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Informatique Théorique et Applications

LEARNING DISCRETE CATEGORIAL GRAMMARS

FROM STRUCTURES

Jérôme Besombes1 and Jean-Yves Marion2

Abstract. We define the class of discrete classical categorial gram-

mars, similar in the spirit to the notion of reversible class of languages

introduced by Angluin and Sakakibara. We show that the class of dis-

crete classical categorial grammars is identifiable from positive struc-

tured examples. For this, we provide an original algorithm, which runs

in quadratic time in the size of the examples. This work extends the

previous results of Kanazawa. Indeed, in our work, several types can

be associated to a word and the class is still identifiable in polyno-

mial time. We illustrate the relevance of the class of discrete classical

categorial grammars with linguistic examples.
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2 Nancy-Université, Loria-INPL-ENSMN, Jean-Yves.Marion@loria.fr

c© EDP Sciences 1999



2 TITLE WILL BE SET BY THE PUBLISHER

1. Introduction

Classical categorial grammars are widely used in linguistics. Kanazawa [8] es-
tablished that the class of k-valued categorial grammars is learnable from struc-
tured examples, but, for k > 1, Florêncio [6] showed that identification of k-valued
categorial grammars is NP-hard. This result constitutes a strong limitation in the
interest of these classes for the formalization of natural language acquisition which
would be feasible. On other hand, categorial rigid grammars (k = 1), which are
learnable in polynomial time, allow to associate only a single type to each word.
There is a strong limitation for considering realistic linguistic phenomena with
rigid categorial grammar. In this article, we define a new class of classical cate-
gorial grammars, the discrete categorial grammars, which strictly contains rigid
grammars and is learnable in quadratic time. This class is completely independent
to the hierarchy of k-valued grammars since an arbitrary number of types may cor-
respond to a same word (Figure 1). Since a pre-defined limit k seems not to be
realistic for the formalization of natural language acquisition, the motivation of
our work is to define a learnable class of categorial grammars independently from
such a limit.

We construct an algorithm which identifies this class of discrete categorial gram-
mars in quadratic time, we give a proof of its correctness and illustrate it on three
short examples. The first one is taken from Kanazawa [8] for a comparison with
Kanazawa’s algorithm. The second and third show how we learn non-rigid gram-
mars for which non-rigidity expresses two kinds of common linguistic ambiguities:
homonymy and transitivity and non-transitivity of the same verb.

2. Categorial grammars

2.1. Trees

We consider ordered labeled trees like terms, and inversely. Throughout, we
shall write terms linearly or we shall draw them. We think that the use of both
notations should help the reader to have a better understanding and to visualize
what is going on. In particular, we shall see types, partial parse trees, and FA-
structures either linearly as terms or as ordered labeled trees. These notions are
of course define in details below.

We now give several definitions about trees that are useful in the rest of the
paper. A context t[⋄] is a tree in which the symbol ⋄ has at most one occurrence.
The symbol ⋄ is not in the vocabulary, it marks a node on the border of a tree.
For any tree t′, we note t[t′] the result of the substitution of ⋄ by t′ in t. The
notation t[t′] is a convenient way to say that t′ is a subtree of t. The size |t| of a
tree t is defined by |a| = 1 and |f(t1, . . . , tn)| = 1 +

∑

i=1,n |ti|.
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2.2. Types

Given a set Var of primitive types and a special type {s} which is not in Var,
Tp is the smallest set of types generated by

• if x ∈ Var ∪ {s} then x ∈ Tp,
• if A ∈ Tp and B ∈ Tp, then A\B ∈ Tp,
• if A ∈ Tp and B ∈ Tp, then A/B ∈ Tp.

A type A of is a subtype of a type C of if and only if:

• C = A,
• or C = B\B′ and A is a subtype of B or B′,
• or C = B/B′ and A is a subtype of B or B′.

A subtype x of a type C is a primitive subtype if x is a primitive type of Var. A
subtype A of a type C is an argument-subtype if there is a type B such that either
A\B or B/A is a subtype of C. A subtype A of a type C is a functor-subtype if
there is a type B such that either A/B or B\A is a subtype of C. A type-context
A[⋄] is a context of a type.

2.3. Categorial grammars

Bar-Hillel et al. [2] introduced classical categorial grammars or AB-grammars.The
reader may consult the nice survey of Rétoré [13]

There are several references on categorial grammars, Morrill [12],Moorgat [10].
We present briefly the pre-requisite.

A categorial grammar G is defined from a quadruplet (Σ,Var, {s}, 7→) where

• Σ is a finite vocabulary. Elements of Σ are named letters.
• Var is a set of primitive types which plays the role of type variables.
• s is a special type which expresses that a word is recognized by G.
• 7→ is a finite binary relation over Σ × Tp which defines the lexicon. A

lexical entry is written α 7→ A and means that the letter α is of type
A. We shall write α 7→G A when it is necessary to mention G to avoid
confusion.

Given a letter α in Σ, CatG(α) is the set of types associated to α.

CatG(α) = {A ∈ Tp, α 7→ A}

We put Cat(G) = ∪α∈ΣCatG(α) which is the set of all types in the lexicon.

2.4. Partial parse trees

Given a categorial grammar G, a partial parse tree for G is any ordered binary
tree of the following form.

First, for any α ∈ Σ and any A ∈ Tp such that α 7→ A, we have



4 TITLE WILL BE SET BY THE PUBLISHER

A

α

As we have previously explained, we shall note the tree above A(α).
Second, for any partial parse tree t1 (called argument subtree) and t2 (called

functor subtree) where the root node of t1 and the root node t2 are respectively
labeled by the types A and A\B.

B

A

t1

A\B

t2

Third, for any partial parse tree t1 (called functor subtree) and t2 (called argu-
ment subtree) where root node of t1 and root node t2 are respectively labeled by
B/A and A.

B

B/A

t1

A

t2

When no ambiguity can arise, we shall simply write B(t11, t2) to abbreviate both
previous partial parse tree shape.

The set of partial parse trees of G is Parse(G). As previously, a parse-context
t[⋄] is a partial parse tree t in which the symbol ⋄ has at most one occurrence.

2.5. Parse trees and languages

A parse tree is a partial parse tree which root node is labeled by the type s. The
set of parse trees of a grammar G is noted PT(G). We have PT(G) ⊆ Parse(G).
Tiede [16] explains that both PT(G) and Parse(G) are regular tree languages.

A parse tree t yields a word of Σ∗. For this, we define a mapping w from PT(G)
to Σ∗ which extracts a word from a partial parse tree, as follows.

w(A(α)) = α

w(B(t1, t2)) = w(t1) · w(t2) where (Σ, ·) is a free monoid

Here A(α) is the linear notation of the first kind of partial trees drawn above.
And B(t1, t2) corresponds to the second and third kind of partial parse trees.

The language produced by a grammar G is the set

L(G) = {u : w(t) = u where t ∈ PT(G)}
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A type A is useless for a grammar G if there is no parse tree with a node labeled
by A. Throughout the following discussion, we assume wlog that we are talking
about categorial grammar without useless types.

3. FA-structures

3.1. Structural examples

A consequence of Gold’s study [7] is that we can not infer word languages
generated by categorial grammars. To cope with this problem, several authors
have suggested to learn from a class of grammars, like Sakakibara [14] for context
free grammars or Kanazawa [8] for classical categorial grammars, rather than
from a class of languages. Like this, positive examples are annoted by additional
informations which are related to grammars. We call them structural examples.
We consider functor-argument structures, used by Kanazawa [8], which we call
FA-structures all along the paper.

3.2. Partial FA-structures

A partial FA-structure is a tree FA(t) obtained from a partial parse tree t by
replacing the label of each node by / if the argument node is the right son, by \ if
the argument node is its left son and by the leaf label if the son is a leaf. Formally,
FA is a mapping defined inductively as follows

FA(
A

α

) = α

FA(
B

A

t1

A\B

t2

) = \(FA(
A

t1

),FA(
A\B

t2

))

FA(
B

B/A

t1

A

t2

) = /(FA(
B/A

t1

),FA(
A

t2

))

3.3. FA-structures

A FA-structure is a partial FA-structure obtained from a parse tree. The set of
FA-structures is the functor-argument tree language FA(G). A FA-context f [⋄] is
a FA-structure in which there is a hole marked by the special variable ⋄.

Remark 1. Actually, a way of understanding FA-structure is to see them as
semantic informations among the word of a sentence. Thus, we can see FA-
structures as dependency tree languages where the functor indicates the head. It
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is worth mentioning the work of Moortgat [11] which shed some light on the re-
lationships between dependencies and categorial grammars. Another related work
is the one of Dudau-Sofronie [5] and of Tellier [15] in which they suggest to label
sentences by partial Montague semantics informations.

Example 1. The first example comes from Kanazawa [8]. The categorial grammar
G above will be our running example.

a 7→ x/y man 7→ y
swims 7→ x\s fast 7→ (x\s)\(x\s)

We obtain PT(G) the set of trees of the form:

s

x

x/y

a

y

man

x\s

x\s

x\s

swims

(x\s)\(x\s)

fast

(x\s)\(x\s)

fast

FA(G) the set of trees of the form:

\

/

a man

\

\

swims fast

fast

and

L(G) = {a man swims fast . . . fast
︸ ︷︷ ︸

n≥0

}

3.4. Substitutions and FA-equivalence

A substitution σ is a mapping from Var to Tp that we extend canonically over
Tp as follows.

σ(s) = s

σ(A\B) = σ(A)\σ(B)

σ(B/A) = σ(B)/σ(A)

Next, we define the image σ(G) of a categorial grammar G by applying σ to each
type of G. In other words, σ(G) is defined by the relation α 7→σ(G) σ(A) iff
α 7→G A.

Define G ⊆ G′ if there is a substitution σ such that for each lexical entry
α 7→G A, we have α 7→G′ σ(A). Of course, G′ has possibly more lexical entries.
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Lemma 1 ( [4]). G ⊆ G′ implies FA(G) ⊆ FA(G′).

Proof. By the previous lemma, there is a substitution σ such that σ(Parse(G)) ⊆
Parse(G′). Take f ∈ FA(G). There is t ∈ Parse(G) such that f = FA(t). Then,
we have f = FA(σ(t)) because the FA mapping erases types, but the shape remains
identical. We conclude that f ∈ FA(G′). �

Two grammars G and G′ are FA-equivalent if and only if FA(G) = FA(G′). An
important point is that if FA(G) ⊆ FA(G′) then L(G) ⊆ L(G′). So, if G and G′ are
FA-equivalent then they recognize the same word language, that is L(G) = L(G′).

4. Flat categorial grammars

We associate to each type A a rank rk(A) which gives its level of functionality.

rk(A) = 0 A ∈ Var ∪ {s}

rk(B\C) = max{rk(B) + 1, rk(C)}

rk(C/B) = max{rk(B) + 1, rk(C)}

A grammar G is flat if for each lexical entry α 7→ A, the rank of A is at most 1.
In this way, each argument-subtype is of rank 0 and the label of the root of each
argument subtree of a partial parse tree is a type of rank 0.

Lemma 2. Let G be a categorial grammar. There is a flat categorial grammar
Level(G) and an injective substitution σ such that G = σ(Level(G)).

Proof. The transformation Level(G) is described by the algorithm 1. The algo-
rithm terminates because an argument-type of rank > 0 in G is deleted at each
loop and the number of argument-types is bounded by the number of subtypes
in G. The grammar Level(G) is flat because each argument-type of rank > 0
is replaced by a new primitive type. It is not difficult to see that the output
substitution σ is injective and satisfies G = σ(Level(G)). �

Theorem 1. Let G be a categorial grammar. Then, Level(G) and G are FA-
equivalent.

Moreover, the size of Level(G) is linearly bounded in the size of G. The size of
a grammar is

∑

α7→A |A|.

Proof. First, FA(Level(G)) ⊆ FA(G) is a consequence of Lemma 2 because G =
σ(Level(G)).

Conversely, take a lexical entry α 7→G B/A (or α 7→G A\B). There is a lexical
entry α 7→Level(G) B′/a which corresponds to it such that σ(a) = A and σ(B′) = B.
Indeed, if the rank of A is 0, then A is unchanged and a = A. Otherwise, the
rank of A is > 0, and A is replaced by a primitive type a and α 7→Level(G) B′/a is
added to the lexicon of Level(G) with σ(a) = A. The type B is transformed into
B′ in a similar way. As a consequence, we see that the shape of each type of G is
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Algorithm 1 The transformation Level(G)

Input: a categorial grammar G
Output: a flat categorial grammar Level(G) and a injective substitution σ such
that G = σ(Level(G))
while there is an argument-subtype A s.t. rk(A) > 0 do

Choose a new primitive type a /∈ Var,
Set Var = Var ∪ {a}
Set σ(a) = A
For each α 7→ B[A],

if A is an argument subtype of B then replace α 7→ B[A] by α 7→ B[a]
if A is a functor subtype of B or B = A then add α 7→ B[a] and keep

also α 7→ B[A].
end while

retained by the transformation which leads to Level(G).
Now, take a partial parse tree t of G. Replace each leaf type C by the corresponding
type c of Level(G) of the same shape satisfying σ(c) = C. We obtain a partial parse
tree t′ of Level(G) such that σ(t′) = t. We have Parse(G) ⊆ σ(Parse(Level(G))).
So we conclude that FA(G) ⊆ FA(Level(G)). �

Example 2. The grammar G given in example 1 is not flat since the type (x\s)
is an argument subtype of (x\s)\(x\s). The FA-equivalent flat grammar G′ =
Level(G) is defined by:

G′ :

a 7→ x/y
man 7→ y

swims 7→ z, x\s
fast 7→ z\(x\s), z\z

where z is the new primitive type introduced by the algorithm.

In conclusion, each categorial grammar G can be translated into a flat categorial
grammar Level(G) whose size is the same than G up to a linear constant. The fact
that G and Level(G) are FA-equivalent is crucial. Indeed from the point of view
of grammatical inference from FA-structure, it implies that we can not distinguish
between G and Level(G). We lose nothing by working on Level(G) because it has
the same FA-structures than G.

Remark 2. We shall henceforth consider only flat categorial grammars. About
grammar translation, the reader may consult Lenir [9] which embedded fragments
of Lambek calculus into categorial grammars.
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5. Discrete categorial grammars

A set Γ of types is discrete if no two types of Γ differ in only one primitive
subtype. In other words, a set Γ of types is discrete if for each type-context A[⋄]
of Γ, there is at most one primitive type a such that A[a] is in Γ.

A grammar G is discrete if G is flat and if for each α ∈ Σ, the set CatG(α) is
discrete.

Example 3. The grammar G′ of example 2 is discrete. The following flat cate-
gorial grammar G′′ is not discrete, since fast 7→ A[z1] and fast 7→ A[z2], where
A[⋄] is the type-context ⋄\(x\s).

G′′ :

a 7→ x/y
man 7→ y

swims 7→ z1, x\s
fast 7→ z1\(x\s), z2\(x\s), z1\z2

L(G′′) = {a man swims, a man swims fast, a man swims fast fast}

Lemma 3. Assume that G is discrete categorial grammar. Let f be a partial FA-
Structure in FA(G) and A[⋄] be a type-context. Then, there is at most one partial
parse tree t of G which satisfies f = FA(t) and whose root is labeled by A[a] where
a is a primitive type.

Note that the existence of t implies that the primitive type a is unique.

Proof. The proof goes by induction on the size of the FA-structure f .
Suppose that f is a letter α. Since G is discrete, there is at most one lexical

entry α 7→ A[a] where a is a primitive type. In this case, A[a](α) is the unique
partial parse tree such that f = FA(A(α)) = α.

Next, suppose that |f | > 1. By definition of FA-structures, f is of one of the
following forms: (i) f = \(g′, g) or (ii) f = /(g, g′). Consider the first case. The
second case is treated symmetrically.

Suppose that there is a partial parse tree t1 such that FA(t1) = g′. Suppose
that the root of t1 is labeled by b. Since G is flat and since b is an argument type.
The induction hypothesis on g′ and ⋄ claims that t1 and b are unique.

Now, consider the other branch g of f . Again by induction hypothesis on g and
A[⋄]\b, we know that there is at most one partial tree t2 such that g = FA(t2) and
whose root is labeled by the type A[a]\b for some primitive type a.

We conclude that if t1 and t2 exist, then they both form a unique partial parse
tree t of root A[a] such that f = FA(t).

t =
A[a]

b

t1

b\A[a]

t2 �
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Theorem 2. Assume that G is a discrete categorial grammar. Let f be a partial
FA-Structure in FA(G) and A be a type. Then, there is at most one partial parse
tree t which satisfies f = FA(t) and the root of t is labeled by A.

Proof. It is just a consequence of the above Lemma by setting A[⋄] = A, that is ⋄
does not occur in A. �

Remark 3. Take a FA-structure f of a discrete grammar. Theorem 2 claims that
to any FA-structuref corresponds at most an unique parse-tree. Indeed, the type
of such parse tree is necessarily s. This result does not hold for the case of partial
parse-trees. For instance, if we consider the following discrete grammar:

G(3) :
a 7→ (s/x2)/x1, x4/x1

b 7→ x1

c 7→ x2, s/x4

To the FA-structure:

/

a b
correspond the both partial parse-trees:

s/x2

(s/x2)/x1

a

x1

b

x4

x4/x3

a

x3

b
This property differs from rigid categorial grammars considered by Kanazawa [8]
in the following respect. For each partial FA-structure f of a rigid categorial
grammar, there is a unique parse tree t such that f = FA(t). This statement does
not hold when we consider discrete categorial grammars.

Given a FA-context f [⋄], we define CatG(f [⋄]) as the set of types A such that
there is a partial parse tree t whose root is labeled by A which satisfies f [FA(t)]
is a FA-structure of G.

Theorem 3. Assume that G is a discrete categorial grammar. Let f [⋄] be a FA-
context of G. Then, CatG(f [⋄]) is a singleton.

Proof. The proof goes by induction on the size of f [⋄]. The base case is when
f = ⋄. Then, we have CatG(⋄) = {s}. We have to consider several cases.

Assume that f [⋄] = h[\(⋄, g)].
By induction hypothesis, the type B corresponding to the FA-context h[⋄] is

unique, that is CatG(h[⋄]) = {B}. Take a partial parse tree t such that g = FA(t).
The type of the root of t is necessarily a\B for some type a. Now, the type a is
primitive because G is flat. So, we can apply Lemma 3 which implies that a is
unique. We have CatG(f [⋄]) = {a}.
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Assume that f [⋄] = h[/(g, ⋄)]. This case is similar to the previous one.
Assume that f [⋄] = h[\(g, ⋄)].
By induction hypothesis, the type B corresponding to the context h[⋄] is unique.

By Lemma 3, there is a unique partial parse tree t such that g = FA(t). We name
a the type of the root of t. It follows that CatG(f [⋄]) = {a\B}.

Assume that f [⋄] = h[/(⋄, g)]. This case is similar to the previous one. �

6. Rigid grammars

Before going further, there is a certain interest in discussing about k-valued
categorial grammars introduced by Kanazawa [8] and in seeing how they differ
from discrete categorial grammars. The discussion is summed up un Figure 1.
Here, and throughout, we consider the set of parse trees generated by grammars
in order to compare the generative capacity of classical categorial grammars.

A categorial grammar G is k-valued if for any word α ∈ Σ, there are at most k
lexical entries. A 1-valued categorial grammar is also called rigid.

In fact, the class of discrete categorial grammars strictly contains the class of
rigid ones.

Theorem 4. For any rigid categorial grammar G, there is a discrete grammar G′

which is FA-equivalent.

Proof. The flat categorial grammar Level(G) is discrete. Lemma 2 implies that the
substitution σ such that G = σ(Level(G)) is injective. If α 7→ A[a] and α 7→ A[b]
are two lexical entries of Level(G), it means that a = b because G is rigid and so
contains only one entry α 7→ σ(A[a]). Put G′ = Level(G) to conclude. �

Consider the following discrete categorial grammar.

John 7→ x

is eating 7→ x\s, (x\s)/y

a chicken 7→ y

The verb is eating is a transitive verb, which corresponds to (x\s)/y) and non-
transitive, which corresponds to x\s. There is no rigid-grammar which can encode
this grammatical phenomenon.

On the other hand, there are k-valued grammars which are not discrete, like
the grammar G′′ in Example 3.

It would be interesting to see the notion of discrete categorial grammar can be
extended to Lambek calculus in the spirit of the ideas of Bonato and Rétoré [3]
which adapted rigidity to Lambek calculus.
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rigid

2-valued

3-valued

4-valued

discrete

Figure 1. The k-valued hierarchy compare with discrete gram-
mars.

7. Discrete grammars are learnable

7.1. Characteristic samples

Let G be a target categorial grammar, that is the grammar that we try to guess
from a finite sequence of FA-structures of G. A characteristic sample is a set of
FA-structures which are sufficient to infer G when G is discrete.

We start by some preliminary definitions on partial parse trees in order to define
FA-structures which will be in a characteristic sample.

(1) We associate to each type A a partial parse tree root(A) whose root is
labeled by A.

(2) We associate to each type A a parse-context leafA[⋄] which is recursively
defined as follows.

• leafs[⋄] = ⋄
• If A is a primitive type a, leafa[⋄] is a parse-context such that leafa[root(a)]

is parse tree.
• If A = B/a where a is a primitive type,

leafA[⋄] = leafB

[ B/a

⋄ root(a)

]

• If A = a\B, where a is a primitive type,

leafA[⋄] = leafB

[ \

root(a) ⋄

]

A finite set C of FA-structures is said to be a characteristic sample for a flat
grammar G if
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• for each subtype A of a type in Cat(G), FA(leafA[root(A)]) ∈ C,
• and for each lexical entry α 7→ A of G, FA(leafA[α]) ∈ C.

We may easily check that C ⊆ FA(G).

Lemma 4. Assume that G and G′ are two discrete categorial grammars. Let C
be a characteristic sample of G. If C ⊆ FA(G′), then G ⊆ G′.

Proof. We define a substitution σ which will satisfy the fact that σ(G) is embedded
in G′.

For any primitive type a of G, FA(leafa[root(a)]) is in C.
Since C ⊆ FA(G′), FA(leafa[root(a)]) is a FA-structure of G′. Furthermore,

FA(root(a)) is necessarily an argument subtree of FA(leafa[root(a)]).
So we can apply Lemma 3 which states that there is a unique partial parse tree

t of G′ such that FA(root(a)) = FA(t). Let a be the primitive type which labels
the root of t. We put σ(a) = a′.

We show by induction on A that CatG′(FA(leafA[⋄])) = {σ(A)}. The unicity is
a consequence of Lemma 4.

• if A is a primitive type, the result is obvious by the definition of σ
• if A = a\B. By definition, we have

leafA[⋄] = leafB[⋄]

[ \

root(a) ⋄

]

By induction hypothesis, CatG′(leafB[⋄]) = {σ(B)}. As we have previ-

ously said, the type associated to FA(root(a)) is σ(a). So, we have

CatG′(leafa\B[⋄]) = σ(a)\σ(B) = σ(a\B)

• if A = B/a. This case is identical and so we skip it.

Lastly, consider α 7→G A. We have established that CatG′(FA(leafA[⋄])) =
{σ(A)}. So, α 7→G′ σ(A) is a lexical entry of G′. �

7.2. An inference algorithm

Following Gold [7] and Kanazawa [8], we present the definition of identification
in the limit from positive FA-structure examples. A positive presentation of a
categorial grammar G is a sequence f1, f2 . . . which enumerates each FA-structure
of FA(G). An inference algorithm I takes as input a finite set S = {f1, . . . , fn}
of a positive presentation of G and guesses a grammar I(S). Given a positive
presentation, the inference algorithm I converges if there is a stage N such that
for all n > N , L(I(f1, . . . , fn)) = L(G). Gold [7] established that there is no such
inference algorithm for a class of grammars as broad as the class of categorial
grammars. For this reason, the success criterion is restricted to a particular class
of categorial grammars. A class of categorial grammars is identifiable if and only
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if there is an inference algorithm I such that for each positive presentation, I
converges.

We present an efficient inference algorithm infer for the class of discrete cate-
gorial grammars. This inference algorithm is described in 2.

Algorithm 2 The inference algorithm infer

Input: a finite set of FA-structures S
Output: a discrete categorial grammar infer(S)
for each f ∈ S do

Construct a parse tree t by decorating the root of f with s and each argument
node by a new type variable.
Define G0 by collecting all the lexical entries α 7→ A obtained on each t.
end for

Let σ0 be the identity substitution.
while there is α 7→ A[a1] and α 7→ A[a2] where a1 and a2 are two distinct
primitive types do

Set σi+1(a2) = a1 and ∀a 6= a2, σi+1(a) = a
Set Gi+1 = σi(Gi)

end while

Lemma 5. The algorithm 2 terminates on each finite set S of FA-structures and
outputs a discrete categorial grammar infer(S).

Proof. Starting from G0, we compute a sequence of flat categorial grammars
G1, . . . , Gn by merging two variable types at each step. The process stops af-
ter n steps because at each step we decrease by one the number of variable types
and so we write infer(S) = Gn. The categorial grammar infer(S) is discrete be-
cause when we exit the while loop, there is no more lexical entries α 7→ A[a1] and
α 7→ A[a2] such that a1 6= a2. �

Lemma 6. Assume that S is a set of FA-structures of a categorial grammar G.
Let infer(S) be the discrete categorial grammar computed by the algorithm 2. We
have infer(S) ⊆ G.

Proof. First, we have G0 ⊆ G. Then, we also have Gi ⊆ G0 because Gi =
σi(Gi−1). So, we have Gi ⊆ G. We conclude that infer(S) ⊆ G. �

Theorem 5. The class of discrete categorial grammars is identifiable from FA-
structures.

Proof. Assume that G is a discrete categorial grammar. We consider a positive
presentation f1, . . . , fn, . . . of G. There is a stage N such that for each n ≥
N , the set S = {f1, . . . , fn} contains a characteristic sample. We see that S ⊆
FA(infer(S)). Lemma 4 implies that G ⊆ infer(S).

Conversely, Lemma 6 shows that infer(S) ⊆ G.
Lemma 1 implies FA(G) = FA(infer(S)) and so L(G) = L(infer(S)).
We conclude that infer converges. �
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The inference algorithm is incremental and runs in quadratic time in the size
of the input FA-structures.

Remark 4. Based on Angluin [1], characteristic samples are telltale sets for the
FA-structure languages of discrete categorial grammars. Therefore, FA-structure
languages are identifiable.

7.3. Examples

Example 4. Take the following FA-structures.

\

they /

hate fear

\

they /

fear hate

\

they /

fear fear

The algorithm outputs the grammar:

G :
they 7→ x
hate 7→ (x\s)/y, y
fear 7→ (x\s)/y, y

This example illustrate a case of homonymy. Words hate and fear are correctly
associated to a verb type ((x\s)/y) and a noun type (y). There is no corresponding
rigid grammar and the algorithm of Kanazawa fails on this input.

Example 5. We come back on the example which shows that the case of a verb
with a transitive and a non-transitive form may be treated. For this, it suffices to
consider the following FA-structures:

\

John loves

\

John /

loves Mary

We get the discrete categorial grammar

John 7→ x

loves 7→ x\s, (x\s)/y

Mary 7→ y

Example 6. This example shows how our algorithm identifies the example gram-
mar of [8]. The inputs are the following four FA-structures which form a charac-
teristic set.
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\

/

a man

\

swims fast

\

/

a fish

swims

\

/

a man

swims

\

/

a man

\

\

swims fast

fast

First, we label the root node of each argument subtree with a new variable.

\, s

/, x1

a x2

man

\

x3

swims

fast

\, s

/, x4

a x5

fish

swims

\, s

/, x6

a x7

man

swims

\, s

/, x8

a x9

man

\

\, x10

x11

swims

fast

fast

According to these labels, trees are completed.

s

x1

x1/x2

a

x2

man

x1\s

x3

swims

x3\(x1\s)

fast

s

x4

x4/x5

a

x5

fish

x4\s

swims

s

x6

x6/x7

a

x7

man

x6\s

swims

s

x8

x8/x9

a

x9

man

x8\s

x10

x11

swims

x11\x10

fast

x10\(x8\s)

fast

This gives the first grammar G0 which produces exactly the input FA-structures1.
This grammar is flat by construction but not discrete. We successively merge

1This first step is equivalent to the first step of the RG algorithm described in [8] for the
inference of rigid grammars from structures.
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primitive types until we obtain a discrete grammar.

G0 :

a 7→ x1/x2, x4/x5, x6/x7, x8/x9

man 7→ x2, x7, x9

fish 7→ x5,
swims 7→ x3, x4\s, x6\s, x11

fast 7→ x3\(x1\s), x11\x10, x10\(x8\s)

⇒
x2 = x7 = x9

x3 = x11

x4 = x6

G1 :

a 7→ x1/x2, x4/x5, x4/x2, x8/x2,
man 7→ x2

fish 7→ x5

swims 7→ x3, x4\s
fast 7→ x3\(x1\s), x3\x10, x10\(x8\s)

⇒
x2 = x5

x1 = x4 = x8

G2 :

a 7→ x1/x2

man 7→ x2

fish 7→ x2

swims 7→ x3, x1\s
fast 7→ x3\(x1\s), x3\x10, x10\(x1\s)

⇒ x3 = x10

G3 :

a 7→ x1/x2

man 7→ x2

fish 7→ x2

swims 7→ x3, x1\s
fast 7→ x3\(x1\s), x3\x3

The grammar G3 is discrete and the process stops. We remark that G3 is a
renaming of the grammar G′ given in example 2.
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