
HAL Id: inria-00343815
https://hal.inria.fr/inria-00343815

Submitted on 2 Dec 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Peer-to-peer Collaboration over XML Documents
Claudia-Lavinia Ignat, Gérald Oster

To cite this version:
Claudia-Lavinia Ignat, Gérald Oster. Peer-to-peer Collaboration over XML Documents. International
Conference on Cooperative Design, Visualization and Engineering - CDVE 2008, Sep 2008, Mallorca,
Spain. pp.66-73, �10.1007/978-3-540-88011-0�. �inria-00343815�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/50207196?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00343815
https://hal.archives-ouvertes.fr


Peer-to-peer collaboration over XML documents

Claudia-Lavinia Ignat and Gérald Oster

LORIA, INRIA Nancy-Grand Est, Nancy Université, France
{ignatcla,oster}@loria.fr

Abstract. Existing solutions for the collaboration over XML documents
are limited to a centralised architecture. In this paper we propose an ap-
proach for peer-to-peer collaboration over XML documents where users
can work off-line on their document replica and synchronise in an ad-hoc
manner with other users. Our algorithm for maintaining consistency over
XML documents recursively applies the tombstone operational transfor-
mation approach over the document levels.

Keywords: XML, collaborative editing, peer-to-peer collaboration, operational
transformation

1 Introduction

Collaboration is a key requirement of teams of individuals working together
towards some common goal. Computer-supported collaboration is becoming in-
creasingly common, often compulsory in academia and industry where people
work in teams and are distributed across space and time. Extensible Markup
Language (XML) is a popular format for marking up various kinds of data,
such as application data, metadata, specifications, configurations, templates,
web documents and even code. In many engineering fields such as geospatial,
architectural, automotive and product engineering users interact with the main
artifacts of this field by means of certain specialised tools but the underlying
representation of these artifacts is done in XML. Many different companies are
involved in the engineering process and all subcontractors and suppliers have the
need to collaborate over the same data. Existing solutions for the collaboration
over XML documents are limited to a centralised architecture. Locking and turn-
taking approaches that allow only one active participant at a time are examples
of very basic solutions. Another typical solution for editing XML documents is
the asynchronous collaboration where users work in isolation on their copies of
the document and synchronise their changes against a shared repository where
changes are published.

In this paper we propose an approach for the reconciliation of XML docu-
ments in a decentralised peer-to-peer (P2P) environment where users can work
in an off-line mode and synchronise in an ad-hoc manner with other members
of the network without publishing their changes on a central repository. Off-line
work means that users can work disconnected from the network, for instance



on their laptops while traveling on train or plane and synchronise their changes
when they reconnect to the network. Ad-hoc collaboration would allow members
of a team working on a common project to synchronise and revise their changes
without making them public to the other teams involved in the project.

For supporting off-line work all or part of the content has to be replicated
on multiple peers. Peers can concurrently modify their replicas. A main issue
is how to maintain consistency in the face of concurrent modifications on the
replicated XML content.

As opposed to centralised version control systems such as Concurrent Ver-
sions System (CVS) and Subversion, in P2P environments merging of concurrent
changes is not performed by humans. A merging performed by humans in a P2P
environment might lead to a same situation of conflict resolved in different ways
by different users. In order to ensure convergence in a P2P environment merging
of concurrent changes is automatically performed. Users can revise the result of
merging to correct the possible conflictual changes by generating new operations.

In this paper we propose an automatic algorithm for merging XML docu-
ments by combining the treeOPT [4] approach for merging hierarchical structures
with the tombstone transformational approach [7] modified for XML documents.
The XML document obtained as result of merging should be well-formed. To our
knowledge, our approach is the first one that can reconcile XML documents in
a P2P environment.

The paper is structured as follows. In section 2 we present existing approaches
for the reconciliation of XML documents. Section 3 describes the model of the
document and the set of operations for modeling user modifications on the doc-
ument. We then go on in section 4 by presenting the treeOPT algorithm used in
our approach for the reconciliation of hierarchical structures. Section 5 presents
the transformation functions for XML documents used by treeOPT algorithm
recursively over the document hierarchy. In section 6 we present our concluding
remarks and directions of future work.

2 Related work

Various approaches were proposed for reconciliation of XML documents. They
can be classified into state-based and operation-based approaches.

State-based approaches use only information about document states and no
information about the evolution of one state into another. Generally, these ap-
proaches rely on a diff algorithm [2] for computing the changes performed be-
tween two document states. These diff algorithms are not reliable as there is
usually more than one function that can be used to transform an initial state
of document into a final one. Moreover, they do not keep information about the
process of transformation from one state to the other, such as execution order
of operations. The algorithms for the computation of XML difference are costly
in terms of resources. Merging used by these approaches relies on a document
reference copy and therefore it is not commutative and associative, the necessary
conditions for synchronisation in decentralised environments. Subversion, CVS



and distributed version control systems use state-based approaches for document
merging.

As opposed to state-based approaches, operation-based approaches [6] keep
information about the evolution of one document state into another in a buffer
containing the operations performed between the two document states. This
approach allows tracking accurate user changes and capturing operations’ se-
mantic. On the other side, the used editing tool should be able to capture the
performed operations. Our approach belongs to the category of operation-based
approaches.

The operational transformation [3] approach has been identified as an appro-
priate approach for maintaining consistency of the copies of the shared document
in operation-based collaborative editing systems. It allows local operations to be
executed immediately after their generation and remote operations need to be
transformed against the other operations. Transformations are performed in such
a manner that user intentions are preserved and, at the end, document copies
converge.

Currently, it is possible to synchronise data in a decentralised environment,
but data has to conform to a linear structure. For instance, in the tombstone
transformational approach [7] a text document is seen as a sequence of charac-
ters or lines. In [10] an approach for maintaining consistency over CoWord and
CoPowerPoint documents was proposed. Documents conform to a hierarchical
structure, but update operations are simulated as a delete followed by an insert
with the new value. As mentioned in section 5, this solution is not satisfying for
our application as it would lead to not well-formed documents. Furthermore, the
approach proposed in [10] was not applied for XML documents.

Approaches for synchronisation of XML documents exist, but they are limited
to a centralised architecture. Some of the approaches that use a central server
for the synchronisation of XML documents can be found in [8, 5].

3 Document model and operations definition

This section presents our document model and the operations for describing user
changes on the document.

A node N of a document is a structure of the form N =< parent, children,

attributes, history, content >, where

– parent is the parent node for the current node
– children is an ordered list [child1, ..., childn] of child nodes
– attributes is a set of attributes, each attribute being defined as a pair (name,

value), where name is the name of the attribute and value is its associated
value

– history is an ordered list of operations executed on child nodes
– content is the textual content of the node if this node is a textual node.

Otherwise, it represents the name of the node.

The level of a node is its depth in the tree, i.e. the length of the path from
root to the node.



The child nodes of a node N are ordered and therefore they will be relatively
identified to node N by their position in its list of children. The absolute position
of a node N is the path defined by the relative positions of all its ancestors.

There is no order assigned for the attributes of a node in an XML document,
and therefore, attributes of a node N in our model are unordered. Moreover,
a well-formed XML document requires that an element does not have two at-
tributes with the same name. Therefore, we have chosen to identify an attribute
of a node N by its name in the set of attributes of node N .

In order to describe user changes performed on the structure of the document,
we defined the following operations:

– insertNode(p,content) that inserts a node at the absolute position denoted
by path p with the content content (the meaning of a node content was
previously defined).

– deleteNode(p) that deletes the node identified by the path position p.
– setAttribute(p,name,value) that assigns the value value to the attribute iden-

tified by the name name of the node with path p. If the attribute with name
name does not exist, it is created.

Note that we simulate a deletion of an attribute with name name belonging
to the node with path p as setAttribute(p, name, null). When such an operation
is executed on an XML document, the corresponding attribute is removed.

4 The treeOPT algorithm

This section presents the treeOPT algorithm that we used for maintaining con-
sistency over the XML hierarchical structure.

Each user peer maintains a local copy of the hierarchical structure of the
XML document. Local operations generated by a peer are immediately executed
and added to the local history buffers distributed throughout the tree. In a syn-
chronisation phase, remote operations generated by other peers are transmitted
to the local peer. For the integration of a remote operation into the correspond-
ing history buffer, the treeOPT approach recursively applies over the hierarchical
document an existing operational transformation algorithm for linear structures,
such as SOCT2 [9]. In what follows we briefly present the implementation of the
treeOPT algorithm using the SOCT2 algorithm. A more detailed explanation
of the treeOPT algorithm can be found in [4]. We call a composite operation
an operation on the tree whose position is defined by an absolute position in
the tree. For each relative position in the path, the composite operation has a
corresponding simple operation defined on one level of the tree.

Algorithm treeOPT-SOCT2(O, RN, L) {
CN = RN ;
for (l := 1; l ≤ L; l++) {

Onew := Composite2Simple(O, l);
EOnew := SOCT2(Onew, history(CN));
position(O)[l] := position(EOnew);



if (level(O) = l) {
Do O;
Append(EOnew, history(CN));

}
CN = childi(CN), where i = position(EOnew);

}
}

Given a new causally ready composite operation, O, the root node of the hi-
erarchical representation of the local copy of the document, RN , and the number
of levels in the hierarchical structure of the document, L, the execution form of
O is computed. Determining the execution form of a composite operation re-
quires finding the elements of the position vector corresponding to a coarser or
equal granularity level than that of the composite operation. For each level of
granularity l, starting with root level and ending with the level of the composite
operation, the SOCT2 linear merging algorithm is applied to find the execution
form of the corresponding simple operation. SOCT2 does not perform transfor-
mations on composite operations, but rather on simple ones. Therefore, we had
to define the function Composite2Simple, that takes as arguments a composite
operation, together with the granularity level at which we are currently trans-
forming the operation, and returns the corresponding simple operation. The
operational transformation algorithm is applied to the history of the current
node CN whose granularity level is l− 1. The lth element in the position vector
will be equal to the position of the execution form of the simple operation. If the
current granularity level l is equal to the level of the composite operation O, O

is executed and its simple operation corresponding to level l is appended to the
history of the current node CN . Otherwise, the processing continues with the
next finer granularity level, with CN being updated accordingly. The function
SOCT2(O,HB) takes as parameters a causally-ready simple operation O and a
history buffer HB and returns the execution form of O.

5 Tombstone transformation functions

As we have seen in the previous section, treeOPT approach recursively applies
an operational transformation algorithm working for linear structures over the
hierarchical document levels. Our method was to combine treeOPT with a linear
operational transformation algorithm that works in peer-to-peer networks. As
far as we are aware, the tombstone transformation functions [7] are the only ones
that satisfy the mandatory consistency properties [9]. Satisfying these conditions
ensures that the merging algorithm is associative and commutative, i.e. synchro-
nisation between a set of peers can be performed in any order. Therefore, the
tombstone transformational approach can be safely used for merging documents
conforming to linear structures (e.g. a text document is seen as a sequence of
characters) in a distributed environment.

We therefore chose to combine the tombstone transformational approach with
the treeOPT approach and in this way treeOPT-SOCT2 is the first operational



transformation algorithm applicable in peer-to-peer environments that maintains
consistency over replicated hierarchical documents.

We next present the novel transformation functions for XML documents that
we designed for the transformations to be applied at the level of a certain node
N . These operations are either insertNode or deleteNode operations that insert
or respectively delete child nodes of node N or setAttribute that sets the value of
a certain attribute of node N . Additionally, each operation contains a parameter
sid representing its generator site. Transformation functions are written for each
pair of operations.

T (insertNode(p1, content1, sid1), insertNode(p2, content2, sid2))
if (p1 < p2) return insertNode(p1, content1, sid1)
else if (p1 = p2 and sid1 < sid2) return insertNode(p1, content1, sid1)
else return insertNode(p1 + 1, content1, sid1)

T (insertNode(p1, content1, sid1), deleteNode(p2, sid2))
return insertNode(p1, content1, sid1)

T (insertNode(p1, content1, sid1), setAttribute(p2, name2, value2, sid2))
return insertNode(p1, content1, sid1)

T (deleteNode(p1, sid1), insertNode(p2, content2, sid2))
if (p1 < p2) return deleteNode(p1, sid1)
else return deleteNode(p1 + 1, sid1)

T (deleteNode(p1, sid1), deleteNode(p2, sid2))
return deleteNode(p1, sid1)

T (deleteNode(p1, sid1), setAttribute(p2, name2, value2, sid2))
return deleteNode(p1, sid1)

T (setAttribute(p1, name1, value1, sid1), insertNode(p2, content2, sid2))
if (p1 < p2) return setAttribute(p1, name1, value1, sid1)
else return setAttribute(p1 + 1, name1, value1, sid1)

T (setAttribute(p1, name1, value1, sid1), deleteNode(p2, sid2))
return setAttribute(p1, name1, value1, sid1)

T (setAttribute(p1, name1, value1, sid1), setAttribute(p2, name2, value2, sid2))
if (name1 = name2)

if (site1 < site2) return setAttribute(p1, name1, value1, sid1)
else return setAttribute(p1, name1, value2, sid1)

else return setAttribute(p1, name1, value1, sid1)

An insertNode operation transformed against another insertNode operation
keeps its original form if the insertion position of the second insertNode op-
eration is situated after the insertion position of the first operation or the two
operations have the same insertion position and the generation site of the first op-
eration is smaller than the generation site of the second operation. Otherwise the
transformed operation increases by 1 its insertion position. Note that according
to SOCT2 algorithm only concurrent operations are transformed against each
other. Therefore, two operations generated by the same site are never trans-
formed against each other.

A setAttribute operation transformed against a setAttribute operation keeps
its original form if the targeted attributes are different or they are the same but
the generator site identifier of the first operation is smaller than the generator



site identifier of the second operation. Otherwise, the attribute value becomes
equal to the value set by the second setAttribute operation.

Any operation transformed with respect to a delete operation deleteNode
keeps its original form as deletions of nodes are not physically performed. An
insertNode and deleteNode operations transformed with respect to a setAttribute
operation keep their original form since modifications of attributes do not change
the hierarchical structure of XML elements.

A deleteNode and setAttribute transformed with respect to an insertNode
operation keep their original form if the insertion position of insertNode is situ-
ated after the position targeted by deleteNode or setAttribute. Otherwise, their
position is increased by 1.

The need to resolve conflict between two concurrent update operations refer-
ring to the same entity is a major challenge for the operational transformation
approach. For a linear structure, transformations among insert and delete op-
erations simply adjust the positions of these operations. There is no conflict
between these two types of operations, their effect being always preserved by
adapting their positional parameter. By using tombstone transformational ap-
proach, the effect of insert and delete operations can be preserved also in the
case of a hierarchical structure. The tombstone transformational approach does
not remove entities from the document structure, just marks them as invisible.
This fact is helpful in the process of automatic merging of concurrent changes
for highlighting modifications concurrently performed. If nodes are not removed
from the document structure, we can highlight concurrent changes of deletion of
a node and of a change performed on the deleted subtree. However, the trans-
formation technique for insert and delete operations is no longer relevant to the
transformation of update operations. In our case, the update operation is the
setAttribute operation. Two update operations targeting the same entity and
attribute are considered conflicting as there is no way to satisfy the effect of
both operations without changing the structure of the document. A solution to
this situation of conflict is to create versions of the targeted attribute, but then
the issue is how to present versions to the user. Another solution, the one that
we adopted, is to ignore the effect of one of the two conflicting updates by set-
ting its value to the value of the other update. Another alternative solution is to
simulate the update operation as a deletion followed by an insertion of attribute.
In our case, this solution would lead to a not well-formed XML document with
an element having two attributes with the same name and different values.

6 Conclusion

In this paper we proposed an approach for peer-to-peer collaboration over XML
documents. Users can work off-line on their document replicas and synchronise
in an ad-hoc manner with other users. Our approach combines the treeOPT ap-
proach for merging hierarchical structures with the tombstone transformational
approach that we adapted for XML documents. Our approach recursively ap-
plies the tombstone operational transformation approach for linear structures



over document levels. To our knowledge, our approach is the first one that can
reconcile XML documents in a P2P environment.

Our proposed approach relies on the notion of state vectors for detecting
concurrency between operations. State vectors impose the limitation of closed
groups and cannot be used for supporting dynamic massive collaborative editing
involving a large number of users who can often join and leave the network. In
order to adapt our approach to support massive collaboration we will investigate
how to combine treeOPT with MOT2 [1] approach. MOT2 approach is based
on operational transformation, but instead of state vectors it uses a pair-wise
synchronization mechanism according to which it constructs a common history
of operations for all sites.

References

1. M. Cart and J. Ferrié. Asynchronous reconciliation based on operational trans-
formation for P2P collaborative environments. In Proceedings of the International
Conference on Collaborative Computing (CollaborateCom’07), White Plains, New
York, USA, November 2007.

2. G. Cobena, S. Abiteboul, and A. Marian. Detecting changes in XML documents. In
Proceedings of the 18th International Conference on Data Engineering (ICDE’02),
pages 41–52, San Jose, California, USA, February 2002.

3. C. A. Ellis and S. J. Gibbs. Concurrency control in groupware systems. SIGMOD
Record, 18(2):399–407, June 1989.

4. C.-L. Ignat and M. C. Norrie. Customizable collaborative editor relying on
treeOPT algorithm. In Proceedings of the 8th European Conference on Computer-
supported Cooperative Work (ECSCW’03), pages 315–334, Helsinki, Finland,
September 2003.

5. C.-L. Ignat and M. C. Norrie. Flexible Collaboration over XML Documents. In
Proceedings of the International Conference on Cooperative Design, Visualization
and Engineering (CDVE’06), pages 267–274, Mallorca, Spain, September 2006.

6. E. Lippe and N. van Oosterom. Operation-based merging. In Proceedings of the
ACM SIGSOFT Symposium on Software Development Environments (SDE’92),
pages 78–87, Tyson’s Corner, Virginia, USA, December 1992.

7. G. Oster, P. Molli, P. Urso, and A. Imine. Tombstone Transformation Functions
for Ensuring Consistency in Collaborative Editing Systems. In Proceedings of
the International Conference on Collaborative Computing (CollaborateCom’06),
page 10, Atlanta, Georgia, USA, November 2006. IEEE Computer Society.

8. G. Oster, H. Skaf-Molli, P. Molli, and H. Naja-Jazzar. Supporting Collabora-
tive Writing of XML Documents. In Proceedings of the International Conference
on Enterprise Information Systems (ICEIS’07), pages 335–342, Funchal, Madeira,
Portugal, June 2007.

9. M. Suleiman, M. Cart, and J. Ferrié. Serialization of concurrent operations in a
distributed collaborative environment. In Proceedings of the international ACM
SIGGROUP conference on Supporting group work (GROUP’97), pages 435–445,
Phoenix, Arizona, USA, November 1997. ACM Press.

10. C. Sun, S. Xia, D. Sun, D. Chen, H. Shen, and W. Cai. Transparent Adaptation
of Single-user Applications for Multi-user Real-time Collaboration. ACM Trans-
actions on Computer-Human Interaction, 13(4):531–582, 2006.


