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Laboratoire de Mathématiques Appliquées, UMR 5142, Université de Pau et des Pays de l’Adour, BP 1155, 64013 Pau Cedex, France

Abstract

We consider a family of linearly elastic shells of the first kind (as defined in Ciarlet [2]), also known as non inhibited
pure bending shells (Sanchez-Hubert and Sanchez-Palencia [7]). This family is indexed by the half-thickness ε. When ε
approaches zero, the averages across the thickness of the shell of the covariant components of the displacement of the
points of the shell converge strongly towards the solution of a ”2D generalized membrane shell problem” provided the
applied forces satisfy admissibility conditions (Ciarlet and Lods [3], Chapelle and Bathe [1]). The identification of the
admissible applied forces usually requires delicate analysis.

In the first part of this paper we simplify the general admissibility conditions when applied forces h are surface forces
only, and obtain conditions that no longer depend on ε (Luce, Poutous and Thomas [5]) : find hαβ = hβα in L2(ω) such
that for all η = (ηi) in V(ω),

∫

ω
hiηidω =

∫

ω
hαβγαβ(η)dω where ω is a domain of R

2, θ is in C 3(ω,R3) and S = θ(ω) is the

middle surface of the shells, where (γαβ(η)) is the linearized strain tensor of S and V(ω) =
{

η ∈ H1(ω), η = 0 on γ0

}

,
the shells being clamped along Γ0 = θ(γ0).

In the second part, since the simplified admissibility formulation does not allow to conclude directly to the existence
of hαβ , we seek sufficient conditions on h for hαβ to exist in L2(ω). In order to get them, we impose more regularity
to hαβ and boundary conditions. Under these assumptions, we can obtain from the weak formulation a system of PDE
with hαβ as unknowns. The existence of solutions depends both on the geometry of the shell and on the choice of h.
We carry through the study of four representative geometries of shells and identify in each case a special admissibility
functional space for h.

1 Introduction and notations

In this paper, greek indices take their values in {1, 2}, whereas latin indices belong to {1, 2, 3} and the repeated index
summation convention is used.
Let us first consider the ”2D” ill-posed scaled variational problem

P (ω) :







ζ ∈ V (ω) :=
{

η = (ηi) ∈ H1 (ω) ; η = 0 on γ0

}

,∀η ∈ V (ω)

∫

ω
aαβστγστ (ζ) γαβ (η)

√
ady =

∫

ω
hivi

√
ady

where the bilinear form is not coercive on V (ω) , the surface functions hi ∈ L2 (ω) are independent of ε, ω is a domain
in R

2 (open, bounded, connected subset with a Lipschitz-continuous boundary, the set ω being locally on one side of its
boundary), θ : ω −→ R

3(θ ∈ C3
(

ω; R3
)

) is an injective mapping such that the two vectors aα := ∂αθ (y) are linearly
independent at each point y ∈ ω, where a3 := a1∧a2

|a1∧a2|
, and aαβ := aα · aβ denote the covariant components of the

metric tensor of S := θ (ω) , and a := det
(

(aαβ)αβ

)

, aαβ denote the contravariant components of the metric tensor of
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S := θ (ω) , where aαβστ which denote the contravariant components of the scaled 2D elasticity tensor are defined by

aαβστ :=
4λµ

λ+ 2µ
aαβaστ + 2µ

(

aασaβτ + aατaβσ
)

with λ > 0, µ > 0

where Γσαβ are the surface Christoffel symbols i.e. Γσαβ := aσ · ∂αaβ with ai · aj = δij , and where, for any vector field

η = (ηi) ∈ H1 (ω) , the covariant components of the 2D linearized change of metric tensor γαβ (η) ∈ L2 (ω) are defined
by

γαβ (η) := 1
2

(∂βηα + ∂αηβ) − Γσαβησ − bαβη3 with bαβ := a3 · ∂αaβ . (1)

Let us also consider the 3D scaled variational problem

P (ε; Ω) :







u (ε) ∈ V (Ω) :=
{

v = (vi) ∈ H1 (Ω) ;v = 0 on Γ0 := γ0 × [−1, 1]
}

,∀v ∈ V (Ω)

∫

Ω
Aijkl (ε) ek‖l (ε;u (ε)) ei‖j (ε;v)

√

g (ε)dx =
∫

Γ+∪Γ−
hi±vi

√

g (ε)dΓ
(2)

where the functions hi± ∈ L2 (Γ+ ∪ Γ−) are independent of ε, Ω := ω × ]−1, 1[ , Γ+ := ω × {1} , Γ− := ω × {−1} ,
and Ωε := ω × ]−ε, ε[, Θ : Ωε −→ R

3 is the canonical extension of θ and thus verifies Θ (y, x3) := θ (y) + x3a3 and
det (g

1
,g

2
,g

3
) > 0 (where gi := ∂iΘ), where, for any vector field v = (vi) ∈ H1 (Ω) , the scaled linearized strains

ei‖j (ε;v) = ej‖i (ε;v) ∈ L2 (Ω) are defined by

eα‖β (ε;v) := 1
2

(∂βvα + ∂αvβ) − Γpαβ (ε) vp

eα‖3 (ε;v) := 1
2

(

1
ε∂3vα + ∂αv3

)

− Γσα3 (ε) vσ, e3‖3 (ε;v) := 1
ε∂3v3

with Γpij (ε) : Ω −→ R being the scaled 3D Christoffel symbols i.e.

Γpij (ε) (x1, x2, x3) := Γε,pij (x1, x2, εx3) and Γε,pij := gp · ∂igj with gi · gj = δij ,

with also, g (ε) : Ω −→ R being the scaled function of gε := det (gi · gj) , i.e g (ε) (x1, x2, x3) := gε (x1, x2, εx3) , and
where, at last, the contravariant components Aijkl (ε) : Ω −→ R of the scaled 3D elasticity tensor satisfy

Aijkl (ε) = Ajikl (ε) = Aklij (ε) , Aijkl (ε) = Aijkl (0) +O (ε) and Aαβσ3 (ε) = Aα333 (ε) = 0,

where the order symbol is meant with respect to the norm ‖w‖0,∞,Ω := sup
{

|w (x)| , x ∈ Ω
}

and

Aαβστ (0) : = λaαβaστ + µ
(

aασaβτ + aατaβσ
)

, Aαβ33 (0) := λaαβ , Aα3σ3 (0) := µaασ

A3333 (0) : = λ+ 2µ,Aαβσ3 (0) = Aα333 (0) := 0.

Let us now assume that the semi norm |·|Mω defined by |η|Mω := (
∑

α,β

|γαβ (η)|2
0,ω)1/2 is a norm over the space V (ω) which

is not equivalent to the norm ‖·‖1,ω (Slicaru [9]) and let V
#
M (ω) be the completion of V (ω) with respect to |·|Mω . Let

|·|MΩ be the norm over V (Ω) defined by

|v|MΩ =

{

|∂3v|20,Ω +
(

|v|Mω
)2
}1/2

where v := 1
2

∫ 1

−1

vdx3

and let V
#
M (Ω) be the completion of V (Ω) with respect to |·|MΩ .

Let BM (ζ, η) :=
∫

ω
aαβστγστ (ζ) γαβ (η)

√
ady and LM (η) :=

∫

ω
hiηi

√
ady and let B#

M and L#
M denote the unique

continuous extensions from V (ω) to V
#
M (ω) of the bilinear form BM and the linear form LM .

Under all these assumptions, Ph. Ciarlet and V. Lods proved that
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Theorem 1 There exist u in V
#
M (Ω) and ζ in V

#
M (ω) such that

u (ε) −→ u in V
#
M (Ω) as ε→ 0 and u (ε) −→ ζ in V

#
M (ω) as ε→ 0.

and the limit ζ satisfies the scaled 2D variational problem of a linearly elastic generalized membrane shell of the first
kind

P#
M (ω) :







ζ ∈ V
#
M (ω) ,∀η ∈ V

#
M (ω)

B#
M (ζ, η) = L#

M (η)

(3)

if the density of surface force h is admissible, that is, if there exist for each ε, 0 < ε < ε0, functions F ij (ε) =
F ji (ε) ∈ L2 (Ω) and there exist functions F ij = F ji ∈ L2 (Ω) such that F ij (ε) −→ F ij in L2 (Ω) as ε→ 0 and

∫

Γ+∪Γ−

hi±vi
√

g (ε)dΓ =

∫

Ω

F ij (ε) ei‖j (ε;v)
√

g (ε)dx for all 0 < ε < ε0 and for all v ∈ V (Ω) .

Remark 1 Because of the previous strong convergency results, it seems natural to carry on with the study of admissibility
conditions. But it is not the only option, an alternative is to study the behaviour of the solution u(ε) when the forces
are not admissible. V. Lods and C. Mardare have proved in [4] that, provided the shell is totally clamped, the solutions
u(ε) strongly converge, in the energy norm, towards the displacement given by Koiter or Naghdi’s models.

2 Main results

In what follows we assume that all the assumptions above are satisfied. Let us now simplify the second part of the
previous theorem and prove that

Theorem 2 There exist u in V
#
M (Ω) and ζ in V

#
M (ω) such that

u (ε) −→ u in V
#
M (Ω) as ε→ 0 and u (ε) −→ ζ in V

#
M (ω) as ε→ 0

and the limit ζ satisfies the scaled 2D variational problem P#
M (ω) if there exist functions hαβ = hβα ∈ L2 (ω) such that

the density of surface force h satisfies :

∫

ω

hiηi
√
ady =

∫

ω

hαβγαβ (η)
√
ady for all η ∈ V (ω) . (4)

The proof is given for a density applied on the upper surface so that we can identify hi± with hi. The general case
is then proved by linearity. In Ciarlet and Lods [3], the proof is divided in ten parts. To prove our theorem, we keep
the same pattern of proof. But we only have to change the proof of parts (ii) , (iii) , (v) and (vii) since these are the
parts concerned with the admissibility of the forces. The proof of the other parts remains unchanged. For a better
understanding of the whole proof, we remind them and use their results when required.
Before proving Theorem 2, let us first remind two usefull propositions already proved in Ciarlet [2].

Proposition 1 We have the following 3D Inequality of Korn’s type : there exist constants C > 0 and ε0 > 0 such
that

‖v‖1,Ω ≤ C
ε







∑

i,j

∥

∥ei‖j (ε;v)
∥

∥

2

0,Ω







1/2

for all v ∈ V (Ω) and all 0 < ε < ε0. (5)

Proposition 2 If w ∈ L2 (Ω) satisfies

∫

Ω

w∂3vdx = 0 for all v ∈ H1 (Ω) that vanish on Γ0, then w = 0. (6)
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We now prove two preliminary results that will be used in the proof of Theorem 2.

Lemma 1 For v ∈ H1 (Ω) , let v|Γ+ denote the trace of v on Γ+ and v denote the mean value of v in the thickness.
Then we have

v|Γ+ = v + 1
2

∫ 1

−1

(1 + x3) ∂3vdx3. (7)

Proof. The result is obtained after the following integration by parts:

v = 1
2

∫ 1

−1
vdx3 = 1

2

(

∫ 1

−1
∂3 ((1 + x3) v) dx3 −

∫ 1

−1
(1 + x3) ∂3vdx3

)

= 1
2

(

(1 + 1) v|Γ+ − (1 − 1) v|Γ− −
∫ 1

−1
(1 + x3) ∂3vdx3

)

.

Lemma 2 There exist constants c > 0, ε0 > 0 and a function G (ε, x1, x2, x3) such that for all 0 < ε < ε0,

√

g (ε) =
√
a+ εG with ‖G‖0,∞,Ω ≤ c (8)

Proof. In Ciarlet [2], p156, it is proved that gαβ (ε) = aαβ − 2εx3bαβ + O
(

ε2
)

. Then, since g (ε) = det
(

(gij (ε))i,j

)

and a = det
(

(aαβ)αβ

)

, we have the result by using a first order Taylor development.

We can now give the proof of Theorem 2.

Proof.

Part (i): (no proof) There exist constants c0 > 0 and ε0 > 0 such that

|v|MΩ ≤ c0







∑

i,j

∥

∥ei‖j (ε;v)
∥

∥

2

0,Ω







1/2

for all v ∈ V (Ω) and all 0 < ε < ε0. (9)

Part (ii): (partial proof) There is a subsequence, still denoted (u (ε))ε>0 for convenience, and there exist u ∈ V
#
M (Ω) ,

u−1 =
(

u−1
i

)

∈ V (Ω) , ei‖j ∈ L2 (Ω) , and ζ ∈ V
#
M (ω) such that

u (ε) ⇀ u in V
#
M (Ω) ,

εu (ε) ⇀ u−1 in H1 (Ω) ,
ei‖j (ε) ⇀ ei‖j in L2 (Ω) ,
εe3‖3 (ε) −→ e3‖3 in L2 (Ω) ,

u (ε) ⇀ ζ in V
#
M (ω) as ε→ 0.

In order to prove that, it is sufficient to prove that there exist constants c > 0 and ε1 > 0 such that for all 0 < ε < ε1,

∣

∣

∣

∣

∫

Γ+

hi+ui (ε)
√

g (ε)dΓ

∣

∣

∣

∣

≤ c







∑

i,j

∥

∥ei‖j (ε)
∥

∥

2

0,Ω







1/2

.

From (8) we know that

∫

Γ+

hi+ui (ε)
√

g (ε)dΓ =

∫

Γ+

hi+ui (ε)
√
adΓ +

∫

Γ+

hi+ui (ε) εGdΓ. (10)

Then, with the help of (4) and (7), we can write the first integral of the rigthside of (10) this way:

∫

Γ+

hi+ui (ε)
√
adΓ =

∫

ω

hαβγαβ

(

u (ε)
)√

ady + 1
2

∫

Ω

(1 + x3)h∂3u (ε)
√
adx.
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Hence, applying Cauchy-Schwarz inequality first, using the definition of |u (ε)|MΩ afterwards, and lastly using (9) we
have the following inequalities

∣

∣

∫

Γ+ h
i+ui (ε)

√
adΓ

∣

∣ ≤
∥

∥hαβ
√
a
∥

∥

0,ω

∥

∥

∥
γαβ

(

u (ε)
)∥

∥

∥

0,ω
+ 1

2
‖(1 + x3)h

√
a‖0,Ω ‖∂3u (ε)‖0,Ω

≤ c |u (ε)|MΩ ≤ c

{

∑

i,j

∥

∥ei‖j (ε)
∥

∥

2

0,Ω

}1/2

.

At this point, let us insist on the fact that the hαβ have to be in L2 (ω) which can be more restrictive than h being

in the dual of V
#
M (ω). That is why, the results obtained by E. Sanchez-Palencia in [8] and [7] about this space are

not enough to insure the convergence of u (ε). To majorate the second integral of the rigthside of (10), we use again
the Cauchy-Schwarz inequality, then the continuity of the trace on Γ+ and the majoration of (8), we conclude with
inequality (5) . Therefore,

∣

∣

∣

∣

∫

Γ+

hi+ui (ε) εGdΓ

∣

∣

∣

∣

≤ ε
∥

∥h+G
∥

∥

0,Γ+ ‖u (ε)‖0,Γ+ ≤ cε ‖u (ε)‖0,Ω ≤ cε ‖u (ε)‖1,Ω ≤ c







∑

i,j

∥

∥ei‖j (ε)
∥

∥

2

0,Ω







1/2

.

Part (iii): (proof) The limits ei‖j found in part (ii) satisfy

e1‖3 = 0, e2‖3 = 0 and e3‖3 = − λ

λ+ 2µ
aαβeα‖β .

In P (ε; Ω) we let v : = εw, w being an arbitrary function in the space V (Ω), and we let ε approach zero; we obtain
the equation

∫

Ω

{

2µaασeσ‖3∂3wα +
(

λaστeσ‖τ + (λ+ 2µ) e3‖3∂3w3

)}√
adx = 0,

which, combined with (6) , implies the result.
Part (iv): (no proof) The whole family (u (ε))ε>0 satisfies:

{

eα‖β (ε) − γαβ

(

u (ε)
)}

−→ 0 in L2 (ω) as ε→ 0;

consequently, the subsequence considered in part (ii) satisfies:

γαβ

(

u (ε)
)

⇀ eα‖β in L2 (ω) .

Part (v): (partial proof) The limits eα‖β found in part (ii) satisfy

∫

ω

aαβστeσ‖τγαβ (η)
√
ady =

∫

ω

hαβγαβ (η)
√
ady for all η ∈ V (ω) ,

the functions hαβ ∈ L2 (ω) being those used in the definition of admissible forces in Theorem 2. To prove the previous
equation, we just need to check that

∫

ω

hαβγαβ (v)
√
ady = lim

ε→0

∫

Γ+

hi+vi
√

g (ε)dΓ for all v ∈ V (Ω) independent of the transverse variable.

A function v∈V (Ω) independent of the transverse variable x3 satisfies ∂3v = 0. That is why, using the same decompo-
sition as in the proof of part (ii) , we have

∫

Γ+

hi+vi
√

g (ε)dΓ =

∫

ω

hαβγαβ (v)
√
ady + ε

∫

Γ+

hi+viGdΓ

5



and the expected result when we let ε→ 0.
Part (vi): (no proof) The subsequence (u (ε))ε>0 found in part (ii) is such that

εu (ε) ⇀ 0 in H1 (Ω) ,
∂3uα (ε) ⇀ 0 in L2 (Ω) ,

as ε→ 0. Furthermore, eα‖β is independent of the transverse variable x3.
Part (vii): (partial proof) The following strong convergences hold as ε→ 0:

ei‖j (ε) −→ ei‖j in L2 (Ω) ,
εu (ε) −→ 0 in H1 (Ω) ,

γαβ

(

u (ε)
)

−→ eα‖β in L2 (ω) ,

u (ε) −→ ζ in V
#
M (ω) .

To prove part (vii) , we only need to prove the following result

lim
ε→0

∫

Γ+

hi+ui (ε)
√

g (ε)dΓ =

∫

ω

hαβeα‖β
√
ady.

From the proof of part (ii) , we know that

∫

Γ+

hi+ui (ε)
√

g (ε)dΓ =

∫

ω

hαβγαβ

(

u (ε)
)√

ady + 1
2

∫

Ω

(1 + x3)h∂3u (ε)
√
adx+

∫

Γ+

hi+εui (ε)GdΓ (11)

and because of (vi), (iv) and (ii) we have:

lim
ε→0

1
2

∫

Ω

(1 + x3)h∂3u (ε)
√
adx = 0, lim

ε→0

∫

ω

hαβγαβ

(

u (ε)
)√

ady =

∫

ω

hαβeα‖β
√
ady and lim

ε→0

∫

Γ+

hi+εui (ε)GdΓ = 0.

Hence, we just have to let ε→ 0 in (11) to get the announced result.

Part (viii): (no proof) The limit ζ ∈ V
#
M (ω) found in part (ii) satisfies the equations

B#
M (ζ, η) =L#

M (η) for all η ∈ V
#
M (ω) ,

which have a unique solution. Consequently, the convergence

u (ε) −→ ζ in V
#
M (ω)

established in part (vii) holds for the whole family
(

u (ε)
)

ε>0
.

Part (ix): (no proof) The following strong convergences hold:

u (ε) −→ u in V
#
M (Ω) ,

∂3uα (ε) −→ 0 in L2 (Ω) .

Part (x): (no proof) The whole family (u (ε))ε>0 converges strongly to u in the space V
#
M (Ω) .

3 Some applications

In this section we first obtain a general system of PDE from the weak formulation (4), and afterwards, we carry through
the study of this system in four representative cases. Since (γαβ), the linearized change of metric tensor of S, depends
on the geometry of the shell through the Christoffel symbols Γσαβ and the curvature tensor (bαβ), see (1), the formulation

6



of the PDE system depends on the geometry too. The choice of the coordinates set is very important to simplify the
coupling between the unknowns. Indeed, if the geometry is hyperbolic, a parametrisation along the asymptotic lines

leads to the following curvature tensor : (bαβ) =

(

0 b12
b12 0

)

, whereas if the geometry is parabolic, the tensor becomes

(bαβ) =

(

b11 0
0 0

)

when the first coordinate is along the asymptotic line (Sanchez-Hubert and Sanchez-Palencia [7]).

Let us remind that an asymptotic line of a surface S is a curve on S having the property that at every point, the tangent
vector is collinear with one of the asymptotic directions (directions for which the normal curvature is null).

Theorem 3 If the problem of unknowns (hαβ) (with h21 = h12):

{

−∂β(hαβ
√
a) − Γασβ(h

σβ
√
a) = hα

√
a for α = 1, 2

−b11h11 − 2b12h
12 − b22h

22 = h3 (12)

admits at least one solution such that






h11 ∈ L2(ω), ∂1h
11 ∈ L2(ω), h11n1 = 0 on ∂ω \ γ0,

h22 ∈ L2(ω), ∂2h
22 ∈ L2(ω), h22n2 = 0 on ∂ω \ γ0,

h12 ∈ H1(ω), h12 = 0 on ∂ω \ γ0

(13)

then h is admissible.

Proof. Let us assume that hαβ satisfy the regularity and boundary conditions (13). We integrate by part
∫

ω
hαβγαβ (η)

√
ady with η ∈ V (ω). The border integrals vanish because of the boundary conditions. By using the

equations (12), we obtain
∫

ω
hαβγαβ (η)

√
ady =

∫

ω
hiηi

√
ady, so (4) is satisfied.

Before studying the existence of solutions for the PDE systems in four representative cases of partially or totally clamped,
hyperbolic or parabolic shells, let us first remind two useful properties.

Property 1 Let ω := ]a, b[ × ]c, d[ be an open bounded subset of R
2 and h be a function of L2 (ω) . The function f

defined almost everywhere in ω by

f (x, y) :=

∫ x

a

h(t, y)dt

is in L2 (ω) and satisfies
∂xf = h in L2 (ω) , f = 0 on x = a.

A proof is given in Sanchez-Hubert and Sanchez-Palencia [7], p64.

Property 2 Let ω := ]a, b[ × ]c, d[ be an open bounded subset of R
2 and h be a function of L2 (ω) such that ∂yh is in

L2 (ω) too. Then, the function f defined almost everywhere in ω by

f(x, y) :=

∫ x

a

h(t, y)dt

is in H1 (ω) and satisfies

∂xf = h in L2 (ω) , ∂yf =

∫ x

a

∂yh(t, y)dt in L2 (ω) and f = 0 on x = a.

Proof. Because of Property 1, we just need to prove that ∂yf =
∫ x

a
∂yh(t, y)dt. To do so, we first prove the equality

in the space of distibutions D′(ω), that is, we prove that for any ϕ in D(ω) :

∫

ω

∂yf(x, y)ϕ(x, y)dxdy =

∫

ω

(
∫ x

a

∂yh(t, y)dt

)

ϕ(x, y)dxdy

7



Let ϕ be in D(ω), h and ∂yh be in L2(ω) and f(x, y) :=
∫ x

a
h(t, y)dt. By definition of the derivation in D′(ω) and by

definition of f,
∫

ω

∂yf(x, y)ϕ(x, y)dxdy = −
∫

ω

f(x, y)∂yϕ(x, y)dxdy = −
∫

ω

(
∫ x

a

h(t, y)dt

)

∂yϕ(x, y)dxdy

From the Ostrogradsky formula
∫

ω
∂xuvdxdy = −

∫

ω
u∂xvdxdy +

∫

∂ω
uvνxdl, that can be used as soon as ∂xu and ∂xv

are in L2(ω), we deduce that

−
∫

ω

(
∫ x

a

h(t, y)dt

)

∂yϕ(x, y)dxdy =

∫

ω

(
∫ x

b

∂yϕ(t, y)dt

)

h(x, y)dxdy −
∫

∂ω

(
∫ x

a

h(t, y)dt

)(
∫ x

b

∂yϕ(t, y)dt

)

νxdl

But, on the borders y = c and y = d, νx = 0, on the border x = a,
∫ x

a
h(t, y)dt = 0 and on the border x = b,

∫ x

b
∂yϕ(t, y)dt = 0, so that the border integral vanishes. Because of ϕ’s regularity, we can permutate

∫

and ∂y and use
once more an Ostrogradsky formula so that

∫

ω

∂y

(
∫ x

b

ϕ(t, y)dt

)

h(x, y)dxdy = −
∫

ω

(
∫ x

b

ϕ(t, y)dt

)

∂yh(x, y)dxdy +

∫

∂ω

h(x, y)

(
∫ x

b

ϕ(t, y)dt

)

νydl.

On the borders x = a and x = b, νy = 0, on the borders y = c and y = d, ϕ = 0, so that the border integral vanishes
again. We integrate by parts again and obtain

−
∫

ω

(
∫ x

b

ϕ(t, y)dt

)

∂yh(x, y)dxdy =

∫

ω

(
∫ x

a

∂yh(t, y)dt

)

ϕ(t, y)dxdy −
∫

∂ω

(
∫ x

a

∂yh(t, y)dt

)(
∫ x

b

ϕ(t, y)dt

)

νxdl.

Since the border integral is again equal to 0, we have the expected equality in D′(ω). To conclude, from Property 1,
we know that

∫ x

a
∂yh(t, y)dt is in L2(ω), so the equality takes place in L2(ω).

3.1 Hyperbolic shell totally clamped

Let us suppose that the middle surface of the shell is the following portion of a hyperbolic paraboloid

HP :=

{

(x1, x2, x3) ∈ R
3,
x3

a3

=
x2

1

a2
1

− x2
2

a2
2

with − x0 < x1 < x0 and − y0 < x2 < y0

}

and that the shell is totally clamped. We choose a parametrisation of HP along the asymptotic lines, so that the
mapping θ is

θ : ω −→ R
3

(ϕ,ψ) 7−→
(

a1

2
(ϕ+ ψ) , a2

2
(ϕ− ψ) , a3ϕψ

)

where ω is the subset

ω :=

{

(ϕ,ψ) ∈ R
2, ϕ− 2y0

a2

< ψ < ϕ+
2y0
a2

and − ϕ− 2x0

a1

< ψ < −ϕ+
2x0

a1

}

.

The border is then represented by

∂ω :=
{(

ϕ,+ϕ− 2y0
a2

)

, ϕ ∈
]

−x0

a1
+ y0

a2
,+x0

a1
+ y0

a2

[}

∪
{(

ϕ,+ϕ+ 2y0
a2

)

, ϕ ∈
]

−x0

a1
− y0

a2
,+x0

a1
− y0

a2

[}

∪
{(

ϕ,−ϕ− 2x0

a1

)

, ϕ ∈
]

−x0

a1
− y0

a2
,−x0

a1
+ y0

a2

[}

∪
{(

ϕ,−ϕ+ 2x0

a1

)

, ϕ ∈
]

+x0

a1
− y0

a2
,+x0

a1
+ y0

a2

[}

.

In these coordinates, the second fundamental form (bαβ)αβ verifies,

b11 = b22 = 0 and b12 6= 0,

8



Figure 1: Hyperbolic shell totally clamped

the Christoffel symbols are such that,

Γ1
11 = Γ2

22 = Γ1
22 = Γ2

11 = 0,Γ1
12 6= 0 and Γ2

12 6= 0,

and the Jacobian
√
a is different from 0. The displacement field η = (ηi) is looked for in H1

0 (ω) . Under these assumptions,
the admissibility condition given by (4) becomes : find hαβ in L2 (ω) , such that for all η = (ηi) ∈ H1

0 (ω),

∫

ω

hiηi
√
ady =

∫

ω

(

h11∂ϕη1 + h22∂ψη2 + h12
(

∂ψη1 + ∂ϕη2 − 2Γ1
12η1 − 2Γ2

12η2 − 2b12η3
))√

ady (14)

Theorem 4 The surface force h =
(

hi
)

∈ L2 (ω) is admissible if h3 is in H1 (ω) .

Proof. Let h1, h2 be in L2 (ω) , h3 be in H1 (ω) . Let

Vϕ (ω) :=
{

h ∈ L2 (ω) , ∂ϕh ∈ L2 (ω)
}

,

Vψ (ω) :=
{

h ∈ L2 (ω) , ∂ψh ∈ L2 (ω)
}

.

From Theorem 3, we know that h is admissible if there exist h11 in Vϕ (ω), h22 in Vψ (ω) and h12 in H1(ω) such that :

{

−∂β(hαβ
√
a) − Γα12(h

12
√
a) = hα

√
a for α = 1, 2

−2b12h
12 = h3

h12 = − h3

2b12
is appropriate since it is in H1(ω). We substitute this function for h12 and thus obtain two uncoupled PDE

∂ϕ
(

h11
√
a
)

= f̂1 in L2 (ω)

where

f̂1 := −h1
√
a+ ∂ψ

(

1

2b12
h3

√
a

)

+
Γ1

12

b12
h3

√
a ∈ L2 (ω) ,

9



and,
∂ψ
(

h22
√
a
)

= f̂2 in L2 (ω)

where

f̂2 := −h2
√
a+ ∂ϕ

(

1

2b12
h3

√
a

)

+
Γ2

12

b12
h3

√
a ∈ L2 (ω) .

For almost all (ϕ,ψ) ∈ ω, let

g (ϕ,ψ) :=
1√
a

∫ ϕ

0

f̂1 (η, ψ) dη,

then of course ∂ϕ (g
√
a) = f̂1 in L2 (ω) . So, we just need to prove that g is in L2(ω) to have g in Vϕ (ω) and thereby

get the result by letting h11 = g. From the Cauchy-Schwarz inequality, for almost all (ϕ,ψ) ∈ ω, we have :

∫ ϕ

0

f̂1 (η, ψ) dη ≤
√

∣

∣

∣

∣

∫ ϕ

0

f̂2
1 (η, ψ) dη

∣

∣

∣

∣

√

∣

∣

∣

∣

∫ ϕ

0

12dη

∣

∣

∣

∣

so that
(
∫ ϕ

0

f̂1 (η, ψ) dη

)2

≤ |ϕ|
∣

∣

∣

∣

∫ ϕ

0

f̂2
1 (η, ψ) dη

∣

∣

∣

∣

. (15)

Let ω̃ be the following open subset which contains ω

ω̃ :=
]

−x0

a1
− y0

a2
, x0

a1
+ y0

a2

[

×
]

−x0

a1
− y0

a2
, x0

a1
+ y0

a2

[

.

and let f̃1 be the extension by zeros of f̂1 to ω̃. Since f̂1 is in L2 (ω) then f̃1 is in L2 (ω̃) too and obviously, if the integrals
exist, they verify

∫

ω

(
∫ ϕ

0

f̂1 (η, ψ) ∂η

)2

dy ≤
∫

ω̃

(
∫ ϕ

0

f̂1 (η, ψ) ∂η

)2

dy

For all (ϕ,ψ) ∈ ω̃, |ϕ| ≤ x0

a1
+ y0

a2
, so, after integrating (15) on ω̃ , we obtain the following bounding :

∫

ω̃

(
∫ ϕ

0

f̂1 (η, ψ) ∂η

)2

dy ≤
(

x0

a1

+
y0
a2

)
∫

ω̃

(

∫

x0
a1

+
y0
a2

−
x0
a1

−
y0
a2

f̃2
1 (η, ψ) dη

)

dy.

From the Tonelli Theorem we have :

∫

ω̃

(

∫

x0
a1

+
y0
a2

−
x0
a1

−
y0
a2

f̃2
1 (η, ψ) dη

)

dy =

∫

x0
a1

+
y0
a2

−
x0
a1

−
y0
a2

(
∫

ω̃

f̃2
1 (η, ψ) dy

)

dη =

(

x0

a1

+
y0
a2

)

‖f̃1‖2
0,ω̃,

So, since f̃1 is in L2 (ω̃) , we have the expected bounding

∫

ω

(
∫ ϕ

0

f̂1 (η, ψ) ∂η

)2

dy <∞.

which insures that g is in L2 (ω) , and, consequently, in Vϕ (ω) . We proceed the same way to build h22 in Vψ (ω) .

3.2 Hyperbolic shell partially clamped

Let us suppose that the middle surface of the shell is a portion of hyperbolod H and that it is clamped along its entire
”lower” face Γ0. Let the cartesian equations of H be

x2
1

a2
1

+
x2

2

a2
2

− x2
3

a2
3

= 1 and z0 ≤ x3 ≤ z1.

10



Figure 2: Hyperbolic shell partially clamped

We choose a parametrisation of H along the asymptotic lines, so that

θ : ω −→ R
3

(ϕ,ψ) 7−→
(

a1

cos (ϕ+ ψ)

cos (ϕ− ψ)
, a2

sin (ϕ+ ψ)

cos (ϕ− ψ)
, a3 tan (ϕ− ψ)

)

where

ω :=
{

(ϕ,ψ) , ϕ ∈ ]0, π[ , ψ ∈
]

ϕ− arctan z1
a3
, ϕ− arctan z0

a3

[}

:=
{

(ϕ,ψ) , ψ ∈
]

− arctan z1
a3
, π − arctan z0

a3
,
[

, ϕ ∈
]

max
(

ψ + arctan z0
a3
, 0
)

,min
(

ψ + arctan z1
a3
, π
)[}

,

the upper border Γ1 is represented by

γ1 :=

{(

ϕ,ϕ− arctan
z1
a3

)

, ϕ ∈ ]0, π[

}

:=

{(

ψ + arctan
z1
a3

, ψ

)

, ψ ∈
]

− arctan
z1
a3

, π − arctan
z0
a3

[}

,

and where the lower border Γ0 is represented by

γ0 :=

{(

ϕ,ϕ− arctan
z0
a3

)

, ϕ ∈ ]0, π[

}

:=

{(

ψ + arctan
z0
a3

, ψ

)

, ψ ∈
]

− arctan
z1
a3

, π − arctan
z0
a3

[}

.

Let ω̃ be the open subset

ω̃ :=
]

arctan z0
a3

− arctan z1
a3
, π
[

×
]

arctan z0
a3

− arctan z1
a3
, π − arctan z0

a3

[

.

The displacement field is looked for in V (ω) =
{

v ∈ H1 (ω) ,v π-periodic, v = 0 on γ0

}

. The second fundamental form
(bαβ)αβ is π-periodic, such that,

b11 = b22 = 0 and b12 6= 0,

11



the Christoffel symbols are π-periodic, such that,

Γ1
11 = −Γ2

22 = 2 tan (ϕ− ψ) ,Γ1
22 = Γ2

11 = 0,Γ1
12 6= 0 and Γ2

12 6= 0,

and the jacobian
√
a is π-periodic, different from 0. Under these assumptions, the admissibilty condition (4) becomes

hαβ ∈ L2 (ω) , such that :

∫

ω
hiηi

√
ady =

∫

ω

(

h11 (∂ϕη1 − 2 tan (ϕ− ψ) η1) + h22 (∂ψη2 + 2 tan (ϕ− ψ) η2)
)√

ady
+
∫

ω
h12

(

∂ψη1 + ∂ϕη2 − 2Γ1
12η1 − 2Γ2

12η2 − 2b12η3
)√

ady for all η ∈ V (ω) .
(16)

Theorem 5 The π-periodic surface force h =
(

hi
)

∈ L2 (ω) is admissible if







h3 ∈ H1 (ω) , ∂ϕψh
3 ∈ L2 (ω) , h3 = 0 on γ1

∂ϕh
1 ∈ L2 (ω) ,

∂ψh
2 ∈ L2 (ω) .

(17)

Proof. Let h =
(

hi
)

be a π-periodic function of L2 (ω) satisfying (17) and let

Vϕ (ω) :=
{

h ∈ L2 (ω) , ∂ϕh ∈ L2 (ω) , h π-periodic and hνϕ = 0 on γ1

}

,

Vψ (ω) :=
{

h ∈ L2 (ω) , ∂ψh ∈ L2 (ω) , h π-periodic and hνψ = 0 on γ1

}

.

From Theorem 3 we know that h is admissible if there exist h11 in Vϕ (ω), h22 in Vψ (ω) and h12 in Vϕ (ω) ∩ Vψ (ω)
such that :







−∂ϕ(h11
√
a) − ∂ψ(h12

√
a) − Γ1

11h
11
√
a− 2Γ1

12h
12
√
a = h1

√
a

−∂ϕ(h12
√
a) − ∂ψ(h22

√
a) − Γ2

22h
22
√
a− 2Γ2

12h
12
√
a = h2

√
a

−2b12h
12 = h3

h12 = − h3

2b12
is appropriate since it is in Vϕ (ω) ∩ Vψ (ω). We substitute h12 and thus obtain two uncoupled PDE :

−∂ϕ
(

h11
√
a
)

− 2 tan (ϕ− ψ)
(

h11
√
a
)

=
(

h1
√
a
)

− ∂ψ

(

1

2b12
h3

√
a

)

− Γ1
12

b12
h3

√
a

and

−∂ψ
(

h22
√
a
)

+ 2 tan (ϕ− ψ)
(

h22
√
a
)

=
(

h2
√
a
)

− ∂ψ

(

1

2b12
h3

√
a

)

− Γ2
12

b12
h3

√
a.

Let us notice that

∂ϕ
(

h11
√
a
)

+ 2 tan (ϕ− ψ)
(

h11
√
a
)

= cos2 (ϕ− ψ) ∂ϕ

(

h11
√
a

cos2 (ϕ− ψ)

)

,

and that

∂ψ
(

h22
√
a
)

− 2 tan (ϕ− ψ)
(

h22
√
a
)

= cos2 (ϕ− ψ) ∂ψ

(

h22
√
a

cos2 (ϕ− ψ)

)

,

so if we let

f̂1 :=
1

cos2 (ϕ− ψ)

(

−
(

h1
√
a
)

+ ∂ψ

(

1

2b12

(

h3
√
a
)

)

+
Γ1

12

b12

(

h3
√
a
)

)

and

f̂2 :=
1

cos2 (ϕ− ψ)

(

−
(

h2
√
a
)

+ ∂ϕ

(

1

2b12

(

h3
√
a
)

)

+
Γ2

12

b12

(

h3
√
a
)

)

.

f̂1 and f̂2 are both π-periodic and, because of (17) , both in L2 (ω) . Therefore, h is admissible if we can find h11 ∈ Vϕ (ω)
such that

∂ϕ

(

h11
√
a

cos2 (ϕ− ψ)

)

= f̂1 in L2 (ω)

12



and h22 ∈ Vψ (ω) such that

∂ψ

(

h22
√
a

cos2 (ϕ− ψ)

)

= f̂2 in L2 (ω) .

Let f̃1 be the extension by zeros of f̂1 to ω̃. Since f̂1 is in L2 (ω) then f̃1 is in L2 (ω̃) . For almost all (ϕ,ψ) ∈ ω, let

g (ϕ,ψ) :=
cos2 (ϕ− ψ)√

a

∫ ϕ

ψ+arctan
z0
a3

f̂1 (η, ψ) dη,

and let us prove that g is in Vϕ (ω) . In order to do that, we just have to prove that the integral
∫ ϕ

ψ+arctan
z0
a3

f̂1 (η, ψ) dη

is in L2 (ω) and vanishes on γ1. The second point is obvious. From the Cauchy-Schwarz inequality, for almost all
(ϕ,ψ) ∈ ω, we have :

(

∫ ϕ

ψ+arctan
z0
a3

f̂1 (η, ψ) dη

)2

≤
∣

∣

∣

∣

∣

∫ ϕ

ψ+arctan
z0
a3

f̂2
1 (η, ψ) dη

∫ ϕ

ψ+arctan
z0
a3

12dη

∣

∣

∣

∣

∣

.

Since for all (ϕ,ψ) ∈ ω,
∣

∣

∣
ϕ− ψ − arctan z0

a3

∣

∣

∣
≤ π and since f̂1 is π-periodic then,

(

∫ ϕ

ψ+arctan
z0
a3

f̂1 (η, ψ) dη

)2

≤ π

∫ π

0

f̂2
1 (η, ψ) dη

moreover, as ω ⊂ ω̃,we have the following bounding :

∫

ω

(

∫ ϕ

ψ+arctan
z0
a3

f̂1 (η, ψ) ∂η

)2

dy ≤ π

∫

ω̃

(
∫ π

0

f̃2
1 (η, ψ) dη

)

dy.

We conclude with the Tonelli Theorem that :

π

∫

ω̃

(
∫ π

0

f̃2
1 (η, ψ) dη

)

dy = π2‖f̃1‖2
0,ω̃ <∞,

so, h11 = g is a suitable solulution. We proceed the same way to find h22 in Vψ (ω) .

3.3 Parabolic shell totally clamped

Let us suppose the shell C is a portion of a cone which is subjected to a boundary condition of place along its whole
latteral face.

C :=
{

(x1, x2, x3) ∈ R
3, x1 = r cos θ, x2 = r sin θ, x3 = r cotϕ, (r, θ) ∈ ω̄

}

where
ω :=]r0, r1[×]θ0, θ1[ and ϕ ∈]0, π/2[.

The admissibilty condition (4) becomes : find hαβ in L2 (ω) , such that for all η = (ηi) ∈ H1
0 (ω),

∫

ω

hiηi
√
ady =

∫

ω

(

h11∂rη1 + h22
(

∂θη2 + r sin2 ϕη2 − r cosϕη3
)

+ h12

(

∂θη1 + ∂rη2 −
2

r
η2

))√
ady (18)

where
√
a = r

sinϕ .

Theorem 6 The surface force h =
(

hi
)

∈ L2 (ω) is admissible as soon as

∂θh
2, ∂θh

3 and ∂θθh
3 are in L2 (ω) . (19)
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Figure 3: Parabolic shell totally clamped

Proof. Let h =
(

hi
)

be a function of L2 (ω) satisfying (19) . If we can find h11, h22 in L2(ω) such that ∂rh
11 and

∂θh
22 are in L2(ω), and h12 in H1(ω) satisfying











−∂r(h11
√
a) − ∂θ(h

12
√
a) + r sin2 ϕh12

√
a = h1

√
a

−∂r(h12
√
a) − ∂θ(h

22
√
a) − 2

r
h12

√
a = h2

√
a

−r cosϕh22 = h3

(20)

then h is admissible. Let h22 = − h3

r cosϕ , both h22 and ∂θh
22 are in L2(ω). Let us point out that ∂rη − 2

rη = r2∂r(
η
r2 )

and substitute h22 in (20), then, h12 satisfies

−∂r(r3h12) = h2r3 − r2

cosϕ
∂θh

3 in L2(ω),

A possibility for h12 is

h12 =
1

r3

∫ r

r0

(

−h2r3 +
r2

cosϕ
∂θh

3

)

dr.

With this choice, h12, ∂rh
12 and ∂θh

12 are in L2(ω) as shown by Property 1 and Property 2. Finally, replacing h12

and h22 in (20) and integrating by parts, we notice that if there exists h11 ∈ L2(ω) such that

−∂r(rh11) = rh1 +
1

r2

∫ r

r0

∂θ

(

−h2r3 +
r2

cosϕ
∂θh

3

)

dr + r
sin2 ϕ

cosϕ
h3 in L2(ω),

the admissibility conditions are fulfilled. So, we just have to let

h11 = −1

r

∫ r

r0

(

rh1 +
1

r2

∫ r

r0

∂θ

(

−h2r3 +
r2

cosϕ
∂θh

3

)

dr + r
sin2 ϕ

cosϕ
h3

)

dr.

to conclude.
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Remark 2 If we suppose that the shell is subjected to a boundary condition of place along a portion its latteral face,
for example on r = r1 we have to add the following border conditions to h :

h2
|θ=θ0

= h2
|θ=θ1

= h3
|θ=θ0

= h3
|θ=θ1

= ∂θh
3
|θ=θ0

= ∂θh
3
|θ=θ1

= 0.

These equations are obtained by canceling the border integrals during the integration by parts.

3.4 Parabolic shell partially clamped

Figure 4: Parabolic shell partially clamped

Let us suppose that the middle surface of the shell is a portion of cylindar C
C :=

{

(x1, x2, x3) ∈ R
3, x1 = cos θ, x2 = sinθ, x3 = z for (θ, z) ∈ ω̄

}

where
ω :=]0, 2π[×]0, z0[ and z0 > 0,

and that the shell is subjected to a boundary condition of place along its entire ”lower” face

Γ0 :=
{

(x1, x2, x3) ∈ R
3, x1 = cos θ, x2 = sinθ, x3 = 0 for θ ∈ [0, 2π[

}

.

In these coordinates, the second fundamental form (bαβ)αβ is

b11 = −1, b12 = 0 and b22 = 0,

all the Christoffel symbols are equal to 0 whereas the jacobian
√
a is equal to 1. Let γ0 := {(θ, 0) for θ ∈]0, 2π[} and

γ1 := {(θ, z0) for θ ∈]0, 2π[} . The displacement field is looked for in

V (ω) :=
{

v ∈ H1 (ω) ,v 2π-periodic with respect to the first variable, v = 0 on γ0

}

.

The admissibilty condition (4) becomes : find hαβ ∈ L2 (ω) such that for all η = (ηi) ∈ V (ω)
∫

ω

hiηidy =

∫

ω

(

h11 (∂θη1 + η3) + h12 (∂zη1 + ∂θη2) + h22∂zη2
)

dy (21)
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Theorem 7 The surface force h =
(

hi
)

∈ L2 (ω) , 2π-periodic with respect to the first variable, is admissible if

∂θh
1, ∂θh

3 and ∂θθh
3 are in L2(ω). (22)

Proof. Let η be in V (ω) and let h =
(

hi
)

be a 2π-periodic with respect to the first variable function of L2 (ω)
satisfying (22) . Taking successively as test function η = (η, 0, 0) , (0, η, 0) and (0, 0, η) in (21) we obtain the three
following equations satisfied by all η ∈ V (ω):

∫

ω

h1ηdy =

∫

ω

(

h11∂θη + h12∂zη
)

dy

∫

ω

h2ηdy =

∫

ω

(

h12∂θη + h22∂zη
)

dy

∫

ω

h3ηdy =

∫

ω

h11ηdy

These equations are satisfied by

h11 = h3, h12 =

∫ z0

z

(

h1 + ∂θh
3
)

dz and h22 =

∫ z0

z

(

h2 +

∫ z0

z

∂θ
(

h1 + ∂θh
3
)

dz

)

dz.

4 Conclusion

The method developped to obtain, from Theorem 2 and Theorem 3, sufficient admissibility conditions gives rather
simple results (conditions of regularity and behaviour on the border). The difficulty to get these conditions depends
on the geometry of the shell and on its clamping. For example, for elliptic partially clamped shells, it doesn’t work.
Nevertheless, Theorem 2 can be the start of other methods which lead to different sufficient admissibility conditions.
One of them is developped in one example in Poutous [6].
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