
HAL Id: hal-00341523
https://hal.archives-ouvertes.fr/hal-00341523

Submitted on 25 Nov 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Ping Pong in Dangerous Graphs: Optimal Black Hole
Search with Pure Tokens

Paola Flocchini, David Ilcinkas, Nicola Santoro

To cite this version:
Paola Flocchini, David Ilcinkas, Nicola Santoro. Ping Pong in Dangerous Graphs: Optimal Black Hole
Search with Pure Tokens. DISC 2008, Sep 2008, France. pp.227-241, �10.1007/978-3-540-87779-0_16�.
�hal-00341523�

CORE Metadata, citation and similar papers at core.ac.uk

Provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/50209179?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr/hal-00341523
https://hal.archives-ouvertes.fr

Ping Pong in Dangerous Graphs:

Optimal Black Hole Search with Pure Tokens

Paola Flocchini1, David Ilcinkas2, and Nicola Santoro3

1 SITE, University of Ottawa, Canada
flocchin@site.uottawa.ca

2 CNRS, Université de Bordeaux, France
david.ilcinkas@labri.fr

3 School of Computer Science, Carleton University, Canada
santoro@scs.carleton.ca

Abstract. We prove that, for the black hole search problem, the pure
token model is computationally as powerful as the whiteboard model;
furthermore the complexity is exactly the same. More precisely, we prove
that a team of two asynchronous agents, each endowed with a single
identical pebble (that can be placed only on nodes, and with no more
than one pebble per node) can locate the black hole in an arbitrary
network of known topology; this can be done with Θ(n log n) moves,
where n is the number of nodes, even when the links are not FIFO.

Key words: distributed computing, graph exploration, mobile agents,
autonomous robots, dangerous graphs.

1 Introduction

1.1 The Framework

Black Hole Search (Bhs) is the distributed problem in a networked system (mod-
eled as a simple edge-labelled graph G) of determining the location of a black

hole (Bh): a site where any incoming agent is destroyed without leaving any
detectable trace. The problem has to be solved by a team of identical system
agents injected into G from a safe site (the homebase). The team operates in
presence of an adversary that chooses e.g., the edge labels, the location of the
black hole, the delays, etc. The problem is solved if at least one agent survives
and all surviving agents know the location of the black hole (e.g., see [15]).

The practical interest of Bhs derives from the fact that a black hole can
model several types of faults, both hardware and software, and security threats
arising in networked systems supporting code mobility. For example, the crash
failure of a site in an asynchronous network turns such a site into a black hole;
similarly, the presence at a site of a malicious process (e.g., a virus) that thrashes
any incoming message (e.g., by classifying it as spam) also renders that site a
black hole. Clearly, in presence of such a harmful host, the first step must be to
to determine and report its location.

From a theoretical point of view, the natural interest in the computational
and complexity aspects of this distributed problem is amplified by the fact that
it opens a new dimension in the classical graph exploration problem. In fact, the
black hole can be located only after all the nodes of the network but one have
been visited and are found to be safe; in this exploration process some agents
may disappear in the black hole. In other words, while the existing wide body
of literature on graph exploration (e.g., see [1, 2, 8, 9, 16, 17]) assumes that the
graph is safe, Bhs opens the research problems of the exploration of dangerous

graphs.
Indeed Bhs has been studied in several settings, under a variety of assump-

tions on the power of the adversary and on the capabilities of the agents; e.g.,
on the level of synchronization of the agents; on whether or not the links are
FIFO; on the type of mechanisms available for inter agent communication and
coordination; on whether or not the agents have a map of the graph. In these
investigations, the research concern has been to determine under what condi-
tions and at what cost mobile agents can successfully accomplish this task. The
main complexity measures are the size of the team (i.e., the number of agents
employed) and the number of moves performed by the agents; sometimes also
time complexity is considered.

In this paper we are interested in the weakest settings that still make the
problem solvable. Thus we will make no assumptions on timing or delays, and
focus on the asynchronous setting. Indeed, while the research has also focused
on the synchronous case [5–7, 18, 19] where all agents are synchronized and de-
lays are unitary, the main body of the investigations has concentrated on the
asynchronous one (e.g., [4, 10–13]).

1.2 The Quest and its Difficulties

In the asynchronous setting, the majority of the investigations operate in the
whiteboard model: every node provides a shared space for the arriving agents
to read and write (in fair mutual exclusion). The whiteboard model is very
powerful: it endows the agents not only with direct and explicit communication
capabilities, but also with the means to overcome severe network limitations; in
particular, it allows the software designer to assume FIFO links (even when not
supported by the system). Additionally, whiteboards allow to break symmetry
among identical agents. Indeed, whiteboards (and even stronger inter-agent co-
ordination mechanisms) are supported by most existing mobile agent platforms
[3]. The theoretical quest, on the contrary, has been for the weakest interaction
mechanism allowing the problem to be solved.

A weaker and less demanding interaction mechanism is the one assumed by
the token model, used in the early investigations on (safe) graph exploration;
it is provided by identical pebbles (that can be placed on nodes, picked up and
carried by the agents) without any other form of marking or communication
(e.g., [2]).

The research quest is to determine if pebbles are computationally as powerful
as whiteboards with regards to Bhs. The importance of this quest goes beyond

the specific problem, as it would shed some light on the relative computational
power of these two interaction mechanisms.

Two results have been established so far in this quest. In [10] it has been
shown that ∆ + 1 agents4 without a map (the minimum team size under these
conditions), each endowed with an identical pebble, can locate the black hole
with a (very high but) polynomial number of moves. In [13] it has been shown
that two agents with a map (the minimum team size under these conditions),
each endowed with a constant number of pebbles, can locate the black hole in
a ring network with Θ(n log n) moves, where n denotes the number of nodes in
the network.

Although they indicate that Bhs can be solved using pebbles instead of
whiteboards, these results do not prove yet the computational equivalence for
Bhs of these two inter-agent coordination mechanisms. There are two main
reasons for this. The first main reason is that both results assume FIFO links;
note that the whiteboard model allows to work assuming FIFO links, but does
not require them. Hence, the class of networks for which the results of [10, 13]
apply is smaller than that covered with whiteboards; also such an assumption is
a powerful computational help to any solution protocol. The second and equally
important reason is that these results are not established within the “pure”
token model used in the traditional exploration problem. In fact, in [10, 13] the
agents are allowed to place pebbles not only on nodes but also on links (e.g.,
to indicate on which link it is departing); this gives immediately to a single
token the computational power of O(log ∆) bits of information. In [13], where
the network considered is only a ring, each agent has available several tokens,
and multiple tokens can be placed at the exact same place (node or link) to store
more than one bit of information.

1.3 Our Results

In this paper, we provide the first proof that indeed the pure token model is
computationally as powerful as the whiteboard model for Bhs.

The context we examine is the one of agents with a map in an arbitrary
graph. For this context we prove that: A team of two asynchronous agents, each
endowed with a single identical pebble (that can be placed only on nodes, and
at no more than one pebble per node) and a map of the graph can locate the
black hole with Θ(n log n) moves, even if the links are not FIFO.

In other words, for networks of known topology, using pure tokens it is pos-
sible to obtain exactly the same optimal bounds for team size and number of
moves as using whiteboards.

Note that our result implies as a corollary an optimal solution for the white-
board model using only a single bit of shared memory per node; the existing
solution [11] requires a whiteboard of O(log n) bits at each node.

Our results are obtained using a new and (surprisingly) simple technique
called ping pong. In its bare form, this technique solves the problem but with

4 ∆ denotes the maximun node degree in G

O(n2) moves. To obtain the optimal bound, the technique is enhanced by inte-
grating it with additional mechanisms, exploiting two ideas developed in previous
investigations: “split work” [12], and “distance counting” [13]. The mechanisms
that we have developed use a variety of novel not-trivial techniques, and are
the first to overcome the severe limitation imposed by the lack of the FIFO as-
sumption (available instead in all previous investigations with whiteboards or
tokens).

The paper is organized as follows. We first present our techniques, prove their
properties and analyze their complexity in the case of ring networks (Section 3).
Then, in Section 4, we show how to modify and enhance those techniques so to
obtain the same bounds also in the case of arbitrary graphs.

Due to space limitations, some proofs and the code of the algorithms are
omitted; the interested reader can find them in [14].

2 Terminology and Definitions

Let G = (V,E) be a simple biconnected5 graph with n = |V | nodes. At each
node x, there is a distinct label from a totally ordered set associated to each of
its incident links. We shall denote by (G, λ) the resulting edge-labelled graph.

Operating in (G, λ) is a team of identical autonomous mobile agents (or
robots). All agents enter the system from the same node, called homebase.
The agents have computing capabilities, computational storage (polynomially
bounded by the size of the graph), and a map of (G, λ) with the indication of
the homebase; they can move from node to neighbouring node, and obey the
same set of behavioral rules (the algorithm). Every agent has a pebble; all peb-
bles are identical. A pebble can be carried, put down at a node if no other pebble
is already there, and picked up from a node by an agent without pebbles.

When an agent enters a node, it can see if there is a pebble dropped there;
it might be however unable to see other agents there or to determine whether
they are carrying a pebble with them.

The system is asynchronous in the sense that (i) each agent can enter the
system at an arbitrary time; (ii) traveling to a node other than the black hole
takes a finite but otherwise unpredictable amount of time; and (iii) an agent
might be idle at a node for a finite but unpredictable amount of time. The
basic computational step of an agent (executed either when the agent arrives
to a node, or upon wake-up) is to look for the presence of a pebble, drop or
pick up the pebble if wanted, and leave the node through some chosen port (or
terminate). The whole computational step is performed in local mutual exclusion
as an atomic action, i.e. as if it took no time to execute it. Links are not FIFO:
two agents moving on the same link in the same direction at the same time might
arrive at destination in an arbitrary order.

To simplify the model, we can assume without loss of generality that the
transition between two states of the agent at a node plus the corresponding

5 Note that biconnectivity is necessary for Bhs to be solvable [11].

move are instantaneous. In other words, the waiting due to asynchrony only
occurs after the move of the agent. Furthermore we can assume that also the
actions of agents at different nodes occur at different instants.

A black hole is a node that destroys any incoming agent; no observable trace
of such a destruction will be evident to the other agents. The location of the
black hole is unknown to the agents. The Black Hole Search problem is to find
the location of the black hole. More precisely, the problem is solved if at least
one agent survives, and all surviving agents know the location of the black hole.

The two measures of complexity of a solution protocol are the number of
agents used to locate the black hole and the total number of moves performed
by the agents.

3 Black hole search in rings

3.1 Preliminaries

Without loss of generality, we can assume that the clockwise direction is the
same for both agents: for example, the direction implied by the link with the
smallest label at the homebase. In the following, going right (resp. left) means
going in the clockwise (resp. counterclockwise) direction. An agent exploring to
the right (resp. left) is said to be a right (resp. left) agent. Using this definition,
an agent changes role if it was a left agent and becomes a right agent or vice
versa. For i ≥ 0, the node at distance i to the right, resp. to the left, of the home
base will be called node i, resp. node -i. Hence node i and i − n represent the
same node, for 0 ≤ i ≤ n.

In the algorithm the agents obey the two following metarules:
1. An agent always ensures that a pebble is lying at u before traversing an
unknown edge {u, v} from u to v (i.e. an edge that it does not know to be safe).
2. An agent never traverses an unknown edge {u, v} from u to v if a pebble lies
at u and the pebble was not dropped there by this agent.

These metarules imply that the two agents never enter the black hole from
the same edge. Moreover, each agent keeps track of its progress by storing the
number of the most-right, resp. most-left, node in a variable Last Right, resp.
Last Left, used to detect termination: when only one node remains unexplored,
this node is the black hole and the agent can stop.

A (right) agent is said to traverse an edge {u, v} from u to v using cau-

tious walk if it has one pebble, it drops it at u, traverses the edge (in state
Explore-Right), comes back to u (in state Pick-Up-Right), retrieves the peb-
ble and goes again to v (in state Ping-Right). A (left) agent is said to traverse
an edge {u, v} from u to v using double cautious walk if it has one pebble and
the other is at u, it goes to v (in state Explore-Left) carrying one pebble,
the other pebble staying at u, drops the pebble at node v, comes back to u (in
state Pick-Up-Left), retrieves the other pebble and goes again to v (in state
Ping-Left). We will see later that double cautious walk is employed only by left
agents. Note that these two cautious explorations obey the first metarule.

3.2 The Algorithm

Our algorithm is based on a novel coordination and interaction technique for
agents using simple tokens, Ping-Pong. The idea at the basis of this technique
is the following: one agent explores the “right” side and one the “left” side (the
side assigned to an agent changes dynamically, due to the non-FIFO nature of
the links). However, only one agent at a time is allowed to explore; the agent
willing to do so must first “steal” the pebble of the other, and then can proceed to
explore its allowed side. When an agent discovers that its pebble has been stolen,
it goes to find it and steal the other pebble as well. This generate a “ping-pong”
movements of the agents on the ring. The actual Ping-Pong technique based
on this idea must however take into account the non-FIFO nature of the links,
which creates a large variety of additional situations and scenarios (e.g., an agent
moving to steal the pebble of the other, might “jump over” the other agent).

Algorithm EnhancedPingPong is divided in two phases, each one further di-
vided into stages. The first phase is the Ping-Pong technique. The second phase,
whose function is to ensure that the costs are kept low, in some cases may not
be executed at all. Inside a phase, a stage is a maximal period during which no
agent changes role.

In the first phase, exploration to the right is always done using cautious
walk, while exploration to the left is always done using double cautious walk
(i.e., after stealing a pebble). Note that, since an agent exploring to the right
uses one pebble and an agent exploring to the left uses two pebbles, the agents
cannot make progress simultaneously in two different directions because there
are only two pebbles in total. This also implies that while an agent is exploring
new nodes it knows all the nodes that have already been explored, as well as the
position of the only unexplored node where the other agent possibly died. This
prevents the agents from exploring the same node and thus from dying in the
black hole from two different directions.

Phase 1. Initially both agents explore to the right. Since links are not FIFO,
an agent may pass the other and take the lead without any of the two noticing
it. Nevertheless, it eventually happens that one agent L finds the pebble of the
other agent R, say at node p (at the latest it happens when one agent locates
or dies in the black hole). When this happens L drops its pebble at node p − 1
(if its pebble is not already there) and steals R’s pebble. Having control on the
two pebbles, L starts to explore left using double cautious walk. The stage has
now an even number. When/if R comes back to p to retrieve its pebble, it does
not find it. It then goes left in state Pong-Right until it finds a pebble. Agent
R does eventually find a pebble because at the beginning of the stage there is
a pebble at its left (at node p − 1), and Agent L never removes a pebble before
putting the other pebble further to the left. At this point R retrieves the pebble
and goes right again in state Ping-Right and explores to the right. When/if
L realizes that one of its pebble has been stolen, it changes role (and the stage
changes) and explores to the right using its remaining pebble. At this point, both
agents explore to the right. Again, one agent will find and steal the pebble of
the other. To ensure progress in exploration, a right agent puts down its pebble

only when it reaches the last visited node to the right it knows (using its variable
Last Right). Consequently the stealing at the end of an odd stage always occurs
at least one node further to the right from two stages before. Hence the algorithm
of Phase 1 is in fact correct by itself but the number of moves can be Θ(n2) in
the worst case (one explored node every O(n) moves). To decrease the worst
case number of moves to O(n log n), the agents switch to Phase 2 as soon as at
least two nodes have been explored to the right.

Phase 2. Phase 2 uses the halving technique, based on an idea of [12], but
highly complicated by the absence of whiteboards and by the lack of FIFO.
The idea is to regularly divide the workload (the unexplored part) in two.
One agent has the left half to explore (using variable Goal Left), while the
second agent explores the right half (using variable Goal Right). These ex-
plorations are performed concurrently by using (simple) cautious walk (for a
right agent, in states Halving-Explore-Right, Halving-Pick-Up-Right and
Halving-Ping-Right). After finite time, exactly one agent finishes its part and
joins the other in exploring the other part, changing role and thus changing
the stage number. At some point, one agent A will see the other agent’s peb-
ble. A steals the pebble and moves it by one position to indicate a change of
stage to the second agent B. It then computes the new workload, divide it
into two parts (using the function Update Goal Left or Update Goal Right),
and goes and explores its newly assigned part, changing role again by switching
to state Halving-From-Left-To-Right or Halving-From-Right-To-Left. This
can happen several times (if B remains blocked by the asynchronous adversary
or if it is dead in the black hole). When/if agent B comes back to retrieve its
pebble, it does not find it. It further goes back to retrieve its pebble in state
Halving-Pong-Right (if it is a right agent). The number of moves it has to per-
form to find the pebble indicates how many halvings (pair of stages) it misses.
Knowing that, it can compute what is the current unexplored part and what is
its current workload. It then starts to explore its part. Since there are at most
O(log n) stages of O(n) moves each, this leads to a total number of moves of
O(n log n).

The algorithm starts with a few stages of Phase 1 because Phase 2 needs
some safe nodes to put the pebble that is used as a message to indicate the
current partition of the workload.

Several other technical details and precautions have to be taken because of
asynchrony and lack of FIFO. Due to space restrictions, the code describing all
the details of the state transitions can be found in [14].

3.3 Correctness and complexity

As explained before the algorithm consists of up to two phases. The first one cor-
responds to the case where both agents are in one of the eight states Ping-Right,
Ping-Left, Explore-Right, Explore-Left, Pick-Up-Right, Pick-Up-Left,
Pong-Right, Put-Pebble-Right. If this is not the case, we say that the algo-
rithm is in its second phase. (Note that this phase may not exist in all possible

executions.) An agent is said to be a right, resp. left, agent if its state ends with
-Right, resp. -Left. Using this definition, an agent changes role if it was a left
agent and becomes a right agent or vice versa. Finally, inside a phase, a stage is
a maximal period during which no agent changes role.

For the purpose of the proofs of the main theorems, we will use the three
following properties.

Property P(p), with p ∈ {0, 1}: There is a left agent L and a right agent R. The
agent L is waiting at node p−1, where one pebble is located. Agent L is carrying
the other pebble and is in state Ping-Left. Moreover, its variable Last Right

has value p. Agent R, empty-handed, is in one of the following situations:
- it is dead in the black hole located at node p + 1;
- it is at node p + 1 in state Explore-Right and its variable Last Right has
value p;
- it is already back from node p + 1 at node p in state Pick-Up-Right and its
variable Last Right has value p + 1.

Moreover, the termination condition of agent L is not satisfied, and in the
last two cases, the value Last Left is the same for each agent.

Property P ′

L(p, q), with p ≥ 2, q ≤ 0 and p− q < n− 2: There is a left agent L

and a right agent R. There exists some k ≥ 0, with p− k− 1 > q, such that L is
waiting at node p−k−1 where one pebble is located. Agent L is carrying the other
pebble and is in state Halving-From-Right-To-Left. Moreover, its variable
Last Right, resp. Last Left, has value p, resp. q. Its variable Goal Left has
value Update Goal Left(p, q, 1). (Its variable Goal Right has value Goal Left+
n − 1.) Agent R, empty-handed, is in one of the following situations:
- it is dead in the black hole located at node p + 1; - it is waiting at p + 1 in
state Explore-Right and its variable Last Right has value p;
- it is already back from node p + 1 at node p in state Pick-Up-Right and its
variable Last Right has value p + 1;
- it is waiting at node p + 1 in state Halving-Explore-Right and its variable
Last Right has value p;
- it is already back from node p + 1 at node p in state Halving-Pick-Up-Right

and its variable Last Right has value p + 1;
- it is waiting at node p−i, 1 ≤ i ≤ k, in state Halving-Pong-Right, its variable
Last Right has value p + 1 and its variable Counter has value i − 1.

Moreover, in the second and third cases, the value Goal Left of Agent L

is equal to Update Goal Left (p, q′, k + 1), where q′ is the value Last Left

of Agent R. In the last three cases, the value Goal Left of Agent L is equal to
Update Goal Left(p, q′, k+1−Counter), where q′ equals Goal Left of Agent R.

Property P ′

R(p, q), with p ≥ 2, q ≤ 0 and p − q < n − 2: There is a left agent
L and a right agent R. There exists some k ≥ 0, with q + k + 1 < p, such
that R is waiting at node q + k + 1 where one pebble is located. Agent R is
carrying the other pebble and is in state Halving-From-Left-To-Right. More-
over, its variable Last Left, resp. Last Right, has value q, resp. p. Its variable
Goal Right has value Update Goal Right(p, q, 1). (Its variable Goal Left has

value Goal Right − n + 1.) Agent L, empty-handed, is in one of the following
situations:
- it is dead in the black hole located at node q − 1;
- it is waiting at q−1 in state Halving-Explore-Left and its variable Last Left

has value q;
- it is already back from node q − 1 at node q in state Halving-Pick-Up-Left

and its variable Last Left has value q − 1;
- it is waiting at node q + i, for some 1 ≤ i ≤ k in state Halving-Pong-Left, its
variable Last Left has value q − 1 and its variable Counter has value i − 1.
Moreover, in the last three cases, the value Goal Right of Agent R is equal to
Update Goal Right (p′, q, k +1− Counter), where p′ is Goal Right of Agent L.

Lemma 1. Consider a n-node ring containing a homebase and a black hole,

and two agents running Algorithm EnhancedPingPong from the homebase. After

finite time, one of the following situations occurs:

- Stage 2 of Phase 1 begins and Property P(p) holds for some p ∈ {0, 1};
- Phase 2 begins and Property P ′

L(p, 0) holds for some integer p such that 2 ≤
p ≤ n − 2;
- all agents of the non-empty set of surviving agents have terminated and located
the black hole.
Moreover, at that time, each edge has been traversed at most a constant number

of times since the beginning of the algorithm.

Lemma 2. Consider a n-node ring containing a homebase and a black hole, and

two agents running Algorithm EnhancedPingPong from the homebase. Assume

that at some time t a Phase-1 stage of even number i begins and that Property

P(p) holds for some p ∈ {0, 1}. Then at some time t′ > t one of the following

situations occurs:

- Stage i+2 of Phase 1 begins and Property P(p′) holds for some integer p′ such
that p < p′ ≤ 1 (thus p′ = 1);
- Phase 2 begins and Property P ′

L(p′, q) holds for some integers p′ and q such
that p′ ≥ 2, q ≤ 0 and p′ − q < n − 2;
- all agents of the non-empty set of surviving agents have terminated and located
the black hole.
Moreover, each edge has been traversed at most a constant number of times

between times t and t′.

Lemma 3. Consider a n-node ring containing a homebase and a black hole, and

two agents running Algorithm EnhancedPingPong from the homebase. Assume

that at some time t a Phase-2 stage of odd number i begins and that either

Property P ′

L(p, q) or Property P ′

R(p, q) holds for some integers p and q such that

p ≥ 2, q ≤ 0 and p − q < n − 2. Then at some time t′ > t one of the following

situations occurs:

- Stage i + 2 of Phase 2 begins and either Property P ′

L(p′, q′) or Property
P ′

R(p′, q′) holds for some integers p′ and q′ such that p′ ≥ p, q′ ≤ q and

n − (p′ − q′ + 1) ≤ ⌈n(p−q+1)
2 ⌉;

- all agents of the non-empty set of surviving agents have terminated and located
the black hole.
Moreover, each edge has been traversed at most a constant number of times

between times t and t′.

Theorem 1. Algorithm EnhancedPingPong is correct.

More precisely, consider a n-node ring containing a homebase and a black hole,

and two agents running Algorithm EnhancedPingPong from the home base. After

finite time, there remains at least one surviving agent and all surviving agents

have terminated and located the black hole.

Proof. From Lemmas 1 and 2, we know that the first phase contains at most five
stages, each one ending after finite time. Furthermore we know that after finite
time, either the algorithm terminates correctly, or Property P ′

L(p, q) or P ′

R(p, q)
holds, for some integers p and q such that q ≤ 0 < p and 0 < p−q < n−2. From
Lemma 3, we know that a stage of Phase 2 ends after finite time. We also know
that if the algorithm does not terminate after two stages i, i+1 in Phase 2, then
Property P ′

L(p′, q′) or P ′

R(p′, q′) holds, for some integers p′ and q′ such that the
positive value p′ − q′ is stricty less than p − q. Hence, after finite time, neither
PL(p, q) nor P ′

R(p, q) can be satisfied and the algorithm terminates correctly.

Theorem 2. The total number of moves performed by two agents running Al-

gorithm

EnhancedPingPong in a n-node ring is at most O(n log n).

Proof. From Lemmas 1 and 2, there are at most five stages in Phase 1 and for
each of them the number of edge traversals performed by each agent is at most
O(n). From Lemma 3, there are at most O(log n) stages in Phase 2 because
the unexplored part is basically halved every two stages. From the same lemma,
we have that for each Phase-2 stage the number of edge traversals performed by
each agent is at most O(n). Hence, overall, the total number of moves performed
by two agents running Algorithm EnhancedPingPong in a n-node ring is at most
O(n log n).

The optimality of the algorithm follows from the fact that, in a ring, the
problem cannot be solved with less agents or (asymptotically) less moves [12],
and clearly not with less pebbles.

4 Black hole search in arbitrary graphs

4.1 Preliminaries

In this section, both agents are provided with a map of the network containing
all edge labels and a mark showing the position of the homebase in this network.
Thus, each node of the map can be uniquely identified (for example by a list of
edge labels leading to it from the homebase). Therefore, each agent is able to

know where it lies at any point of the execution of the algorithm. It also knows
where each edge incident to its position leads.

The algorithm GeneralizedEnhancedPingPong we propose for arbitrary net-
works is an adaptation of the algorithm EnhancedPingPong that we described
for rings. To be able to apply EnhancedPingPong in a general graph, each agent
will maintain a partial mapping between the node numbers used in the algorithm
and the actual nodes in the network (or its map), such that at any point in time
an agent knows what means “go left” and “go right”.

During the execution of the algorithm, each agent maintains two walks WR

and WL, defined as two sequences (r0, r1, . . . , rP) and (l0, l1, . . . , lQ) of nodes of
the network. The nodes r0 and l0 correspond to the homebase. Since WR and
WL are walks, we have that {ri, ri+1} and {lj , lj+1} are edges of the graph, for
all 0 ≤ i < P and 0 ≤ j < Q.

From these two walks, we define recursively function σ as follows. First σ(0) =
0. Assume that σ is defined for all j such that 0 ≤ j ≤ i, for some i ≥ 0.
Then if there exists an element rK in WR such that rK 6∈ {rσ(0), rσ(1), . . . , rσ(i)}
but for all k < K, rk ∈ {rσ(0), rσ(1), . . . , rσ(i)}, then σ(i + 1) = K, otherwise
σ(i + 1) is not defined. Similarly, assume that σ is defined for all j such that
i ≤ j ≤ 0, for some i ≤ 0. Then if there exists an element lK in WL such that
lK 6∈ {lσ(0), lσ(1), . . . , lσ(i)} but for all k < K, lk ∈ {lσ(0), lσ(1), . . . , lσ(i)}, then
σ(i − 1) = K, otherwise σ(i − 1) is not defined.

Let us assume that an agent lies at some node i. If i ≥ 0 (i.e., the agent
is at the homebase or somewhere in the explored part to the right) going one
step right from node i means following the sub-walk (rσ(i), rσ(i)+1, . . . , rσ(i+1))
of WR. Going left from node i + 1 to node i means following this sub-walk in
reverse order. Similarly, if i ≤ 0 (i.e., the agent is at the homebase or in the
explored part to the left) going one step left from node i means following the
sub-walk (lσ(i), lσ(i)+1, . . . , lσ(i−1)) of WL. Going right from node i− 1 to node i

means following this sub-walk in reverse order.

4.2 The Algorithm

We now describe the definitions of the walks WR and WL throughout the algo-
rithm. First of all, node v0 denotes the homebase. Node v1 is the neighbor of
node v0 reachable by the smallest edge label while node v−1 is the neighbor of
node v0 reachable by the largest edge label.

At the beginning of the algorithm, let TR be a tree spanning all nodes except
for node v−1 and containing the edge {v0, v1}. Let WR be a DFS traversal of TR

starting from node v0 by the edge {v0, v1}. Let WL be (v0, v−1). Clearly, nodes
v−1, v0 and v1 are the nodes -1, 0 and 1.

Assume that the stage changes from an odd number to an even number in
Phase 1. Let p and q be the values Last Right and Last Left of the left agent.
Then the new walk WR consists of the first σ(p+1)+1 elements of the old WR,
that is the sequence (r0, r1, . . . , rσ(p+1)). In addition, let TL be a tree spanning
all nodes except for node p + 1. Let SL be a DFS traversal of TL starting from
node q − 1. Then the new walk WL is the concatenation of the old WL and of

the sequence SL. The left agent does these updates of the walks when changing
role. The other agent does these updates when it finds out that its pebble has
been stolen. More precisely, it updates its walks just before switching to state
Pong-Right. Note that both agents agree on the new definition of the walks
because they use the same values for p and for q (cf. Property P(p)).

Similarly assume that the stage changes from an even number to an odd
number in Phase 1. Let p and q be the values Last Right− 1 and Last Left of
the right agent. Then the new walk WL consists of the first σ(q−1)+1 elements
of the old WL, that is the sequence (l0, l1, . . . , lσ(q−1)). In addition, let TR be
a tree spanning all nodes except node q − 1. Let SR be a DFS traversal of TR

starting at node p + 1. Then the new walk WR is the concatenation of the old
WR and of the sequence SR. The rigth agent does these updates of the walks
when it retrieves a pebble, just before switching from state Pong-Right to state
Ping-Right. The other agent does these updates when it finds out that its pebble
has been stolen. More precisely, it updates its walks just before changing role.
Note that again both agents agree on the new definition of the walks because
they use the same values for p and for q.

The walks are also updated at the beginning of each Phase-2 stage of odd
number i. More precisely this is done by an agent each time and just after it
updates its knowledge of the unexplored part and its goals. Assume w.l.o.g. that
the stage is now i because a right agent became a left agent. Let p, q and g

be the values, respectively, of Last Right, Last Left and Goal Right just after
the update of the goals. Let {Vex, Vuex} be a partition of the nodes of the graph
such that Vex is the set of nodes {q, q +1, . . . , p− 1, p}. From Lemma 5.2 in [11],
Vuex can be partitioned into VR and VL such that |VR| = p − g, the node p + 1
is in VR, and the graphs GR and GL induced by, respectively, Vex ∪ VR and
Vex ∪ VL are connected. Let TR and TL be spanning trees of GR and GL. Let
SR be a DFS traversal of TR starting at node p + 1. Similarly let SL be a DFS
traversal of TL starting at node q. Finally, let W ′

R, resp. W ′

L, consists of the first
σ(p+1), resp. σ(q), elements of WR, resp. WL. Then the new walks WR and WL

are respectively the concatenation of W ′

R and SR and the concatenation of W ′

L

and SL. Note that both agents agree on the new definition of the walks because
they use the same values for p, q and g (cf. Properties P ′

R(p, q) and P ′

L(p, q)).

In some cases, it is possible to use (safe) shortcuts to decrease the number
of moves. Indeed, always following the walks WR and WL to go right and left
may lead to a total of n log2 n moves. The algorithm is modified as follows.
During Phase 2, each agent maintains an additional variable Last Seen Pebble

that basically memorizes the last place where the agent has seen the other peb-
ble. When an agent finishes a half and switches to state Halving-Ping-Left,
resp. Halving-Ping-Right, it goes directly to node Last Seen Pebble and if
there are no pebbles at this node, it then goes directly to node Last Left, resp.
Last Right. This is done by traversing only nodes that are known to be safe.

4.3 Correctness and complexity

Theorem 3. Algorithm GeneralizedEnhancedPingPong is correct.

More precisely, consider a n-node graph containing a homebase and a black hole,

and two agents running Algorithm GeneralizedEnhancedPingPong from the

homebase. After finite time, at least one agent survives and all surviving agents

have terminated and located the black hole.

Proof. As noticed in the description of the algorithm in the previous subsection,
the two agents agree on the definition of the walks and thus of the node numbers.
Moreover, one can easily check that the function σ defining the node numbers
always gives the same number to the same node as soon as this node has been
explored by at least one agent. Indeed, if a node i ≥ 0 is explored, then the initial
part (r0, r1, . . . , rσ(i)) of WR is kept unchanged forever. A similar property holds
for i ≤ 0. Finally note that a node of the graph has at most one pre-image by σ.

To summarize, Algorithm GeneralizedEnhancedPingPong behaves exactly
the same as Algorithm EnhancedPingPong. The only difference is that traversing
an edge in the ring may correspond to the traversals of (finitely) many edges in
an arbitrary graph. Nevertheless, since Algorithm EnhancedPingPong is correct,
Algorithm GeneralizedEnhancedPingPong is correct as well.

Theorem 4. The total number of moves performed by two agents running Al-

gorithm

GeneralizedEnhancedPingPong in a n-node graph is at most O(n log n).

Proof. In this proof we call the number of edge traversals performed by an agent
going from node i to node i + 1 (−n < i < n − 1) the length of the virtual edge
{i, i+ 1}. We now bound the total number of moves performed by each agent in
each phase.

As in the case of the ring, the first phase consists of at most five stages.
Moreover, each update of the walks increases their length by at most 2n because
the path appended to a walk is a DFS traversal of a tree. Hence, the sum of
all the lengths of the virtual edges traversed in the first phase is at most 10n.
From Lemmas 1 and 2, each edge of the network has been traversed at most
a constant number of times during Phase 1. Hence, the total number of moves
performed by two agents running Algorithm GeneralizedEnhancedPingPong is
at most O(n log n) in the first phase.

From the lemmas 1, 2 and 3, either Property P ′

R(p, q) or Property P ′

L(p, q))
holds, for some integers p and q, at the beginning of a Phase-2 stage of odd
number. Let pi and qi be the two integers corresponding to the stage 2i+1 of the
second phase, for 0 ≤ i ≤ s. Note that s is at most O(log n). Let ps+1, resp. qs+1,
be the right, resp. left, neighbor of the black hole. By definition of the properties
and from the lemmas, we have that qs+1 ≤ · · · ≤ q0 ≤ 0 ≤ p0 ≤ · · · ≤ ps+1.
Since the walks WR and WL are updated when and only when the goals are
updated, and since a walk is always extended by a DFS traversal of a tree, we
obtain that the sum of all the lengths of the virtual edges from node pi to pi+1,
and from node qi to qi+1, is at most O(n), for 0 ≤ i ≤ s. Moreover, from the

previous paragraph, the sum of all the lengths of the virtual edges from node q0

to p0 is at most O(n).
Consider a stage 2i+1 of the second phase, for 0 ≤ i ≤ s. Let A be the agent

that started the stage by changing role and let B the other agent. Without loss
of generality, assume that A is a left agent. The total number of moves performed
by A in this stage is at most O(n) because A first goes directly (by a shortest
safe path) to the beginning qi of its workload, thus in at most n moves, and
then stays in the final part of WL that corresponds to the DFS traversal of a
tree to explore its assigned workload, which incurs at most O(n) moves (from
Lemma 3). If it succeeds to explore its half, then it goes directly to the node
where it left the other pebble (thanks to the variable Last Seen Pebble). If the
pebble is not there anymore, it further goes directly to node pi and starts to
explore the right half. Hence, in any case, for the same reasons as before, A

performs at most O(n) moves in stage 2i + 2. Concerning B, if it retrieves its
pebble in stage 2i + 1 or 2i + 2, it will perform at most O(n) moves in these
two stages, without counting the moves dones in state Halving-Pong-Right.
Indeed, again, exploring a half or going directly to the beginning of it costs at
most a linear number of moves.

It remains to bound the number of moves done while in one of the states
Halving-Pong-Right or Halving-Pong-Left. This is done globally over the
whole second phase. Each edge traversed in one of these two states may cost
up to O(n) moves. However, there are at most O(log n) such traversals because
any of them corresponds to an update of the workloads, which happens only a
logarithmic number of times in the entire algorithm.

One can now conclude that the total number of moves performed by two
agents running Algorithm GeneralizedEnhancedPingPong in a n-node graph is
at most O(n log n).

The optimality of the algorithm follows from the fact that, in an arbitrary
graph, BHS cannot be solved with less agents or (asymptotically) less moves
[11], and clearly not with less pebbles.

Acknowledgment This work was done during the stay of David Ilcinkas at
the University of Ottawa, as a postdoctoral fellow. Paola Flocchini was partially
supported by the University Research Chair of the University of Ottawa. This
work was supported in part by the Natural Sciences and Engineering Research
Council of Canada under Discovery grants.

References

1. S. Albers and M. Henzinger. Exploring unknown environments. 29th ACM Sym-

posium on Theory of Computing (STOC), 416–425, 1997.

2. M. A. Bender, A. Fernández, D. Ron, A. Sahai, and S. P. Vadhan. The power of
a pebble: Exploring and mapping directed graphs. Information and Computation,
176(1):1–21, 2002.

3. J. Cao and S. Das (Eds), Mobile Agents in Networking and Distributed Computing,
John Wiley, 2008.

4. J. Chalopin, S. Das, N. Santoro. Rendezvous of mobile agents in unknown graphs
with faulty links. 21st Conf. on Distributed Comp. (DISC), 108-122, 2007.

5. C. Cooper, R. Klasing, and T. Radzik. Searching for black-hole faults in a net-
work using multiple agents. 10th Int. Conf. on Principles of Distributed Systems

(OPODIS), 320-332, 2006.
6. J. Czyzowicz, D. Kowalski, E. Markou, and A. Pelc. Complexity of searching for

a black hole. Fundamenta Informaticae, 71 (2-3): 229-242, 2006
7. J. Czyzowicz, D. Kowalski, E. Markou, and A. Pelc. Searching for a black hole in

synchronous tree networks. Combinatorics, Probability & Computing 16: 595-619,
2007.

8. S. Das, P. Flocchini, S. Kutten, A. Nayak, and N. Santoro. Map construction of
unknown graphs by multiple agents. Theoretical Computer Science 385(1-3): 34-48,
2007.

9. X. Deng and C. H. Papadimitriou. Exploring an unknown graph. J. Graph Theory

32 (3): 265–297, 1999.
10. S. Dobrev, P. Flocchini, R. Kralovic, and N. Santoro. Exploring a dangerous

unknown graph using tokens. 5th IFIP Int. Conf. on Theoretical Computer Science

(TCS), 131-150, 2006.
11. S. Dobrev, P. Flocchini, G. Prencipe, and N. Santoro. Searching for a black hole

in arbitrary networks: optimal mobile agents protocol. Distributed Computing 19
(1): 1-19, 2006.

12. S. Dobrev, P. Flocchini, G. Prencipe, and N. Santoro. Mobile search for a black
hole in an anonymous ring. Algorithmica 48: 67–90, 2007.

13. S. Dobrev, R. Kralovic, N. Santoro, and W. Shi. Black hole search in asynchronous
rings using tokens. 6th Conf. on Algorithms and Complexity (CIAC), 139-150, 2006.

14. P. Flocchini, D. Ilcinkas, and N. Santoro. Optimal black hole search with pure
tokens. http://www.scs.carleton.ca/̃ santoro/Reports/PingPong.pdf.

15. P. Flocchini and N. Santoro. Distributed Security Algorithms For Mobile Agents.
Chapter 5 of [3], 2008.

16. P. Fraigniaud, L. Gasieniec, D. Kowalski, and A. Pelc. Collective tree exploration.
Networks, 48 (3): 166-177, 2006.

17. P. Fraigniaud, D. Ilcinkas, G. Peer, A. Pelc, and D. Peleg. Graph exploration by
a finite automaton. Theoretical Computer Science, 345 (2-3): 331-344, 2005.

18. R. Klasing, E. Markou, T. Radzik, and F. Sarracco. Approximation bounds for
black hole search problems. 9th Int. Conf. on Principles of Distributed Systems

(OPODIS) 261-274, 2005.
19. R. Klasing, E. Markou, T. Radzik, and F. Sarracco. Hardness and approximation

results for black hole search in arbitrary networks. Theoretical Computer Science

384 (2-3): 201-221, 2007.

