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Politiques de remplacement sur les caches partég des
multi-coeurs symétriques

Résune : La présence de caches partagés dans les processeursaBults est une source impor-

tante de variabilité de performance lorsque plusieurdiegipns s'exécutent simultanément. Pour
le programmeur d’'une application avec des objectifs deitgudé service, cette variabilité de per-

formance peut conduire & un dimensionnement trés pestsiché I'application. Afin de résoudre ce

probleme, on doit donner au programmeur la possibilitd&fair un objectif raisonnable en perfor-

mance, et on doit faire en sorte que la performance réelisgpérieure ou proche de cet objectif.

Nous proposons que |'objectif en performance soit défime® la performance mesurée lorsque
chaque coeur exécute une copie de I'application. Nouslappeette mesure I'auto-performance.
Cette étude caractérise 'auto-performance et explaumement la politique de remplacement des
caches partagés peut &tre modifiée pour que I'auto4pesiace soit un objectif atteignable.

Mots clés : Processeur multi-coeur symétrique, qualité de seraig®-performance, cache partagé,
politique de remplacement, bande passante mémoire
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1 Introduction

There exists an implicit performance contract between toegssor and the programmer. When
the programmer writes a program and measures its perfoertanmunning it, he assumes that the
performance is approximately deterministic, hence repcddde. There can be some performance
variations, some due to the operating system (e.g., diffggbysical page allocation that changes
cache conflicts), some due to the microarchitecture (eiffiereint initial branch predictor states).
But, before the multicore era, these variations were gdpesraall.

With multicore processors able to execute several appitasimultaneously, performance vari-
ations can have a much larger magnitude. This is mainly dakdaoed microarchitectural resources,
especially shared caches. Depending on workload chaistter the actual performance of a par-
ticular application may be much smaller than the perforreaneasured by the programmer. For
applications with quality-of-service goals, this leady¢oy pessimistic tuning.

Previously proposed solutions to this problem involve tlse of programmable priorities or
quotas [5, 3, 10, 1, 8, 2, 4]. With these solutions, progransméno want a performance guarantee
must ask for resources they are sure to obtain. In practic®requires either to partition shared
resources evenly between cores or to keep some cores unused.

We propose a new solution, which is to have an explicit cantoatween the microarchitecture
and the programmer. The programmer measures the apptigagidormance by running simulta-
neously a copy of the application on each core. This defined whk callself-performance This
study characterizes self-performance and shows thatefiepsrformance to be meaningful, the mi-
croarchitecture must manage shared resources carefallyarticular, we show that conventional
cache replacement policies are not compatible with thegafiormance contract. We propose some
replacement policies that are compatible with self-penimce. One of our replacement policies,
called B2, is simpler to implement in hardware than previppsoposed quota-based solutions.

The paper is organized as follows. Section 2 explains theemirof self-performance and the
motivations behind it. We show in Section 3 that conventi@maahe replacement policies are not
compatible with self-performance and we provide insiglstsoawhy this is so. We also show that,
even without considering the self-performance contragtventional cache replacement policies
lead to the paradoxical situation that increasing the mgrbandwidth may decrease the perfor-
mance of some applications. In Section 4, we propose shaxirge replacement policies that solve
the problems emphasized in the previous section. Sectioschigbes some implications of our
proposition for throughput and for multi-threaded progsaffinally, Section 6 concludes this work.

Simulations. The simulation results presented in this study correspoadtulticore with 4 iden-
tical cores, depicted in Figure 1. The 4 cores share a 4 MB dpsst-associative level-2 (L2) cache.
The main characteristics of the simulated microarchitecine summarized in Table 1. More details
about the simulator and about benchmarks are provided iregig A. Unless stated otherwise,
each simulated IPC (instructions retired per cycle) reggbih this study corresponds to the IPC of
the thread running on core #1 for 10 million CPU cycles whiteen threads run on cores #2,#3 and
#4.
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core 1

core 2

L2 cache

core 3

bus
arbiter

4 Mbytes Memory

core 4

16-way
set—associative

Figure 1: Symmetric multicore simulated in this study.

multicore 4 dynamically-scheduled cores
core fetch 2 instructions per cycle (x86)
core retire 2 instructions per cycle (x86)

reorder buffer

64 instructions (x86)

branch predictor

YAGS, 12 Kbytes, 25-bit global history, 8-bit tags

branches 10-cycle misprediction penalty (minimum), solved at retient
IL1 cache private, 32 Kbytes, 4-way set-associative, 64-byte blpciké
latency 1 cycle, 1 block refill & 2 instructions read per cycle
DL1 cache private, 32 Kbytes, 4-way set associative, 64-byte blocks),
write-back write-allocate, latency 2 cycles,
1 block refill & 1 load/store per cycle
L2 cache shared, 4 Mbytes, 16-way set associative, 64-byte blodRi), L
write-back write-allocate, latency 15 cycles,
bandwidth 1 block/cycle (refill or block read or block update
MRQ 20 pending L2 misses
memory bus 8 bytes per CPU cycle

memory latency

300 CPU cycles

hardware prefetch

disabled

Table 1: Simulated microarchitecture : default configunati
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2 Self-performance

In this study, we consider independent sequential taskgre@ily, most programs executing on
existing multicores are sequential programs. Though ibjseld that more and more parallel appli-
cations will be developed, sequential programming is &ty important. We explain in Section 5.3
what are the implications of our proposition for multi-thcked programs.

2.1 The problem

For applications with quality-of-service (QoS) goalssiimportant that the performance measured at
programming time be deterministic, or appears to be so. lnlticure, several resources are shared :
physical memory, caches, buses, power supply, etc. BeaHussource sharing, when several
independent applications run concurrently on differemespthe performance of each application
depends on the characteristics of the other applications $ingle CPU, the operating system (OS)
can control the amount of physical memory and CPU time akbto each task, in particular tasks
with QoS goals. On a multicore, the OS can decide which agidics to run simultaneously and for
how long, but it has no control on microarchitectural resewgharing. The notion of CPU time is not
accurate, as the quantity of work done during a fixed peridthté may vary drastically depending
on resource sharing. What we need is a way for the progranorspecify a performance target
and a microarchitecture that minimizes the possibilitythar actual performance to fall significantly
below the performance target. An obvious solution woulddadsume that the application runs
alone on the multicore. But the multicore would be underused

The solution that has been proposed so far is to let the OSéhfiwe control of shared microar-
chitectural resources [5, 3, 10, 1, 8, 2, 4]. Each sharediresds associated with priorities or quotas
that are programmable. For example, the programmer defiaesitroarchitectural needs, i.e., the
resources he wants (cache size, bus bandwidth, etc.), andShtries to give to each application
the resources it asks for. However, this raises a questiohat if/the sum of resources asked by
applications running concurrently exceeds the processesources ? With programmable quotas,
each application is given a share of resources that is aifumat but is not necessarily equal to what
the application asks for [10]. This implies that the apglmas for which it is important to obtain
a performance guarantee must ask for quotas that they ardasobtain. In practice, this means
that when a resource is shared by up to N threads, the proggamuost ask foi /N (or less) of the
resource in order to obtain a performance guarantee.

Based on this observation, we propose a viable alternatipedgrammable quotds We call
it self-performance Self-performance is less flexible than programmable qubte is simpler to
implement.

2.2 Self-performance
Obtaining a performance guarantee is a two-stage problem :

» We need a way to define a performance target.

1To our knowledge, programmable quotas have not been adbpté industry yet.
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» We must minimize the possibility for the actual performaie fall below the targeted perfor-
mance.

On the one hand, we do not want the performance target to gesimistic. On the other hand, the
performance target must be a value that is possible to enftftit is too optimistic, it may be impos-
sible to reach the performance targets of all the applinatranning simultaneously. If we measure
the application performance when it runs simultaneousti wome other random applications, we
may obtain a performance target that is too optimistic. Ifaleose misbehaving applications to
stress shared resources, we may obtain a performance thagé$ too pessimistic. Instead, we
propose to define the performance target of an applicatiawiying copies of this application on
all cores. More precisely, we define thelf-performanceontract as follows :

The self-performance of a sequential program on a symmetulticore processor is
the performance measured for one instance of the applicativasymmetric run, i.e.,
when running simultaneously and synchronously copiesaifgiogram on all cores,
using the same inputs. The actual performance must be gréwte or close to the
self-performance, whatever the applications running andther cores.

The rationale is as follows. If the application uses few tegeses, its self-performance is very close
to the performance when it runs alone. But if the applicatisks for a lot of resources, it com-
petes with copies of itself and gets a share that is equaktoebource size divide by the number
of cores. The performance target defined this way is neith@roptimistic nor too pessimistic.
Self-performance can be measured by the programmer witequiring any knowledge of the mi-
croarchitecture internal details (e.g., which resourceshared, how the resource arbitration works,
etc.). The programmer does not even need to know the numlmre$. The only thing that the
programmer must be aware of is the self-performance cdnfacthe convenience of the program-
mer, the OS should providesalfperfutility for launching symmetric runs. Programmers who do no
need a performance guarantee can measure performanceafsnigut using theselfperfutility.
But it is an optimistic performance in this case.

System resources. In this study we focus on shared microarchitectural resesjr@nd more partic-
ularly shared caches. We do not address the problem of syssmarces, like physical memory. For
example, if the programmer has QoS goals and wants a higpedirmance, he should prevent the
application memory demand from exceeding the memory sizdeti by the number of cores. We
assume that the OS is always able to give this amount of metading application.

3 Shared caches and self-performance

Unlike for system resources, the operating system has ttthtrol on shared microarchitectural
resources. It is possible to have some control by careflibyosing which application to run si-
multaneously (provided such choice exists). But existirgcpssors do not allow the OS to control
microarchitectural resources more finely.

Irisa
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Among shared microarchitectural resources, caches éxhibimost chaotic and difficult-to-
predict behavior. For example, on a set-associative cadhel@ast-recently-use(.RU) replace-
ment, a small decrease of the number of cache entries dllotiethread may result in the miss ratio
suddenly going from 0 to 100%. The most obvious way to avoéddiratic behaviors due to shared
caches is to avoid shared caches. Nevertheless, sharezsdante some advantages. On a multicore
with private caches, whenever a single thread is runnimgcéiche capacity of idle cores is generally
wasted. When a cache is shared between several cores, tihe cglcbe capacity is accessible to
a single running thread. This is particularly interestingthe last on-chip cache level, as off-chip
accesses are costly. There are other advantages when sengads from the same application com-
municate with each other. With private caches, severalesopi the same data may be replicated.
Not only does this decrease the effective cache capacitythizimeans potentially a cache miss
for each copy. For these reasons, several recent multibaresshared level-2 (L2) or level-3 (L3)
caches. However, to our knowledge, there is no mechanistresetmulticores to control the way
the cache capacity is partitioned between different trseadning concurrently. The partitioning is
simply the result of the cache replacement policy, that ig wh call it natural partitioningin this
study.

3.1 Under natural cache partitioning, the self-performane can exceed the
actual performance

The model of cache partitioning proposed in [12], thouglt@uaate in practice, is useful for under-
standing some qualitative aspects of natural cache pauitij. We present a simplified version of
the model, which we will use to help understand our simutat@sults.

Let us considern threads numbered fromto »n running simultaneously, and a fully-associative
shared cache with a capacity 6fblocks. The number of cached blocks belonging to threid
w;. Itis assumed that the cache capacity is saturated(l.e:,>""" , w;. The miss rate of thread
1, In misses per cycle, ig;. The total miss rate is = Z?:l m;. The model assumes that, on a
miss from any thread, the probability that the victim blo&tdmgs to threadis proportional to the
total number of cached blocks belonging to thregide., it isw;/C. DuringT' cycles,m;T" blocks
from thread: are inserted in the cache andl" x w;/C blocks from thread are evicted from the
cache. It is assumed that an equilibrium is eventually redcbuch thatv; is stable. It means that,
for each thread, the number of block insertions equals th&eu of block evictions. Hence we have
m;T =mT x w;/C, thatis,

m; m

v C 1)
This quantity;n; /w;, was not identified in [12]. We call it theache pressuref thread:. Equation
(1) means that the equilibrium partitioning is such thattaléads have equal cache pressure. Figure
2 shows on an example how the concept of cache pressure ig fsdinding the equilibrium cache
partition from the threads miss rate curves (misses pee@glka function of the number of cached
blocks). On this example, the cache is shared between 2dthreEhread 1 needs less than half
the cache capacity to have a null miss rate. However, bedagbares the cache with thread 2,
thread 1 has a non-null miss rate. The example of Figure Z&glvhy natural cache partitioning

PIn°1908
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miss rate
isobar p
M2 |- ‘
ML ‘
‘ i ‘ i
0 wl o W2 c  cached block

Figure 2: Example with 2 threads. The miss ratgof thread: (in misses per cycle) is assumed to
be a function of the number; of cached blocks. The equilibrium partitid;, w2) is such that
the two threads have equal cache prespure m; /w; = ma/ws, hence the pointéw;, m;) and
(w2, m2) lie on the samésobar, which is represented by a straight line whose slope is tegspire
p. To find the equilibrium partition, rotate the isobar arodiné origin untilw, + wy = C.

cannot guarantee that the actual performance will reackdligperformance target. In particular,
the performance of a thread may be severely decreased wiethtkr threads have high miss rates.

Experiment on areal multicore. We did a simple experimenton a MacBook Pro featuring an Intel
Core 2 Duo processor and 2 GB of memory. This processor hag2 and a 4 MB shared L2 cache.
We ran benchmarkpr from the SPEC CPU2000. The measured execution time wasxdpately

51 seconds. Then we measured the self-performangar by running simultaneously two instances
of vpr. The execution time ofpr was 53 seconds, which means that the self-performaneprof

is close to its performance when it runs alone. Then weviarsimultaneously with benchmark
mcffrom the SPEC CPU2000. The execution timevpf was 73 seconds, i.e., 38% worse than
the self-performance. Then we rapr simultaneously with a microbenchmark that we wrote and
which we denot®99. Microbenchmarl@99is provided in Figure 3. It has a very high miss rate (1
miss every 4 instructions) and evicts cache blocks veryesgirely. The execution time wpr was
101 seconds, i.e., 90% worse than the self-performance séthe Apple toasharkto access the
performance counters of the Core 2 Duo and we checked thaleitrease of performance comes
from an increase of L2 cache misses. This experiment shaatsuithder natural cache partitioning,
the actual performance may be significantly smaller thaséifeperformance.

Irisa
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int a[SIZE];
main ()
int i,n;
int x = 0;
for (n=0; n<1000000; n++){
for (i=0; i<SIZE; i+=STEP) {
x += al[i];
¥

}
printf ("%d\n",x);
}

Figure 3: Microbenchmar99 (compiled withgcc -O3 -DSIZE=160000000 -DSTEP=116

3.2 Self-performance is not necessarily defined under natat cache parti-
tioning

In our definition of self-performance, we made the implicgsamption that, on a symmetric run,
performance is the same on all cores. With identical cohes js indeed the case most of the time.
According to the cache pressure model (cf. Figure 2), ifaisshave the same miss rate curve, they
get the same share of the cache capacity. Therefore, a syimmet on 4 cores should result in
each thread getting one fourth of the cache capacity. Howéwve cache pressure model is only
an approximation of reality. From our experiments and satiahs, the LRU replacement policy is
unlikely to generate strange performance variations omsgtric runs. But this is not necessarily
true with other replacement policies. Though we preseniteenly for LRU in this study, we also
did simulations with the DIP replacement policy.

DIP was recently proposed as a substitute for LRU in L2 anddches [9]. DIP is a very attrac-
tive proposition that may be implemented in future processall our observations and conclusions
with LRU are the same with DIP, except that natural cachetpmaring under the DIP policy can
lead to strong performance asymmetry on symmetric runs.DIRgoolicy was originally proposed
for private caches, but it can be adapted easily to shardtesadnstead of having a single PSEL
counter for the cache, we have one PSEL counter for each Eagare 4 shows the result of run-
ning 4 instances of microbenchm&@R9 compiled withSIZE = 2'? (cf. Figure 3) when the L2
replacement policy is DIP and the memory bandwidth is 4 bpescycle. The plot shows the
number of retired instruction on each core as a functionnoétiDespite cores being identical, this
example exhibits a strong performance asymmetry, the pe#ice of core #3 being higher than
the other cores. Our simulator uses a pseudo-random nuraberggor (RNG), which is used in the
DIP policy and in the bus arbitration policy. Actually, thealding core varies with the RNG seed.
This phenomenon can be understood as follows. Going babletceiche pressure model, we expect
threads with identical miss rate curves (in particular taesh threads) to converge to a state where
the shared cache is equally partitioned between threadsrédson is that there is a negative feed-
back : the more cached blocks belong to a given thread, thehthe probability for that thread to
have its blocks evicted. Though we have no formal proof, atieg feedback seems to be at work

PIn° 1908
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Figure 4: Symmetric run of microbenchmaR9with SIZE = 2'° (Figure 3). Memory band-
width is 4 bytes/cycle and the L2 replacement policy is DIRe plot shows the number of retired
instructions on each core as a function of time.

with the LRU policy as well. Under LRU, we did not encounterirgée example of a symmetric
run leading to significant performance asymmetry. DIP mayeleacompletely different behavior.
When the BIP policy generates fewer misses than LRU, it iscset! by the PSEL counter as the best
policy. Under BIP replacement, a block inserted in the caelsently has a high probability to be
the next victim. It will be the next victim if it is not re-refenced before the next cache miss (from
any thread). In such case, the BIP policy has a tendency toldweicks belonging to the thread with
the highest miss rate, i.e., on a symmetric run, the thretdtive smallest number of cached blocks.
Hence we have a positive feedback where small divergentceswgified with time. This is a case
of sensitivity to initial conditions : before the divergenaccurs, we are unable to predict the future
evolution. Such chaotic behavior is of course incompatibte providing a performance guarantee.
The SAR policies proposed in Section 4 solve this problem.

3.3 A symmetric run is not equivalent to a static partitioning of shared re-
sources

One of our counter-intuitive findings is that self-performa is not exactly the performance one
would measure with programmable quotas by partitionindre@asource statically and equally be-
tween cores. Actually, when memory bandwidth limits parfance, self-performance exceeds the
performance of a single run with statically partitionedo@ses.

Figure 5 shows the IPC (instructions retired per cycle) feubset of our benchmarks whose
performance is limited by memory bandwidth. For each beraskiwe show results for 4 config-
urations, where SGL denotes single runs (i.e., there aréeXaes) and SYM denotes symmetric
runs. SGL-1 is for a memory bandwidth of 1 byte per CPU cyckk@ad MB shared cache. SYM-4
is for a bandwidth of 4 bytes/cycle and a 4 MB cache. SGL-2iisifmemory bandwidth of 2 byte

Irisa
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0,6

0,5

SGL-1
W SYM-4
SGL-2
SYM-8

401 410 429 433 437 450 470 471 473 482 483
benchmark

Figure 5: IPC for a subset of our benchmarks. For each berhiee IPC of 4 different con-
figurations is shown. Configuration SGL-1 is for a single rua.{there are 3 idle cores) with a
memory bandwidth of 1 byte per CPU cycle and a 1 MB shared cdcbefiguration SYM-4 is for
a symmetric run with a bandwidth of 4 bytes/cycle and a 4 MBhea&SGL-2 is for a single run with
a bandwidth of 2 bytes/cycle and a 1 MB cache. SYM-8 is for aragtnic run with a bandwidth of
8 bytes/cycle and a 4 MB cache.

per CPU cycle and a 1 MB shared cache. SYM-8 is for a bandwitdghbytes/cycle and a 4 MB
cache. The shared-cache associativity remains constdrégural to 16. As can be seen the per-
formance of SYM-4 is higher than the performance of SGL-H #e difference is not negligible
(23% for429.mcf. A similar conclusions holds for SYM-8 versus SGL-2, bud thfference is less
pronounced. The explanation of these counterintuitiveltedies in memory bandwidth sharing. It
is illustrated by Figure 6 with an artificial example. In owfichition of a symmetric run, copies of
the same program are run synchronously, meaning that tedguanched at the same time. However
in practice, the execution on the different cores is not #xaynchronous. In fact, perfect syn-
chronization would be very difficult to obtain and would ety decrease self-performance. Perfect
synchronization implies that if we launch the program cegeactly at the same cycle, they should
finish exactly at the same cycle. But even when all cores hgaetly the same microarchitectural
state at the beginning of the symmetric run, and assumingntbearchitecture behavior is deter-
ministic, the program copies do not finish exactly at the sime because certain shared resources
cannot be accessed by all threads simultaneously. Consdyytieere is a slight desynchronization
of cores on a symmetric run. Because cache misses are oftsty,ba slight desynchronization
permits obtaining a more uniform utilization of the bus baiuth. This is what Figure 6 illustrates.

PIn°1908
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misses/cycle

time

double bandwidth
symmetric run, slightly desynchronize

Figure 6: Example for explaining why self-performance caceed the performance of a single run
with memory bandwidth statically partitioned. This exampbssumes 2 cores.

3.4 Increasing the memory bandwidth may decrease performage.

Once there is an agreement between the programmer and theansiuitect that self-performance
represents the minimum performance, the microarchitest tmpto minimize the possibility of this
not being the case. For the microarchitect, this means asg@ention to each shared resource. In
our simulations, only two resources are shared : the L2 cantléhe bus bandwidth. The focus of
this study is the cache replacement policy. But for our tegolbe meaningful we had to be careful
with the cache indexing and with the bus arbitration policy.

L2 and L3 caches are generally indexed with physical addses3n a symmetric run, physical
indexing utilizes cache sets more uniformly than virtualdring, so self-performance is likely to be
higher than what would be measured by partitioning the catdtecally and equally between cores.
We already observed an analogue phenomenon with memorwidthdn Section 3.3. However, it
is difficult to exploit this phenomenon in the cache withoatrficing the performance guarantee.
The self-performance would be too optimistic. Instead, @& should implement a page coloring
scheme such that the cache indexing is equivalent to usingittual address? Our simulations in
this study assume a virtual indexing.

As for the bus arbitration policy, we initially implementadimpleleast-recently-selectgt RS)
scheme, which we thought would be sufficient. The LRS arlsitégcts, among non-empty request

2For avoiding having too many constraints on page allocatage coloring may be active only when measuring perfor-
mance with theselfperfutility. But for a stronger performance guarantee, pageraay should be the default behavior (some
operating-systems like FreeBSD already use page coloring)

Irisa
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Figure 7: IPC for a subset of our benchmarks. The benchmatkisn core #1. Two workloads
are considered for the 3 remaining cores : workload SYM ruospy of the benchmark on each
core (symmetric run) and workload 999 runs a copy of micrehemark 999 on each core. For both
workloads, we show the IPC when memory bandwidth is 4 byelSYM-4 and 999-4) and
when it is 8 bytes/cycle (SYM-8 and 999-8).

queues, the least recently selected one. LRS arbitratioonsmonly used for arbitrating resource
conflicts between threads in some multi-threaded procgdigerthe Sun UltraSPARC T1 [6]. But
we found that, when LRS is used for the bus, we cannot guaraeté-performance. To see why,
consider the case of an application with a low average misstiat whose misses occur in bursts.
On a symmetric run, the desynchronization of cores permdslang most bus conflicts (cf. Figure
6). But when the application is run simultaneously with #d® having a high average miss rate,
it is granted bus access again only after each of the congptitieads has accessed the bus once.
Thus the application suffers from bandwidth saturatiorpdesaving a low average miss rate. To
solve this problem, we have implemented a different bustratinn policy. We associate a 4-bit
up-down saturating counter with each request queue. Thiateorepresents score To select
which queue should access the bus, the arbiter choosesgamaorempty queues, the one with the
lowest score. If a selection occurs (at least one queue Bmpty), the score of the selected queue is
incremented by, whereX is the number of running threads minus otié € 3 in this study), and
the score obachnon-selected queue is decremented by 1. Moreover, totéeillesynchronization
on symmetric runs, we introduced a little randomness by pdating the scores once every 1000
selections on average. With this arbitration policy, anliapgion with a low average miss rate has a
low score and its requests can access the bus quickly evendther threads have a high miss rate.
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Figure 8: Cache pressure model applied for a shared caclapatityC, assuming a bandwidtB
(maximum number of misses per cycle). On this example, th#idahas a working set of sidé&

and a miss rate curve that drops suddenly wi&rblocks are cached. If the other threads are able
to saturate the bandwidth, the miss rate of thread #1 is% B. Thus an increase of bandwidth
decreases the performance of thread #1.

Figure 7 shows the IPC on core #1 when the 3 other cores runyaafdhe benchmark (sym-
metric run) and when they run instances of microbenchmagk 99 both cases, we show the IPC
when memory bandwidth is 4 bytes/cycle (SYM-4 and 999-4)when it is 8 bytes/cycle (SYM-8
and 999-8). We show results only for benchmarks whose pagoce suffers from running simul-
taneously with microbenchmark 999. As can be seen, the lgotuirmance can be much smaller
than the self-performance. This is particularly strikiog 403.gccand435.gromacsFor 403.gc¢
the actual performance can be 6 times worse than the sétirpence.

Another striking observation is that increasing the mentmepdwidth can decrease the per-
formance of an application. For example, when running witbrabenchmark 99%35.gromacs
experiences a 16% performance drop when memory bandwidth fgom 4 to 8 bytes/cycle. By
limiting the rate at which blocks can be evicted from the @a@hsmaller bandwidth offers a better
protection against aggressive cache evictions, but ordycertain extent. The cache pressure model
confirms this observation. On Figure 8, we consider a thréaaiith a working set of1/; blocks and
a miss rate curve that drops suddenly wiEnblocks are cached. The bandwidthBgmaximum
number of misses per cycle). If the other threads are ablattoate the bandwidth, the miss rate
of threads #1 isn; = %B . If we increase the bandwidtB, we increase the performance of the
threads for which bandwidth is a bottleneck, but we alsogase the miss rate of thread #1, hence
decreasing its performance.

This situation where an obvious structural improvementkingithe bus wider or faster) may
decrease the performance of an application is not a hedttigtion. The microarchitect does not
expect an application to experience a slowdown when the mebamdwidth is increased.
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4 Sharing-aware replacement (SAR) policies

Sharing-aware replacement (SAR) is intended to solve tbblems we highlighted in Section 3.
SAR can be applied to any replacement policy, e.g., LRU, ¢gadtRU, DIP, etc. But the details of
the implementation depend on the underlying replacemditypdn this study, we use LRU SAR
policies and we describe an implementation corresponditigi$ case. The basic idea of SAR is to
take into account the cache space occupied by each thredglrefjuires that théhread identifier
(TID) be stored along with each block in the cache. With 4 speach TID is 2-bit wide. We say
that a TID isinactiveif there are fewer running threads than cores and the TID doesorrespond
to a thread currently running on a core. (an inactive TIDa¢gply corresponds to a thread that has
finished execution of that is waiting for an event or a systesource). A SAR policy selects a
victim block as follows :

» Each TID proposes a potential victim block in the cache set
* If there is at least one invalid block in the set, we take amlid block as the victim.

» Otherwise, the SAR policy selectyvitim TID and the actual victim block is the victim block
proposed by the victim TID.

« If the cache set contains some blocks belonging to an ir&€tD, such inactive TID is chosen
as the victim TID. This is for being able to exploit the fullatee capacity when there are fewer
running threads than cores.

For a LRU SAR policy, we must first describe how the LRU stacikriplemented. The LRU stack
consists of the blocks in the cache set ordered from MRU (wrexsintly-used) to LRU. There are
several possible ways to implement a LRU stack in hardwarsolation consuming no storage at
all would be to maintain a physical order among blocks, frolRUito LRU. Promoting a block
to the MRU state consists in moving the block to the MRU positiind shifting the other blocks
accordingly. However, such implementation would consurta af cache bandwidth and a lot of
energy. Instead, it is possible to use short pointers to lihekb and to move the pointers instead of
the blocks themselves. For an associativity of 16, this iregwa 4-bit pointer per block, pointing
to a location in the cache set. Pointers are stored in a depatae, which we call the R-tablé.
There is one R-table entry for each cache set. Each R-tablg @mtains sixteen 4-bit pointers,
ordered from MRU to LRU. Moreover, we assume that the 2-bidsTare stored in the R-table. So
each block in the R-table is represented4doy 2 = 6 bits. Updating the LRU stack requires an
associative search among the 16 pointers and moving thénmgtislock to the MRU position. The
victim block proposed by a given TID is the block belonginghat thread whose position in the
stack is closest to the LRU position. To obtain the victimgoeed by a given TID, sixteen 2-bit
comparators provide a 16-bit vector where each bit ind&cateether or not the corresponding block
belongs to the thread. Then a priority encoder finds, in thbifl@ector, the "1” closest to the LRU
position.*

3These pointers are not part of the SAR hardware cost, theleimgmt the LRU policy.
4The hardware we have described so far is not more complexthahwould be necessary to implement programmable
guotas. But papers describing quota-based solutions soegeskip these details.

PIn°1908



16 Michaud

1,6

1,4

HSYM

999

W 999-SB
999-B2

401 403 416 429 434 435 444 445 456 458 464 465
benchmark

Figure 9: The SB policy makes the worst-case performanc®) @6se to self-performance (SYM).
The B2 policy, simpler than SB, is almost as effective.

4.1 The SAR SB policy

A possible solution for ensuring that a thread gets the caphee it would get on a symmetric run
is to give the same amount of cache space to each thread. arhisecdone by choosing as victim
TID the TID with the largest number of cached blocks. In cakequality, we choose the TID
whose proposed victim is closest to the LRU position. Suditpshould progressively converge to
an equilibrium partition where all threads get an equalashdihere are two possible options. The
number of blocks may be computed either for the whole cacljesbfor the cache set. We denote
the first policyglobal-bigges{GB), and the second oreet-bigges{SB). The GB policy chooses
as victim TID the TID with the largest number of blocks in théale cache, while the SB policy
chooses as victim TID the TID with the largest number of bbirkthe cache set where the missing
block goes. The GB policy can be implemented by maintainieguhters giving the total number
of blocks belonging to each thread. On a miss, one or two epsiare updated. The SB policy can
be implemented by counting blocks on-the-fly while the mésguest is being processéd.
Simulation results for the SB policy are shown in Figure 9e BB policy is successful at making
worst-case performance close to self-performance. Thisaxpected, as the SB policy converges
relentlessly to a state where each cache set is evenly dibieisveen competing threads. Actually,
we found that the GB policy is not safe and we do not show resoittit. We have mentioned it just
to emphasize the necessity of working at the set level. Thia ,eason why the GB policy is not

5Actually, when counting blocks, we consider the 17 blockssisting of the 16 blocks in the cache set plus the missing
block.
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safe is that it does not guarantee that each cache set iyelieidied between threads. Indeed, some
applications do not use cache sets uniformly. For exampdesimulated benchmark 429.mcf with
3 instances of microbenchmark 999 compiled WithE P = 32, i.e., using only even cache sets.
With a GB policy, the performance of 429.mcf is 22% lower thtamself-performance. The fact that
one must work at the set level to obtain a strong performaneeagtee has already been observed
in [10].

4.2 The SAR B2 policy

The SB policy requires to find the TID that has the most blooks set. With 4 cores, this requires
3 comparisons. We propose a simpler SAR policy, that weligtjest-of-twpor B2 for short. Like
the SB policy, the B2 policy counts the 17 blocks in the cagtesncerned by the miss (16 cached
blocks plus the missing block). While processing the caclesnthe B2 policy chooses a random
block in the set. The TID of this block is denoted tlaadom TID The TID of the missing block is
denoted thenissing TID The B2 policy chooses the victim TID between the missing @Hal the
random TID, choosing the one that has the largest numbewockblamong the 17 blocks. In case
of equality, the random TID is chosen as victim TID. In otherds, the victim is the random TID
unless the missing TID has more blocks in the sets. Unlik&sB@olicy, on a 4-core processor, the
B2 policy requires a single comparison. Counting blocksosimecessary if we have a circuit that
compares two 17-bit vectors and tells which one containgribst 1's. As can be seen in Figure 9,
the B2 policy is practically as efficient as the SB policy.

It should be noted that the B2 policy is simpler to implemdsairt programmable quotas. With
programmable quotas, the per-set share allotted to a tlhegaehds on the number of contenders in
that set (which may be less than the number of threads). [h ¢pdnputing the per-set share for
the SQVP policy requires determining the number of conten(ie., threads that have at least one
block in the set) and doing a division. The hardware for cotimguper-set shares is not described in
[10].

5 Implications of our proposition

5.1 Programmable TIDs

Although our proposition is less flexible than programmaipetas, it is possible to have some
control on the shared cache (and more generally on sharedanihitectural resources). Until
now, we have assumed that threads running simultaneoudlgifiarent TIDs. But if the TIDs are
programmable, we are not constrained to using differentsTIBor example, if we know that the
applications running have no QoS requirements, it is noeésgary to guarantee self-performance.
In this case, if we want the cache to behave like a converitgiraaed cache (for whatever reason),
we can give the same TID to all threads. As another examptesider the case where we have 4
threads and, for whatever reason, we want to give half of liagesl cache capacity to one of the
threads. To do this, we use one TID for the thread we want tarstdge, and a second TID that is
shared by the 3 other threads.
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400 429 437

401 433 444

403 434 445

410 435 447

416 436 450

429 437 453

433 444 454

434 445 456

435 447 458

436 450 459

437 453 462

444 454 464

445 456 465

447 458 470

450459471

453 462 473

454 464 482

456 465 483

458 470 400

459471401

462 473 403

464 482 410

465 483 416

470400 429

471401 433

473 403 434

482 410435

483 416 436

Table 2: 28 workloads running on cores #2, #3 and #4 resdgtiv

5.2 Impact on average performance

We have mentioned in Section 5.1 that having programmalids permits emulating a conventional
shared cache. The machine owner may prefer this configari&tipplications have no explicit per-
formance targets, if there are more jobs than cores, andwfdms to take advantage of symbiotic
jobscheduling to maximize throughput [11]. On the otherdhahsome applications have QoS re-
quirements, different TIDs should be given to differenetits. Yet, the machine owner still wants
a high throughput. Until now, we have focused exclusivelyneaking the worst performance as
close as possible to the self-performance, so that selfypeance can serve as a measure of perfor-
mance when the multicore workload is unknown at programrtimg. However, for maximizing
throughput, what is important is the average performanbe.average IPC of an application can be
estimated by computing the arithmetic mean of the appboatPC when the application runs with
various workloads. There is a direct relation between @geperformance and throughput. If the
multicore is time-shared between a given set of applicatanmd if each application gets the same
fraction of CPU time, the average throughput is equal to tmalver of cores times the arithmetic
mean of the average IPCs of applications.

Compared with natural cache partitioning, the SB and B2cpesishould increase the perfor-
mance of applications with a low miss rate and a small worlseg but should decrease the per-
formance of applications with a high miss rate and a workiegvehose size is larger than the
equal-partition share but smaller than the cache (cf. theepressure model). To measure the aver-
age IPC, we ran each benchmark on core #1 and obtained its hle@ tlve 3 other cores run the 28
different workloads given in Table 2 (with 28 benchmarkss tequire®8 x 28 = 784 simulations).
The average IPC of each benchmark is the arithmetic meared8Hdifferent IPCs measured for
this benchmark on the 28 workloads. Results are given inrEid0. As expected, the SAR SB
and B2 policies decrease the average IPC on a few benchnd@kglp9,450) and increase it on a
few others (434,435,456). Overall, the SAR policies do raveha significant impact on the average
performance. They just provide a different trade-off. Timsans that, from the point of view of
throughput, SAR policies are practically equivalent toamtional replacement policies.
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Figure 10: Average IPC for each benchmark. The average ipoted over the 28 workloads of
Table 2, under natural partitioning (AVG-LRU), SAR SB (AVEB) and SAR B2 (AVG-B2).
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5.3 Multi-threaded programs

In this study, we have focused on sequential applicationst gBoviding the means to obtain a
performance guarantee for multi-threaded programs is\asp important. Indeed, multi-thread
programming is difficult, and the programmer is willing te@st effort in multi-thread programming
provided the level of performance he has striven to obtainbeareproduced. Performance may be
difficult to reproduce when the application has fewer thegth@dn cores. If the number of threads is
a divisor of the number of cores, the concept of self-pertorae applies and performance can be
measured with theelfperfutility. If the number of threads is not a divisor of the numbécores,
the concept of self-performance does not apply, and thewayyto obtain a performance guarantee
is to reserve all the cores.

It should be noted that programmable TIDs offer some flexybib the programmer. If the
programmer is more comfortable (performance wise) with @resth cache, the same TID can be
given to all the threads. On the other hand, if the progranwaets to optimize the cache locality of
each thread separately, he may prefer to give a differenttd Each thread to emulate a partitioned
cache.

6 Conclusion

We introduced the concept of self-performance, which is@reat between the programmer and
the microarchitecture. The programmer measures perfaeiayrunning a copy of the application
on each core, and the microarchitecture guarantees ttesdéperformance independently of the
characteristics of the applications running on the otheesoFor the programmer, the advantage
of self-performance is that it is conceptually simple andsinot require any knowledge of internal
microarchitectural details. For the microarchitect, extmg the self-performance contract means
paying attention to each microarchitectural resourceithsihared between threads. In this context,
shared caches are critical. We have shown that unmanagedgigmincompatible with the self-
performance contract. We have proposed sharing-aware captacement (SAR) policies that are
compatible with self-performance. The SAR B2 policy is sienpo implement than solutions based
on programmable quotas. This simplification of the hardweae obtained by sacrificing some
flexibility. Nevertheless, with programmable thread-IDsy solution allows the programmer and
the OS to have some control on the cache behavior.

The performance guarantee offered by SAR policies is natlates in the sense that it is very
difficult to prove the guarantee mathematically withouttigetrid of resource sharing (this is the
case also for quota-based solutions). Nevertheless, periexents and simulations have shown that
the situation is much better with our proposition than wittio.

A Simulation methodology and benchmarks
Our simulator is trace-driven, using traces generatedRiitl{7]. We have one trace per benchmark

listed in Table 3. To obtain each trace, we run the applicatithout any instrumentation for several
seconds, then we send a signal that triggers instrumentatio
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| benchmark | input skip |
400.perlbench checkspam.pl 30s
401.bzip2 liberty.jpg 30s
403.gcc 166.i 30s
410.bwaves 30s
416.gamess cytosine.2.config 30s
429.mcf 30s
433.milc 30s
434.zeusmp 30s
435.gromacs 30s
436.cactusADM 30s
437 leslie3d 30s
444 .namd 30s
445.gobmk 13x13.tst 30s
447 .dealll 30s
450.soplex pds-50.mps 20s
453.povray 30s
454 calculix 30s
456.hmmer 30s
458.sjeng 30s
459.GemsFDTD 30s
462.libquantum 30s
464.h264ref foremanref_encodetbaseline.cfg| 30 s
465.tonto 30s
470.Ibm 30s
471.omnetpp 30s
473.astar BigLakes2048.cfg 30s
482.sphinx3 30s
483xalancbmk 30s

Table 3: One trace was obtained for each SPEC CPU2006 benchrezcept 481.wrf that we could
not compile. For each benchmark, we start instrumentireg aftertain execution time has elapsed.
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We simulate 4 identical cores, each with dedicated L1 cachks L2 cache is 4 MB, 16-way
set-associative and is shared between the 4 cores. Theewekgfter the L2 cache is the off-chip
DRAM. The main characteristics of the simulated microamatture are summarized in Table 1.
The simulator does not model all details of the executiore ctm particular, we do not model data
dependencies between instructions. But the memory higyascsimulated with a lot of details. In
particular, we simulate contention for the L2 cache, cotidarfor the memory bus, and write-back
traffic. All caches are non blocking, i.e., they continue tdzcessed even if a previous request
generated a miss. All misses are fully pipelined. Unlestedtatherwise, the bus bandwidth to
DRAM is 8 bytes per CPU cycle. There is a separate memory stqueues (MRQs) for each core.
Each MRQ has room for 20 pending requests. Once a requesedeskby the arbiter and is sent
on the bus, there is a latency of 300 cycles for getting thaestgd block. The request is removed
from the MRQ after the block has returned from memory. Bloglisted from write-back caches
are buffered in write-back queues. When arbitrating foisauece (cache or bus), reads have priority
over writes. Cache refills are blocked when the associatéd-ack queue is full. A miss request
is not schedulable if it cannot get a cache refill queue eney, (he cache refill queue is full).
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