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A Robust Methodology for RANS Simulations of Highly 
Underexpanded Jets 

Guillaume Lehnasch* 
CNRS and Université de Poitiers, 86961 Futuroscope, France 

 
and 

 
Pascal Bruel† 

CNRS and Université de Pau et des Pays de l’Adour, 64013 Pau, France 

This work aims at developing/combining numerical tools adapted to the simulation of the 
near field of highly underexpanded jets. An overview of the challenging numerical problems 
related to the complex shock/expansion structure encountered in these flows is given and an 
efficient and low-cost numerical strategy is proposed to overcome these, even on short 
computational domains. Based on common upwinding algorithms used on unstructured 
meshes in a mixed finite-volume/finite-element approach, it relies on an appropriate 
utilization of zonal anisotropic remeshing algorithms. This methodology is validated for the 
whole near field of cold air jets issuing from axisymmetric convergent nozzles and yielding 
various underexpansion ratios. In addition, the most usual corrections of the k-ε model used 
to take into account the compressibility effects on turbulence are precisely assessed.  

Nomenclature 
ai  = initial angle between the jet boundary and the axis 
ar  = angle between the reflected shock and the axis 
Ci  = control volume around node i 
De = nozzle diameter 
Dr = radial diffusive flux vector 
Dx = longitudinal diffusive flux vector 
Ddm  = Mach disk diameter 
E  = total energy 
Fr = radial convective flux vector 
Fx = longitudinal convective flux vector 
G = enthalpic production 
k = turbulent kinetic energy 
NPR = nozzle pressure ratio 
Dk = diffusion of turbulent kinetic energy 
M = Mach number 
Mt = turbulent Mach number 
Pk = production of turbulent kinetic energy 
p = pressure 
Sr = radial source vector 
Sx = longitudinal source vector 
U = vector of conservative variables 
Uij = state vector of conservative variables on the left of Γij 
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Uji = state vector of conservative variables on the right of Γij 
vr  = radial velocity component 
vx  = longitudinal velocity component 
vxe  = longitudinal velocity component at the nozzle exit 
vθ  = orthoradial velocity component  
Xdm  = position of the Mach disk from the nozzle exit 
εc = dilatational dissipation rate of the turbulent kinetic energy 
εs = solenoidal dissipation rate of the turbulent kinetic energy 
ρ = density 
γ = ratio of heat capacities 
µ = molecular viscosity 
µt = coefficient of turbulent viscosity 
Πd = pressure dilatation term 
Γi = boundary of control volume Ci 
Γij = boundary between control volumes Ci and Cj 

I. Introduction 
 
HE key parameter used to classify the various morphologies of an axisymmetric underexpanded jet which 

discharges into a quiescent atmosphere is the nozzle pressure ratio (NPR) between the static pressures prevailing at 

the nozzle exit and in the surrounding atmosphere. For small NPR's (typically between 1 and 2.1 for an air flow), the 

initial expansion waves reflect at the jet boundary, coalesce and give rise to an oblique shock regularly reflecting at 

the jet axis. Due to the new expansion zone appearing downstream of the reflected shock, this first shock cell 

structure is replicated several times until the growing shear layer reaches the jet axis. Thus, weakly underexpanded 

jets yield the famous diamond-like shock structure embedded within the potential core. Such jets are used in many 

applications, for instance to assist laser cutting1, to drill by thermal spallation2 or to improve surface coating by 

thermal sprays3. They are also the subject of some recent studies whose objectives, among others, are to reduce the 

screech noise4 or the infrared signature in rocket exhaust plumes5. For higher values of NPR, the shock structure 

becomes more complex, as it is illustrated in Fig. 1 (for NPR typically larger than 10). Indeed, the reflection of the 

incident shock (zone 1) at the axis cannot be regular anymore, so that a strong shock, called a Mach disk (zone 2), 

appears. The flow is subsonic downstream of this Mach disk whereas it remains supersonic downstream of the 

reflected shock (zone 3). The triple point connects the various discontinuities and is at the origin of a new slip line, 

rapidly evolving into a shear layer, which separates these two flows embedded within the potential core. The lengths 

of the first shock cell and of the subsonic zone are increasing functions of NPR, and so is the shock diameter. As a 

consequence, typically for about NPR > 4, the subsonic zone drills the second structure and "swallows" all the 

following structures for NPR > 7. In such a case, the jet yields a highly curved shock structure (the "barrel shock"), 

followed by two distinct coaxial shear layers wherein expansion and compression zones alternate without giving rise 

T 
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to any additional stationary shock structure. For NPR >10, the first shock cell is so large that the Mach disk directly 

interacts with the main shear layer. Unfortunately, very little experimental data is available to describe such 

interactions. Correlations are available though to approximately determine the distance Xdm between the Mach disk 

position and the orifice section6,7, the Mach disk diameter8 Ddm or the length of the subsonic core9 Ls.  In addition, 

experimental data such as those of Love et al.10 can be used to determine the initial angle ai between the jet 

boundary and the axis. However, neither correlations nor experimental data are yet available to describe the 

evolution of the Mach disk curvature or the angle ar between the reflected shock and the axis which are among the 

key parameters controlling the mixing properties of the jet downstream of the Mach disk. The high levels of shock 

curvature encountered for these highly underexpanded jets also play an important role in i) the modification of the 

turbulence structure in comparison with perfectly expanded jets, ii) the instabilities related to the strong interaction 

between the Mach disk and the shear layer, and iii) the enhancement of the development of streamwise vortices 

surrounding the near-jet core11 (induced by Taylor-Görtler instabilities). Nevertheless, their impact on the turbulent 

mixing properties is not clearly identified. So, a better understanding of the various aspects of the structure of such 

flows is necessary to improve the safety and the efficiency of the various applications where they are encountered. 

For instance, i) in short take off and vertical landing situations12, the greatly enhanced air entrainment is likely to 

induce severe thrust losses while the large amplitude of instabilities can severely damage the nozzle lip or ii) during 

the certification procedure of a newly developed jet engine, the manufacturer has to ensure the preservation of the 

engine integrity, in the case of an accidental boring of the chamber wall, in spite of the formation of a high pressure 

jet, possibly reacting, which can impact and severely damage vital equipments (in particular the pylon truss which 

attaches the engine block to the plane wing). Considering the difficulty of experimentally investigating such flows 

with state-of-the-art metrology, numerical simulations are an extremely useful tool that can be of great help in 

improving our knowledge of the detailed structure of these flows and of the interaction with their environment in 

many situations of practical interest. 
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Fig. 1 Schematic of the near field structure of a highly underexpanded jet for NPR>10: 1) incident shock, 2) 
Mach disk, 3) reflected shock and 4) sonic line. 

 
Unfortunately, due to the great complexity and sensitivity of the flow structure to the value of NPR, the development 

of a modeling and numerical strategy able to cope with this kind of flow while preserving a good robustness and fair 

accuracy over a wide range of NPR is not an easy task. To begin with moderately underexpanded turbulent jets, the 

pioneering studies of Dash and Wolf13,14 are a good example of what can be achieved by considering a two-

dimensional flow configuration. By using a two-equation model for a one-point turbulence closure (k-ε and k-ω 

models) and by modifying only the expression of the turbulent viscosity coefficient in order to correctly reproduce 

the observed spreading rate of supersonic shear layers, these authors obtained some promising results. A similar 

approach was followed by Chuech et al.15 in the case of an axisymmetric configuration. But in spite of these 

promising results, the model was not able to precisely capture the complex interactions occurring within the 

potential zone. Continuing now with highly underexpanded jets, Cumber et al.16,17 showed, for various levels of 

NPR, that the compressibility correction of Sarkar et al.18 greatly improved the quality of the prediction of the axial 

velocity evolution, but only in the far flow field. By modifying the standard model constant Cε2 and using a new 

scale for the axial coordinate to take into account a reduced effective nozzle diameter (the boundary layer not being 

calculated), they showed that the error on the predicted shock locations could be reduced. However, a great 

amplitude error of the axial velocity or pressure still remained. In fact, whereas the standard k-ε model leads to an 

overestimation of the spreading rate of the shear layer, this compressibility correction leads to an opposite effect 

accompanied by an underestimation of the level of the axially decaying oscillations of the physical variables within 
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the potential core. Such tendencies have been recently confirmed by Birkby and Page19. Abdol-Hamid and 

Wilmoth20 have attempted to consider some non-equilibrium turbulence effects in addition to the compressibility 

corrections. According to these authors, a multiscale approach could greatly help to more accurately describe the 

modification of the turbulence structure related, in particular, to the interaction of the first reflected shock with the 

shear layer. Unfortunately, the determination of the related transfer coefficients is a delicate task that would benefit 

from specifically dedicated experiments not yet available. This situation can explain why such an approach has not 

yet led to any further developments. Focusing now on the numerical strategies elaborated to deal with these jets, it 

should be emphasized that meshing and mesh adaptation procedures used for most simulations of these particular 

turbulent flows (see for example the study by Prudhomme and Haj-Hariri21) are not reported to be extensively based 

on parameters related either to some crucial flow properties (steep gradients and/or curvatures associated to the 

spatial evolution of the various variables) or to CFD related constraints (control volume geometrical aspect ratio for 

instance). Considering the complexity of the flow morphology, a careful mesh adaptation12 seems though to be 

unavoidable to obtain reasonably mesh-independent results. Moreover, the comparisons with experimental data were 

quite limited, since they were confined to a scrutinization of the variables’ evolution on the jet axis only. As a 

consequence, the origins of the reported numerical inaccuracy are not yet clearly identified for highly 

underexpanded jets since it was not easy to determine the respective importance of the possible sources of 

uncertainty e.g. the intrinsic weaknesses of the physical modeling and those of the numerical scheme employed. Last 

but not least, to the best of our knowledge and for NPR’s larger than five, there exists no detailed numerical study 

focusing on the near flow field in an axisymmetric configuration, although this zone is of paramount importance as 

far as the subsequent development of the jet is concerned. Accordingly, the primary objective of the present study is 

to propose a relevant combination of mature turbulence modeling and numerical techniques able to ensure both 

robustness and fair accuracy of the simulations of the near field of underexpanded jets over a wide range of NPR. A 

methodology of mesh embedding/adaptation aimed at shortening as much as possible the streamwise extension of 

the computational domain while preserving the accuracy of the numerical procedure in the zone of primary interest, 

e.g. in the near flow field, is presented. Various corrections of the k-ε turbulence model proposed in the literature to 

incorporate compressibility effects are then tested in the case of a perfectly expanded jet, considered to be the first 

step of a model testing before considering its use for the simulation of highly underexpanded turbulent jets. Namely, 

if the compressibility corrections fail to improve the quality of the results for a perfectly expanded jet, it is highly 
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doubtful that they will do so when simulating highly underexpanded jets. Finally, comparisons with recently 

available experimental data illustrate the level of accuracy that can be achieved with such a methodology whilst 

opening a perspective of clear assessment of any (potential) gain in accuracy that could be obtained in the future 

through turbulence modeling and/or numerical procedure evolutions. 

II. Modeling and numerical framework 

A. Basis of flow description 

In the axisymmetric coordinate system (O, x , r ), the conservative form of the averaged compressible Navier-Stokes 

equations is considered to describe the temporal and spatial evolution of the vector of conservative variables 

U= ( , , , )T
x rv v Eρ ρ ρ ρ , where ρ , xv , rv and E stand for the density, the longitudinal and radial velocity 

components and the total energy (including the turbulence kinetic energy), respectively. Adopting standard 

notations, the overbar denotes a Reynolds average and the tilde a Favre (e.g. density weighted) average. This set of 

governing equations can be cast in the following compact form: 

 ( ) ( ) ( ) ( ) ( ) ( )x r x r e vt x r x r
∂ ∂ ∂ ∂ ∂

+ + = + + +
∂ ∂ ∂ ∂ ∂

U F U F U F U D U S U S U  (1) 

where Fx(U) and Fr(U), represent the convective fluxes and Dx(U) and Dr(U), the diffusive fluxes. The origin of the 

two additional source terms Se(U) and Sv(U) is purely geometric and stems from the choice of writing the system in 

a form that mimics as much as possible that obtained in a 2-D Cartesian co-ordinate system. If one denotes by θ  the 

orthoradial direction, the components of the various fluxes are given by: 
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In the above terms, p , h andλ stand for the static pressure, the enthalpy and the thermal conductivity, respectively. 

Assuming that the contribution of the fluctuations of velocity and temperature is negligible for the viscous and heat 

fluxes, the Reynolds average of the viscous tensor components and of the heat diffusion terms can be written as: 
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where the “mean” molecular dynamic viscosity *µ  is expressed as a function of the mean temperature T  through a 

Sutherland's law formulation, Pr  is the Prandtl number, γ  is the specific heat capacity ratio and vC is the heat 
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capacity at constant volume, supposed constant. The Reynolds stress tensor and the enthalpy turbulent fluxes are 

closed by a classical Boussinesq-like formulation for non-zero divergence flows, namely: 
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 (5) 

where tµ  is  the eddy viscosity coefficient introduced by such a closure. This set of equations is supplemented by 

the equation of state which reads: 

 ( 1)
2
i iv vp E kγ ρ  = − − − 

 
 (6) 

where k is the turbulent kinetic energy. The k-ε turbulence model retained to express the coefficient of turbulent 

viscosity tµ  is presented in the following subsection. 

B. Turbulence modeling 

Assuming that Morkovin's hypothesis holds, the methodology applied to model incompressible turbulent flows22 can 

be extended to deal with compressible turbulent flows. Accordingly, using the decomposition of the variables 

previously introduced, the transport equation for the turbulent kinetic energy k  is given by23: 

 * *( ) ( )( ) 1 1( ) ( )x t tr
k d

k k

v k r v kk k kr P G
t x r r x x r r r

ρ µ µρρ µ µ ρε
σ σ

   ∂ ∂∂ ∂ ∂ ∂ ∂
+ + = + + + + + +Π −   ∂ ∂ ∂ ∂ ∂ ∂ ∂   

 (7) 

with 1.0.kσ = The production term kP is classically given by: 

 ( )x xr r r
k x x r r x r

v vv v vP v v v v v v v v
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where the Reynolds-stress expressions are given in Eq. (5). The term G, which represents the correlations between 

the velocity fluctuations and the mean pressure gradients, assimilated to an enthalpic production term, may induce 

an important negative contribution in regions of large density or pressure variations such as strong compression or 

expansion zones. Two closure expressions for this term will be tested, namely: 

 1 ( )t
t

p pG
x x r r

ν ρ ρ
ρ σ

∂ ∂∂ ∂= − +
∂ ∂ ∂ ∂

 (9) 

or  

 1
1 ( ) ( ) ( )
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∂ ∂ ∂ ∂− ∂ ∂ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′= + + − − + − −
∂ ∂ ∂ ∂ ∂ ∂

 (10) 

The first closure expression of G is quite commonly used even in situations involving dilatable flows such as in 

subsonic impinging flames simulations24. Following Bailly et al.25, the coefficient tσ , to be chosen in the interval 

[0.7-1], will be given the value 0.7tσ = . In deriving the second expression for G , Shyy and Krishnamurthy23 

supposed that the total enthalpy and the heat capacity remain constant and that the density fluctuations are isobaric. 

They expressed the parameter C1 as a function of the turbulent Mach number tM  by 1 2 /(1 )t tC M M= −  

with *2 /tM k a= , where *a is the “mean” sound speed i.e. *a rTγ= . The pressure-dilatation term dΠ  is an 

additional work induced by simultaneous fluctuations of the pressure and the volume of the fluid particles. It can 

generally induce a considerable negative contribution to the balance of turbulent kinetic energy in the case of a 

shock/turbulence interaction. The two most popular approaches suggested in the literature will be considered. On the 

one hand, by combining the transport equations for the entropy and the density fluctuations, Zeman26 suggested that 

this term can be linked to the pressure variance which is supposed to decrease towards an equilibrium value during a 

characteristic time which has to be evaluated. The consideration of a linear decrease of the pressure variance and the 

choice of the turbulent Mach number tM  to represent this characteristic time, lead thus to the following expression: 
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where the *
ijS are the components of the deviatoric part of the deformation tensor. It should be noted that this model 

suffers from a large variability of the values adopted for the constant dC . A value of 0.004 has been retained for our 

simulations according to previous tests performed for nearly transonic impacting jet configurations‡. On the other 

hand, analysing results of direct numerical simulations for free homogeneous shear flows, Sarkar et al.18 showed that 

only the incompressible part of the field of pressure can really modify the balance of turbulent kinetic energy. Using 

Mt² to represent the ratio of the compressible part of the turbulent kinetic energy to the total one, an asymptotic 

development, on an acoustic time scale, of the linear and the quadratic components of the incompressible field of the 

pressure through the Poisson equations of these, leads Sarkar et al.18 to propose the following expression for the 

pressure-dilatation term in isotropic configurations: 

 2 20.4 0.2d k t s tP M MρεΠ = − +  (12) 

where the retained constants have the values initially recommended for plane shear layers and where sε  stands for 

the solenoïdal part of the turbulent kinetic energy dissipation rate. Finally, the last term of the right hand-side of Eq. 

(7) that has to be calculated is the dissipation rate s cρε ρε ρε= + considered as being the sum of the solenoïdal part 

sε plus the dilatational part cε . The common practice followed here, is to solve a transport equation for sε while 

modelling cε . Accordingly, the transport equation of the solenoïdal dissipation rate is written as:  

1 2

( ) ( ) ( )1 1 ( )s x s r s t s t s s
k s

v r v r C P G C
t x r r x x r r r k ε ε

ε ε

ρε ρ ε ρ ε µ ε µ ε ε ρε
σ σ
   ∂ ∂ ∂ ∂ ∂∂ ∂  + + = + + + −     ∂ ∂ ∂ ∂ ∂ ∂ ∂   

 

with 1.0.εσ = Two classical formulations are considered to express the dilatational dissipation rate εc. The first one, 

suggested by Zeman27 and based on theoretical considerations about the additional dissipation induced by a given 

statistic distribution of "shocklets" within the flow, reads as: 

                                                           
‡ According to the Simulog-Incka company which develops the CFD code N3S-NATUR, this constant value has 
been retained from various simulation tests of nearly transonic impacting jet configurations (Private communication, 
2005).  
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                                       (14) 

where 0
10.1

2tM γ +
= and 0 0.6σ =  are the values initially recommended for plane shear layers. On the other 

hand, by considering direct numerical simulation results and using asymptotic analysis, Sarkar et al.18 suggest the 

following closure: 

 ²c c t sMε α ε=                                         (15) 

where 0.5cα =  is the recommended value when the dilatational dissipation rate and the pressure-dilatational term 

are simultaneously taken into account. Finally, the closure of the system of governing equations is achieved once the 

coefficient of turbulent eddy viscosity is expressed as a function of k andε  by: 

 
2

t
kCµµ ρ
ε

=                                         (16) 

In some simulations reported in the literature25, tµ  is calculated by using the sole solenoidal dissipation rate εs , a,d 

this can lead to a significant difference with values obtained with Eq. (16) when the Mach number increases. It is 

clear that the inclusion of εc into the expression of tµ  reinforces the decrease of the turbulent diffusion by 

decreasing the level of the turbulent stress in the hydrodynamic transport equations as well as the production kP  in 

the k equation. In addition, expressing cε as a function of sε as it is done with the corrections of Sarkar et al.18 or 

Zeman26, and adding these two contributions to close tµ is equivalent to considering only the solenoïdal dissipation 

with a modified value for Cµ . As a consequence, taking only sε into account to express tµ may be seen as choosing 

a new constant Cµ  more adapted to the particular flow geometry under study. Given that these dissipative 

corrections have been originally devised for plane shear layers and that the balance of turbulent kinetic energy is 

highly dominated by the production and dissipation terms, it seems natural if not pragmatic to check the relative 
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influence of these two expressions of tµ (withε or solely sε ) in order to determine the most adapted level of 

turbulent diffusion to introduce.  

C. Numerical method 

The numerical resolution of Eq. (1) is based on the mixed finite-volume / finite-element method originally 

implemented in the CFD code N3S-NATUR27 which is used and developed for this study. In order to approximate 

the weak form of the integral formulation of Eq. (1), a cell-vertex approach on unstructured triangular meshes is 

used. The construction of each control volume is illustrated in Fig. 2. The boundary Γi  of each surface Ci is formed 

by linking the middles of the segments Mij between the node i and each neighboring node j with the centres of 

gravity Gk of each neighboring triangle Tk sharing this node i.  

 
 

Fig. 2 Schematic of the dual control volume associated with the mixed FV - FE method. 

 

Firstly, the integration of the divergence of diffusive fluxes along Γi is performed by using the finite element P1 on 

each triangle intersecting Ci. Secondly, a finite volume approximation is used to perform the integration of the 

convective terms. The numerical flux Fij along each interface Γij shared both by Γi and Γj is evaluated according to 

the mean direction nij normal to Γij by applying either the flux splitting method of Van Leer28 or the linearization of 

Roe29 combined with the entropy fix of Harten30. To this end, the implemented hyperbolic solver relies on the total 

variation diminishing (TVD) procedure used to extrapolate the two adjacent constant mean values Uij = Ui + 

1/2(∇U)ij .ij  and Uji = Uj - 1/2(∇U)ji .ij  on the left and on the right of Γij, respectively. The gradient (∇U)ij is 

here selected by applying either a limiter function "minmod" on the gradients of the physical variables encountered 

on the triangles intersecting the two adjacent control volumes, or by applying a Van Albada limiter (defined by the 

function limiter(a,b)=((a²+ε).b+(b²+ε)a)/(a²+b²+2ε) where ε is a very small non-zero constant value) to a centered 
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gradient (∇ CV)ij .ij =Vj -Vi  and a half-upwind gradient (∇ 1/2V)ij .ij =1/2(Vj -Vi + (∇ TijV).ij ). In the latter case, the 

single gradient (∇ TijV) is evaluated by the finite-element on the upwind triangle intersecting the direction given by 

(ij) (see Fig. 2). Finally, in order to avoid a lack of robustness observed when some implicit temporal schemes are 

used to perform these simulations of highly underexpanded jets, an elementary Euler explicit scheme is retained to 

perform the temporal integration with a CFL number chosen equal to 0.8. The resulting time step limitation is 

compensated by running the calculations in parallel on a MPI-Linux cluster thanks to a domain decomposition 

algorithm.   

III. Specific issues related to the simulation of highly underexpanded jets 

Whereas the numerical treatment previously presented is robust enough for most of the jet simulations generally 

performed, some particular difficulties are encountered in the case of highly underexpanded jets (with a NPR 

typically greater than 5). This section focuses on the reasons for these difficulties which motivate the choice of the 

particular methodology adopted and presented in the following part. 

A. Robustness of the hyperbolic solver 

The coexistence of the first intense expansion zone and the strong shocks encountered in highly underexpanded jets 

leads to problems of lack of robustness and positivity of the upwind numerical schemes retained. On one hand, the 

"minmod" limiter is known to be strongly dissipative31 but any other limiter is not likely to be robust enough a priori 

when NPR is high. On the other hand, for moderate values of the NPR, Satyanarayana and Balkrishnan32 have 

shown that using the Roe's scheme with an adaptive mesh can lead to some solutions which nevertheless yield the 

same level of accuracy obtained with more sophisticated schemes such as the AFVS scheme ("Acoustic Flux Vector 

Splitting") or the KFVS scheme ("Kinetic Flux Vector Splitting"). In addition, in the framework of the retained way 

of building the control volumes, it should be noted that Roe's scheme can lead to very satisfying levels of robustness 

and accuracy on other classical benchmark configurations33 such as the subsonic or supersonic Sod test case, the 

reflection of non-stationary shocks on a wedge or supersonic flows impacting on a blunt body or a forward facing 

step. In fact, in the case of highly underexpanded jet simulations, only this scheme can lead to a first correct 

solution. Whatever the initial grid topology and the initial grid density used, the solver of Van Leer or the use of the 

Van Albada limiter function lead to the failure of the calculations if they are used at the beginning of the simulation. 



 - 14 - 

Accordingly, in a first approach, it seems necessary to retain the Roe's method combined with the minmod limiter 

and the entropy fix of Harten for the robustness and the simplicity of the resulting numerical scheme. 

B. Grid topology and refinement 

Upwind procedures are generally developed for one-dimensional flows before being applied for multidimensional 

flows by choosing a direction of evaluation. Most of the time, the flux equilibrium for each control volume is thus 

updated by precisely evaluating the projection of the mean convective flux on the mean direction normal to its 

interfaces instead of evaluating the mean convective flux itself. When strong shocks are simulated, any privileged 

mean direction given by nij (if the grid is based for example on regularly split structured meshes) leads to a dramatic 

propagation of numerical instabilities and often to non-physical solutions. The numerical artifact observed is very 

similar in this case to the famous carbuncle phenomenon from a geometric point of view but could not be avoided 

by additional numerical dissipation. Thus, the only way to compensate the propagation of this numerical error is to 

use irregular meshes of Voronoï type for the initial grid. Nevertheless, for quite similar reasons, the very strong 

diffraction shock encountered in the initial phase of the simulation can lead to a failure of the calculations if this 

initial grid is too refined, even if this mesh is of Voronoï type. On the contrary, it should be stressed that too coarse 

an initial grid can not be used because it would also lead to a non-physical solution. Typically, an overly dissipated 

barrel shock lead to a Mach disk yielding an inverted curvature followed by a non-physical recirculation and so 

inhibits any relevant application of a re-adaptation procedure. Accordingly, a compromise has to be found at first for 

the initial density of the grid which has to be of Voronoï type and the choice of an adaptive meshing procedure 

might be guided then in order to help realign at best the mean directions used to evaluate the convective flux on each 

control volume with the directions of propagation of the characteristics information. 

C. Field variables initialization and boundary conditions 

With a view to limiting as far as possible the cost of the simulations, the exact nozzle geometry and the boundary 

layers are neglected for this preliminary study and the simulations are only performed downstream of the orifice 

section. Thus, the real geometry of the nozzle lip is simplified and only slip wall conditions are prescribed through 

the flux components. The Mach number at this nozzle inlet boundary is imposed to 1.01 in order to ensure the 

robustness of the simulations. Accordingly, the values of the physical variables corresponding to an isothermal 

underexpanded jet yielding the desired NPR are prescribed in the flux components through the segments belonging 
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to this nozzle inlet section. Similarly, for simulations robustness enhancement objective, a slow coflow at a Mach 

number of 0.05 is imposed at the boundary located upstream of the nozzle inlet section as shown in Fig. 3 (segment 

F12). At this coflow inlet section and at the outlet section of the computational domain, the flux components are 

then calculated by the one-dimensional theory of characteristics based on far conditions corresponding to the 

quiescent atmosphere and according to the direction normal to the boundary segments. Even if a slight coflow is 

added, the static pressure calculated at some points near the orifice edge can become slightly too high due to the 

non-realistic presence of a singular point at the edge of the nozzle wall. This results in a slight shift of the overall 

shock structure downstream of its expected location. Such a numerical artifact has been remedied by introducing a 

pseudo-nozzle lip corresponding to the two additional boundary segments F6 and F7 as shown in Fig. 3. The length 

of these segments is equal to 0.005 times the orifice diameter. The introduction of this simple and small pseudo-

nozzle lip does not modify the geometric features of the expected jet structure and prevents too great a shift of the 

levels of the physical variables calculated at the wall. 

       

 
Fig. 3 Overview of the computational domain (left) and zoom at the inlet boundary featuring the pseudo-

nozzle lip (right). 

 
The nodal values of the computational domain are usually initialized with the physical state corresponding to the 

coflow characteristics. But, in such a case, during the initial phase of the calculations, a low-density recirculation 

zone, that appears at the jet boundary, is convected downstream and is partially reflected at the outlet boundary.  In 

order to limit the strength of such a vortex, the nodal values are initialized with a physical state chosen to correspond 

to a Mach number value of 0.5. Combined with the use of the buffer zone described below, this artificial low density 

region can thus be rapidly evacuated from the computational domain.  



 - 16 - 

Focusing now on the outlet boundary, the application of the one-dimensional theory of characteristics leads to 

consider that only one physical information (the pressure) has to be prescribed at the boundary segments if the 

outgoing flow is subsonic. On short computational domains, such a pressure profile is quite difficult to determine 

since the pressure prevailing in the subsonic coflow does not match the pressure downstream of the Mach disk. It is 

all the less obvious to adapt these levels of static pressure as a function of a theoretical far constant level of total 

pressure since the decrease of the total pressure is more important through the Mach disk than through the oblique 

reflected shock. In order to prescribe a more correct level of pressure in this zone near the axis for confined 

underexpanded jets, Prudhomme and Haj-Hariri21 have suggested extrapolating the pressure found at the nearest 

point found within the shear layer where a supersonic state is detected. However, after some initial tests, this 

methodology has not been retained here since it proved to be insufficient to avoid the appearance of artificial 

recirculation zones upstream of the outlet section when large values of NPR were considered. Indeed, for such high 

speed jets, the air entrainment from the coflow is sufficiently high to significantly modify the static pressure profile 

at the subsonic jet boundary. As a consequence, the prescription of two not perfectly appropriate different constant 

profiles of static pressure or total pressure at the subsonic outlet boundaries of the computational domain induces 

artificial total pressure differences upstream of these outlet boundaries and makes the shear layer bend slightly 

towards the axis. If the grid is refined enough in this zone, artificial numerical waves could then travel through the 

subsonic zone and destabilize the upstream structure. Considering that an appropriate profile of pressure 

(extrapolated from experimental data which are not available) cannot be prescribed at the exit, it appears necessary 

to dampen these artificial numerical waves as far as possible. Adding artificial viscosity upstream of the outlet 

boundary is not natural considering the upwind method applied throughout the computational domain. However, 

coarsening the grid in a specified zone upstream of this boundary is a way to reintroduce more naturally some local 

numerical diffusion. In return, this is in contradiction with the requirement to use grid adaptation within the near 

field to improve the spatial accuracy. In order to find a trade-off between these two opposite requirements 

(appropriate grid adaptation in the near field and strong coarsening upstream of the outlet boundary), a procedure of 

embedding of the core region within a larger zone, for which a coarsened mesh is employed, has been elaborated 

and is described in the next section.  

Last but not least, because of the initial flow field initialization retained, it should be highlighted that the initial 

expansion of the jet is nevertheless very important so that the flow direction and its physical state (subsonic or 
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supersonic) cannot be imposed at the boundary non-orthogonal to the axis represented by the segment F11 in Fig. 3. 

Accordingly, the flux components there are evaluated by an extension of the Steger-Warming scheme.  

IV. Mesh adaptation strategy and validation 

A. Presentation of the overall procedure 

The overall strategy adopted to overcome the numerical difficulties previously described is illustrated in Fig. 4. 

After the choice of an appropriate initial core grid and appropriate initial conditions (step 1), it mainly consists in 

building a thin but strongly coarsened zone around the core grid and merging these (step 2) before performing the 

first simulation (step 3). The converged solution obtained at this step within the buffer zone is highly diffused on 

purpose and so is not considered. Thus, the solution corresponding to the core domain is extracted (step 4) and used 

to apply the chosen adaptive meshing procedure and generate a new adapted core grid (step 5). Generating a new 

corresponding buffer zone and initializing the new overall grid based on the solution previously obtained, this 

overall cycle is repeated several times until a core grid convergence is reached. Depending on the level of NPR 

considered, two or three cycles are necessary. For each flow simulation (i.e. step 3), the criterion of convergence 

used is based on the L2 norm of the density (non-dimensionalized by its initial value) and is adapted for each level 

of NPR.  

 
Fig. 4 Illustration of the initial stages of the cycle of the mesh adaptation strategy adopted: Step 1 - Initial 

core region mesh; Step  2 - Embedding of the core mesh; Step 3 - Flow simulation until convergence; Step  4 -
Extraction of the solution in the core region; Step 5 - Remeshing of the core region and comparison with the 

previous core region mesh of step 1 to determine if a new cycle must be completed.  
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B. Grid adaptation algorithm 

The anisotropic mesh adaptation (AMA) algorithm of Dolejšί35 is chosen to progressively build the best adapted 

mesh. When an isotropic distribution of nodes is used in a finite triangular and linear element approach, the principle 

of the adaptation is based on the fact that the higher the curvature is, the more important the interpolation error will 

be. Consequently, for a given level of grid density, the interpolation error can be decreased and more uniformly 

redistributed if the triangles are anisotropic and stretched normal to the isolines of the greatest values of curvature. 

Thus, the method consists in evaluating the local curvature of a significant physical variable (the density for the 

present simulations of underexpanded jets) in order to build a new metric for which the ideal lengths of all triangle 

edges should be equal. In order to best set the lengths of the segments (locally evaluated with the new metric) to 

their ideal length, local operations of edge splitting, node removal or sweeping are thus iteratively applied. This 

method results not only in clustering nodes where the gradients are high and in reducing the number of nodes 

elsewhere, but also in progressively lining up the triangular meshes with the various discontinuities. As a 

consequence, the accuracy of the evaluation of the convective fluxes is highly improved (within the limits of the 

relative one-dimensional upwind method).  

C. Initial grid 

An iterative loop splitting algorithm34 implemented in the "QUAD" module of the mesh generator ICEMCFD has 

been chosen for generating the initial meshes. This algorithm has been retained in particular for its robustness and 

for the resulting mesh quality. The first loop considered is the polygonal closed line formed by linking each 

boundary segment of the core zone (segments F1 to F8 in Fig. 3). The imposition of a given mesh size at each of 

these segments leads to the initial distribution of nodes on the initial loop. Each loop is then iteratively split into two 

sub-loops by linking two nodes of the previous loop. The splitting segment is chosen based on an estimated error 

criteria used to lead to triangles as close as possible to equilateral triangles and to the shortest lengths of the splitting 

segments. By comparison with frontal methods, this initial meshing procedure generates fewer triangular elements 

near the boundaries where a very small mesh size is used (such as the pseudo nozzle lip) while the transition of the 

mesh sizes throughout the computational domain is particularly regular. This latter advantageous characteristic is 

fully used to separately build a regularly coarsened buffer mesh on the surrounding domain (segments F4, F3, F2, 

F9-F13 in Fig. 3).  
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D. Validation of the strategy adopted 

Two computational domains are considered for the validation of the strategy developed: a short domain with a 

length of 13.5De (core zone length = 10 De) and 30 De long one (with a core zone length of 20De). The effect of 

using a short computational domain surrounded by a coarsened grid proves to be marginal on the solutions of the 

near field as it is illustrated in Fig. 5 for an inviscid jet at NPR=7.55. 

       
Fig. 5 Influence of the length of the computational domain: Comparison of the axial evolutions of the 

pressure, the longitudinal velocity and the temperature obtained on each computational domain (10 De and 20 
De long respectively) for an inviscid jet at NPR=7.55. 

Whatever the NPR considered (ranging from 1 to 15.53), converged solutions at each cycle are obtained with the 

present mesh adaptation strategy. For all turbulent jets calculations, three cycles are enough to obtain a final core 

mesh and a corresponding flow solution which do not present further significant changes if additional cycles are 

performed. Figure 6 illustrates, for an underexpanded turbulent jet at NPR=7.55, the kind of mean longitudinal 

velocity component profile evolution observed during the course of the mesh adaptation cycles and the fairly global 

grid density independence which is obtained. The required grid density mainly depends on the extension of the 

discontinuities and thus on the value of NPR. For instance, for a highly underexpanded turbulent jet at NPR=7.55 

and for the shortest computational domain, a 10000-node mesh proved to yield satisfactory results after three loops 

of mesh adaptation.   
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Fig. 6 Sensitivity of the turbulent jet solution at NPR=7.55 to the number of mesh adaptation loops (left) and 

to the prescribed number of grid nodes (right). 

 

A zoom of the generated grid in the vicinity of the triple point presented in Fig. 7 illustrates how the mesh elements 

are suitably stretched and aligned along the various strong waves of discontinuities. The near field solutions (say for 

X/De<10) obtained on the two computational domains are similar. The main difference between the two solutions is 

mainly restricted to the zone located near the axis just downstream of the Mach disk so that it appears to be related 

to a different distribution of nodes in the near zone but not to the presence of the buffer zone. As a consequence, the 

utilization of such a buffer zone enables not only a lessening of the reflexivity of the outlet boundary, but also the 

natural imposition of a necessary piece of information within the subsonic zone downstream of the Mach disk.   
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Fig. 7 Illustration of the grid topology obtained around the triple point after three grid adaptation cycles for 

the simulation of an underexpanded turbulent jet at NPR=15.53. 
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V. Perfectly expanded jet simulations results 

Most of the various approaches previously presented and retained to take the compressibility effects into account 

have already been directly and separately used for simulating axisymmetric underexpanded jets17, 19. Nevertheless, it 

should be recalled that these corrections have been initially adapted for two-dimensional shear layers. Thus, as a first 

evaluation step, these corrections have been tested on the configuration of a perfectly expanded axisymmetric jet 

experimentally studied by Seiner et al.36. In order to check also that the mesh re-adaptation procedure is fully valid 

for an axisymmetric jet configuration and to choose a priori the most appropriate combination of models for the 

various compressible terms presented in the previous subsection, several perfectly expanded jet simulations are 

performed. The value of the exit Mach number is equal to 2 and is only slightly lower than the levels encountered 

within the shear layers considered for the higher levels of under-expansion tested and presented in the following 

section. This preliminary validation study is performed by prescribing a turbulence intensity corresponding to an 

amplitude of the longitudinal fluctuations equal to 5% of the mean velocity at the nozzle section, a length scale 

equal to 0.14 De and the commonly adopted value of 0.7 for the turbulent Prandtl number. The Roe’s scheme is used 

and is combined with a minmod limiter and an entropy fix coefficient equal to 0.05 while the CFL number is set 

equal to 0.8. The initial core computational domain is 20 De long and contains 20128 nodes. Several possible 

combinations of models have been tested after a thorough check of the results independence of the results to the 

initial grid density (with typically 6500 nodes in the core region for the adapted final mesh). Figure 8 presents a few 

examples of the predicted axial evolutions of the mean longitudinal velocity component (normalized by the mean 

velocity at the nozzle section Vxe) corresponding to the solutions obtained with the different turbulence model 

combinations.  One recovers the well-known tendency of the standard k-ε model to introduce an excess of diffusion 

whereas the Zeman model yields an overly pronounced decrease of turbulent kinetic energy that can be mainly 

attributed to a lack of universality of the current constant retained for this model. Clearly, a full parametric study 

(beyond the scope of the present study) would be necessary to check whether this model could be easily improved 

for the present axisymmetric jet configuration. The contribution of the enthalpic production term G appears to be 

quite marginal for this perfectly expanded jet with no noticeable difference related to the two expressions tested. 

Indeed, a marginal decrease of about 2% of the dimensionless velocity in the inertial zone at a distance from the 

orifice greater than about 15 De can be typically observed when G is taken into account. Nevertheless, the model of 

Shyy and Krisnamurthy will not be retained for jet simulations at higher NPR’s, because its use leads quite 
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systematically to a failure of the calculations when it is applied to highly underexpanded jet configurations, probably 

due to an excessive contribution of the shear stress components during the initial phase of the simulation.  

   
Fig. 8 Perfectly expanded turbulent jet: evolutions of the mean longitudinal velocity component predicted by 
using various combinations of turbulence models corrections.  a/ Experimental results of Seiner et al.36, b/ 
Standard k-ε model, c/ (respectively d/) k-ε model with addition of the pressure-dilatation and dilatational 
dissipation from Sarkar et al.18 (respectively Zeman26) and with expressing µt from the solenoidal dissipation, 
e/ k-ε model with addition of the pressure-dilatation and dilatational dissipation from Sarkar et al.18 with 
expressing µt from the total dissipation, f/ (respectively g/) k-ε model with addition of the pressure-dilatation 
and dilatational dissipation from Sarkar et al.18, the enthalpic production term from the gradient type 
approximation (respectively Shyy and Krishnamurthy23) and by expressing µt from the solenoidal dissipation. 

 
Among the various model combinations tested, the best physical representation of the jet combined with a 

satisfactory level of robustness is obtained by using i) a gradient-type closure for the enthalpic production, ii) an 

expression of the turbulent viscosity coefficient based on the solenoïdal dissipation rate only, and iii) the models of 

Sarkar et al.18 for both the dilatational dissipation rate and the pressure-dilatation term. Accordingly, such a 

combination of model corrections, called the reference model in the following, will be adopted for the simulations of 

highly underexpanded jets.  It is therefore given by: 
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By using this reference model, the jet growth characteristics and the self-similar behaviour in the near zone are 

correctly reproduced as it is illustrated in Fig. 9 where r(0.5) is the location at which half of the axial velocity Vaxis is 

found and δc=r(0.95)-r(0.05) is the width of the shear layer estimated from the locations where the values 

corresponding to 5% and 95% of the axial velocity are reached. The fact that the initial spreading of the jet is 

underestimated could be related to an overestimation of the entrainment of the coflow at the jet boundary near the 

exit when compared to what is experimentally observed.  

a/ b/  

Fig. 9 Perfectly expanded jet - simulations with the reference turbulence model : a/ Evolution of the distance 
where half of the axial velocity is reached, b/ Self-similar behavior of the profiles of the mean longitudinal 

velocity component for X/De=1, 3, 5, 7, 9 and 11 (solid lines). 

              
 

 

VI. Highly underexpanded jet simulations results 

Two jet configurations experimentally studied by Yüceïl et al.37, 38 have been simulated. They correspond to 

NPR=7.55 and 15.53, respectively. 
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Because of a lack of robustness during the initial phase of the calculation, the Van Leer / Van Albada limiter could 

not be used for NPR greater than one whereas Van Leer's flux splitting method coupled with the use of a minmod 

limiter could be used only from the second cycle of the simulation. Nevertheless, switching from Roe's solver to 

Van Leer's solver from this second cycle results in quite the same final jet structure and as a consequence, the Roe's 

algorithm is preferred for its robustness and is used to obtain the solutions presented in the following subsections. 

B.  Representation of the near jet structure 

A qualitatively correct representation of the jet structure is predicted as it can be seen in Fig. 10. The adaptation of 

the static pressure is mainly realised through the near shock structure as it is supposed to be from a theoretical point 

of view. Due to the important difference of total pressure found between each side of the slip line, three couples of 

expansion and compression zones are visible within the supersonic layer and the overall adaptation mechanism is 

carried on up to a distance of about 10 De from the nozzle section, which is in agreement with the experimental 

observations of Yüceïl et al.37, 38. The accuracy of the geometric extension of the simulated shock structure at 

NPR=15.53 is evaluated by comparing i) the predicted value of the Mach disk location Xdm against the experimental 

data of Love10, the value obtained from processing Schlieren visualizations provided by Yüceïl and Ötügen§, the 

correlations of Ashkenas and Sherman6 and Ewan and Moodie7 and ii) the predicted value of the Mach disk 

diameter Ddm with the value given by the correlation of Antsupov8. The different correlations are given by:  
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where po, pe and pa are the upstream total pressure, the static pressure at the inlet section and the static pressure of 

the ambient atmosphere, respectively. De must be expressed in millimetres for the second following correlation 

yielding Xdm. 

                                                           
§ Private communication, 2003. 
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The longitudinal extension of the first shock cell appears to be overestimated in the simulations and the simulated 

Mach disk yields a more important level of curvature than expected but with a quite correct radial extension. The 

most important discrepancy in the shock location is observed for the largest value of NPR tested and is estimated to 

be equal to 14% in terms of X/De. 

 
Fig. 10 Underexpanded turbulent jet at NPR=15.53 - visualization of the near jet structure: isolines of the 

mean longitudinal velocity component from the present simulations (solid lines) against i) the experimental 
location of the shock structure from Yüceïl and Ötügen (symbols)  and ii) the domain of location given by the 

correlations of Eq. (16) (dashed line). 

In fact, this shift appears more clearly from a position located near the one where the barrel shock has reached its 

maximal extension and seems to be related to a failure of Roe's scheme when a limit value of the Mach number is 

reached during the expansion process. This hypothesis is confirmed by the comparisons of axial evolutions of 

velocity shown in Fig. 11 for turbulent jet simulations at NPR=7.55. The axial velocity appears to be overestimated 

not only in the expansion zone (up to +20%), but it keeps on decreasing downstream of the Mach disk instead of 

increasing again by expansion of the surrounding supersonic layer. It thus seems to be only related to a perfectible 

shock geometry obtained around the triple point which leads to an initial slip line diverging towards the jet boundary 

instead of bending directly towards the axis. This suggests that the origin of such a numerical artifact could be 

related to the inaccurate straight profile of physical variables prescribed at the inlet boundary (Segment F8 in Fig. 4), 

and so a separate study has been carried out to check the qualitative influence of the deformation of the profiles at 

this inlet section. The results obtained (by using isotropic mesh refinement within the near field) prove that the Mach 

disk extension depends strongly on the initial inclination of the streamlines but that the same inaccurate levels of the 

Mach disk curvature are always observed whatever the profile prescribed at the inlet boundary and the method of 
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mesh refinement used. As a consequence, this drawback may be mainly attributed to a weakness of the hyperbolic 

solver. Additional tests are required to find a more accurate but equally robust scheme than the Roe’s scheme.  

   
Fig. 11 Underexpanded turbulent jet at NPR=7.55: evolutions of mean longitudinal velocity component 

obtained from the present simulations and from the experimental results of Yüceïl et al.37, 38. 

 

C.  Representation of the turbulent mixing 

In spite of the discrepancies observed for the velocity field within the potential core, the main features of the overall 

turbulent structure are correctly captured. 

 
Fig. 12 Underexpanded turbulent jet at NPR=7.55: simulated mean vorticity field. 

 

 Figure 12 illustrates for example the typical development of the main shear layer surrounding the internal shear 

layer issued from the triple point at NPR=7.55. The locations of the maximum shear stress are in good agreement 

with those extracted from the results of Yüceïl and Ötügen37. Whereas the levels of vorticity are largely 

overestimated at the jet boundary near the nozzle (twice as much i.e. 6.105 s-1 instead of about 3. 105 s-1), these levels 

decrease rapidly downstream of the location where the shock extension is maximal to reach values of 105 s-1 to 1.5 
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105 s-1 which are close to the experimental values. In addition, the observed overall development of these two 

uncoupled shear layers up to a distance of at least 7 De is also in good agreement with the experimental 

observations. Nevertheless, by comparing the radial profiles of longitudinal velocity downstream of the Mach disk 

with the available experimental data at NPR=15.53 (see Fig. 13), it can be noted that the radial turbulent diffusion is 

underestimated. The predicted length of the potential core is equal to about 9 De whereas the experimental profiles 

show that the shear layer reaches the axis for X/De around 5 or 6. According to the validation of the chosen 

compressibility corrections previously presented for a perfectly expanded jet, these new results prove that the 

reference model remains incomplete when only compressibility corrections are added. Sarkar's correction only acts 

to decrease the level of k within the shear layer (by 7% to about 20% from X/De=1 to 5 for instance in the case of 

the perfectly expanded jet previously studied) without greatly modifying the dissipation rate. Besides, the effect of 

the enthalpic production remains marginal even for such high levels of baroclinic torque found within the near field. 

This results in a decrease of the global mixing in each of the shear layers whereas the turbulent mixing is in fact 

highly increased downstream of the Mach disk of highly underexpanded jets. 

 
 

 
 

Fig. 13 Underexpanded turbulent jet at NPR=15.53: longitudinal evolution of the radial profiles of the mean 
longitudinal velocity component. 
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While these compressibility effects are of prior importance to correctly predict the far field, the results obtained 

prove that their influence remains marginal within the near field. As a consequence, one can assume that the peculiar 

turbulent mixing within the subsonic transitional zone downstream of the Mach disk is mainly piloted by the strong 

curvature effects encountered. 

VII. Conclusions and perspectives 

The mixed cell-vertex finite-volume/ finite-element method implemented into the CFD code N3Snatur has been 

coupled with the anisotropic mesh adaptation algorithm of Dolejší to simulate the complex mean structure of highly 

underexpanded turbulent jets. The various numerical difficulties, encountered when simplified and reduced 

numerical domains are used, have been described and related to the peculiarities of the near field of the structure of 

these jets. An overall strategy has thus been suggested to overcome these. It consists in iteratively readapting a "core 

grid" to progressively improve the numerical accuracy within the near field and to surround this "core grid" at each 

step of the simulation by a strongly coarsened "buffer grid" in order to naturally dissipate the spurious reflected 

numerical waves. The influence of such a "buffer grid" and that of the simplified nozzle geometry on the jet solution 

remains marginal in the field of interest. Thus, by prescribing a reasonable number of nodes and by using a 

sufficiently robust hyperbolic solver, this strategy can rapidly lead to correctly converged solutions which yield 

qualitatively-correct jet features over a wide range of NPR. Given the simplicity of the models used, the highly 

underexpanded jet solutions obtained are promising. The main features of the mean complex jet structure are 

correctly reproduced while the inaccuracy can be clearly related to two main origins. Firstly, Roe's scheme induces 

an excessive numerical diffusion within the strong expansion zone so that a new compromise has to be found 

between robustness and accuracy by implementing and testing more sophisticated hyperbolic solvers. Secondly, the 

results obtained show that the compressibility effects only play a minor role in the near field in comparison with the 

strong curvature effects encountered at the jet boundary near the nozzle or just downstream of the Mach disk. In 

order to continue to optimize the accuracy / cost ratio of the simulations, improvements in the accuracy of the 

potential core length prediction may be expected by testing adapted non-linear closures of the Reynolds stress tensor 

components.  
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