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How to Split Reursive AutomataIsabelle TellierLIFL - Inria Lille Nord Europeuniversity of Lilleisabelle.tellier�univ-lille3.fr⋆⋆In this paper, we interpret in terms of operations applying on extended �nitestate automata some algorithms that have been spei�ed on ategorial grammarsto learn sublasses of ontext-free languages. The algorithms onsidered imple-ment speialization strategies. This new perspetive also helps to understand howit is possible to ontrol the ombinatorial explosion that speialization tehniqueshave to fae, thanks to a typing approah.1 IntrodutionThere are often several ways to represent a language: it is well known that everyregular language an be spei�ed either by a regular grammar or by a deter-ministi �nite state automaton. Context-free languages an also be spei�ed bydi�erent kinds of devies. In reent previous papers [17, 18℄, we have shown thatsome lasses of ategorial grammars (CGs in the following), generating ontext-free languages, ould easily be represented by a family of extended automataalled reursive automata (RA). This translation allowed to exhibit onnexionsbetween two previously distint approahes of grammatial inferene from posi-tive examples: the one used in [3, 13, 14℄ to learn CGs, and the one used to learnregular grammars represented by �nite state automata [1, 10℄. This was possiblebeause both employ a generalization strategy. In partiular, the generalizationoperators used in both ontexts were shown to be similar.Now, we want to apply the same proess for speialization strategies from pos-itive examples. In suh strategies, the initial hypothesis is too general a grammar(or set of grammars) and eah example is onsidered as a onstraint whih re-strits the searh spae, until it is redued to the target grammar. We show herethat the translation of CGs into RA, whih has helped to better understand thefamily of generalization strategies, an also help to better understand the familyof speialization strategies. As a matter of fat, although barely used, speial-ization approahes have been proposed independently in both bakgrounds: tolearn sublasses of CGs in the one hand [16℄, and to learn regular grammars rep-resented by �nite state automata in the other hand [11℄. A �rst move towardsthat diretion has been brie�y proposed in [19℄, but limited to unidiretionalCGs. In this paper, we generalize the approah to its full generality.
⋆⋆ This work was partly supported by the ANR MDCO �CroTal�



To reah this aim, we �rst need to reall in setion 2 how to transform a CGinto a RA preserving the strutures produed, in both unidiretional and bidi-retional ases. In setion 3, we �rst brie�y present the speialization strategydesribed by Moreau in [16℄, allowing to learn rigid CGs from positive examples.We then explain how it relates to the speialization strategy proposed by Fre-douille and Milet in [11℄, whih targets regular languages represented by �nitestate automata. We show that Moreau's algorithm an be interpreted as somekind of well founded �state splitting� strategy applying on RA. Finaly, the wholepiture is ompleted in setion 4, by a new interpretation of yet another alreadyknown algorithm allowing to learn CGs from sentenes enrihed by lexial types[8, 7℄. It appears to be an e�iently ontroled speialization approah.This paper thus proposes neither any new algorithm or result, nor any ex-periment, but it suggests a new stimulating look on already known strategies.2 From ategorial grammars to reursive automata2.1 Basi de�nitions of ategorial grammarsDe�nition 1 (Categories, Categorial Grammars and their Language).Let B be a set (at most ountable) of basi ategories ontaining a distinguishedategory S ∈ B, alled the axiom. Cat(B) is the smallest set suh that B ⊂ Cat(B)and for any A, B ∈ Cat(B): A/B ∈ Cat(B) and B\A ∈ Cat(B). Unidiretionalvariants allow only one of these operators (either / or \) but not both. For every�nite voabulary Σ and for every set B ontaining S, a ategorial grammar (orCG) is a �nite relation G over Σ ×Cat(B). We note 〈v, C〉 ∈ G the assignmentof the ategory C ∈ Cat(B) to the element of the voabulary v ∈ Σ. The syntatirules of a CG take the form of two rewriting shemes: ∀A, B ∈ Cat(B)� FA (Forward Appliation) : A/B B → A� BA (Bakward Appliation) : B B\A → AUnidiretional CGs make use of only one of these rules (either FA or BA) butnot of both. The language generated (or reognized) by a CG G is:
L(G)={w = v1 . . . vn ∈ Σ+ | ∀i ∈ {1, . . . , n}, ∃Ci ∈ Cat(B) suh that 〈vi, Ci〉 ∈
G and C1 . . . Cn →∗ S},where →∗ is the re�exive and transitive losure of the relation →, de�ned by
FA and BA shemes. For every w ∈ L(G), a syntati analysis struture anbe produed, taking the form of a binary-branhing tree whose leaf nodes areassignments of G and whose internal nodes are labelled either by FA or BA andby a ategory (see Figure 1).Example 1 (a simple CG). CGs have mainly been used to represent natural lan-guage syntax, as illustrated by this example. Let B = {S, T, CN} where T standsfor �term� and CN for �ommon noun�, Σ = {John, runs, a, man, fast} and G =
{〈John, T 〉, 〈runs, T \S〉, 〈man, CN〉, 〈a, (S/(T \S))/CN〉, 〈fast, ((T \S)\(T \S))〉}.This over-simple CG reognizes sentenes like �John runs� or �a man runs fast�with the syntati analysis strutures of Figure 1.
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T\Sruns (T\S)\(T\S)fastFig. 1. Syntati analysis strutures produed by a CG2.2 Reursive Automata and their LanguageDe�nition 2 (Reursive Automaton). A reursive automaton R is a 5-tuple R = 〈Q, Σ, γ, q0, F 〉 with Q a the �nite set of states, Σ a �nite voabulary,
q0 ∈ Q a (unique) initial state and F ∈ Q a (unique) �nal state. γ is thetransition funtion of R, de�ned from Q × (Σ ∪ Q) to 2Q.We restrit ourselves here to reursive automata (RA in the following) withunique initial and �nal states, but it is not a ruial hoie. The only importantdi�erene between this de�nition and the usual de�nition of �nite state automatais that, in a RA, it is possible to label a transition either by an element of Σ orby an element of Q. To use a transition labelled by a state, you have to produea string belonging to the language of this state. RA an thus be onsidered asspeial ases of �reursive transition networks� or RTRs [20℄. But, depending onthe notion of �state language� used, there exist in fat two distint notions ofRA whih will be alled, for reasons that will beome lear soon, RAFA and
RABA. In a RAFA, the language LFA(q) assoiated with the state q ∈ Q is theset of strings starting from q and reahing the �nal state F , whereas in a RABA,
LBA(q) is the set of strings starting from the initial state q0 and reahing q.De�nition 3 (Language Reognized by a RA). Let R = 〈Q, Σ, γ, q0, F 〉 bea RAFA (resp. a RABA). For every q ∈ Q we de�ne the language LFA(q) (resp.
LBA(q)) assoiated with q as the smallest set satisfying:� ǫ ∈ LFA(F ) (resp. ǫ ∈ LBA(q0));� if there exists a transition labelled by a ∈ Σ between q and q′ ∈ Q, i.e.

q′ ∈ γ(q, a) then: a.LFA(q′) ⊆ LFA(q) (resp. LBA(q).a ⊆ LBA(q′));� if there exists a transition labelled by r ∈ Q between q and q′ ∈ Q, i.e. q′ ∈
γ(q, r) then: LFA(r).LFA(q′) ⊆ LFA(q) (resp. LBA(q).LBA(r) ⊆ LBA(q′)).The language LFA(R) of the RAFA (resp. the language LBA(R) of the RABA)is de�ned by: LFA(R) = LFA(q0) (resp. LBA(R) = LBA(F )).For a state q ∈ Q suh that q 6= F (resp. q 6= q0), the de�nition of LFA(q)(resp. of LBA(q)) may be reursive: when it exists, it is a smallest �x-point. A



real reursion ours when, in a RAFA, there exists a path starting from a state
q, using a transition labelled by q and reahing F (resp., in a RABA, when thereexists a path starting from q0, using a transition labelled by q and reahing thestate q). Unlike �nite state automata, RA are not limited to produing �at trees,beause reursive transitions allow a real branhing. We have shown in [19℄ that
RAFA and RABA are respetively linked with the two possible unidiretionalCGs. This property, whih justi�es their name, is detailed in the following.2.3 From Unidiretional CGs to RAEah one of the two families of unidiretional CGs an produe any ǫ-freeontext-free language [2℄. Here, we show that every FA-unidiretional (resp. BA-unidiretional) CG an be easily transformed into a strongly equivalent RAFA(resp. RABA), i.e. generating the same strutural desriptions [19℄. The proess,for a given FA-unidiretional (resp. BA-unidiretional) CG G, is the following :� the voabulary Σ of the RA is the same as the one of G.� let N be the set of every subategory of a ategory assigned to a memberof the voabulary in G (a ategory is a subategory of itself). The set ofstates for the RAFA (resp. RABA) to be built is N ∪{F} with F /∈ N (resp.

N ∪{I} with I /∈ N). The initial state is S (resp. I), the �nal one is F (resp.
S).� for every C ∈ N , de�ne a transition labelled by C between the states C and
F (resp. between I ans C), i.e. F ∈ γ(C, C) (resp. C ∈ γ(I, C)).� for every A/B ∈ N (resp. A\B ∈ N), de�ne a transition labelled by A/B(resp. A\B) between the states A and B, that is: B ∈ γ(A, A/B) (resp.
B ∈ γ(A, A\B)).� for every 〈v, ,〉C ∈ G, add a transition labelled by v between the state C and
F , i.e. F ∈ γ(C, v) (resp. add a transition between I and C labelled by v,i.e. C ∈ γ(I, v)).2.4 Mutually Reursive AutomataBoth families of unidiretional CGs have the expressivity of ǫ-free ontext-freelanguages at the string level, but bidiretional CGs are useful for linguisti pur-poses, beause of the strutures they produe, and partiularly the labels FA or

BA assigned to eah internal node. It is thus natural to try to extend our notionof RA to the general ase of bidiretional CGs, where both FA and BA rulesare used. As we have seen, it is possible to represent the use of FA rules in a
RAFA and the use of BA rules in a RABA. So, we propose to represent a (bidi-retional) CG by a pair of mutually reursive automata (MRA in the following):one element of the pair is a RAFA, the other one is a RABA. For a syntatianalysis that uses both FA and BA rules, mutual alls between the two RA willbe neessary. After an introduing example, we provide a general de�nition ofMRA and give some of their properties.



Example 2 (Example of a MRA). Let us translate the CG G given in Example1 into a MRA (f. Figure 2). The states of eah of these RA orrespond toevery possible subategory of a ategory assigned by G to a element of thevoabulary, plus a �nal state F in the RAFA (above), and an initial state I in the
RABA (under). The transitions have been designed exatly as explained before.Then, eah RA has been simpli�ed for readability (some un-neessary states andtransitions are deleted), but not as muh as possible: here, we have hosen topreserve the representation of all the �nal voabulary Σ in both automata.
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(T\S)\(T\S)Fig. 2. A pair of mutually reursive automata: the RAF A and the RABADe�nition 4 (MRA and their Language). A pair of mutually reur-sive automata (or MRA) is a pair M = (RFA, RBA) where RFA = 〈Q ∪
{F}, Σ, γFA, SFA, F 〉 is a RAFA and RBA = 〈Q ∪ {I}, Σ, γBA, I, SBA〉 is a
RABA sharing the same voabulary Σ and the same set of state names Q exeptfor the �nal state of the RAFA (F /∈ Q) and for the initial state of the RABA(I /∈ Q). We onsider ǫ ∈ LFA(I) and ǫ ∈ LBA(F ) and for every state q ∈ Q,the language LM (q) of the state q in M is the smallest set suh that:� LFA(q) ∪ LBA(q) ⊆ LM (q)



� if there exists a transition labelled by r ∈ Q between q and q′ ∈ Q in RFA(resp. in RBA), i.e. q′ ∈ γFA(q, r) (resp. q′ ∈ γBA(q, r)) then: LM (r).LFA(q′) ⊆
LFA(q) (resp. LBA(q).LM (r) ⊆ LBA(q′)).We de�ne the language of the MRA as: L(M) = LM (SFA) ∪ LM (SBA).For every CG G, there exists a MRA M = (RFA, RBA) strongly equivalentwith G, i.e. generating the same strutures.3 Learning by speialization3.1 Learning rigid CG from positive examplesA rigid CG is a CG in whih every v ∈ Σ is assigned at most one ategory.Kanazawa has proved [13, 14℄ that the set of every (bidiretional) rigid CGis learnable in the limit (i.e. in the sense of [12℄) from positive examples, i.e.from sentenes. Two distint learning algorithms are now available for this pur-pose. The best known is Kanazawa's, derived from �BP� (proposed earlier byBuszkowski and Penn [3℄) and is a lassial generalization strategy. The otherone, alled RGPL (Rigid Grammar Partial Learning) is desribed by Moreauin [16℄. It is this seond algorithm that we will onentrate on here. Althoughits author did not present it this way, we show that it is in fat a speializationstrategy.Let us �rst illustrate how it works on a simple example. We suppose that theavailable set of positive examples is {�John runs�, �a man runs fast�}. At its �rststep, the algorithm assigns to eah member of the voabulary used at least onein the examples a distint variable. This initial assignment is thus here:

A = {〈John, x1〉, 〈runs, x2〉, 〈a, x3〉, 〈man, x4〉, 〈fast, x5〉}.Even if a word is used several times in the examples, only one variable is intro-dued beause the target grammar is rigid. In fat, A impliitely spei�es a setof grammars : the set of rigid CGs built on the used voabulary. As a matter offat, every suh rigid CG G an be obtained by applying a substitution σ fromthe set of variables to a set of ategories to A suh that:
G = σ(A) = {〈v, σ(C)〉|〈v, C〉 ∈ A}The substitution σ has only the e�et of renaming the variables into ategories.Of ourse, A an also be represented by a MRA M = (RFA, RBA). In thisMRA, RFA (resp.RBA) has {x1, x2, x3, x4, x5, F} (resp. {I, x1, x2, x3, x4, x5}) asset of states, and eah state xi for 1 ≤ i ≤ 5 is onneted to F (resp. I isonneted to xi) by a transition labelled by the orresponding word (anothertransition labelled by xi should be added but it is useless at this point). As Sappears nowhere in this MRA, the language it reognizes is empty. But it is aompat way to represent the whole lass of rigid CGs built on Σ.Then, eah sentene is syntatially parsed with the assigments in A, by aCYK-like algorithm. The only two possible ways to parse �John runs� are :� either to replae x1 by S/x2: then a FA rule an be applied� either to replae x2 by x1\S: then a BA rule an be applied



These kinds of substitutions express a onstraint that the variables (x1 or x2)must satisfy: A must thus be updated to a disjuntion of sets of assignments,eah subset orresponding to a sublass of rigid CGs. A simpler way to store theurrent subsets of possible solutions is to store the set of possible substitutionsthat an be applied to A. In our ase, this set is made of {σ1, σ2}, with σ1(x1) =
S/x2 and is equal to the idential funtion elsewhere, and σ2(x2) = x1\S andis equal to the idential funtion elsewhere. σ1(A), as well as σ2(A), an berepresented by a MRA derived from the previous one. This time, both MRAreognize exatly the sentene �John runs�.To parse �a man runs fast�, many more solutions are possible. The maximumtheoretial number is 5 ∗ 23 = 40 beause there are 5 possible binary branhingtrees with 4 leaves (this an be omputed in the general ase by the Catalannumber), and eah of them has 3 internal nodes whih an reeive either a FAor a BA label. This makes 40 ∗ 2 = 80 theoretial possible substitutions byombining the onstraints obtained from both sentenes (the ombinaison is alassial omposition of funtions). But, among them, some are ontraditory:as the target grammar is rigid, the unique ategory assigned to the word �runs�annot be of the form xi/xj and xk\xl at the same time. We thus see where theinitial lass plays a role in the learning strategy.It is easy to see that the main problem with this algorithm is the ombinato-rial explosion it has to fae, espeially when examples do not share any ommonword. This is not surprising, sine the problem of learning rigid CGs from sen-tenes is known to be NP-hard [4℄.To limit this explosion, Moreau proposes toexploit as muh initial knowledge as possible, in the form of an initial grammar,that is, initially known ategories for some usual words (for example the lexialones) whih annot be renamed, as it is the ase for the variable ategories.Furthermore, there is no guarantee at all that this strategy always onvergesto a unique solution. In theory, to ful�ll the requirements of learnabiblity in thelimit, when several possible ompatible grammars are available, inlusion testsshould be performed to selet the one generating the �smallest� language. Thisproblem also ourred with Kanazawa's algorithm, when applied to sentenes.3.2 State merges and state splitsThe previous strategy an now be interpreted in terms of operations applyingon MRA. As we have seen, at every step of this algorithm, the searh spaeis a disjuntion of sets of assignments of the form σ(A) for some substitution
σ, and eah of them an be represented by a MRA. The MRA orrespondingwith A reognizes no sentene. But, as soon as at least one example has beentreated (and, thus, the ategory S been introdued), σ(A) spei�es a set of CGsreognizing at least this example. What is the e�et of a onstraint on a MRA ?The onstraints always take the form: xk = xl, where xk and xl are alreadyintrodued variables or equal to S, or xk = Xm/Xn or xk = Xm\Xn , with Xmand Xn any ategory built on the set of every variable union S.



� the e�et of a onstraint of the form xk = xl on a MRA is a state merge inboth the RAFA and the RABA of the MRA. As, in MRA, xk an also beused as transition labels, orresponding transition merges an also our.� the e�et of a onstraint of the form xk = Xm/Xn (resp. Xm\Xn) an bedeomposed into four steps:1. Xm/Xn (resp. Xm\Xn) replaes xk everywhere in the MRA;2. every subategory of Xm and Xn (inluding themselves) not alreadyidenti�ed (i.e. not already a sub-ategory of the previous set of assign-ments) beomes a new state in both RA: in the RAFA, it is linked to thestate F (resp. in the RABA from the state I) by a transition labelled byits name;3. in the RAFA (resp. in the RABA), a new transition labelled by Xm/Xn(resp. Xm\Xn) links the states Xm and Xn, and the same ours forevery newly identi�ed subategory;4. the states and transitions of the same name are merged in eah RA.This operation an now be ompared to the �state splitting strategy� pro-posed by Fredouille and Milet in [11℄ to learn regular languages represented by�nite state automata by speialization. For example, the onstraint x1 = S/x2has the e�et of splitting the state x1 into two new states: S and x2. Then, asa state named x2 already exists, the new one is merged with the previous one.But our speialization operation is more general than Fredouille and Milet's,beause of the reursive nature of the automata on whih it applies. Further-more, their algorithm was a speialization strategy at the language level : theirinitial hypothesis was the most general regular language Σ∗ and onstraints wereused to speialize the language. Moreau's algorithm is a speialization strategyat the set of grammars level : its initial hypothesis is the set of possible gram-mars, and the examples are used to introdue onstraints that redue this setto subsets. The orresponding MRA represents a set of grammars and not onlya spei� language. For these reasons, our approah annot be easily adaptedto usual �nite state automata. But we believe that our state splitting operatoris better founded than the previous one, beause it is the formal ounterpart ofwell-de�ned substitutions.4 Learning from typed examples revisitedWe now show that the algorithm proposed in [8, 7℄ to learn CGs from typedexamples an be onsidered as a speialization strategy where state splits andstate merges are ontrolled by a typing approah.4.1 Learning from semantially typed examplesThe idea of learning CGs from typed examples was �rst introdued in [8℄. Thetypes onsidered in this work are borrowed from Montague's theory [6℄: they arelexialized terms derived from syntati ategories by a morphism, and oinide



with the type of the logial formula that translates the assoiated word. Learningfrom typed examples is ognitively relevant beause types an be interpreted assemanti information available in the environment or previously learned. In thissetion, we brie�y reall this notion in a general fashion and give the onditionsunder whih they an help learning.The notion of types useful for learning CGs is based on:� a �nite set τ of basi types among whih is a distinguished type t ∈ τstanding for �truth values�: usually, this set is τ = {e, t} where e ∈ τ is thetype of �entities�. Montague also used a type s for �intensions� that will notbe used in the following;� the set Types(τ) of every type is the smallest set suh that τ ⊂ Types(τ)and for every type α, β ∈ Types(τ), 〈α, β〉 ∈ Types(τ). 〈α, β〉 is the type offuntions that require an argument of type α and provide a result of type β.Types in Types(τ) are useful for learning a CG only if they are onnetedwith its syntati ategories in Cat(B). More preisely, the neessary onditionto be ful�lled is that there exists a homomorphism h suh that:� for every basi ategory C ∈ B, h(C) is de�ned and belongs to Types(τ).The distinguished ategory S ∈ B is assoiated with the distinguished type
t ∈ τ : h(S) = t.� for every other ategory in Cat(B) of the form A/B or A\B, we have:
h(A/B) = h(B\A) = 〈h(B), h(A)〉.Example 3 (lassial semanti types for natural languages). Let τ = {e, t}. Thewords of the grammar de�ned in Example 1 reeive the following semanti types:� �John� an be onsidered as an entity of type e;� �runs� and �man� are one-plae prediates; their type is: 〈e, t〉;� �fast� is a �one-plae-prediate modi�er�, i.e. it transforms a prediate of arityone into another one of the same arity: it thus has the type 〈〈e, t〉, 〈e, t〉〉;� �naly, if we follow Montague's intuition about the �proper treatment of quan-ti�ation� [6℄, the determiner �a� has the most omplex type: 〈〈e, t〉, 〈〈e, t〉, t〉〉.The orresponding homomorphism h is de�ned by: h(S) = t, h(T ) = e, h(CN) =

〈e, t〉. As required, if 〈v, C〉 ∈ G, the semanti type of v is h(C).4.2 How types help to ontrol state splits and state mergesLearning from typed examples means learning from sentenes where eah ele-ment of the voabulary v ∈ Σ, whih should be assigned C ∈ Cat(B) by thetarget grammar G to analyse this sentene, is provided with the orrespondingtype h(C) ∈ Types(τ). As we will see, the learning strategy proposed in [8, 7℄an also be interpreted in terms of operations applying on MRA. We illustratethis algorithm on our example. The input data are now of the form:John runs
e 〈e, t〉
e x1〈e, t〉



a man runs fast
〈〈e, t〉, 〈〈e, t〉, t〉〉 〈e, t〉 〈e, t〉 〈〈e, t〉, 〈e, t〉〉

x2〈x3〈e, t〉, x4〈x5〈e, t〉, t〉〉 x6〈e, t〉 x1〈e, t〉 x7〈x8〈e, t〉, x9〈e, t〉〉In these typed examples, the third line is the result of a simple pre-treatmentwhih onsists in introduing variables in front of every �funtional type�. Thevariables are all distint, exept when the same ouple �word, type� ours (as itis the ase here for the ouple �runs, 〈e, t〉�). These variables will eventually takethe value �/� or �\� during the learning proess. The initial set of assignementsis, this time:
A = {〈John, e〉, 〈runs, x1〈e, t〉〉, 〈a, x2〈x3〈e, t〉, x4〈x5〈e, t〉, t〉〉〉, 〈man, x6〈e, t〉〉,
〈fast, x7〈x8〈e, t〉, x9〈e, t〉〉〉}.As previously, A impliitely spei�es a set of grammars. This set is muh largerthan the one of rigid CGs: it is the set of CGs whih an assign an arbitrarynumber of distint ategories to eah word (so, it intersets every lass of k-valued CGs), but for whih there exists a homomorphism suh that every distintategory assigned to the same word gives rise to a distint type. In formal terms,it is suh that there exists a homomorphism h satisfying:
∀〈v, C1〉, 〈v, C2〉 ∈ G, h(C1) = h(C2) =⇒ C1 = C2.We have shown [9℄ that for every ǫ-free ontext-free language, it is possible tode�ne a CG generating this language, a set of types and a homomorphism suhthat this property is satis�ed. This new target lass is learnable in the limit fromtyped examples [8, 7℄.As previously, A an also be represented by a MRA. But the informationarried by the types is muh riher than the one arried by the basi variablesMoreau used: types an be interpreted as some kind of maximal bound on thepossible ategories they replae; they display all their potential renaming.The learning algorithm applies as in setion 3.1: it onsists in trying to parseeah sentene with the rules FA and BA adapted to types so as to reah thetype t at the root, by de�ning onstraints on the variables (see [7℄ for details).The only possible type-ompatible way to parse the �rst typed example �Johnruns� is to have: x1 = \, meaning that only a BA rule is ompatible with thetype assignments. �runs� should thus �naly reeive the ategory e\t. This time,there is only one type-ompatible way to parse �a man runs fast�: this parse(isomorphi to the one in Figure 1) is shown on Figure 3. Both typed exampleslead to the following (unique) set of onstraints: x2 = /, x3 = x6, x7 = \,
x8 = x1 = \, x4 = /, x5 = x9.The set of assignments is thus updated to:
A = {〈John, e〉, 〈runs, \〈e, t〉〉, 〈a, /〈x3〈e, t〉, /〈x5〈e, t〉, t〉〉〉, 〈man, x3〈e, t〉〉,
〈fast, \〈\〈e, t〉, x5〈e, t〉〉〉}.If we apply the proess of setion 2.4 to this set (after re-ordering the types tomake them similar to syntati ategories and t playing the role of S), we obtainthe MRA of Figure 4. In this example, with only two typed examples, we obtaina unique MRA whih is nearly isomorphi to the target one.In this ontext, the onstraints take the form xi = xj , xi = / or xi = \ andgive rise to the same transformations as the one detailed in setion 3.2. It ould



t
FA : x4 = /

x5 = x9

x4〈x5〈e, t〉, t〉
FA : x2 = /

x3 = x6

x2〈x3〈e, t〉, x4〈x5〈e, t〉, t〉〉a x6〈e, t〉man
x9〈e, t〉

BA : x7 = \
x8 = x1

x1〈e, t〉runs x7〈x8〈e, t〉, x9〈e, t〉〉fastFig. 3. parse tree for a typed example
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e

John
e\t
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e\t

a(t/x5〈e, t〉)/x3〈e, t〉

fast
(e\t)\(x5〈e, t〉)

(e\t)\x5〈e, t〉

fast
Fig. 4. MRA for type assignments



seem that the �rst kind orresponds to a state merge and the other two to astate split, but the situation is a bit more omplex. In our example, to reah thetarget, only one onstraint is missing: x5 = \. The typed example orrespondingto the sentene �John runs fast� would provide this onstraint. Its �rst e�et onthe MRA would be to rename the state x5〈e, t〉 both in the RAFA and in the
RABA by \〈e, t〉, that is e\t. But, doing so, this state beomes idential to analready existing one and then must be merged to it.The table of Figure 5 explains why types help the algorithm to avoid aombinatorial explosion and to onverge quiker. We have seen that there alwaysexists a homomorphism σ between olumn 2 and olumn 3, whih is the targetof the learning proess. Hypotheses about types ensure that there also existsa homomorphism h between olumn 3 and olumn 4. This situation is similarto the one desribed in [15℄, and analyzed in [5℄. The two learning algorithmspresented here are both speialization strategies at the set of grammars level,but their initial hypothesis is either a lower bound or an upper bound of the setof ategories of the target grammar. Types are e�ient beause they allow toontrol the possible renamings.voabulary Moreau's initial target ategory pre-treatedassigment initial assignment typesJohn x1 T ea x2 (S/(T\S)/CN x2〈x3〈e, t〉, x4〈x5〈e, t〉, t〉〉man x3 CN x6〈e, t〉runs x4 T\S x1〈e, t〉fast x5 (T\S)\(T\S) x7〈x8〈e, t〉, x9〈e, t〉〉Fig. 5. tabular showing the starting points and target of the two algorithms
5 ConlusionIn grammatial inferene from positive examples, two soures of informationare usually available: the target lass and the set of examples. Generalizationtehniques use the examples to generate a �most spei� grammar� ompatiblewith them (the pre�x tree automaton in the ase of regular languages), and thenuse the target lass to generalize it. Speialization tehniques do the ontrary:the lass is the starting point and the examples help to speialize it.In this paper, we propose a new perspetive on these tehniques. First, wesee that disjuntions of MRA are able to represent the searh spae of suhlearning algorithms. Seond, we show that the algorithm to learn CGs fromtyped examples proposed in [8, 7℄ introdues type ontrol into the proess. Theinitial semanti types assoiated with the elements of the voabulary speifysome kind of maximal bound on the possible renamings, allowing to limit theombinatorial explosion of solutions.
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