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Abstract— In this text we will formalise a novel solution, the
Bayesian Volumetric Map (BVM), as a framework for a metric,
short-term, egocentric spatial memory for multimodal percep-
tion of 3D structure and motion. This solution will enable the
implementation of top-down mechanisms of attention guidance
of perception towards areas of high entropy/uncertainty, so as
to promote active exploration of the environment by the robotic
perceptual system. In the process, we will to try address the
inherent challenges of visual, auditory and vestibular sensor
fusion through the BVM. In fact, it is our belief that perceptual
systems are unable to yield truly useful descriptions of their
environment without resorting to a temporal series of sensory
fusion processed on a short-term memory such as the BVM.

I. INTRODUCTION

Perception has been regarded as a computational process
of unconscious, probabilistic inference. Aided by develop-
ments in statistics and artificial intelligence, researchers have
begun to apply the concepts of probability theory rigorously
to problems in biological perception and action. One striking
observation from this work is the myriad ways in which
human observers behave as near-optimal Bayesian observers,
which has fundamental implications for neuroscience, partic-
ularly in how we conceive of neural computations and the
nature of neural representations of perceptual variables [1].

Consider the following scenario — an observer is pre-
sented with a non-static 3D scene containing several moving
entities, probably generating some kind of sound: how does
this observer perceive the 3D structure of all entities in
the scene and the 3D trajectory and velocity of moving
objects, given the ambiguities and conflicts inherent to the
perceptual process? Given these considerations, the research
presented on this text regards a Bayesian framework for
artificial perception models.

In this text we will formalise a novel framework for a met-
ric, short-term, egocentric spatial memory that will enable
the implementation of top-down mechanisms of attention
guidance of perception towards areas of high uncertainty,
so as to promote active exploration of the environment by
the robotic perceptual system.

To support our research work, an artificial multimodal
perception system (IMPEP — Integrated Multimodal Per-
ception Experimental Platform) has been constructed at the
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Fig. 1. View of the current version of the Integrated Multimodal Perception
Experimental Platform (IMPEP), on the left. On the right, the IMPEP
perceptual geometry is shown: {E} is the main reference frame for the
IMPEP robotic head, representing the egocentric coordinate system;{Cl,r}
are the stereovision (respectively left and right) camera referentials; {Ml,r}
are the binaural system (respectively left and right) microphone referentials;
and finally {I} is the inertial measuring unit’s coordinate system.

ISR/FCT-UC consisting of a stereovision, binaural and in-
ertial measuring unit (IMU) setup mounted on a motorised
head, with gaze control capabilities for image stabilisation
and perceptual attention purposes — see Fig. 1.

II. BACKGROUND AND DEFINITIONS

The perceptual brain is known to be divided into two sep-
arate, albeit interdependent, pathways of sensory processing:
the ventral pathway, popularly denominated as the “what”
pathway, which is concerned primarily with perceptual clas-
sification and recognition tasks, and the dorsal pathway,
popularly known as the “where” pathway, which is dedicated
to fast processing of sensory information, with the sole
purpose of yielding spatial representations (e.g. positioning,
structure and motion), whatever the nature of the entity it is
analysing. Given the perceptual problem exposed earlier on,
the latter is of particular interest to our work. These spatial
representations are believed to be metric and egocentric in
lower-level areas of the dorsal pathway so as to promote fast
and accurate interaction with the surrounding environment.

Given these facts, the framework for spatial representation
that will be presented in the rest of this section satisfies the
following criteria: it is egocentric and metric in nature; it
allows for the representation of dynamical spatial occupation
of the environment, avoiding any need for any assumptions
on the nature of those objects, or in other words, for data
association. Data association is thus effectively postponed to
higher-level processing.
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Fig. 2. Egocentric, log-spherical configuration of the Bayesian Volumetric
Maps.

Metric maps are very intuitive, yield a rigorous model
of the environment and help to register measurements taken
from different locations. Grid-based maps are the most
popular metric maps in mobile robotics applications. One
of the most popular grid-based maps is the occupancy grid,
which is a discretised random field where the probability of
occupancy of each cell is kept, and the probability values of
occupancy of all cells are considered independent between
each other [2]. The absence of an object based representation
permits the ease of fusing low level descriptive sensory
information onto the grids without necessarily implicating
data association.

In our specific application domain, common occupancy
grid configurations which assume regularly partitioned eu-
clidean space to build the cell lattice are not appropriate.
Hence, we chose a log-spherical coordinate system spatial
configuration (see Fig. 2) for our Bayesian Volumetric Maps
(BVM), thus promoting an egocentric trait and yielding more
precision for objects closer to the observer, which seems to
agree with biological perception.

The BVM is primarily defined by its range of azimuth and
elevation angles, and by its maximum reach in distance ρMax,
which in turn determines its log-distance base through b =
a

loga(ρMax−ρMin)
N ,∀a ∈ R, where ρMin defines the egocentric

gap, for a given number of partitions N , chosen according
to application requirements. The BVM space is therefore
effectively defined by

Y ≡ ] logb ρMin; logb ρMax]× ]θMin; θMax]× ]φMin;φMax] (1)

In practice, the BVM is parametrised so as to cover the
full angular range for azimuth and elevation.

Each BVM cell is defined by two limiting log-distances,
logb ρmin and logb ρmax, two limiting azimuth angles, θmin
and θmax, and two limiting elevation angles, φmin and φmax,
through:

Y ⊃ C ≡ ] logb ρmin; logb ρmax]× ]θmin; θmax]× ]φmin;φmax]
(2)

where constant values for log-distance base b, and angular
ranges ∆θ = θmax − θmin and ∆φ = φmax − φmin, cho-
sen according to application resolution requirements, ensure
BVM grid regularity. Finally, each BVM cell is formally
indexed by the coordinates of its far corner, defined as
C = (logb ρmax, θmax, φmax).

More recently, Coué et al. [3] and Tay et al. [4] expanded
on the occupancy grid by explicitly introducing Bayesian

filtering. A two-step mechanism estimates, at each time step,
the state of the occupancy grid by combining a prediction
step (history) and an estimation step (incorporating new
measurements). This approach is derived from the Bayesian
filtering approach [5], and is thus named the Bayesian
Occupancy Filter (BOF).

To compute the probability distributions for the current
states of each cell, the Bayesian Program (BP) formalism,
as first defined by Lebeltel [6], will be used throughout this
text.

III. BAYESIAN VOLUMETRIC MAPS FOR MULTIMODAL
PERCEPTION

A. Sensor fusion advantages and challenges

The use of more than one sensor promotes a robustness
increase on the observation and characterisation of a physical
phenomenon. In fact, using different types of sensors allows
for the dilution of each sensor’s individual weaknesses
through the use of the strengths of the remainder.

There is evidence that humans fuse perceptual cue infor-
mation following mainly two general strategies [7]: combina-
tion, that expresses interactions between sensory signals that
are not redundant, and integration, that expresses interactions
between sensory signals that are redundant. Combination
has the purpose of maximising information coming from
different cues, whilst the goal of integration is to minimise
variance in the sensory estimate to increase its reliability. For
several estimates resulting from combination to be integrated
into a single estimate, they must be in the same units and
referred to the same coordinate system, and hence must
undergo a process called promotion [7].

We will try to explicitly or implicitly address each of
the challenges of sensor fusion as described in [7] using
the BVM, for vision, audition and vestibular sensing. It
is our belief that perceptual systems are unable to yield
useful descriptions of their environment without resorting to
a temporal series of sensory fusion processed on a short-
term memory such as the BVM. We propose to use vestibu-
lar sensing as ancillary information to promote visual and
auditory sensing to satisfy the requirements for integration,
enumerated above.

B. Using Bayesian filtering for visuoauditory integration

The Bayesian Program presented in Fig. 3 is based on the
solution presented by Tay et al. [4], adapted so as to conform
to the BVM egocentric, three-dimensional and log-spherical
nature.

The estimation of the joint state of occupancy and velocity
of a cell is answered through Bayesian inference on the
decomposition equation given in Fig. 3. This inference
effectively leads to the Bayesian filtering formulation as used
in the BOF grids — see Fig. 4. In this context, prediction
propagates cell occupancy probabilities for each velocity
and cell in the grid — P (OC VC |C). During estimation,
P (OC VC |C) is updated by taking into account the observa-
tions yielded by the sensors

∏S
i=1 P (Zi|VC OC C) to obtain

the final state estimate P (OC VC |Z1 · · ·ZS C). The result
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Relevant variables:

C ∈ Y : indexes a cell on the BVM;

AC : identifier of the antecedents of cell C (stored as with C);

Z1, · · · , ZS ∈ {“No Detection”} ∪ Z: independent measurements taken by S sensors;

OC , O
−1
C : binary values describing the occupancy of cell C,

for current and preceding instants, respectively;

VC : velocity of cell C,

discretised into n possible cases ∈ V ≡ {v1, · · · , vn}.

Decomposition:

P (C AC OC O
−1
C VC Z1 · · ·ZS) =

P (AC)P (VC |AC)P (C|VC AC)P (O
−1
C |AC)P (OC |O−1

C )

S∏
i=1

P (Zi|VC OC C)

Parametric forms:

P (AC): uniform;

P (VC |AC): histogram;

P (C|VC AC): Dirac, 1 iff clogb ρ = alogb ρ + vlogb ρδt, cθ = aθ + vθδt and cφ = aφ + vφδt

(constant velocity assumption);

P (O
−1
C |AC): probability of preceding state of occupancy given set of antecedents;

P (OC |O−1
C ): defined through transition matrix T =

[ 1−ε ε
ε 1−ε

]
,

where ε represents the probability of non-constant velocity;

P (Zi|VC OC C): direct measurement model for each sensor i, given by respective sub-BP.

Identification:

None.

Questions:

P (Oc Vc|z1 · · · zS c) →
{

P (Oc|z1 · · · zS c)

P (Vc|z1 · · · zS c)

Fig. 3. Bayesian Program for the estimation of Bayesian Volumetric Map current cell state.

Observation

Fig. 4. Bayesian filtering for the estimation of occupancy and local
motion distributions in the BVM. The schematic considers only a single
measurement for simpler reading, with no loss of generality.

from the Bayesian filter estimation will then be used for the
prediction step in the next iteration.

C. Using the BVM for sensory combination of vision and
audition with vestibular sensing

Consider the simplest case, where the sensors may only
rotate around the egocentric origin and the whole perceptual
system is not allowed to perform any translation. In this
case, the vestibular sensor models will yield measurements of
angular velocity and position, which can then be easily used
to manipulate the BVM, which is, by definition, in spherical
coordinates.

To maintain a head-centred coordinate system for the
BVM, which would obviously shift in accordance to head
turns, instead of rotating the whole map, the most effective
solution is to perform the equivalent index shift. This process
is described by redefining C: C ∈ Y indexes a cell in the
BVM by its far corner, defined as C = (logb ρmax, θmax −

θinertial, φmax − φinertial) ∈ C ⊂ Y .
This process obviously relies on the assumption that

inertial precision on angular measurements is greater than
the chosen resolution parameters for the BVM.

D. Dealing with sensory synchronisation

The BVM model presented earlier assumes that the state
of a cell C, given by (OC , VC), and the observation by any
sensor i, given by Zi, correspond to the same time instant t.

In accordance with the wide multisensory integration
temporal window theory for human perception reviewed in
[8], the BVM may be used safely to integrate auditory
and vision measurements as soon they become available;
preliminary tests using the BVM update model show that
this, in fact, promotes an effect similar to the well-known
temporal ventriloquism, given the inherent auditory measure-
ment frequency as opposed to vision. Spatial ventriloquism,
on the other hand, is implicitly ensured due to the inherent
properties of the Bayesian formulation of visuoauditory
integration (i.e. modality reliability expressed in terms of
uncertainty). Promotion through vestibular sensing is also
not a problem, since inertial readings are available at a much
faster rate than visuoauditory perception.

IV. SENSOR MODELS

A. Vision sensor model

Our motivations suggest for the vision sensor model a
tentative data structure analogous to neuronal population
activity patterns to represent uncertainty in the form of
probability distributions — a spatially organised 2D grid has
each cell associated to a population code simulation, a set
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of probability values of a neuronal population encoding a
probability distribution [9]. The stereovision algorithm used
for visual depth sensing is an adaptation of the fast and
simple coherence detection approach by Henkel [10], yield-
ing an estimated disparity map δ̂(k, i) and a corresponding
confidence map λ(k, i). For visual perception of occupancy,
this stereovision sensor described can be decomposed into
simpler linear (1D) depth ρ(k, i) measuring sensors per pro-
jection line/pixel (k, i), each oriented in space with spherical
angles (θ(k, i), φ(k, i)).

This algorithm is then easily converted from its determin-
istic nature into a probabilistic implementation simulating
the population code-type data structure. This results in prob-
ability distributions on sensor measurements made available
as likelihood functions taken from sensor readings — soft
evidence, or “Jeffrey’s evidence” in reference to Jeffrey’s rule
[11]; the relation between vision sensor measurements Z and
the corresponding readings δ and λ is thus described by the
calibrated expected value ρ̂(δ̂) and standard deviation σρ(λ)
for each sensor.

We have decided to model these sensors in terms of their
contribution to the estimation of cell occupancy in a similar
fashion to the solution proposed by Yguel et al. [12].

In the spirit of Bayesian programming, we again start by
defining the relevant variables:

• C ≡ (logb ρmax, θmax, φmax), OC and Z have the same
meaning as before. However, once a projection line
(θ, φ), with θmin ≤ θ ≤ θmax ∧ φmin ≤ φ ≤ φmax, is
established for a sensor, only logb ρmax varies through-
out the respective line-of-sight, thus effectively indexing
each cell. Therefore, by abuse of notation and in order
to simplify references to cells in the line-of-sight, these
will be referred to using the abstraction C ∈ N, 1 ≤
C ≤ N , where N = logb(ρMax − ρMin) denotes the
total number of cells in the line-of-sight.

• GC ∈ GC ≡ ON−1 represents the state of all cells
in the line-of-sight except for C. Each gC is, thus, an
(N − 1)-tuple of the form ([O1 = o1], · · · , [Oc−1 =
oc−1], [Oc+1 = oc+1], · · · , [ON = oN ]) given a specific
cell [C = c].

The following expression gives the decomposition of
the joint distribution of the relevant variables according to
Bayes’ rule and dependency assumptions:

P (Z C OC GC) =
P (C)P (OC |C)P (GC |OC C)P (Z|GC OC C)

(3)

The parametric form and semantics of each component of
the joint decomposition are then as follows:

• P (C) and P (OC |C) represent a priori
information on the environment. Note that
P (C)P (OC |C) is, in fact, formally equivalent to
P (AC)P (VC |A)P (C|VC AC)P (O−1|A)P (O|O−1)
when considering scene dynamics. The probability of
a cell being empty is PEmpty = P ([OC = 0]|C).

• P (GC |OC C) ≡ P (GC |C) represents the probability
that, knowing a state of a cell, the whole line-of-sight
is in a particular state [12].

• P (Z|GC OC C) is sensor-dependent but, in any case,
for all (OC , GC) ∈ O × GC , the probability dis-
tribution over Z depends only on the first occupied
cell. Knowing the position of the first occupied cell
in the projection line, which will be denoted as [C =
k], P (Z|GC OC [C = k]) gives the probability of a
measurement if [C = k] would be the only occupied cell
in the line-of-sight. This particular distribution over Z is
called the elementary sensor model, denoted by Pk(Z).

Given the first occupied cell [C = k] on the line-of-sight,
the likelihood functions yielded by the population code data
structure become

Pk(Z) = Lk(Z, µρ(k), σρ(k)),

{
µρ(k) = ρ̂(δ̂)
σρ(k) = 1

λσmin

(4)

with σmin and ρ̂(δ̂) taken from calibration, the former as
the estimate of the smallest error in depth yielded by the
stereovision system and the latter from the intrinsic camera
geometry. The likelihood function constitutes, in fact, the
elementary sensor model as defined above for each vision
sensor.

Equation (4) only partially defines the resulting probability
distribution by specifying the random variable over which
it is defined and an expected value plus a standard devi-
ation/variance — a full definition requires the choice of a
type of distribution that best fits the noisy pdfs taken from
the population code data structure. The traditional choice,
mainly due to the central limit theorem, favours normal
distributions N (Z, µρ(k), σρ(k)). Considering what happens
in the mammalian brain, this choice appears to be naturally
justified — biological population codes often yield bell-
shaped distributions around a preferred reading [13], [14],
[1], [9].

However, the fact that depth sensors always yield positive
readings may be contradicted by the circumstance that nor-
mal distributions assign non-zero probabilities to negative
depth values; even worse, close to the origin (Z = 0)
this distribution assigns a high probability to negative depth
values! With this purpose, we have adapted Yguel et al.’s
Gaussian elementary sensor model so as to additionally
perform the transformation to distance log-space, as follows

Pk([Z = z]) =
∫
]−∞;1]

N (µ(k − 0.5), σ(σρ))(u)du, z ∈ [0; 1]∫ bzc+1

bzc N (µ(k − 0.5), σ(σρ))(u)du, z ∈ ]1;N ]∫
]N ;+∞]

N (µ(k − 0.5), σ(σρ))(u)du, z = “No Detection”

(5)

where µ(•) and σ(•) are the operators that perform the
required spatial coordinate transformations, and k = dµρe is
assumed to be the log-space index of the only occupied cell
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in the line-of-sight, which represents the coordinate interval
]k − 1; k].

The answer to the Bayesian Program question in order to
determine the sensor model P (Z|OC C) for vision, which is
in fact related to the decomposition of interest P (OC Z C) =
P (C)P (OC |C)P (Z|OC C), is answered through Bayesian
inference on the decomposition equation given in (3); the
inference process will dilute the effect of the unknown prob-
ability distribution P (GC |OC C) through marginalisation
over all possible states of GC . In other words, the resulting
direct model for vision sensors is based solely on knowing
which is the first occupied cell on the line-of-sight and its
relative position to a given cell of interest C.

To correctly formalise the Bayesian inference process, a
formal auxiliary definition with respective properties follow.

Definition 1: Ak
c ∈ GC is the set of all tuples for which

the first occupied cell is [C = k]. Formally, it denotes tuples
such as (o1, · · · , oc−1, oc+1, · · · , oN ) ∈ {0, 1}N−1, yielding
[Oi = 0] ∧ [Ok = 1],∀i < k.

Property 1.1: ∀(i, j), i 6= j, Ai
c

⋂
Aj

c = ∅
Property 1.2:

⋃
Ak

c = Gc \ G∅, with
G∅ = {(op)p|∀p ∈ N \ {c}, 1 ≤ p ≤ N, [Op = 0]}

Property 1.3: If k < c there are k determined cells: the
k−1 first cells, (o1, · · · , ok−1), which are empty, and the kth,
(ok), which is occupied. Then, P (Ak

c ) = P k−1
Empty(1−PEmpty).

Property 1.4: If k > c there are k − 1 determined cells:
the k − 2 first cells, (o1, · · · , oc−1, oc+1, · · · , ok−1), which
are empty, and the (k− 1)th, (ok), which is occupied. Then,
P (Ak

c ) = P k−2
Empty(1− PEmpty).

It now becomes possible to determine P (Z|OC C) in order
to express the desired joint distribution P (Z OC C). This
process leads to four distinct possible cases, that will be
described next.

In the case of detection given an occupied cell [C = c],
the sensor measurement can only be due to the occupancy
of this cell or a cell before it in terms of visibility.

Thus [12],

∀Z 6= “No Detection”,
P (Z|[OC = 1]C) =

=
∑

gc∈GC

P ([Gc = gc])P (Z|[OC = 1] [Gc = gc]C)

=
c−1∑
k=1

P (Ak
c )Pk(Z) + (1−

c−1∑
k=1

P (Ak
c ))Pc(Z)

=
c−1∑
k=1

P k−1
Empty(1− PEmpty)Pk(Z) + P k−1

EmptyPc(Z)

(6)

Equation (6) has two terms: the left term that represents
the case where [C = c] is occupied and the right term that
comes from the aggregation of all the remaining probabilities
around the last possible cell that might produce a detection:
[C = c] itself. The “No Detection” case ensures that the
distribution is normalised.

In the case of no detection given an occupied cell [C =
c], which would correspond most probably to the effects of

occlusion from earlier cells,

Z = “No Detection”,
P (Z|[OC = 1]C) =

= 1−
∑

r 6=“No Det.”

P ([Z = r]|[OC = 1]C)
(7)

In the case of a measurement from detection knowing that
[C = c] is empty, where a erroneous detection is yielded by
the sensor (the so-called false alarm),

∀Z 6= “No Detection”,
P (Z|[OC = 0]C) =

=
∑

gc∈GC

P ([Gc = gc])P (Z|[OC = 0] [Gc = gc]C)

=
N∑

k=1,k 6=c

P (Ak
c )Pk(Z) + P (G∅)δZ=“No Detection”

=
c−1∑
k=1

P k−1
Empty(1− PEmpty)Pk(Z)+

+
N∑

k=c+1

P k−2
Empty(1− PEmpty)Pk(Z) + PN−1

EmptyδZ=“No Det.”

(8)

There are three terms in the empty cell, from left to right,
corresponding respectively to before the detection, after the
detection and no detection at all. Again, the “No Detection”
case ensures that the distribution is normalised.

In the case of no detection knowing that [C = c] is empty,
which will either be due to a miss-detection or a completely
empty line-of-sight corresponding to G∅,

Z = “No Detection”,
P (Z|[OC = 0]C) =

= 1− (
N∑
r

P ([Z = r]|[OC = 0]C)) + PN−1
EmptyδZ=“No Det.”

(9)

B. Audition sensor model

The audition sensor model used as a source of observations
for BVM cell state updates is fully described in [15].

C. Vestibular sensor model

To process the inertial data, we adapted the Bayesian
model proposed by Laurens and Droulez [16] for the human
vestibular system. The aim is to provide an estimate for
the current angular position and angular velocity of the
system, that mimics human vestibular perception. Since we
only consider the simplest case, where sensors may only
rotate around the egocentric origin, the angular rotation
measurements may be safely assumed to be independent;
linear acceleration might have a centripetal component that
depends on the distance to the origin, but since the model
is only detecting gravity, only a sustained rotation and a
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significant distance to the origin would produce an error in
the angular position, like when a test pilot is in a centrifuge.

In this model, X , Y and Z refer to the three axes of the
robotic vision head in egocentric coordinates. The orientation
of the system in space is encoded using a rotation matrix Θ.
Angular velocity of the head is encoded using the yaw y,
pitch p and roll r conventions. Yaw rotations are rotations
around the Z axis; pitch around the Y axis and roll around
X . When a rotation consists of a combination of yaw, pitch
and roll rotation, the three rotations are applied successively
and in this order. The rotation update is given by

Θt+δt = Θt.R(δy, δp, δr) (10)

where R(y, p, r) =[
c(y).c(p) c(y).s(p).s(r)− s(y).c(r) c(y).s(p).c(r) + s(y).s(r)
s(y).c(p) c(y).c(r) + s(y).s(p).s(r) −c(y).s(r) + s(y).s(p).c(r)
−s(p) c(p).s(r) c(p).c(r)

]
and the instantaneous angular velocity is defined as:

Ω =

 δy/δt
δp/δt
δr/δt


The calibrated inertial sensors in the IMU provide direct

egocentric measurements of body angular velocity and linear
acceleration (including gravity G). Given the motion of the
system, we can define the probability distribution of the sen-
sory inputs. The gyros will measure Ωt with added Gaussian
noise, i.e. Φt = Ωt + ηt

Φ, where ηt
Φ is a three-dimensional

vector, the elements of which follow independent Gaussian
distributions with mean 0 and standard deviation σΦ. The
accelerometers will measure the gravito-inertial acceleration
F with added Gaussian noise, i.e. Υt = F t + ηt

Υ, where
ηt
Υ is a three-dimensional vector, the elements of which

follow independent Gaussian distributions with mean 0 and
standard deviation σΥ. F is the resultant acceleration due to
linear acceleration and gravity. Given the geocentric body
linear acceleration A and the system orientation Θ, we
can compute F . Transforming to the egocentric frame of
reference we have

F = Θ−1.(G−A) (11)

The sensor data at time t is therefore defined by (Φt,Υt),
and the state of our system at time t by (Θt,Ωt,At).
Estimates for spherical angles (θinertial, φinertial) are then easily
derived from the pitch-roll-yaw configuration of Θ.

As suggested in [16], even in the absence of any sensory
information, motion estimates for which the rotational ve-
locity and acceleration are low are more probable. This can
be described in a simple way using a Gaussian distribution.
Having

N (x, µ, σ) =
e−(x−µ)2/(2.σ2)

√
2.π.σ2

the probability distribution for acceleration is given by
P (At) ∝ N (|At|, 0, σA); similarly for angular velocity Ω
we have P (Ωt) ∝ N (|Ωt|, 0, σΩ).

V. CONCLUSIONS

We have formalised herewith a novel solution, the
Bayesian Volumetric Map, a framework for a metric, short-
term, egocentric spatial memory for multimodal perception
of 3D structure and motion. This solution allows: the es-
timation of 3D structure and local motion states through
perceptual fusion, involving vision, audition and inertial
sensing, effectively postponing data association to higher-
level perceptual processing; the implementation of top-down
mechanisms of attention guidance of perception towards
areas of high entropy/uncertainty, so as to promote active
exploration of the environment by the robotic perceptual
system.

Further details on the calibration and implementation of
these models can be found at http://paloma.isr.uc.
pt/~jfilipe/BayesianMultimodalPerception.

REFERENCES

[1] D. C. Knill and A. Pouget, “The Bayesian brain: the role of uncertainty
in neural coding and computation,” TRENDS in Neurosciences, vol. 27,
no. 12, pp. 712–719, December 2004.

[2] A. Elfes, “Using occupancy grids for mobile robot perception and
navigation,” IEEE Computer, vol. 22, no. 6, pp. 46–57, 1989.

[3] C. Coué, C. Pradalier, C. Laugier, T. Fraichard, and P. Bessière,
“Bayesian occupancy filtering for multitarget tracking: an automotive
application,” Int. Journal of Robotics Research, vol. 25, no. 1, pp.
19–30, 2006.

[4] C. Tay, K. Mekhnacha, C. Chen, M. Yguel, and C. Laugier, “An effi-
cient formulation of the bayesian occupation filter for target tracking
in dynamic environments,” 2007, International Journal of Autonomous
Vehicles.

[5] A. H. Jazwinsky, Stochastic Processes and Filtering Theory. New
York: Academic Press, 1970, iSBN 0-12381-5509.

[6] O. Lebeltel, “Programmation Bayésienne des Robots,” Ph.D. disserta-
tion, Institut National Polytechnique de Grenoble, Grenoble, France,
September 1999.

[7] M. O. Ernst and H. H. Bülthoff, “Merging the senses into a robust
percept,” TRENDS in cognitive Sciences, vol. 8, no. 4, pp. 162–169,
April 2004.

[8] C. Spence and S. Squire, “Multisensory integration: maintaining the
perception of synchrony,” Current Biology, vol. 13, pp. R519—-R521,
July 2003.

[9] A. Pouget, P. Dayan, and R. Zemel, “Information processing with
population codes,” Nature Reviews Neuroscience, vol. 1, pp. 125–132,
2000, review.

[10] R. Henkel, “A Simple and Fast Neural Network Approach to Stere-
ovision,” in Proceedings of the Conference on Neural Information
Processing Systems — NIPS’97, M. Jordan, M. Kearns, and S. Solla,
Eds. Denver: MIT Press, Cambridge, 1998, pp. 808–814.

[11] J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of
Plausible Inference, revised second printing ed., M. B. Morgan, Ed.
Morgan Kaufmann Publishers, Inc. (Elsevier), 1988.

[12] M. Yguel, O. Aycard, and C. Laugier, “Efficient GPU-based Construc-
tion of Occupancy Grids Using several Laser Range-finders,” 2007,
International Journal of Autonomous Vehicles.

[13] S. Treue, K. Hol, and H.-J. Rauber, “Seeing multiple directions
of motion — physiology and psychophysics,” Nature Neuroscience,
vol. 3, no. 3, pp. 270–276, March 2000.

[14] R. T. Born and D. C. Bradley, “Structure and Function of Visual Area
MT,” Annual Review of Neuroscience, vol. 28, pp. 157–189, July 2005.

[15] C. Pinho, J. F. Ferreira, P. Bessière, and J. Dias, “A Bayesian Binaural
System for 3D Sound-Source Localisation,” in International Confer-
ence on Cognitive Systems (CogSys 2008), University of Karlsruhe,
Karlsruhe, Germany, April 2008.

[16] J. Laurens and J. Droulez, “Bayesian processing of vestibular
information,” Biological Cybernetics, December 2006, (Published
online: 5th December 2006). [Online]. Available: http://dx.doi.org/10.
1007/s00422-006-0133-1

108


