
HAL Id: inria-00340545
https://hal.inria.fr/inria-00340545

Submitted on 21 Nov 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Replacement policies for shared caches on symmetric
multicores : a programmer-centric point of view

Pierre Michaud

To cite this version:
Pierre Michaud. Replacement policies for shared caches on symmetric multicores : a programmer-
centric point of view. [Research Report] PI 1908, 2008, pp.25. �inria-00340545�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/50210061?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00340545
https://hal.archives-ouvertes.fr


I  
 R

   I
   S

   A
IN

S
T
IT

U
T
 D

E
 R

E
C

H
E
R

C
H

E
 E

N
 IN

FO

R
M

ATIQ
UE E

T S
YSTÈMES ALÉATOIRES

P U  B  L  I  C  A  T  I  O  N
I  N  T  E  R  N  E
No

I R I S A
CAMPUS UNIVERSITAIRE DE BEAULIEU - 35042 RENNES CEDEX - FRANCEIS

S
N

 1
16

6-
86

87

1908

REPLACEMENT POLICIES FOR SHARED CACHES ON
SYMMETRIC MULTICORES : A

PROGRAMMER-CENTRIC POINT OF VIEW

PIERRE MICHAUD





INSTITUT DE RECHERCHE EN INFORMATIQUE ET SYSTÈMES ALÉATOIRES

Campus de Beaulieu – 35042 Rennes Cedex – France
Tél. : (33) 02 99 84 71 00 – Fax : (33) 02 99 84 71 71

http://www.irisa.fr

Replacement policies for shared caches on symmetric
multicores : a programmer-centric point of view

Pierre Michaud
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Abstract: The presence of shared caches in current multicore processors may generate a lot of
performance variability when several applications execute simultaneously. For the programmer of an
application with quality-of-service goals, this performance variability may lead to a very pessimistic
tuning. To solve this problem, there must be a way for the programmer to define a reasonable
performance target and make sure that the actual performance is greater than or close to the target.
We propose that the performance target be defined as the performance measured when each core runs
a copy of the application, which we call self-performance. This study characterizes self-performance
and explains how the shared-cache replacement policy can bemodified for self-performance to be
meaningful.
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Politiques de remplacement sur les caches partagés des
multi-coeurs symétriques

Résuḿe : La présence de caches partagés dans les processeurs multi-coeurs est une source impor-
tante de variabilité de performance lorsque plusieurs applications s’exécutent simultanément. Pour
le programmeur d’une application avec des objectifs de qualité de service, cette variabilité de per-
formance peut conduire à un dimensionnement très pessimiste de l’application. Afin de résoudre ce
problème, on doit donner au programmeur la possibilité dedéfinir un objectif raisonnable en perfor-
mance, et on doit faire en sorte que la performance réelle soit supérieure ou proche de cet objectif.
Nous proposons que l’objectif en performance soit défini comme la performance mesurée lorsque
chaque coeur exécute une copie de l’application. Nous appelons cette mesure l’auto-performance.
Cette étude caractérise l’auto-performance et expliquecomment la politique de remplacement des
caches partagés peut être modifiée pour que l’auto-performance soit un objectif atteignable.

Mots clés : Processeur multi-coeur symétrique, qualité de service,auto-performance, cache partagé,
politique de remplacement, bande passante mémoire
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1 Introduction

There exists an implicit performance contract between the processor and the programmer. When
the programmer writes a program and measures its performance by running it, he assumes that the
performance is approximately deterministic, hence reproducible. There can be some performance
variations, some due to the operating system (e.g., different physical page allocation that changes
cache conflicts), some due to the microarchitecture (e.g., different initial branch predictor states).
But, before the multicore era, these variations were generally small.

With multicore processors able to execute several applications simultaneously, performance vari-
ations can have a much larger magnitude. This is mainly due toshared microarchitectural resources,
especially shared caches. Depending on workload characteristics, the actual performance of a par-
ticular application may be much smaller than the performance measured by the programmer. For
applications with quality-of-service goals, this leads tovery pessimistic tuning.

Previously proposed solutions to this problem involve the use of programmable priorities or
quotas [5, 3, 10, 1, 8, 2, 4]. With these solutions, programmers who want a performance guarantee
must ask for resources they are sure to obtain. In practice, this requires either to partition shared
resources evenly between cores or to keep some cores unused.

We propose a new solution, which is to have an explicit contract between the microarchitecture
and the programmer. The programmer measures the application performance by running simulta-
neously a copy of the application on each core. This defines what we callself-performance. This
study characterizes self-performance and shows that, for self-performance to be meaningful, the mi-
croarchitecture must manage shared resources carefully. In particular, we show that conventional
cache replacement policies are not compatible with the self-performance contract. We propose some
replacement policies that are compatible with self-performance. One of our replacement policies,
called B2, is simpler to implement in hardware than previously proposed quota-based solutions.

The paper is organized as follows. Section 2 explains the concept of self-performance and the
motivations behind it. We show in Section 3 that conventional cache replacement policies are not
compatible with self-performance and we provide insights as to why this is so. We also show that,
even without considering the self-performance contract, conventional cache replacement policies
lead to the paradoxical situation that increasing the memory bandwidth may decrease the perfor-
mance of some applications. In Section 4, we propose sharing-aware replacement policies that solve
the problems emphasized in the previous section. Section 5 discusses some implications of our
proposition for throughput and for multi-threaded programs. Finally, Section 6 concludes this work.

Simulations. The simulation results presented in this study correspond to a multicore with 4 iden-
tical cores, depicted in Figure 1. The 4 cores share a 4 MB 16-way set-associative level-2 (L2) cache.
The main characteristics of the simulated microarchitecture are summarized in Table 1. More details
about the simulator and about benchmarks are provided in Appendix A. Unless stated otherwise,
each simulated IPC (instructions retired per cycle) reported in this study corresponds to the IPC of
the thread running on core #1 for 10 million CPU cycles while other threads run on cores #2,#3 and
#4.
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Figure 1: Symmetric multicore simulated in this study.

multicore 4 dynamically-scheduled cores
core fetch 2 instructions per cycle (x86)
core retire 2 instructions per cycle (x86)

reorder buffer 64 instructions (x86)
branch predictor YAGS, 12 Kbytes, 25-bit global history, 8-bit tags

branches 10-cycle misprediction penalty (minimum), solved at retirement
IL1 cache private, 32 Kbytes, 4-way set-associative, 64-byte blocks, LRU

latency 1 cycle, 1 block refill & 2 instructions read per cycle
DL1 cache private, 32 Kbytes, 4-way set associative, 64-byte blocks,LRU,

write-back write-allocate, latency 2 cycles,
1 block refill & 1 load/store per cycle

L2 cache shared, 4 Mbytes, 16-way set associative, 64-byte blocks, LRU,
write-back write-allocate, latency 15 cycles,
bandwidth 1 block/cycle (refill or block read or block update)

MRQ 20 pending L2 misses
memory bus 8 bytes per CPU cycle

memory latency 300 CPU cycles
hardware prefetch disabled

Table 1: Simulated microarchitecture : default configuration
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Replacement policies for shared caches on symmetric multicores 5

2 Self-performance

In this study, we consider independent sequential tasks. Currently, most programs executing on
existing multicores are sequential programs. Though it is hoped that more and more parallel appli-
cations will be developed, sequential programming is stillvery important. We explain in Section 5.3
what are the implications of our proposition for multi-threaded programs.

2.1 The problem

For applications with quality-of-service (QoS) goals, it is important that the performance measured at
programming time be deterministic, or appears to be so. In a multicore, several resources are shared :
physical memory, caches, buses, power supply, etc. Becauseof resource sharing, when several
independent applications run concurrently on different cores, the performance of each application
depends on the characteristics of the other applications. On a single CPU, the operating system (OS)
can control the amount of physical memory and CPU time allotted to each task, in particular tasks
with QoS goals. On a multicore, the OS can decide which applications to run simultaneously and for
how long, but it has no control on microarchitectural resource sharing. The notion of CPU time is not
accurate, as the quantity of work done during a fixed period oftime may vary drastically depending
on resource sharing. What we need is a way for the programmer to specify a performance target
and a microarchitecture that minimizes the possibility forthe actual performance to fall significantly
below the performance target. An obvious solution would be to assume that the application runs
alone on the multicore. But the multicore would be underused.

The solution that has been proposed so far is to let the OS havea fine control of shared microar-
chitectural resources [5, 3, 10, 1, 8, 2, 4]. Each shared resource is associated with priorities or quotas
that are programmable. For example, the programmer defines his microarchitectural needs, i.e., the
resources he wants (cache size, bus bandwidth, etc.), and the OS tries to give to each application
the resources it asks for. However, this raises a question : what if the sum of resources asked by
applications running concurrently exceeds the processor’s resources ? With programmable quotas,
each application is given a share of resources that is a function of but is not necessarily equal to what
the application asks for [10]. This implies that the applications for which it is important to obtain
a performance guarantee must ask for quotas that they are sure to obtain. In practice, this means
that when a resource is shared by up to N threads, the programmer must ask for1/N (or less) of the
resource in order to obtain a performance guarantee.

Based on this observation, we propose a viable alternative to programmable quotas1. We call
it self-performance. Self-performance is less flexible than programmable quotas but is simpler to
implement.

2.2 Self-performance

Obtaining a performance guarantee is a two-stage problem :

• We need a way to define a performance target.

1To our knowledge, programmable quotas have not been adoptedby the industry yet.
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• We must minimize the possibility for the actual performance to fall below the targeted perfor-
mance.

On the one hand, we do not want the performance target to be toopessimistic. On the other hand, the
performance target must be a value that is possible to enforce. If it is too optimistic, it may be impos-
sible to reach the performance targets of all the applications running simultaneously. If we measure
the application performance when it runs simultaneously with some other random applications, we
may obtain a performance target that is too optimistic. If wechoose misbehaving applications to
stress shared resources, we may obtain a performance targetthat is too pessimistic. Instead, we
propose to define the performance target of an application byrunning copies of this application on
all cores. More precisely, we define theself-performancecontract as follows :

The self-performance of a sequential program on a symmetricmulticore processor is
the performance measured for one instance of the application on asymmetric run, i.e.,
when running simultaneously and synchronously copies of that program on all cores,
using the same inputs. The actual performance must be greater than or close to the
self-performance, whatever the applications running on the other cores.

The rationale is as follows. If the application uses few resources, its self-performance is very close
to the performance when it runs alone. But if the applicationasks for a lot of resources, it com-
petes with copies of itself and gets a share that is equal to the resource size divide by the number
of cores. The performance target defined this way is neither too optimistic nor too pessimistic.
Self-performance can be measured by the programmer withoutrequiring any knowledge of the mi-
croarchitecture internal details (e.g., which resources are shared, how the resource arbitration works,
etc.). The programmer does not even need to know the number ofcores. The only thing that the
programmer must be aware of is the self-performance contract. For the convenience of the program-
mer, the OS should provide aselfperfutility for launching symmetric runs. Programmers who do not
need a performance guarantee can measure performance as usual, without using theselfperfutility.
But it is an optimistic performance in this case.

System resources. In this study we focus on shared microarchitectural resources, and more partic-
ularly shared caches. We do not address the problem of systemresources, like physical memory. For
example, if the programmer has QoS goals and wants a high self-performance, he should prevent the
application memory demand from exceeding the memory size divided by the number of cores. We
assume that the OS is always able to give this amount of memoryto the application.

3 Shared caches and self-performance

Unlike for system resources, the operating system has little control on shared microarchitectural
resources. It is possible to have some control by carefully choosing which application to run si-
multaneously (provided such choice exists). But existing processors do not allow the OS to control
microarchitectural resources more finely.

Irisa



Replacement policies for shared caches on symmetric multicores 7

Among shared microarchitectural resources, caches exhibit the most chaotic and difficult-to-
predict behavior. For example, on a set-associative cache with least-recently-used(LRU) replace-
ment, a small decrease of the number of cache entries allotted to a thread may result in the miss ratio
suddenly going from 0 to 100%. The most obvious way to avoid the erratic behaviors due to shared
caches is to avoid shared caches. Nevertheless, shared caches have some advantages. On a multicore
with private caches, whenever a single thread is running, the cache capacity of idle cores is generally
wasted. When a cache is shared between several cores, the whole cache capacity is accessible to
a single running thread. This is particularly interesting for the last on-chip cache level, as off-chip
accesses are costly. There are other advantages when several threads from the same application com-
municate with each other. With private caches, several copies of the same data may be replicated.
Not only does this decrease the effective cache capacity, but this means potentially a cache miss
for each copy. For these reasons, several recent multicoreshave shared level-2 (L2) or level-3 (L3)
caches. However, to our knowledge, there is no mechanism in these multicores to control the way
the cache capacity is partitioned between different threads running concurrently. The partitioning is
simply the result of the cache replacement policy, that is why we call it natural partitioningin this
study.

3.1 Under natural cache partitioning, the self-performance can exceed the
actual performance

The model of cache partitioning proposed in [12], though inaccurate in practice, is useful for under-
standing some qualitative aspects of natural cache partitioning. We present a simplified version of
the model, which we will use to help understand our simulation results.

Let us considern threads numbered from1 to n running simultaneously, and a fully-associative
shared cache with a capacity ofC blocks. The number of cached blocks belonging to threadi is
wi. It is assumed that the cache capacity is saturated, i.e.,C =

∑n

i=1
wi. The miss rate of thread

i, in misses per cycle, ismi. The total miss rate ism =
∑n

i=1
mi. The model assumes that, on a

miss from any thread, the probability that the victim block belongs to threadi is proportional to the
total number of cached blocks belonging to threadi, i.e., it iswi/C. DuringT cycles,miT blocks
from threadi are inserted in the cache andmT × wi/C blocks from threadi are evicted from the
cache. It is assumed that an equilibrium is eventually reached, such thatwi is stable. It means that,
for each thread, the number of block insertions equals the number of block evictions. Hence we have
miT = mT × wi/C, that is,

mi

wi

=
m

C
(1)

This quantity,mi/wi, was not identified in [12]. We call it thecache pressureof threadi. Equation
(1) means that the equilibrium partitioning is such that allthreads have equal cache pressure. Figure
2 shows on an example how the concept of cache pressure is useful for finding the equilibrium cache
partition from the threads miss rate curves (misses per cycle as a function of the number of cached
blocks). On this example, the cache is shared between 2 threads. Thread 1 needs less than half
the cache capacity to have a null miss rate. However, becauseit shares the cache with thread 2,
thread 1 has a non-null miss rate. The example of Figure 2 explains why natural cache partitioning
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isobar p

miss rate

0 C/2 C cached blocksw1 w2

m2

m1

Figure 2: Example with 2 threads. The miss ratemi of threadi (in misses per cycle) is assumed to
be a function of the numberwi of cached blocks. The equilibrium partition(w1, w2) is such that
the two threads have equal cache pressurep = m1/w1 = m2/w2, hence the points(w1, m1) and
(w2, m2) lie on the sameisobar, which is represented by a straight line whose slope is the pressure
p. To find the equilibrium partition, rotate the isobar aroundthe origin untilw1 + w2 = C.

cannot guarantee that the actual performance will reach theself-performance target. In particular,
the performance of a thread may be severely decreased when the other threads have high miss rates.

Experiment on a real multicore. We did a simple experiment on a MacBook Pro featuring an Intel
Core 2 Duo processor and 2 GB of memory. This processor has 2 cores and a 4 MB shared L2 cache.
We ran benchmarkvpr from the SPEC CPU2000. The measured execution time was approximately
51 seconds. Then we measured the self-performance ofvpr by running simultaneously two instances
of vpr. The execution time ofvpr was 53 seconds, which means that the self-performance ofvpr
is close to its performance when it runs alone. Then we ranvpr simultaneously with benchmark
mcf from the SPEC CPU2000. The execution time ofvpr was 73 seconds, i.e., 38% worse than
the self-performance. Then we ranvpr simultaneously with a microbenchmark that we wrote and
which we denote999. Microbenchmark999 is provided in Figure 3. It has a very high miss rate (1
miss every 4 instructions) and evicts cache blocks very aggressively. The execution time ofvpr was
101 seconds, i.e., 90% worse than the self-performance. We used the Apple toolsharkto access the
performance counters of the Core 2 Duo and we checked that thedecrease of performance comes
from an increase of L2 cache misses. This experiment shows that, under natural cache partitioning,
the actual performance may be significantly smaller than theself-performance.

Irisa
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i n t a [ SIZE ] ;

main ( )
{

i n t i , n ;
i n t x = 0 ;
f o r ( n =0; n<1000000; n++) {

f o r ( i =0 ; i<SIZE ; i +=STEP) {
x += a [ i ] ;

}
}
p r i n t f ( ”%d\n ” , x ) ;

}

Figure 3: Microbenchmark999(compiled withgcc -O3 -DSIZE=160000000 -DSTEP=16)

3.2 Self-performance is not necessarily defined under natural cache parti-
tioning

In our definition of self-performance, we made the implicit assumption that, on a symmetric run,
performance is the same on all cores. With identical cores, this is indeed the case most of the time.
According to the cache pressure model (cf. Figure 2), if threads have the same miss rate curve, they
get the same share of the cache capacity. Therefore, a symmetric run on 4 cores should result in
each thread getting one fourth of the cache capacity. However, the cache pressure model is only
an approximation of reality. From our experiments and simulations, the LRU replacement policy is
unlikely to generate strange performance variations on symmetric runs. But this is not necessarily
true with other replacement policies. Though we present results only for LRU in this study, we also
did simulations with the DIP replacement policy.

DIP was recently proposed as a substitute for LRU in L2 and L3 caches [9]. DIP is a very attrac-
tive proposition that may be implemented in future processors. All our observations and conclusions
with LRU are the same with DIP, except that natural cache partitioning under the DIP policy can
lead to strong performance asymmetry on symmetric runs. TheDIP policy was originally proposed
for private caches, but it can be adapted easily to shared caches. Instead of having a single PSEL
counter for the cache, we have one PSEL counter for each core.Figure 4 shows the result of run-
ning 4 instances of microbenchmark999compiled withSIZE = 219 (cf. Figure 3) when the L2
replacement policy is DIP and the memory bandwidth is 4 bytesper cycle. The plot shows the
number of retired instruction on each core as a function of time. Despite cores being identical, this
example exhibits a strong performance asymmetry, the performance of core #3 being higher than
the other cores. Our simulator uses a pseudo-random number generator (RNG), which is used in the
DIP policy and in the bus arbitration policy. Actually, the leading core varies with the RNG seed.
This phenomenon can be understood as follows. Going back to the cache pressure model, we expect
threads with identical miss rate curves (in particular identical threads) to converge to a state where
the shared cache is equally partitioned between threads. The reason is that there is a negative feed-
back : the more cached blocks belong to a given thread, the higher the probability for that thread to
have its blocks evicted. Though we have no formal proof, a negative feedback seems to be at work
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Figure 4: Symmetric run of microbenchmark999 with SIZE = 219 (Figure 3). Memory band-
width is 4 bytes/cycle and the L2 replacement policy is DIP. The plot shows the number of retired
instructions on each core as a function of time.

with the LRU policy as well. Under LRU, we did not encounter a single example of a symmetric
run leading to significant performance asymmetry. DIP may have a completely different behavior.
When the BIP policy generates fewer misses than LRU, it is selected by the PSEL counter as the best
policy. Under BIP replacement, a block inserted in the cacherecently has a high probability to be
the next victim. It will be the next victim if it is not re-referenced before the next cache miss (from
any thread). In such case, the BIP policy has a tendency to evict blocks belonging to the thread with
the highest miss rate, i.e., on a symmetric run, the thread with the smallest number of cached blocks.
Hence we have a positive feedback where small divergences get amplified with time. This is a case
of sensitivity to initial conditions : before the divergence occurs, we are unable to predict the future
evolution. Such chaotic behavior is of course incompatiblewith providing a performance guarantee.
The SAR policies proposed in Section 4 solve this problem.

3.3 A symmetric run is not equivalent to a static partitioning of shared re-
sources

One of our counter-intuitive findings is that self-performance is not exactly the performance one
would measure with programmable quotas by partitioning each resource statically and equally be-
tween cores. Actually, when memory bandwidth limits performance, self-performance exceeds the
performance of a single run with statically partitioned resources.

Figure 5 shows the IPC (instructions retired per cycle) for asubset of our benchmarks whose
performance is limited by memory bandwidth. For each benchmark we show results for 4 config-
urations, where SGL denotes single runs (i.e., there are 3 idle cores) and SYM denotes symmetric
runs. SGL-1 is for a memory bandwidth of 1 byte per CPU cycle and a 1 MB shared cache. SYM-4
is for a bandwidth of 4 bytes/cycle and a 4 MB cache. SGL-2 is for a memory bandwidth of 2 byte

Irisa
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00 , 10 , 20 , 30 , 40 , 50 , 6
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Figure 5: IPC for a subset of our benchmarks. For each benchmark, the IPC of 4 different con-
figurations is shown. Configuration SGL-1 is for a single run (i.e., there are 3 idle cores) with a
memory bandwidth of 1 byte per CPU cycle and a 1 MB shared cache. Configuration SYM-4 is for
a symmetric run with a bandwidth of 4 bytes/cycle and a 4 MB cache. SGL-2 is for a single run with
a bandwidth of 2 bytes/cycle and a 1 MB cache. SYM-8 is for a symmetric run with a bandwidth of
8 bytes/cycle and a 4 MB cache.

per CPU cycle and a 1 MB shared cache. SYM-8 is for a bandwidth of 8 bytes/cycle and a 4 MB
cache. The shared-cache associativity remains constant and equal to 16. As can be seen the per-
formance of SYM-4 is higher than the performance of SGL-1, and the difference is not negligible
(23% for429.mcf). A similar conclusions holds for SYM-8 versus SGL-2, but the difference is less
pronounced. The explanation of these counterintuitive results lies in memory bandwidth sharing. It
is illustrated by Figure 6 with an artificial example. In our definition of a symmetric run, copies of
the same program are run synchronously, meaning that they are launched at the same time. However
in practice, the execution on the different cores is not exactly synchronous. In fact, perfect syn-
chronization would be very difficult to obtain and would actually decrease self-performance. Perfect
synchronization implies that if we launch the program copies exactly at the same cycle, they should
finish exactly at the same cycle. But even when all cores have exactly the same microarchitectural
state at the beginning of the symmetric run, and assuming themicroarchitecture behavior is deter-
ministic, the program copies do not finish exactly at the sametime because certain shared resources
cannot be accessed by all threads simultaneously. Consequently, there is a slight desynchronization
of cores on a symmetric run. Because cache misses are often bursty, a slight desynchronization
permits obtaining a more uniform utilization of the bus bandwidth. This is what Figure 6 illustrates.

PI n ˚ 1908
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2B

time
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double bandwidth
symmetric run, slightly desynchronized

B

Figure 6: Example for explaining why self-performance can exceed the performance of a single run
with memory bandwidth statically partitioned. This example assumes 2 cores.

3.4 Increasing the memory bandwidth may decrease performance.

Once there is an agreement between the programmer and the microarchitect that self-performance
represents the minimum performance, the microarchitect must try to minimize the possibility of this
not being the case. For the microarchitect, this means a special attention to each shared resource. In
our simulations, only two resources are shared : the L2 cacheand the bus bandwidth. The focus of
this study is the cache replacement policy. But for our results to be meaningful we had to be careful
with the cache indexing and with the bus arbitration policy.

L2 and L3 caches are generally indexed with physical addresses. On a symmetric run, physical
indexing utilizes cache sets more uniformly than virtual indexing, so self-performance is likely to be
higher than what would be measured by partitioning the cachestatically and equally between cores.
We already observed an analogue phenomenon with memory bandwidth in Section 3.3. However, it
is difficult to exploit this phenomenon in the cache without sacrificing the performance guarantee.
The self-performance would be too optimistic. Instead, theOS should implement a page coloring
scheme such that the cache indexing is equivalent to using the virtual address.2 Our simulations in
this study assume a virtual indexing.

As for the bus arbitration policy, we initially implementeda simpleleast-recently-selected(LRS)
scheme, which we thought would be sufficient. The LRS arbiterselects, among non-empty request

2For avoiding having too many constraints on page allocation, page coloring may be active only when measuring perfor-
mance with theselfperfutility. But for a stronger performance guarantee, page coloring should be the default behavior (some
operating-systems like FreeBSD already use page coloring).
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Figure 7: IPC for a subset of our benchmarks. The benchmark isrun on core #1. Two workloads
are considered for the 3 remaining cores : workload SYM runs acopy of the benchmark on each
core (symmetric run) and workload 999 runs a copy of microbenchmark 999 on each core. For both
workloads, we show the IPC when memory bandwidth is 4 bytes/cycle (SYM-4 and 999-4) and
when it is 8 bytes/cycle (SYM-8 and 999-8).

queues, the least recently selected one. LRS arbitration iscommonly used for arbitrating resource
conflicts between threads in some multi-threaded processors like the Sun UltraSPARC T1 [6]. But
we found that, when LRS is used for the bus, we cannot guarantee self-performance. To see why,
consider the case of an application with a low average miss rate but whose misses occur in bursts.
On a symmetric run, the desynchronization of cores permits avoiding most bus conflicts (cf. Figure
6). But when the application is run simultaneously with threads having a high average miss rate,
it is granted bus access again only after each of the competing threads has accessed the bus once.
Thus the application suffers from bandwidth saturation despite having a low average miss rate. To
solve this problem, we have implemented a different bus arbitration policy. We associate a 4-bit
up-down saturating counter with each request queue. This counter represents ascore. To select
which queue should access the bus, the arbiter chooses, among non-empty queues, the one with the
lowest score. If a selection occurs (at least one queue is notempty), the score of the selected queue is
incremented byX , whereX is the number of running threads minus one (X = 3 in this study), and
the score ofeachnon-selected queue is decremented by 1. Moreover, to facilitate desynchronization
on symmetric runs, we introduced a little randomness by not updating the scores once every 1000
selections on average. With this arbitration policy, an application with a low average miss rate has a
low score and its requests can access the bus quickly even if the other threads have a high miss rate.
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0 C cached blocks

miss rate

W1

B

m1=BxW1/C

pressure = B/C

Figure 8: Cache pressure model applied for a shared cache of capacityC, assuming a bandwidthB
(maximum number of misses per cycle). On this example, thread #1 has a working set of sizeW1

and a miss rate curve that drops suddenly whenW1 blocks are cached. If the other threads are able
to saturate the bandwidth, the miss ratem1 of thread #1 isW1

C
B. Thus an increase of bandwidth

decreases the performance of thread #1.

Figure 7 shows the IPC on core #1 when the 3 other cores run a copy of the benchmark (sym-
metric run) and when they run instances of microbenchmark 999. In both cases, we show the IPC
when memory bandwidth is 4 bytes/cycle (SYM-4 and 999-4) andwhen it is 8 bytes/cycle (SYM-8
and 999-8). We show results only for benchmarks whose performance suffers from running simul-
taneously with microbenchmark 999. As can be seen, the actual performance can be much smaller
than the self-performance. This is particularly striking for 403.gccand435.gromacs. For 403.gcc,
the actual performance can be 6 times worse than the self-performance.

Another striking observation is that increasing the memorybandwidth can decrease the per-
formance of an application. For example, when running with microbenchmark 999,435.gromacs
experiences a 16% performance drop when memory bandwidth goes from 4 to 8 bytes/cycle. By
limiting the rate at which blocks can be evicted from the cache, a smaller bandwidth offers a better
protection against aggressive cache evictions, but only toa certain extent. The cache pressure model
confirms this observation. On Figure 8, we consider a thread #1 with a working set ofW1 blocks and
a miss rate curve that drops suddenly whenW1 blocks are cached. The bandwidth isB (maximum
number of misses per cycle). If the other threads are able to saturate the bandwidth, the miss rate
of threads #1 ism1 = W1

C
B . If we increase the bandwidthB, we increase the performance of the

threads for which bandwidth is a bottleneck, but we also increase the miss rate of thread #1, hence
decreasing its performance.

This situation where an obvious structural improvement (making the bus wider or faster) may
decrease the performance of an application is not a healthy situation. The microarchitect does not
expect an application to experience a slowdown when the memory bandwidth is increased.
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4 Sharing-aware replacement (SAR) policies

Sharing-aware replacement (SAR) is intended to solve the problems we highlighted in Section 3.
SAR can be applied to any replacement policy, e.g., LRU, pseudo-LRU, DIP, etc. But the details of
the implementation depend on the underlying replacement policy. In this study, we use LRU SAR
policies and we describe an implementation corresponding to this case. The basic idea of SAR is to
take into account the cache space occupied by each thread. This requires that thethread identifier
(TID) be stored along with each block in the cache. With 4 cores, each TID is 2-bit wide. We say
that a TID isinactiveif there are fewer running threads than cores and the TID doesnot correspond
to a thread currently running on a core. (an inactive TID typically corresponds to a thread that has
finished execution of that is waiting for an event or a system resource). A SAR policy selects a
victim block as follows :

• Each TID proposes a potential victim block in the cache set

• If there is at least one invalid block in the set, we take an invalid block as the victim.

• Otherwise, the SAR policy selects avictim TIDand the actual victim block is the victim block
proposed by the victim TID.

• If the cache set contains some blocks belonging to an inactive TID, such inactive TID is chosen
as the victim TID. This is for being able to exploit the full cache capacity when there are fewer
running threads than cores.

For a LRU SAR policy, we must first describe how the LRU stack isimplemented. The LRU stack
consists of the blocks in the cache set ordered from MRU (most-recently-used) to LRU. There are
several possible ways to implement a LRU stack in hardware. Asolution consuming no storage at
all would be to maintain a physical order among blocks, from MRU to LRU. Promoting a block
to the MRU state consists in moving the block to the MRU position and shifting the other blocks
accordingly. However, such implementation would consume alot of cache bandwidth and a lot of
energy. Instead, it is possible to use short pointers to the blocks and to move the pointers instead of
the blocks themselves. For an associativity of 16, this requires a 4-bit pointer per block, pointing
to a location in the cache set. Pointers are stored in a separate table, which we call the R-table.3

There is one R-table entry for each cache set. Each R-table entry contains sixteen 4-bit pointers,
ordered from MRU to LRU. Moreover, we assume that the 2-bit TIDs are stored in the R-table. So
each block in the R-table is represented by4 + 2 = 6 bits. Updating the LRU stack requires an
associative search among the 16 pointers and moving the matching block to the MRU position. The
victim block proposed by a given TID is the block belonging tothat thread whose position in the
stack is closest to the LRU position. To obtain the victim proposed by a given TID, sixteen 2-bit
comparators provide a 16-bit vector where each bit indicates whether or not the corresponding block
belongs to the thread. Then a priority encoder finds, in the 16-bit vector, the ”1” closest to the LRU
position.4

3These pointers are not part of the SAR hardware cost, they implement the LRU policy.
4The hardware we have described so far is not more complex thanwhat would be necessary to implement programmable

quotas. But papers describing quota-based solutions sometimes skip these details.
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Figure 9: The SB policy makes the worst-case performance (999) close to self-performance (SYM).
The B2 policy, simpler than SB, is almost as effective.

4.1 The SAR SB policy

A possible solution for ensuring that a thread gets the cachespace it would get on a symmetric run
is to give the same amount of cache space to each thread. This can be done by choosing as victim
TID the TID with the largest number of cached blocks. In case of equality, we choose the TID
whose proposed victim is closest to the LRU position. Such policy should progressively converge to
an equilibrium partition where all threads get an equal share. There are two possible options. The
number of blocks may be computed either for the whole cache orjust for the cache set. We denote
the first policyglobal-biggest(GB), and the second oneset-biggest(SB). The GB policy chooses
as victim TID the TID with the largest number of blocks in the whole cache, while the SB policy
chooses as victim TID the TID with the largest number of blocks in the cache set where the missing
block goes. The GB policy can be implemented by maintaining 4counters giving the total number
of blocks belonging to each thread. On a miss, one or two counters are updated. The SB policy can
be implemented by counting blocks on-the-fly while the miss request is being processed.5

Simulation results for the SB policy are shown in Figure 9. The SB policy is successful at making
worst-case performance close to self-performance. This was expected, as the SB policy converges
relentlessly to a state where each cache set is evenly divided between competing threads. Actually,
we found that the GB policy is not safe and we do not show results for it. We have mentioned it just
to emphasize the necessity of working at the set level. The main reason why the GB policy is not

5Actually, when counting blocks, we consider the 17 blocks consisting of the 16 blocks in the cache set plus the missing
block.
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safe is that it does not guarantee that each cache set is evenly divided between threads. Indeed, some
applications do not use cache sets uniformly. For example, we simulated benchmark 429.mcf with
3 instances of microbenchmark 999 compiled withSTEP = 32, i.e., using only even cache sets.
With a GB policy, the performance of 429.mcf is 22% lower thanthe self-performance. The fact that
one must work at the set level to obtain a strong performance guarantee has already been observed
in [10].

4.2 The SAR B2 policy

The SB policy requires to find the TID that has the most blocks in a set. With 4 cores, this requires
3 comparisons. We propose a simpler SAR policy, that we callbiggest-of-two, or B2 for short. Like
the SB policy, the B2 policy counts the 17 blocks in the cache set concerned by the miss (16 cached
blocks plus the missing block). While processing the cache miss, the B2 policy chooses a random
block in the set. The TID of this block is denoted therandom TID. The TID of the missing block is
denoted themissing TID. The B2 policy chooses the victim TID between the missing TIDand the
random TID, choosing the one that has the largest number of blocks among the 17 blocks. In case
of equality, the random TID is chosen as victim TID. In other words, the victim is the random TID
unless the missing TID has more blocks in the sets. Unlike theSB policy, on a 4-core processor, the
B2 policy requires a single comparison. Counting blocks is not necessary if we have a circuit that
compares two 17-bit vectors and tells which one contains themost 1’s. As can be seen in Figure 9,
the B2 policy is practically as efficient as the SB policy.

It should be noted that the B2 policy is simpler to implement than programmable quotas. With
programmable quotas, the per-set share allotted to a threaddepends on the number of contenders in
that set (which may be less than the number of threads). In [10], computing the per-set share for
the SQVP policy requires determining the number of contenders (i.e., threads that have at least one
block in the set) and doing a division. The hardware for computing per-set shares is not described in
[10].

5 Implications of our proposition

5.1 Programmable TIDs

Although our proposition is less flexible than programmablequotas, it is possible to have some
control on the shared cache (and more generally on shared microarchitectural resources). Until
now, we have assumed that threads running simultaneously had different TIDs. But if the TIDs are
programmable, we are not constrained to using different TIDs. For example, if we know that the
applications running have no QoS requirements, it is not necessary to guarantee self-performance.
In this case, if we want the cache to behave like a conventional shared cache (for whatever reason),
we can give the same TID to all threads. As another example, consider the case where we have 4
threads and, for whatever reason, we want to give half of the shared cache capacity to one of the
threads. To do this, we use one TID for the thread we want to advantage, and a second TID that is
shared by the 3 other threads.
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400 429 437 401 433 444 403 434 445 410 435 447
416 436 450 429 437 453 433 444 454 434 445 456
435 447 458 436 450 459 437 453 462 444 454 464
445 456 465 447 458 470 450 459 471 453 462 473
454 464 482 456 465 483 458 470 400 459 471 401
462 473 403 464 482 410 465 483 416 470 400 429
471 401 433 473 403 434 482 410 435 483 416 436

Table 2: 28 workloads running on cores #2, #3 and #4 respectively

5.2 Impact on average performance

We have mentioned in Section 5.1 that having programmable TIDs permits emulating a conventional
shared cache. The machine owner may prefer this configuration if applications have no explicit per-
formance targets, if there are more jobs than cores, and if hewants to take advantage of symbiotic
jobscheduling to maximize throughput [11]. On the other hand, if some applications have QoS re-
quirements, different TIDs should be given to different threads. Yet, the machine owner still wants
a high throughput. Until now, we have focused exclusively onmaking the worst performance as
close as possible to the self-performance, so that self-performance can serve as a measure of perfor-
mance when the multicore workload is unknown at programmingtime. However, for maximizing
throughput, what is important is the average performance. The average IPC of an application can be
estimated by computing the arithmetic mean of the application IPC when the application runs with
various workloads. There is a direct relation between average performance and throughput. If the
multicore is time-shared between a given set of applications and if each application gets the same
fraction of CPU time, the average throughput is equal to the number of cores times the arithmetic
mean of the average IPCs of applications.

Compared with natural cache partitioning, the SB and B2 policies should increase the perfor-
mance of applications with a low miss rate and a small workingset, but should decrease the per-
formance of applications with a high miss rate and a working set whose size is larger than the
equal-partition share but smaller than the cache (cf. the cache pressure model). To measure the aver-
age IPC, we ran each benchmark on core #1 and obtained its IPC when the 3 other cores run the 28
different workloads given in Table 2 (with 28 benchmarks, this requires28×28 = 784 simulations).
The average IPC of each benchmark is the arithmetic mean of the 28 different IPCs measured for
this benchmark on the 28 workloads. Results are given in Figure 10. As expected, the SAR SB
and B2 policies decrease the average IPC on a few benchmarks (401,429,450) and increase it on a
few others (434,435,456). Overall, the SAR policies do not have a significant impact on the average
performance. They just provide a different trade-off. Thismeans that, from the point of view of
throughput, SAR policies are practically equivalent to conventional replacement policies.
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Figure 10: Average IPC for each benchmark. The average is computed over the 28 workloads of
Table 2, under natural partitioning (AVG-LRU), SAR SB (AVG-SB) and SAR B2 (AVG-B2).
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5.3 Multi-threaded programs

In this study, we have focused on sequential applications. But providing the means to obtain a
performance guarantee for multi-threaded programs is alsovery important. Indeed, multi-thread
programming is difficult, and the programmer is willing to invest effort in multi-thread programming
provided the level of performance he has striven to obtain can be reproduced. Performance may be
difficult to reproduce when the application has fewer threads than cores. If the number of threads is
a divisor of the number of cores, the concept of self-performance applies and performance can be
measured with theselfperfutility. If the number of threads is not a divisor of the number of cores,
the concept of self-performance does not apply, and the onlyway to obtain a performance guarantee
is to reserve all the cores.

It should be noted that programmable TIDs offer some flexibility to the programmer. If the
programmer is more comfortable (performance wise) with a shared cache, the same TID can be
given to all the threads. On the other hand, if the programmerwants to optimize the cache locality of
each thread separately, he may prefer to give a different TIDto each thread to emulate a partitioned
cache.

6 Conclusion

We introduced the concept of self-performance, which is a contract between the programmer and
the microarchitecture. The programmer measures performance by running a copy of the application
on each core, and the microarchitecture guarantees this level of performance independently of the
characteristics of the applications running on the other cores. For the programmer, the advantage
of self-performance is that it is conceptually simple and does not require any knowledge of internal
microarchitectural details. For the microarchitect, respecting the self-performance contract means
paying attention to each microarchitectural resource thatis shared between threads. In this context,
shared caches are critical. We have shown that unmanaged sharing is incompatible with the self-
performance contract. We have proposed sharing-aware cache replacement (SAR) policies that are
compatible with self-performance. The SAR B2 policy is simpler to implement than solutions based
on programmable quotas. This simplification of the hardwarewas obtained by sacrificing some
flexibility. Nevertheless, with programmable thread-IDs,our solution allows the programmer and
the OS to have some control on the cache behavior.

The performance guarantee offered by SAR policies is not absolute, in the sense that it is very
difficult to prove the guarantee mathematically without getting rid of resource sharing (this is the
case also for quota-based solutions). Nevertheless, our experiments and simulations have shown that
the situation is much better with our proposition than without it.

A Simulation methodology and benchmarks

Our simulator is trace-driven, using traces generated withPin [7]. We have one trace per benchmark
listed in Table 3. To obtain each trace, we run the application without any instrumentation for several
seconds, then we send a signal that triggers instrumentation.

Irisa



Replacement policies for shared caches on symmetric multicores 21

benchmark input skip

400.perlbench checkspam.pl 30 s
401.bzip2 liberty.jpg 30 s
403.gcc 166.i 30 s
410.bwaves 30 s
416.gamess cytosine.2.config 30 s
429.mcf 30 s
433.milc 30 s
434.zeusmp 30 s
435.gromacs 30 s
436.cactusADM 30 s
437.leslie3d 30 s
444.namd 30 s
445.gobmk 13x13.tst 30 s
447.dealII 30 s
450.soplex pds-50.mps 20 s
453.povray 30 s
454.calculix 30 s
456.hmmer 30 s
458.sjeng 30 s
459.GemsFDTD 30 s
462.libquantum 30 s
464.h264ref foremanref encoderbaseline.cfg 30 s
465.tonto 30 s
470.lbm 30 s
471.omnetpp 30 s
473.astar BigLakes2048.cfg 30 s
482.sphinx3 30 s
483xalancbmk 30 s

Table 3: One trace was obtained for each SPEC CPU2006 benchmarks, except 481.wrf that we could
not compile. For each benchmark, we start instrumenting after a certain execution time has elapsed.
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We simulate 4 identical cores, each with dedicated L1 caches. The L2 cache is 4 MB, 16-way
set-associative and is shared between the 4 cores. The next level after the L2 cache is the off-chip
DRAM. The main characteristics of the simulated microarchitecture are summarized in Table 1.
The simulator does not model all details of the execution core. In particular, we do not model data
dependencies between instructions. But the memory hierarchy is simulated with a lot of details. In
particular, we simulate contention for the L2 cache, contention for the memory bus, and write-back
traffic. All caches are non blocking, i.e., they continue to be accessed even if a previous request
generated a miss. All misses are fully pipelined. Unless stated otherwise, the bus bandwidth to
DRAM is 8 bytes per CPU cycle. There is a separate memory request queues (MRQs) for each core.
Each MRQ has room for 20 pending requests. Once a request is selected by the arbiter and is sent
on the bus, there is a latency of 300 cycles for getting the requested block. The request is removed
from the MRQ after the block has returned from memory. Blocksevicted from write-back caches
are buffered in write-back queues. When arbitrating for a resource (cache or bus), reads have priority
over writes. Cache refills are blocked when the associated write-back queue is full. A miss request
is not schedulable if it cannot get a cache refill queue entry (i.e., the cache refill queue is full).
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