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Computing exact geometric predicates

using modular arithmetic with single precision

Hervé Brönnimann∗ Ioannis Z. Emiris∗ Victor Y. Pan‡ Sylvain Pion∗

Abstract: We propose an efficient method that deter-
mines the sign of a multivariate polynomial expression
with integer coefficients. This is a central operation on
which the robustness of many geometric algorithms de-
pends. The method relies on modular computations,
for which comparisons are usually thought to require
multiprecision. Our novel technique of recursive relax-
ation of the moduli enables us to carry out sign deter-
mination and comparisons by using only floating point
computations in single precision. The method is highly
parallelizable and is the fastest of all known multipreci-
sion methods from a complexity point of view. We show
how to compute a few geometric predicates that reduce
to matrix determinants. We discuss implementation
efficiency, which can be enhanced by good arithmetic
filters. We substantiate these claims by experimental
results and comparisons to other existing approaches.
This method can be used to generate robust and effi-
cient implementations of geometric algorithms, includ-
ing solid modeling, manufacturing and tolerancing, and
numerical computer algebra (algebraic representation
of curves and points, symbolic perturbation, Sturm se-
quences and multivariate resultants).

Keywords: computational geometry, exact arithmetic,
robustness, modular computations, single precision,
Residue Number Systems (RNS)

1 Introduction

Most of geometric predicates can be expressed as com-
puting the sign of an algebraic expression. In principle,
one may compute such expressions by using floating-
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point arithmetic with a fixed finite precision (f.p. arith-
metic), but then the roundoff errors may easily lead to
the wrong sign. This problem is often referred to as the
robustness problem in computational geometry [17].

One solution to the robustness problem is to explic-
itly handle numerical inaccuracies, so as to design an
algorithm that does not fail even if the numerical part
of the computation is done approximately [19, 29], or
to analyze the error due to the f.p. imprecision [12].
Such designs are extremely involved and have only been
done for a few algorithms. The general solution, it has
been widely argued, is to compute the predicates ex-
actly [9, 6, 13, 33, 11]. This can be achieved in many
ways: computing the algebraic expressions with infi-
nite precision [31], with a finite but much higher pre-
cision that can be shown to suffice [14], or by using
an algorithm that performs a specific test exactly. In
the last category, much work has focused on comput-
ing the sign of the determinant of a matrix with inte-
ger entries [7, 2, 4], which applies to many geometric
tests (such as orientation tests, in-circle tests, compar-
ing segment intersections) as well as to algebraic prim-
itives (such as resultants and algebraic representations
of curves and surfaces). Recently, some techniques have
been devised for handling arbitrary expressions and f.p.
representation [28].

In our present paper, we propose a method that de-
termines the sign of a multivariate polynomial expres-
sion with integer coefficients, using no operations other
than modular arithmetic and f.p. computations with
a fixed finite (single) precision. The latter operations
can be performed very fast on usual computers. The
Chinese remainder algorithms enable us to perform ra-
tional algebraic computations modulo several primes,
that is, with a lower precision, and then to combine
them together in order to recover the desired output
value. The latter stage of combining the values mod-
ulo smaller primes, however, was always considered a
bottleneck of this approach, because higher precision
computations were required at this stage. Our paper
proposes a new technique, which we call recursive relax-



ation of the moduli and which enables us to resolve the
latter problem. Due to this technique, we correctly re-
cover the sign of an integer from its value reduced mod-
ulo several smaller primes, and we only use some sim-
ple lower precision computations at the recovery stage.
(This should make our algorithms of some independent
interest also for the theory and practice of algebraic
computing.) Our deterministic algorithms 1 and 2 of
sections 3 and 4, respectively, specify our approach and
our technique based on Lagrange’s and Newton’s inter-
polation formulae, respectively. Our algorithm 4 of sec-
tion 5 gives a probabilistic simplification of algorithm 3.
Preliminary experimental results and running times are
discussed in section 7. In general, our methods are com-
parable in speed to other exact methods and even faster
for particular inputs.

Related work. Performing exact arithmetic is usually
expensive. Thus, it is customary to resort to arithmetic
filters [14]: those filters safely evaluate a predicate in
most cases, in order to avoid performing a more ex-
pensive exact implementation. The difficult cases arise
when the expression whose sign we wish to compute is
very small. For typical filters, the smaller this quantity,
the slower the filter [7, 2, 28]: this is referred to as adap-
tivity. Modular arithmetic displays an opposite kind of
adaptivity: with a smaller quantity, fewer moduli have
to be computed, hence the test is faster. Typically,
when filters fail, they also provide an upper bound on
the absolute value of the expression whose sign we wish
to compute (see many details and estimates in [25]).
This bound can then be used to determine how many
moduli should be taken. Modular arithmetic is there-
fore complementary to the filtering approach. We also
observe this in section 7.

Residue Number Systems (RNS) express and ma-
nipulate numbers of arbitrary precision by their moduli
with respect to a given set of numbers. They have been
popular because they provide a cheap and highly paral-
lelizable version of multiprecision arithmetic. It is im-
possible here to give a fair and full account on RNS, but
Knuth [22] and Aho, Hopcroft, and Ullman [1] provide
a good introduction to the topic. From a complexity
point of view, RNS allows to add and multiply numbers
in linear time. Its weak point is that sign computation
and comparisons are not easily performed and seem to
require full reconstruction in multiple precision, which
defeats its purpose. This is precisely the issue that our
paper handles.

The closest predecessors of our work are appar-
ently [10] and [20]. The algorithm of Hung and
Parhami [20] corresponds to single application of the
second stage of our recursive relaxation of the moduli.
Such a single application suffices in the context of the
goal of [20], that is, application to divisions in RNS,

but in terms of the sign determination of an integer,
this only works for an absolutely larger input. The pa-
per [10] gives probabilistic estimates for early termina-
tion of Newton’s interpolation process, which we apply
in our probabilistic analysis of our algorithm 4. Its main
subject is an implementation of an algorithm computing
multidimensional convex hulls. The paper [10] does not
use our techniques of recursive relaxation of the moduli,
and it does not contain the basic equations (1)–(3) of
our section 3.

2 Exact sign computation using modular arithmetic

Modular computations. Our model of a computer is
that of a f.p. processor that performs operations at unit
cost by using b-bit precision (e.g., in the IEEE 754 dou-
ble precision standard, we have b = 53). It is a realistic
model as it covers the case of most workstations used
in research and industry. We will use mainly one basic
property of f.p. arithmetic on such a computer: for all
four arithmetic operations (and for computing a square
root too but we will not need it), the computed result
is always the f.p. representation that best approximates
the exact result [22, 28]. This means that the relative
error incurred by an operation returning x is at most
2−b, and that the absolute error is at most 2blog |x|−bc.
(All logarithms in this paper are base 2.) In particular,
operations performed on pairs of integers smaller than
2b are performed exactly as long as the result is also
smaller than 2b.

Let m1, . . . , mk be k pairwise relatively prime inte-
gers and let m =

∏

i mi. For any number x (not nec-
essarily an integer), we let xi = x mod mi be the only
number in the range

[

−mi

2 , mi

2

)

such that xi − x is a
multiple of mi. (This operation is always among the
standard operations because it is needed for reducing
the arguments of periodic functions.)

To be able to perform arithmetic modulo mi on inte-
gers by using f.p. arithmetic with b-bit precision, we will
assume that mi ≤ 2b/2+1. Performing modular multi-
plications of two integers from the interval

[

−mi

2 , mi

2

)

can be done by multiplying these numbers and return-
ing their product modulo mi. (The product is smaller
than 2b in magnitude and hence is computed exactly.)
Performing additions can be done very much in the
same way, but since the result is in the range

[

−mi

2 , mi

2

)

,
taking the sum modulo mi is more easily achieved by
adding or subtracting mi if necessary. Integral divi-
sions modulo mi can be computed using Euclid’s algo-
rithm; we will need them in this paper only in section 6.
Therefore, arithmetic modulo mi can be performed us-
ing f.p. arithmetic with b-bit precision, provided that
mi ≤ 2b/2+1.



Exact sign computation. In this paper, we consider the
following computational problem.

Problem 1 Let k, b, m1, . . . , mk denote positive inte-
gers, m1, . . . , mk being pairwise relatively prime, such
that mi ≤ 2b/2+1, and let m =

∏k
i=1 mi. Let

x be an integer whose magnitude is smaller than
b(m/2)(1− k2−b)c. Given xi = x mod mi, compute the
sign of x by using only modular and floating-point arith-
metic both performed with b-bit precision.

We will solve this problem, even though x can be huge
and, therefore, not even representable by using b bits.

3 Lagrange’s method

According to the Chinese remainder theorem [8], x is
uniquely determined by its residues xi, that is, Prob-
lem 1 is well defined and admits a unique solution.
Moreover, this solution can be derived algorithmically
from the following formula, due to Lagrange [22, 23]. If
x is an integer in the range

[

−m
2 , m

2

)

, xi stands for
the residue x mod mi, vi = m/mi =

∏

j 6=i mj , and

wi = v−1
i mod mi, then

x =

(

k
∑

i=1

((xiwi) mod mi) vi

)

mod m.

Trying to determine the sign of such an integer, we
computed the latter sum approximately in fixed b-bit
precision. Computing a linear combination of large in-
tegers vi with its subsequent reduction modulo m can
be difficult, so we prefer to compute the number

S = frac

(

k
∑

i=1

(xiwi) mod mi

mi

)

,

where frac(z) is the fractional part of a number x that
belongs to

[

− 1
2 , 1

2

)

.
If S were computed exactly, then we would have

S = frac(x/m), due to Lagrange’s interpolation for-
mula. In fact, S is computed with a fixed b-bit pre-
cision. Nevertheless, we prove in the full version that
exact rounding and summing terms pairwise in a tree-
like fashion introduces an absolute error εk = k 2−b−1

in the sum S. Therefore, if S is greater than εk, the
sign of x is the same as the sign of S, and we are done.
Otherwise, |x| < εkm. Since mk ≤ 2b/2+1, we can say
conservatively that for all practical values of k and b,
this is smaller than m

2mk
(1−εk−1), and hence we may re-

cover x already from xi = x mod mi for i = 1, . . . , k−1,
that is, it suffices to repeat the computation using only
k−1, rather than k moduli. Recursively, we will reduce
the solution to the case of a single modulus m1 where
x = x1. We will call this technique recursive relaxation
of the moduli, and we will also apply it in section 4.

We will present our resulting algorithm by using ad-
ditional notation:

m(j) =
∏

1≤i≤j

mi,

v
(j)
i =

∏

1≤i≤j

i6=j

mi,

w
(j)
i =

(

v
(j)
i

)−1

mod mi,

S(j) = frac

(

j
∑

i=1

xiw
(j)
i mod mi

mi

)

,

so that m = m(k), wi = w
(k)
i and S = S(k). All the

computations in this algorithm are performed by using
f.p. arithmetic with b-bit precision.

Algorithm 1 : Compute the sign of x knowing xi =
x mod mi

Precomputed data: mj , w
(j)
i , εj, for all 1 ≤ i ≤

j ≤ k
Input: integers k and xi ∈

[

−mi

2 , mi

2

)

, for all 1 ≤
i ≤ k

Output: sign of x, the unique solution of xi =

x mod mi in
[

−m(k)

2 , m(k)

2

)

Precondition: |x| ≤ m(k)

2 (1− εk)

1. Let j ← k + 1
2. Repeat j ← j − 1,

S(j) ← frac

(

j
∑

i=1

xiw
(j)
i mod mi

mi

)

until |S(j)| > εj or j = 0
3. If j = 0 return “x = 0”
4. If S(j) > 0 return “x > 0”
5. If S(j) < 0 return “x < 0”

Lemma 3.1 Algorithm 1 computes the sign of x know-

ing its residues xi by using at most k(k−1)
2 f.p. modular

multiplications, k(k−1)
2 f.p. divisions, k(k−1)

2 f.p. addi-
tions, and k + 2 f.p. comparisons.

Proof. The mi’s and the w
(j)
i ’s are computed once and

for all and placed into a table, so they are assumed to
be available to the algorithm at no cost. In step 2, a
total of j modular multiplications, j f.p. divisions, and
j f.p. additions (including taking the fractional part)
are performed. 2

By using parallel implementation of the summation
of k numbers on dk/ log ke arithmetic processors in
2dlog ke time (cf. e.g. [3, ch.4]), we may perform algo-
rithm 1 on dk/ log ke arithmetic processors in O(k log k)
time, assuming each b-bit f.p. operation takes constant
time. Furthermore, if dk2/ log ke processors are avail-
able, we may compute all the S(j) and compare |S(j)|



with εj , for all j = 1, . . . , k concurrently. This would re-
quire O(log k) time on dk2/ log ke processors. Finally, if
dtk/ log ke processors are available for some parameter
1 ≤ t ≤ k, we may perform algorithm 1 in O((k log k)/t)
time by batching dte consecutive values of j in parallel.
In practice, the algorithm needs to examine only a few
values of j, so O(log k) time suffices even with dk/ log ke
processors.

Remark 1. If actually x = 0, the algorithm can be
greatly sped up by testing if xj = 0 in step 2, in which
case we may directly pass to j − 1. Furthermore, stage
3 is not needed unless x = xj = 0 for all j, which can be
tested beforehand. Of course, if the only answer needed
is “x = 0” or “x 6= 0”, then it suffices to test if all the
xi’s are zero.

Remark 2. If |x| is not too small compared to m(k),
then only step k is performed, involving only k f.p. op-
erations of each kind. Also, we note that the costly part
of the computation is likely to be the determination of
the xi’s. For these reasons, we should try to minimize
the number k of moduli mi involved in the algorithm.
This can be done by getting better upper estimates on
the magnitude of the output or by using the probabilis-
tic technique of section 5.

4 A generalization of Lagrange’s method

We will show that Lagrange’s method is in fact a par-
ticular case of the following method. Let

Σ(0) = S(k) = frac

(

k
∑

i=1

(xiwi) mod mi

mi

)

.

This quantity is computed in the first step of algo-
rithm 1. If the computed value of Σ(0) is smaller than
εk, it implies that Σ(0) < 2εk. Thus, |x| is smaller than
2mεk. We can then multiply xiwi by

αk = b
1
2 (1− εk)

2εk
c,

to obtain (xiwiαk) mod mi for all i = 1, . . . , k. This
can be easily done by precomputing αk modulo each
mi. We then compute

Σ(1) = frac

(

k
∑

i=1

(xiwiαk) mod mi

mi

)

,

and more generally,

Σ(j) = frac

(

k
∑

i=1

(xiwiα
j
k) mod mi

mi

)

,

where we assume αk mod mi precomputed for all i =
1, . . . , k. This leads to the following algorithm:

Algorithm 2 : Generalized Lagrange’s method. Com-
pute the sign of x knowing xi = x mod mi.

Precomputed data: mi, wi, εk, αk mod mi, for
all i = 1, . . . , k

Input: integers k and xi ∈
[

−mi

2 , mi

2

)

for all i =
1, . . . , k

Output: sign of x, the unique solution of xi =
x mod mi in

[

−m
2 , m

2

)

Preconditions: |x| ≤ m
2 (1− εk) and x 6= 0

1. Let j ← −1
2. Repeat j ← j + 1,

Σ(j) ← frac

(

k
∑

i=1

xiwi mod mi

mi

)

xi ← xiαk mod mi for all 1 ≤ i ≤ k,
until |Σ(j)| > εk or j = k

3. If j = k return “x = 0”
4. If Σ(j) > 0 return “x > 0”
5. If Σ(j) < 0 return “x < 0”

It is easy to see that the number of iterations in step 2 is
O(log m/ logαk) = O(log k), because |x| is no less than
1 and no more than m(k) ≤ 2k(b/2+1), and is multiplied
by αk at each iteration.

Remark 3. Algorithm 1 corresponds to a choice of
αk = mj in step j, this is why we call algorithm 2 a
generalization. Applying Lagrange’s method, we do not
multiply by the maximum at each step, but by a smaller
number chosen so as to simplify the computations.

Remark 4. To yield the parallel time bounds such
as O(log k) using dk2/ log ke processors for algorithm 2,
we need to precompute αk

j for all i, j = 1, . . . , k.

5 An incremental variant

A recursive incremental version of the Chinese remain-
der algorithm, named after Newton, is described in this
section. Its main advantage is that it does not require
an a priori bound on the magnitude of x.

Let x(j) = x mod m(j), for j = 1, . . . , k, so that
x(1) = x1 and x = x(k). Let y1 = x1, and for all
j = 2, . . . , k,

tj = w
(j)
j = (m(j−1))−1 mod mj ,

yj =
(

xj − x(j−1)
)

tj mod mj ∈
[

−
mj

2
,
mj

2

)

.

Then (see, e.g., [22, 23]), for all j = 2, . . . , k,

x(j) = x(j−1) + yjm
(j−1).

Clearly, this leads to an incremental computation of the
solution x = x(k) to problem 1; we see below how this



can be exploited for an early termination of the interpo-
lation. A further advantage is that all computation can
be kept modulo mj , and no floating-point computation
is required, in contrast to sections 3 and 4 where S(j)

or Σ(j) are computed. It is obvious, that when yj 6= 0,
then the sign of x(j) is the same as the sign of yj since
|x(j−1)| ≤ m(j−1)/2. If yj = 0, the sign of x(j) is the
same as that of x(j−1), for j ≥ 2, whereas the sign of
x(1) = x1 = y1 is known. If yj = 0 for all j, then this is
precisely the case when x = 0.

For 1 ≤ i < j ≤ k, we introduce integers

u
(j−1)
i =

(

m(i−1)tj

)

mod mj =

(

j−1
∏

l=i

ml

)−1

mod mj .

Then tj = u
(j−1)
1 . In the full version of the paper, we

show that the quantities yj verify the following equality
for all j = 2, . . . , k,

yj =

(

(xj − x1)u
(j−1)
1 −

j−1
∑

i=2

yiu
(j−1)
i

)

mod mj .

Therefore, they can be computed by using modular
arithmetic with bit-precision given by the maximum
bit-size of the m2

j . Here it suffices to assume that the

absolute value of x is bounded by m(k)/2.

Algorithm 3 : Compute the sign of x, knowing x mod
mi, by Newton’s incremental method

Precomputed data: mj, u
(j−1)
i , for all 1 ≤ i <

j ≤ k
Input: integers k and xi ∈

[

−mi

2 , mi

2

)

for all i =
1, . . . , k

Output: sign of x, where x is the unique solution

of xi = x mod mi in
[

−m(k)

2 , m(k)

2

)

Precondition: None.

1. Let y1 ← x1, j ← 1. Depending on whether y1

is negative, zero or positive, set s to −1, 0 or 1,
respectively.

2. Repeat j ← j + 1,

yj ←

(

(xj − x1)u
(j−1)
1 −

j−1
∑

i=2

yiu
(j−1)
i

)

mod mj ,

until j = k. For every j, if yj is strictly negative
or positive, then set s to −1 or 1, respectively.

3. Depending on whether s is −1, 0, or 1, return
“x < 0,” “x = 0,” or “x > 0”, respectively.

Remark 5. As in remark 1, we can test beforehand
if all xi = 0, which is precisely the case when x = 0.

Lemma 5.1 Algorithm 3 computes the sign of x know-

ing its residues xi using at most k(k−1)
2 f.p. modular

multiplications, k(k−1)
2 f.p. modular additions, and k

f.p. comparisons.

Proof. For every j = 2, . . . , k, there are j − 1 f.p.
modular additions and multiplications. There is one
comparison for each j = 1, . . . , k. 2

Algorithm 3 requires k recursive steps in the worst
case (though we expect to have it terminate earlier in
practice), so its parallel time cannot be decreased be-
low Ω(k log k). Nevertheless the algorithm can be im-
plemented in O(k log k) time on dk/ log ke processors,
assuming each b-bit f.p. operation takes constant time.

To compare with algorithm 1, realistically assume
that a modular addition is equivalent to 3/2 f.p. ad-
ditions and one comparison, on the average. Then,

algorithm 1 requires k(k−1)
2 f.p. divisions (which are

essentially multiplications with precomputed recipro-
cals) more than algorithm 3, whereas the latter requires
k(k−1)

4 extra f.p. additions and k(k−1)
2 additional com-

parisons.
The principal feature of this approach, based on

Newton’s formula for recovering x, is its incremental
nature. This may lead to faster termination, before
examining all k moduli. Informally, this should hap-
pen whenever the magnitude of x is significantly smaller
than m(k)/2, in which case we would save the computa-
tion required to obtain xj for all larger j. This saves a
significant amount of computation if termination occurs
earlier than the static bound indicated by k. A quan-
tification of this property in the case of convex hulls can
be found in [10].

We propose below a probabilistic variant of algo-
rithm 3 which, moreover, removes the need of an a pri-
ori knowledge of k. Step 2 is modified to include a test
of yj against zero. Clearly, yj = 0 precisely when x(j) =
x(j−1). Then we may deduce that x(j) = x(k) = x, with
a very high probability, and terminate the iteration.

Algorithm 4 : Yield earlier termination of algo-
rithm 3 for absolutely smaller input. Algorithm 3 is
modified exactly as shown.

Input: integers xi ∈
[

−mi

2 , mi

2

)

for i = 1, . . . as
required in the course of the algorithm; no need
for k

Output: sign of x with very high probability

2. Terminate the loop also if yj = 0

By lemma 3.1 of [10], this algorithm fails with prob-
ability bounded by (k − 2)/mmin, where

mmin = min{m1, m2, . . . , mk}.

For k ≤ 12, mmin ≥ 225, the error probability is less
than 10−6. A more careful analysis can reduce this
probability by exploiting the correlation of failure at
different stages. For experimental support of this claim,
we refer to [10].



6 Applications

6.1 Exact geometric predicates

Exact geometric predicates is the most general way
to provide robust implementations of geometric algo-
rithms [9, 13, 33, 11]. In particular, orientation tests
can be implemented by looking for the sign of a deter-
minant. Modular arithmetic becomes increasingly in-
teresting when the geometric tests (e.g. determinants)
are of higher order and complexity. They are central in,
notably:

• Convex hull computations: this is a fundamental
problem of computational geometry and of opti-
mization for larger dimensions. Among numerous
practical applications, one may note collision de-
tection in dynamic simulation and animation [24],
prediction of poses for industrial parts on a con-
veyer belt, and computation of stable grasps by
robots [30].

• Voronoi diagrams: for points, their computation
reduces to convex hulls. The sweepline algorithm
in 2D is relatively simple, but involves tests of de-
gree 20 and modular arithmetic can be of substan-
tial help in conjunction with arithmetic filters [14].
For segments, the tests become of even higher de-
gree and complexity [6], and f.p. computation is
likely to introduce errors, so exact arithmetic is
often a must.

• Mixed subdivisions used in solving systems of non-
linear equations. Sparse elimination theory is a
relatively new area of computational algebraic ge-
ometry, which exploits the geometric structure
of polynomial systems in order to obtain tighter
bounds and faster algorithms for their manipula-
tion [15]. The algebraic questions are formulated
in terms of Newton polytopes and their mixed vol-
ume, each polytope being the convex hull of the
exponent vectors appearing in a polynomial.

Even for small dimensions, the nature of the data
may force the f.p. computation to introduce inconsis-
tencies, for instance, in:

• Planarity testing in geometric tolerancing [32].
Here, one must determine if a set of points sam-
pling a plane surface can be enclosed in a slab
whose width is part of the planarity requirements.
The computation usually goes by computing the
width of the convex hull, and the data is usually
very flat, hence prone to numerical inaccuracies.

In geometric and solid modeling, traditional ap-
proaches have employed finite precision floating point

arithmetic, based on bounds on the roundoff errors. Al-
though certain basic questions in this domain are now
considered closed, there remain some fundamental open
problems, including boundary computation [18]. Toler-
ance techniques and symbolic reasoning have been used,
but have been mostly restricted to polyhedral objects;
their extension to curved or arbitrary degree sculptured
solids would be complicated and expensive. More re-
cently, exact arithmetic has been proposed as a valid
alternative for generating boundary representations of
sculptured solids, since it guarantees robustness and
precision even for degenerate inputs at a reasonable or
negligible performance penalty [21].

Furthermore, exact arithmetic allows the use of a
variety of algebraic and symbolic methods, including
algebraic representation of curves and points, symbolic
perturbation, Sturm sequences and multivariate resul-
tants; for an introduction to these methods, see [5]. The
critical operation is deciding the sign of a multivariate
polynomial expression with rational coefficients on a set
of points. Recent data structures that exploit structure
of algebraic objects, such as straight-line programs, also
use precisely this kind of primitive operation [27].

6.2 Sign of the determinant of a matrix

As mentioned, computing the sign of a matrix determi-
nant is a basic operation in computational geometry, ap-
plied to many geometric tests (such as orientation tests,
in-circle tests, comparing segment intersections) [7, 2].
Sometimes, the entries to the determinant are them-
selves algebraic expressions. For instance, the in-circle
test can be reduced to computing a 2× 2 determinant,
whose entries have degree 2 and thus require 2b+O(1)-
bit precision to be computed exactly [2]. Computing
these entries by using modular arithmetic enables in-
circle tests with b-bit precision while still computing
exactly the sign of a 2× 2 determinant.

To compute an n × n determinant modulo mk, we
may use Gaussian elimination with a single final divi-
sion. At step i < n of the algorithm, the matrix is
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and we assume that the pivot αi,i is invertible modulo
mk. Then we change line Lj to αi,iLj − αj,iLi for all
j = i + 1, . . . , n. At step n of the algorithm, we mul-
tiply the coefficient αn,n by the modular inverse of the

product
∏n−1

i=1 αn−i
i,i . This gives us the value of the de-

terminant modulo mk. Note that the same method but
with non-modular integers and a final division would
have involved exponentially large integers and several



slow divisions at each step. Nevertheless, it is only
the range of the final result that matters for modular
computations. This shows a big advantage of modular
arithmetic over other multiprecision approaches.

The pivots should be invertible modulo mk. If mk

is prime, the pivot simply has to be non-zero modulo
mk. The algorithm can be also easily implemented if
mk is a power of a prime, or if mk is the product of two
primes. This would be desirable mainly for taking mk =
2bk for which modular arithmetic is done naturally by
integer processors, though here, special care must be
taken about even output. Other choices of mk do not
seem to bring any improvement.

With IEEE double precision (b = 53), we choose
moduli smaller than 227, so that 2(mk

2 )2 ≤ 253: Gaus-
sian elimination intensively uses (ad − bc)-style opera-
tions; here we may apply one final modular reduction,
instead of two for each product before subtracting.

This algorithm performs O(n3) operations for each
modulus mi. With Hadamard’s determinant bound and
mk greater than 2b/2, only k = d2n logne finite fields
need to be considered. Hence the complexity of finding
the sign of the determinant is O(n4 log n) single preci-
sion operations. On a O(n3 log n)-processor machine,
the time complexity drops to O(n), if we use custor-
mary parallelization of the Gaussian elimination rou-
tine for matrix triangulation (cf. [16]), which gives us
the value of the determinant. (We apply this routine
in modular arithmetic, with simplified pivoting, con-
currently for all mi’s.) Theoretically, substantial ad-
ditional parallel acceleration can be achieved by using
randomization [3, ch. 4], [26], yielding the time bound
O(log2 n) on dn3 log ne arithmetic processors, and the
processor bound can be decreased further to O(n2.376),
by applying asymptotically fast algorithms for matrix
multiplication.

7 Experimental results

We present several benchmark results of our implemen-
tations of the described methods for computing a deter-
minant in C, and compare them with different existing
packages. Method FP is a straightforward f.p. imple-
mentation of Gaussian elimination. Method LEDA uses
the routine sign of determinant(integer matrix) of
Leda [6]. Method CL has been implemented by us
based on [7, 4]. As we compare with methods that
handle arbitrary dimensions, we did not specialize the
implementation for small dimensions as is done in [4]
(this would provide an additional speedup of approxi-
mately 3). Method GMP is an implementation of Gaus-
sian elimination using the GNU Multiprecision Package,
for dimension lower than 5, and an implementation of
Bareiss’ extension of Gaussian elimination, for higher
dimensions. Method MOD is an implementation of

n FP MOD CL GMP LEDA

2 3.5 28 47 12 243
3 9 71 131 61 1032
4 18 151 276 226 2847
5 32 525 503 660 6370
6 55 857 850 1820 12330
7 85 1410 1213 3810 23400
8 130 2150 1954 6700 38700
9 182 3370 2669 11080 60500

10 250 4810 3671 17100 89000
11 330 6340 5063 27200 135800
12 420 8410 6559 39100 191900
13 550 11600 9272 53000 210750
14 700 14930 11461 72400 255750

Table 1: Performance on random determinants.

n FP MOD CL GMP LEDA

2 3.5 30 344 12 240
3 9 75 832 60 1025
4 18 155 1472 220 2605
5 32 532 2598 655 5880
6 55 871 4419 1810 11370
7 85 1420 7040 3800 20700
8 130 2160 9590 6690 38300
9 182 3390 13610 11060 60300

10 250 4840 18590 17080 94000
11 330 6360 24850 27170 130000
12 420 8450 33800 39050 195000
13 550 11670 42325 52940 205700
14 700 15110 52800 72330 240500

Table 2: Performance on small determinants.

n FP MOD CL GMP LEDA

2 3.5 31 343 12 230
3 9 76 912 57 890
4 18 157 2195 220 2500
5 32 540 4647 650 5820
6 55 885 8270 1800 12290
7 85 1440 13790 3790 20780
8 130 2180 21110 6670 34420
9 182 3420 31610 11040 55090

10 250 4870 44800 17050 92640
11 330 6400 62920 27150 136520
12 420 8480 87300 39020 184000
13 550 11700 119800 52920 201500
14 700 15150 143650 72250 248000

Table 3: Performance on zero determinants.



modular Gaussian elimination as described in section 6
using our recursive relaxation of the moduli. Of the
other methods available, the lattice method of [4] has
not yet been implemented in dimensions higher than
5; LN [14] provides a very fast implementation in di-
mensions up to 5 but was not available to us in higher
dimensions.

Among the methods that guarantee exact compu-
tation, our implementations are at least as efficient as
the others, and for certain classes of input they outper-
form all available programs. Furthermore our approach
applies to arbitrary dimensions, whereas methods that
compute a f.p. approximation of the determinant value
are doomed to fail in dimensions higher than 15 because
of overflow in the f.p. exponent.

All tests were carried out on a 85MHz Sun Sparc 5
workstation, using the clock() function. Each program
is compiled with the compiler that gives best results.
Each entry in the following tables represents the aver-
age time of one run in microseconds, with a maximum
deviation of about 10%. We concentrated on deter-
minant sign evaluation and considered three classes of
matrices: random matrices, whose determinant is typ-
ically away from zero, in table 1, almost-singular ma-
trices with single-precision determinant in table 2, and
lastly singular matrices with zero determinant in ta-
ble 3. The coefficients are integers of bit-size 53 − n
(due to restrictions of Clarkson’s method).

Our results suggest that our approach is comparable,
and for certain classes of input significantly faster than
the examined alternatives that guarantee exact results.
The running times are displayed in tables 1–3. (For
small dimensions, specialized implementations can pro-
vide an additional speedup for all methods.) Our code
is reasonably compact and easy to maintain. As an
obvious improvement, with a reasonably accurate f.p.
filter, the penalty of exact arithmetic can be paid only
for small determinants (tables 2 and 3). Another im-
provement we plan on exploring is to use parallelization.

Some side effects may occur, due to the way we
generate matrices. The code of the modular pack-
age is free, and anyone can benchmark it on the
kind of matrices that he uses. It is available via
the URL http://www.inria.fr/prisme/personnel/

pion/progs/modular.html

8 Conclusion

RNS systems have been used in number systems be-
cause they provide a highly parallelizable technique for
multiprecision. As parallel computers are becoming
more available, RNS provide an increasingly desirable
implementation of multiprecision. This comes in sharp
contrast with other multiprecision methods that are not
easily parallelizable. Perhaps the main problem with

RNS is that comparisons and sign computations seem
to require full reconstruction and, therefore, use stan-
dard multiprecision arithmetic. We show that one may
in fact use only single precision and still perform these
operations exactly and efficiently. In some applications,
the number of moduli may be large. Our algorithms
may be easily implemented in parallel with a speedup
depending almost linearly on the number of processors.

As an application, we show how to compute the sign
of a determinant. This problem has received consid-
erable attention, yet the fastest techniques are usually
iterative and do not parallelize easily. Moreover, they
usually only handle single precision inputs. Our tech-
niques are comparable in speed or even faster than other
techniques (e.g. [2, 6, 7]), and can easily handle arbitrar-
ily large inputs.

A central problem we plan to explore further is
to design algorithms that compute upper bounds on
the quantities involved to determine how many moduli
should be taken. For determinants, the static bounds
we use seem to suffice for applications in computational
geometry [14]. They might be overly pessimistic in
other areas (such as tolerancing or symbolic algebra)
where the nature of the data or algebraic techniques
might imply much better bounds. A valid approach we
will further study and implement is Newton’s incremen-
tal method of section 5, provided that we are willing to
afford some small probability of error.
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[4] H. Brönnimann, M. Yvinec. Efficient exact evalu-
ation of signs of determinants. These proceedings.

[5] B. Buchberger, G.E. Collins, and R. Loos, editors.
Computer Algebra: Symbolic and Algebraic Com-
putation. Springer, Wien, 2nd edition, 1982.
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