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t:1. INTRODUCTION2. PROBLEM STATEMENTConsider the following 
haoti
 system







ẋ1 (t) = a(x2 (t) − x1 (t)) + x2 (t)x3 (t) + m1 (t)
ẋ2 (t) = b (x1 (t) + x2 (t)) − x1 (t)x3 (t)

ẋ3 (t) = −cx3 (t) − ex4 (t) + x1 (t)x2 (t) + m1 (t)
ẋ4 (t) = fx3 (t) − dx4 (t) + x1 (t)x3 (t) + m2 (t)

y1 (t) = x1 (t)
y2 (t) = x2 (t)

(1)where xi ∈ R (i = 1, 2, 3, 4) are the states of the system;
m1 and m2 represent the information to be transmitted,whi
h for the observation problem are 
onsidered as theunknown inputs; y1 and y2 are the outputs of the system,these are the signals to be sent by a publi
 
hannel.Assumption. 2.1. The signals m1 and m2 are assumedto be di�erentiable, bounded and with the derivativebounded.The goal is to re
onstru
t the states x3 and x4 whi
h allowsto re
onstru
t the messages m1 and m2. For a
hievingsu
h a goal two approa
hes are tested, namely, an ob-server based on the super-twisting algorithm that basi
allyallows to obtain information from the derivatives of theoutput and 
onsequently to re
onstru
t the states and themessages (unknown inputs), and an adaptive observer. A
omparison between these two methods will be dis
ussed.It should be noti
e that a singularity appears in the point
x1 = 0, that is, from the outputs x1 and x2 is not possibleto know the states x3 and x4 and 
onsequently neither themessages m1 and m2.3. SUPER-TWISTING OBSERVERFirst in order to generate a new output, namely the vari-able x3, we use the super-twisting algorithm for designingthe observer for x̂3 in the following way:







ẋa,1 = b (x1 + x2) + v1

v1 = x̂1,3 + λ1 |s1|1/2
sign s

�

x̂1,3 = α1 sign s
s
1

= x2 − xa,1

(2)In this way, the derivative of s
1
takes the form

ṡ1 = −x1x3 − v1 (3)Choosing the gains λ1 ≥ (α1+M1)(1+θ)
1−θ

√
2

α1+M1

and α1 >

M1 ≥
∣
∣ d
dt (x1x3)

∣
∣ (0 < θ < 1), we get, a

ording to(Levant, 93), (Levant, 98), and (Davila, 05), the se
ondorder sliding motion, that is, s (t) = 0, ṡ (t) = 0 after some�nite time T1. Noti
e that for s = 0, v1 = x̂3; therefore,from (3), we get
x̂1,3 (t) ≡ −x1 (t) x3 (t) (4)From (4) we 
an re
onstru
t x3 (t) provided x1 (t) 6= 0.Thus, the observer for x3 is designed in the form

x̂3 (t) =







− x̂1,3 (t)

x1 (t)
if |x1 (t)| ≥ ε

x̂3 (t − τ ) if |x1 (t)| < ε
(5)where τ and ε are enough small 
onstants 1 . Thus, we getthe identity

x̂3 (t) ≡ x3 (t) for |x1 (t)| ≥ ε.Re
onstru
tion of x4 Now, de�ning ȳ3 (t) = x3 (t) asa new output, we 
an rewrite the dynami
 equations in(1) as a linear system with output inje
tion and unknowninputs, that is,
1 The 
onstant τ is 
hosen enough small but bigger than thesampling time used during the realization of the observer. The
onstant ε should be 
hosen su�
iently big to avoid the singularity,but also should be noti
e that any estimation in this zone 
an notbe 
onsidered as an a

eptable estimation.
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ȳ

=

[
1 0 0 0
0 1 0 0
0 0 1 0

]

︸ ︷︷ ︸

x

C (6)Now, let z be de�ned by the solution of the followingdi�erential equation
�

z = Az + φ (y1, y2, ȳ3)Thus, de�ning ez = x− z we obtain the dynami
 equationfor ez
�

ez (t) = Aez (t) + Dw (t)
yz = Cez

(7)Hen
e, the system (7) is basi
ally a linear system withunknown inputs, just the sort of systems 
onsidered in(Bejarano, 07). Then, for the re
onstru
tion of x4 we followin essen
e, but with a little modi�
ation, the algorithmproposed in (Bejarano, 07). That is, the basi
 idea pro-posed in (Bejarano, 07) is to obtain an algebrai
 expressionof ez in terms of the output yz and its derivatives. Thus,we get the equalities 2

yz = Cez

d

dt
(CD)

⊥
yz = (CD)

⊥
CAezthus we get 3

ez (t) =

[
C

(CD)
⊥

CA

]+ [
yz (t)

(CD)
⊥

yz (t)

] (8)Sin
e we already know the �rst 3 states, we solve (8) for
ez,4, the fourth state of ez. Thus,

ez,4 =
1

e
[ėz,1 − ėz,3 + a (ez,1 − ez,2)

−cez,3 + ez,1ez,2 − ez,2ez,3]
(9)3.1 Realization of the observer using super-twistingTo redu
e the fast dynami
 and have a smaller gains inthe super-twisting algorithm, we design the following like-linear estimator x̃ whose dynami
s is governed by thefollowing di�erential equation

�

x̃ =

[
−c −e
f −d

]

︸ ︷︷ ︸

Ā

x̃ +

[
y1y2

y1ȳ3

]

+ L (ȳ3 − ỹ3)

ỹ3 = [ 1 0 ]
︸ ︷︷ ︸

C̄

x̃
(10)The matrix L is 
hosen so that the eigenvalues of thematrix (Ā − LC̄

) have negative real part. In this way wehave that the dynami
 equations for ē = x̃ −
[
x3

x4

] are
2 Y ⊥ is a full row rank matrix su
h that Y ⊥Y = 0.
3 The matrix X+ is de�ned to be the pseudo-inverse of X. Thematrix 
onsidered in (8) belongs to sort of matri
es of full 
olumnrank. Hen
e, in su
h a 
ase, X+

=

(
XT X

)
−1

XT .

�

ē (t) =
(
Ā − LC

)
ē (t) + w (t)where w is de�ned in (6). Hen
e we get some upper boundsfor the norm of ē and for the norm of �

ē that is
‖ē (t)‖ ≤ γ exp (−λt) ‖ē (0)‖ + µ ‖w (t)‖

γ, λ, µ are positive 
onstantsThat is, with the estimator (10), ē is 
onstrained to stayedin a zone depending on the amplitude of m1 and m2; andthis zone 
an be made smaller by moving the eigenvaluesof (Ā − LC
) more to the left in the left half-plane.Then, following the algebrai
 expression obtained in (9)we design the observer for x4 using the super-twistingalgorithm as follows







ẋa,2 =
1

e
[a (x2 − x1) + cx̂3 − x1x2 + x2x̂3] + x̃4 + v2

v2 = v2,1 + λ2 |s2| sign s2, v̇2,1 = α sign s2

s2 =
1

e
(x1 − x3) − xa,2

x̂4 (t) =

{
x̃4 + v2,1 if |x1 (t)| ≥ ε
x̂4 (t − τ ) if |x1 (t)| < εwhere x̃4 is the se
ond 
omponent of the ve
tor x̃ de�nedin (10). Then, the time derivative of s2 is

ṡ2 = x4 − x̃4 + v2Thus, for λ2 ≥ (α2+M2)(1+θ)
1−θ

√
2

α2+M2

and α2 > M2 ≥
∣
∣ d
dt (x4 − x̃4)

∣
∣ (0 < θ < 1), after some �nite time T2, weget s2 = 0 and ṡ2 = 0; therefore,

x̂4 ≡ x4 for |x1 (t)| ≥ ε.3.2 Messages re
onstru
tionThe re
onstru
tion of m1 is made in the following way






ẋa,3 = a (x2 − x1) + x2x̂3 + v3

v3 = v3,1 + λ3 |s3| sign s3

v̇3,1 = α3 sign s3

m̂1 =

{
v3,1 if |x1 (t)| ≥ ε

m̂1 (t − τ) if |x1 (t)| < ε

s3 = x1 − x3
aThus, for α3 and λ3 satisfying λ3 ≥ (α3+M3)(1+θ)

1−θ

√
2

α3+M3and α3 > M3 ≥ |ṁ1| (0 < θ < 1), after some �nite time,we get the equalities s3 = 0, ṡ3 = 0. Thus, we get theequality
m̂1 ≡ m1, for |x1 (t)| ≥ εThe re
onstru
tion of m2 is made in a similar way, that is,







ẋa,4 = b (x1 + x2) + fx3 − dx4 + v4

v4 = v4,1 + λ4 |s4| sign s4

v̇4,1 = α4 sign s4

m̂2 =

{
v4,1 if |x1 (t)| ≥ ε

m̂2 (t − τ) if |x1 (t)| < ε
s4 = x2 + x4 − xa,4Thus, taking into a

ount (1) and the derivative of xa,4,with the 
hoosing of α4 and λ4 satisfying the inequalities

λ4 ≥ (α4+M4)(1+θ)
1−θ

√
2

α4+M4
and α4 > M4 ≥ |ṁ2| (0 <

θ < 1) (see, (Levant, 93), (Levant, 98)), we get, after some�nite time,
m̂2 ≡ m2 for |x1 (t)| ≥ ε



Remark. 3.1. At a glan
e, it seems that, during the esti-mation of the state x3, it is su�
ient with to use x1 (t) 6= 0instead of |x1 (t)| ≥ ε, but the justi�
ation is given inthe following lines. It is known that during the realiza-tion of the super-twisting algorithm s1 and ṡ1 are notexa
tly zero, hen
e, instead of having (4) we really havethe equality x̂1,3 (t) = −x1 (t)x3 (t) + ∆ (t), where ∆represents the estimation error and whi
h does not tendsto zero. Then, after dividing over x1, it yields the equality
x̄3 := − x̂1,3

x1
= x3 − ∆

x1
, whi
h means that, when x1 isvery 
lose to zero, the error between x̄3 and x3 is equal to

O (1/x1). Therefore, in a small neighborhood of x1 = 0,the error between x̄3 and x3 is extremely big. This justifythe stru
ture of x̂3.4. ADAPTIVE OBSERVERThe model of a 
haoti
 system (1) 
an be rewritten in thefollowing inter
onne
ted 
ompa
t form
{

Ẋ1 = A1(y2)X1 + g1(y, X1, X2) + φ1 (t)
y1 = C1X1

(11)
{

Ẋ2 = A2(y1)X2 + g2(y, X2, X1) + φ2 (t)
y2 = C2X2

(12)where X1 = (x1, x3, x4, x5)
T is the state of the �rstsubsystem with x5 := m2, X2 = (x2, x3, x6)

T is the stateof the se
ond subsystem with x6 := m1. y = [x1, x2]
T arethe output of the whole system, and

A1(y2) =






0 y2 0 0
0 0 −c 0
0 0 0 1
0 0 0 0




 , A2(y1) =

(
0 −y1 0
0 0 1
0 0 0

)

g1(y, X2, X1) =






a(y1 − y2) + x6

−ex4 + y1y2 + x6

fx3 − dx4 + y1x3

0






g2(y, X2, X1) =

(
b(y1 + y2)

−cx3 − ex4 + y1y2

0

)

φi (t) =

[
0
0

ṁi

] , i = 1, 2

C1 = ( 1 0 0 0 ) , C2 = ( 1 0 0 ) .Remark. 4.1. The 
hoi
e of the variables of ea
h subsys-tem has been 
onsidered in order to separate in one sub-system the message m1 and in the other one the message
m2. It is 
lear that other 
hoi
e 
an be 
onsidered inorder to represent these subsystems provided the ne
essary
onditions to design an adaptive are satis�ed.Next, let us introdu
e an adaptive observer in order toestimate the system's state and the unknown inputs simul-taneously. It is based on inter
onne
tion between severalsubsystems whi
h satis�es some required properties, su
hthat the property of inputs persisten
y ((Hammouri, 90),(Ghanes, 06)).At �rst, let us introdu
e the following assumptions in orderto establish the results 
on
erning the adaptive observerdesign (see more details in (Ghanes, 06)).

Assumption. 4.1.1. The signals X1 and X2 are assumed bounded andto be regularly persistent ((Hammouri, 90), (Ghanes,06)) in order to guarantee the observability property ofsubsystems (11) and (12), respe
tively.2. A1(y2) and A2(y1) are uniformly bounded.3. g1(y, X1, X2) is globally Lips
hitz with respe
t to X2and uniformly with respe
t to (y, X1).4. g2(y, X2, X1) is globally Lips
hitz with respe
t X1 anduniformly with respe
t to (y, X2).5. The unknown fun
tions ṁi(t) (i = 1, 2) are assumed tobe bounded.Then, an adaptive observer for inter
onne
ted subsystems(11) and (12) estimating the state and unknown parame-ters is given by






Ż1 = A1(y2)Z1 + g1(y, Z1, Z2) + S−1
1 CT

1 (y1 − ŷ1)
Ṡ1 = −θ1S1 − AT

1 (y2)S1 − S1A1(y2) + CT
1 C1

ŷ1 = C1Z1 (13)






Ż2 = A2(y1)Z2 + g2(y, Z2, Z1) + S−1
2 CT

2 (y2 − ŷ2)

Ṡ2 = −θ2S2 − AT
2 (y1)S2 − S2A2(y1) + CT

2 C2

ŷ2 = C2Z2 (14)where Z1 = (x̂1, x̂3, x̂4, x̂5)
T ; Z2 = (x̂2, x̂3, x̂6)

T Si =
ST

i > 0, i = 1, 2. Note that S−1
1 CT

1 and S−1
2 CT

2 are thegains of the observers (13) and (14), respe
tively.Remark. 4.2. It is worth noti
ing that ‖S1‖ and ‖S2‖ arebounded for θ1 and θ2 large enough due to the persisten
yof input 
onsidered in assumption 4.1.Now, in order to guarantee the 
onvergen
e of the pro-posed observer, su�
ient 
onditions are established in thefollowing result. Denote the estimation errors:
ǫ1 = X1 − Z1 and ǫ2 = X2 − Z2whose dynami
s are given by

{

ǫ̇1 = [A1(y2) − S−1
1 CT

1 C1]ǫ1
+g1(y, X1, X2) − g1(y, Z1, Z2) + φ1 (t)

(15)
{

ǫ̇2 = [A2(y1) − S−1
2 CT

2 C2]ǫ2
+g2(y, X2, X1) − g2(y, Z2, Z1) + φ2 (t) . (16)The values of θ1 and θ2 are 
hosen to satisfy the inequali-ties

δ1 = (θ1 − Γη) > 0, δ2 = (θ2 −
Γ

η
) > 0 (17)where Γ = µ̃1 + µ̃2, with µ̃i = µi√

λmin(S1)
√

λmin(S2)
,

i = 1, 2; and µ1 = k1k2, µ2 = k3k4, η ∈]0, 1[.The parameters k1, k2, k3, k4 are positive 
onstants and
λmin(S1), λmin(S2) are the minimal eigenvalues of S1 and
S2 respe
tively.Lemma 4.1. Consider the system (13)-(14) and that as-sumption 4.1 holds. Then, the system (13)-(14) is a pra
ti-
al exponential observer for system (11)-(12) for θ1 and θ2satisfying the inequalities (17). Furthermore, the observer
onverges arbitrarily fast with a 
onvergen
e rate �xed bya parameter δ, δ = min(δ1, δ2).Sket
h of proof 4.1. Consider the following Lyapunov fun
-tion 
andidate:

Vo = V1 + V2where V1 = ǫT
1 S1ǫ1 and V2 = ǫT

2 S2ǫ2.From assumption 4.1, the following inequalities hold



‖S1‖ ≤ k1;
‖{g1(y, X1, X2) − g1(y, Z1, Z2)}‖ ≤ k2 ‖ǫ2‖;
‖S2‖ ≤ k3;
‖{g2(y, X2, X1) − g2(y, Z2, Z1)}‖ ≤ k4 ‖ǫ1‖.
‖φ1‖ ≤ k5.
‖φ2‖ ≤ k6.Computing the time derivative of Vo, , by using the aboveinequalities it follows that

V̇o ≤−θ1ǫ
T
1 S1ǫ1 + 2µ1 ‖ǫ1‖ ‖ǫ2‖ + ‖φ1‖ (18)

− θ2ǫ
T
2 S2ǫ2 + 2µ2 ‖ǫ2‖ ‖ǫ1‖ + ‖φ2‖Now, 
onsider that the following inequalities are satis�ed

λmin(Si) ‖ǫi‖2 ≤ ‖ǫi‖2
Si

≤ λ max(Si) ‖ǫi‖2
, i = 1, 2.By writing (18) in terms of fun
tions V1 and V2, it followsthaṫ

Vo ≤ −θ1V1 − θ2V2 + 2(µ̃1 + µ̃2)
√

V1

√

V2 + k5 + k6where the parameters µ̃1, µ̃2, are de�ned just before lemma4.1.Next, by using the following inequality √
V1

√
V2 ≤ υ

2 V1 +
1
2υ V2, ∀υ ∈]0, 1[, one get

V̇o ≤ −(θ1 − Γ)V1 − (θ2 −
Γ

υ
)V2 + k5 + k6.where Γ is de�ned just before lemma 4.1.By taking δ and r su
h that δ = min(δ1, δ2) and r = k5+k6one has

V̇o ≤ −δVo + r. (19)Finally, by 
hoosing θ1 and θ2 su
h that the inequalities(17) are satis�ed and su�
iently large, the inequality (19)shows that arbitrarily bounded perturbation will not resultin large error estimation deviations. This ends the proof.5. NUMERICAL EXAMPLE AND DISCUSSIONSFor the system (1) we use the parameters a = 42.5, b = 24,
c = 13, d = 20, e = 50, f = 40. The parameters used forthe super-twisting observer are α1 = 7×107, λ1 = 7×103,
α2 = 300, λ2 = 100, α3 = 1000, λ3 = 200, α4 = 600,
λ4 = 300. For the adaptive observer the parameters usedare θ1 = θ2 = 400.Figures 1 and 2 show the traje
tories of the states x3 and
x4 as well as the ones of x̂3 and x̂4 for both the super-twisting and the adaptive observers. We 
an see in the�gures that the traje
tories of the super-twisting observer
onverge mu
h faster than the ones of the adaptive ob-server.Figures 3 and 4 show the messages m1 and m2 togetherwith their estimations m̂1 and m̂2, respe
tively. In this�gures we note that the singularity in the point x1 = 0a�e
ts more the estimation of the messages made withthe super-twisting than the one made with the adaptiveobserver. This is 
lear due to the explanation of Remark3.1 and the fa
t that, in a ball of radio ε and 
enter in
x1 = 0, it is not done a estimation neither of the statesnor of the messages.In order to test both observers with respe
t to parametersun
ertainties, we introdu
e a variation of 1% in the nomi-nal parameters. Figures 5 and 6 show how the parameters
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h had a big e�e
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h faster and forhaving an a

eptable estimation the sampling step mustbe redu
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 29th IEEE Conferen
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