A1. This enables us to

identify Φ(z1) with the set Φ′(z1) of the roots α ∈ Φ(A1) such that

α(z1) > α(x) (hence α ∈ Φ+(Cv)) and α(z1) > α(ρz2) (for some

z2 ∈ [z1, z] near z1). By Proposition 6.1, ρ([z1, z)) = z1+[0, 1)w+λ ,

[y, z1) = y+[0, 1)w−λ for some λ ∈ Cv and w+, w− ∈ W v such that

w+ 6 w−. In particular, for α ∈ Φ+(Cv), α(z1) > α(ρz2) means

α(w+λ) < 0, so Φ′(z1) ⊂ {α ∈ Φ+(Cv) | α(w+λ) < 0} and (as w+

is chosen minimal) this set is of cardinal ℓ(w+). Now we saw in 2)

that Φ(y) = {α ∈ Φ+(Cv) | α(w−λ) < 0}. Hence, as w+ 6 w−,

|Φ′(z1)| 6 ℓ(w+) 6 ℓ(w−) 6 |Φ(y)|.

If |Φ′(z1)| < |Φ(y)| the theorem is true by induction. Otherwise,

the four numbers above are equal ; in particular, as w+ 6 w−, one

has w+ = w− and Φ′(z1) = Φ(y).

We consider the segment [y, z] as a linear path π : [0, 1] →

[y, z], π(0) = y, π(1) = z, z1 = π(t1) and π′(t) ∈ W vλ, ∀t.

The number Nz1 is calculated in an apartment Az1 containing

z and [z1, x) using Φ(z1) and [z1, z]. We may suppose Az1 also

containing germz1
(z1 − Cv) ; then there is an isomorphism from

(Az1 , Φ(z1), [z1, z]) to (A1, Φ
′(z1), [z1, Z]) where Z = z1 + (1 −

t1)w
+λ, so Nz1 may be computed with this last triple. Arguing

the same way, we see that Ny may be calculated with the triple

(A1, Φ(y), [y, Z ′]) with Z ′ = y + w−λ. Actually, z1 = y + t1.w
−λ

and we saw that Φ′(z1) = Φ(y) and w+λ = w−λ, so Z ′ = Z. More-

over, by the choice of z1, there is a wall of direction Ker(α) for

some α ∈ Φ(y) containing z1. Hence, Nz1 < Ny, and this proves the

theorem by induction.
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