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Seond order sliding mode and adaptiveobserver for synhronization of a haotisystem: a omparative studyFraniso J. Bejarano ∗ Malek Ghanes ∗ Jean-Pierre Barbot ∗Leonid Fridman ∗∗
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∗∗National Autonomous University of Mexio, Engineering Faulty,Division of Eletrial Engineering, UNAM 04510, Méxio, D.F.,(e-mail: lfridman�servidor.unam.mx)Abstrat:1. INTRODUCTION2. PROBLEM STATEMENTConsider the following haoti system







ẋ1 (t) = a(x2 (t) − x1 (t)) + x2 (t)x3 (t) + m1 (t)
ẋ2 (t) = b (x1 (t) + x2 (t)) − x1 (t)x3 (t)

ẋ3 (t) = −cx3 (t) − ex4 (t) + x1 (t)x2 (t) + m1 (t)
ẋ4 (t) = fx3 (t) − dx4 (t) + x1 (t)x3 (t) + m2 (t)

y1 (t) = x1 (t)
y2 (t) = x2 (t)

(1)where xi ∈ R (i = 1, 2, 3, 4) are the states of the system;
m1 and m2 represent the information to be transmitted,whih for the observation problem are onsidered as theunknown inputs; y1 and y2 are the outputs of the system,these are the signals to be sent by a publi hannel.Assumption. 2.1. The signals m1 and m2 are assumedto be di�erentiable, bounded and with the derivativebounded.The goal is to reonstrut the states x3 and x4 whih allowsto reonstrut the messages m1 and m2. For ahievingsuh a goal two approahes are tested, namely, an ob-server based on the super-twisting algorithm that basiallyallows to obtain information from the derivatives of theoutput and onsequently to reonstrut the states and themessages (unknown inputs), and an adaptive observer. Aomparison between these two methods will be disussed.It should be notie that a singularity appears in the point
x1 = 0, that is, from the outputs x1 and x2 is not possibleto know the states x3 and x4 and onsequently neither themessages m1 and m2.3. SUPER-TWISTING OBSERVERFirst in order to generate a new output, namely the vari-able x3, we use the super-twisting algorithm for designingthe observer for x̂3 in the following way:







ẋa,1 = b (x1 + x2) + v1

v1 = x̂1,3 + λ1 |s1|1/2
sign s

�

x̂1,3 = α1 sign s
s
1

= x2 − xa,1

(2)In this way, the derivative of s
1
takes the form

ṡ1 = −x1x3 − v1 (3)Choosing the gains λ1 ≥ (α1+M1)(1+θ)
1−θ

√
2

α1+M1

and α1 >

M1 ≥
∣
∣ d
dt (x1x3)

∣
∣ (0 < θ < 1), we get, aording to(Levant, 93), (Levant, 98), and (Davila, 05), the seondorder sliding motion, that is, s (t) = 0, ṡ (t) = 0 after some�nite time T1. Notie that for s = 0, v1 = x̂3; therefore,from (3), we get
x̂1,3 (t) ≡ −x1 (t) x3 (t) (4)From (4) we an reonstrut x3 (t) provided x1 (t) 6= 0.Thus, the observer for x3 is designed in the form

x̂3 (t) =







− x̂1,3 (t)

x1 (t)
if |x1 (t)| ≥ ε

x̂3 (t − τ ) if |x1 (t)| < ε
(5)where τ and ε are enough small onstants 1 . Thus, we getthe identity

x̂3 (t) ≡ x3 (t) for |x1 (t)| ≥ ε.Reonstrution of x4 Now, de�ning ȳ3 (t) = x3 (t) asa new output, we an rewrite the dynami equations in(1) as a linear system with output injetion and unknowninputs, that is,
1 The onstant τ is hosen enough small but bigger than thesampling time used during the realization of the observer. Theonstant ε should be hosen su�iently big to avoid the singularity,but also should be notie that any estimation in this zone an notbe onsidered as an aeptable estimation.
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ẋ3

ẋ4
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y1y2

y1ȳ3
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︸ ︷︷ ︸

x

C (6)Now, let z be de�ned by the solution of the followingdi�erential equation
�

z = Az + φ (y1, y2, ȳ3)Thus, de�ning ez = x− z we obtain the dynami equationfor ez
�

ez (t) = Aez (t) + Dw (t)
yz = Cez

(7)Hene, the system (7) is basially a linear system withunknown inputs, just the sort of systems onsidered in(Bejarano, 07). Then, for the reonstrution of x4 we followin essene, but with a little modi�ation, the algorithmproposed in (Bejarano, 07). That is, the basi idea pro-posed in (Bejarano, 07) is to obtain an algebrai expressionof ez in terms of the output yz and its derivatives. Thus,we get the equalities 2

yz = Cez

d

dt
(CD)

⊥
yz = (CD)

⊥
CAezthus we get 3

ez (t) =

[
C

(CD)
⊥

CA

]+ [
yz (t)

(CD)
⊥

yz (t)

] (8)Sine we already know the �rst 3 states, we solve (8) for
ez,4, the fourth state of ez. Thus,

ez,4 =
1

e
[ėz,1 − ėz,3 + a (ez,1 − ez,2)

−cez,3 + ez,1ez,2 − ez,2ez,3]
(9)3.1 Realization of the observer using super-twistingTo redue the fast dynami and have a smaller gains inthe super-twisting algorithm, we design the following like-linear estimator x̃ whose dynamis is governed by thefollowing di�erential equation

�

x̃ =

[
−c −e
f −d

]

︸ ︷︷ ︸

Ā

x̃ +

[
y1y2

y1ȳ3

]

+ L (ȳ3 − ỹ3)

ỹ3 = [ 1 0 ]
︸ ︷︷ ︸

C̄

x̃
(10)The matrix L is hosen so that the eigenvalues of thematrix (Ā − LC̄

) have negative real part. In this way wehave that the dynami equations for ē = x̃ −
[
x3

x4

] are
2 Y ⊥ is a full row rank matrix suh that Y ⊥Y = 0.
3 The matrix X+ is de�ned to be the pseudo-inverse of X. Thematrix onsidered in (8) belongs to sort of matries of full olumnrank. Hene, in suh a ase, X+

=

(
XT X

)
−1

XT .

�

ē (t) =
(
Ā − LC

)
ē (t) + w (t)where w is de�ned in (6). Hene we get some upper boundsfor the norm of ē and for the norm of �

ē that is
‖ē (t)‖ ≤ γ exp (−λt) ‖ē (0)‖ + µ ‖w (t)‖

γ, λ, µ are positive onstantsThat is, with the estimator (10), ē is onstrained to stayedin a zone depending on the amplitude of m1 and m2; andthis zone an be made smaller by moving the eigenvaluesof (Ā − LC
) more to the left in the left half-plane.Then, following the algebrai expression obtained in (9)we design the observer for x4 using the super-twistingalgorithm as follows







ẋa,2 =
1

e
[a (x2 − x1) + cx̂3 − x1x2 + x2x̂3] + x̃4 + v2

v2 = v2,1 + λ2 |s2| sign s2, v̇2,1 = α sign s2

s2 =
1

e
(x1 − x3) − xa,2

x̂4 (t) =

{
x̃4 + v2,1 if |x1 (t)| ≥ ε
x̂4 (t − τ ) if |x1 (t)| < εwhere x̃4 is the seond omponent of the vetor x̃ de�nedin (10). Then, the time derivative of s2 is

ṡ2 = x4 − x̃4 + v2Thus, for λ2 ≥ (α2+M2)(1+θ)
1−θ

√
2

α2+M2

and α2 > M2 ≥
∣
∣ d
dt (x4 − x̃4)

∣
∣ (0 < θ < 1), after some �nite time T2, weget s2 = 0 and ṡ2 = 0; therefore,

x̂4 ≡ x4 for |x1 (t)| ≥ ε.3.2 Messages reonstrutionThe reonstrution of m1 is made in the following way






ẋa,3 = a (x2 − x1) + x2x̂3 + v3

v3 = v3,1 + λ3 |s3| sign s3

v̇3,1 = α3 sign s3

m̂1 =

{
v3,1 if |x1 (t)| ≥ ε

m̂1 (t − τ) if |x1 (t)| < ε

s3 = x1 − x3
aThus, for α3 and λ3 satisfying λ3 ≥ (α3+M3)(1+θ)

1−θ

√
2

α3+M3and α3 > M3 ≥ |ṁ1| (0 < θ < 1), after some �nite time,we get the equalities s3 = 0, ṡ3 = 0. Thus, we get theequality
m̂1 ≡ m1, for |x1 (t)| ≥ εThe reonstrution of m2 is made in a similar way, that is,







ẋa,4 = b (x1 + x2) + fx3 − dx4 + v4

v4 = v4,1 + λ4 |s4| sign s4

v̇4,1 = α4 sign s4

m̂2 =

{
v4,1 if |x1 (t)| ≥ ε

m̂2 (t − τ) if |x1 (t)| < ε
s4 = x2 + x4 − xa,4Thus, taking into aount (1) and the derivative of xa,4,with the hoosing of α4 and λ4 satisfying the inequalities

λ4 ≥ (α4+M4)(1+θ)
1−θ

√
2

α4+M4
and α4 > M4 ≥ |ṁ2| (0 <

θ < 1) (see, (Levant, 93), (Levant, 98)), we get, after some�nite time,
m̂2 ≡ m2 for |x1 (t)| ≥ ε



Remark. 3.1. At a glane, it seems that, during the esti-mation of the state x3, it is su�ient with to use x1 (t) 6= 0instead of |x1 (t)| ≥ ε, but the justi�ation is given inthe following lines. It is known that during the realiza-tion of the super-twisting algorithm s1 and ṡ1 are notexatly zero, hene, instead of having (4) we really havethe equality x̂1,3 (t) = −x1 (t)x3 (t) + ∆ (t), where ∆represents the estimation error and whih does not tendsto zero. Then, after dividing over x1, it yields the equality
x̄3 := − x̂1,3

x1
= x3 − ∆

x1
, whih means that, when x1 isvery lose to zero, the error between x̄3 and x3 is equal to

O (1/x1). Therefore, in a small neighborhood of x1 = 0,the error between x̄3 and x3 is extremely big. This justifythe struture of x̂3.4. ADAPTIVE OBSERVERThe model of a haoti system (1) an be rewritten in thefollowing interonneted ompat form
{

Ẋ1 = A1(y2)X1 + g1(y, X1, X2) + φ1 (t)
y1 = C1X1

(11)
{

Ẋ2 = A2(y1)X2 + g2(y, X2, X1) + φ2 (t)
y2 = C2X2

(12)where X1 = (x1, x3, x4, x5)
T is the state of the �rstsubsystem with x5 := m2, X2 = (x2, x3, x6)

T is the stateof the seond subsystem with x6 := m1. y = [x1, x2]
T arethe output of the whole system, and

A1(y2) =






0 y2 0 0
0 0 −c 0
0 0 0 1
0 0 0 0




 , A2(y1) =

(
0 −y1 0
0 0 1
0 0 0

)

g1(y, X2, X1) =






a(y1 − y2) + x6

−ex4 + y1y2 + x6

fx3 − dx4 + y1x3

0






g2(y, X2, X1) =

(
b(y1 + y2)

−cx3 − ex4 + y1y2

0

)

φi (t) =

[
0
0

ṁi

] , i = 1, 2

C1 = ( 1 0 0 0 ) , C2 = ( 1 0 0 ) .Remark. 4.1. The hoie of the variables of eah subsys-tem has been onsidered in order to separate in one sub-system the message m1 and in the other one the message
m2. It is lear that other hoie an be onsidered inorder to represent these subsystems provided the neessaryonditions to design an adaptive are satis�ed.Next, let us introdue an adaptive observer in order toestimate the system's state and the unknown inputs simul-taneously. It is based on interonnetion between severalsubsystems whih satis�es some required properties, suhthat the property of inputs persisteny ((Hammouri, 90),(Ghanes, 06)).At �rst, let us introdue the following assumptions in orderto establish the results onerning the adaptive observerdesign (see more details in (Ghanes, 06)).

Assumption. 4.1.1. The signals X1 and X2 are assumed bounded andto be regularly persistent ((Hammouri, 90), (Ghanes,06)) in order to guarantee the observability property ofsubsystems (11) and (12), respetively.2. A1(y2) and A2(y1) are uniformly bounded.3. g1(y, X1, X2) is globally Lipshitz with respet to X2and uniformly with respet to (y, X1).4. g2(y, X2, X1) is globally Lipshitz with respet X1 anduniformly with respet to (y, X2).5. The unknown funtions ṁi(t) (i = 1, 2) are assumed tobe bounded.Then, an adaptive observer for interonneted subsystems(11) and (12) estimating the state and unknown parame-ters is given by






Ż1 = A1(y2)Z1 + g1(y, Z1, Z2) + S−1
1 CT

1 (y1 − ŷ1)
Ṡ1 = −θ1S1 − AT

1 (y2)S1 − S1A1(y2) + CT
1 C1

ŷ1 = C1Z1 (13)






Ż2 = A2(y1)Z2 + g2(y, Z2, Z1) + S−1
2 CT

2 (y2 − ŷ2)

Ṡ2 = −θ2S2 − AT
2 (y1)S2 − S2A2(y1) + CT

2 C2

ŷ2 = C2Z2 (14)where Z1 = (x̂1, x̂3, x̂4, x̂5)
T ; Z2 = (x̂2, x̂3, x̂6)

T Si =
ST

i > 0, i = 1, 2. Note that S−1
1 CT

1 and S−1
2 CT

2 are thegains of the observers (13) and (14), respetively.Remark. 4.2. It is worth notiing that ‖S1‖ and ‖S2‖ arebounded for θ1 and θ2 large enough due to the persistenyof input onsidered in assumption 4.1.Now, in order to guarantee the onvergene of the pro-posed observer, su�ient onditions are established in thefollowing result. Denote the estimation errors:
ǫ1 = X1 − Z1 and ǫ2 = X2 − Z2whose dynamis are given by

{

ǫ̇1 = [A1(y2) − S−1
1 CT

1 C1]ǫ1
+g1(y, X1, X2) − g1(y, Z1, Z2) + φ1 (t)

(15)
{

ǫ̇2 = [A2(y1) − S−1
2 CT

2 C2]ǫ2
+g2(y, X2, X1) − g2(y, Z2, Z1) + φ2 (t) . (16)The values of θ1 and θ2 are hosen to satisfy the inequali-ties

δ1 = (θ1 − Γη) > 0, δ2 = (θ2 −
Γ

η
) > 0 (17)where Γ = µ̃1 + µ̃2, with µ̃i = µi√

λmin(S1)
√

λmin(S2)
,

i = 1, 2; and µ1 = k1k2, µ2 = k3k4, η ∈]0, 1[.The parameters k1, k2, k3, k4 are positive onstants and
λmin(S1), λmin(S2) are the minimal eigenvalues of S1 and
S2 respetively.Lemma 4.1. Consider the system (13)-(14) and that as-sumption 4.1 holds. Then, the system (13)-(14) is a prati-al exponential observer for system (11)-(12) for θ1 and θ2satisfying the inequalities (17). Furthermore, the observeronverges arbitrarily fast with a onvergene rate �xed bya parameter δ, δ = min(δ1, δ2).Sketh of proof 4.1. Consider the following Lyapunov fun-tion andidate:

Vo = V1 + V2where V1 = ǫT
1 S1ǫ1 and V2 = ǫT

2 S2ǫ2.From assumption 4.1, the following inequalities hold



‖S1‖ ≤ k1;
‖{g1(y, X1, X2) − g1(y, Z1, Z2)}‖ ≤ k2 ‖ǫ2‖;
‖S2‖ ≤ k3;
‖{g2(y, X2, X1) − g2(y, Z2, Z1)}‖ ≤ k4 ‖ǫ1‖.
‖φ1‖ ≤ k5.
‖φ2‖ ≤ k6.Computing the time derivative of Vo, , by using the aboveinequalities it follows that

V̇o ≤−θ1ǫ
T
1 S1ǫ1 + 2µ1 ‖ǫ1‖ ‖ǫ2‖ + ‖φ1‖ (18)

− θ2ǫ
T
2 S2ǫ2 + 2µ2 ‖ǫ2‖ ‖ǫ1‖ + ‖φ2‖Now, onsider that the following inequalities are satis�ed

λmin(Si) ‖ǫi‖2 ≤ ‖ǫi‖2
Si

≤ λ max(Si) ‖ǫi‖2
, i = 1, 2.By writing (18) in terms of funtions V1 and V2, it followsthaṫ

Vo ≤ −θ1V1 − θ2V2 + 2(µ̃1 + µ̃2)
√

V1

√

V2 + k5 + k6where the parameters µ̃1, µ̃2, are de�ned just before lemma4.1.Next, by using the following inequality √
V1

√
V2 ≤ υ

2 V1 +
1
2υ V2, ∀υ ∈]0, 1[, one get

V̇o ≤ −(θ1 − Γ)V1 − (θ2 −
Γ

υ
)V2 + k5 + k6.where Γ is de�ned just before lemma 4.1.By taking δ and r suh that δ = min(δ1, δ2) and r = k5+k6one has

V̇o ≤ −δVo + r. (19)Finally, by hoosing θ1 and θ2 suh that the inequalities(17) are satis�ed and su�iently large, the inequality (19)shows that arbitrarily bounded perturbation will not resultin large error estimation deviations. This ends the proof.5. NUMERICAL EXAMPLE AND DISCUSSIONSFor the system (1) we use the parameters a = 42.5, b = 24,
c = 13, d = 20, e = 50, f = 40. The parameters used forthe super-twisting observer are α1 = 7×107, λ1 = 7×103,
α2 = 300, λ2 = 100, α3 = 1000, λ3 = 200, α4 = 600,
λ4 = 300. For the adaptive observer the parameters usedare θ1 = θ2 = 400.Figures 1 and 2 show the trajetories of the states x3 and
x4 as well as the ones of x̂3 and x̂4 for both the super-twisting and the adaptive observers. We an see in the�gures that the trajetories of the super-twisting observeronverge muh faster than the ones of the adaptive ob-server.Figures 3 and 4 show the messages m1 and m2 togetherwith their estimations m̂1 and m̂2, respetively. In this�gures we note that the singularity in the point x1 = 0a�ets more the estimation of the messages made withthe super-twisting than the one made with the adaptiveobserver. This is lear due to the explanation of Remark3.1 and the fat that, in a ball of radio ε and enter in
x1 = 0, it is not done a estimation neither of the statesnor of the messages.In order to test both observers with respet to parametersunertainties, we introdue a variation of 1% in the nomi-nal parameters. Figures 5 and 6 show how the parameters

0 2 4 6 8 10

−400

−200

0

200

400

600

800

Time [s]

0 0.02 0.04 0.06 0.08

−1

0

1

Fig. 1. x3 (solid line) and its estimation x̂3 using the super-twisting (dot line) and adaptive (dash line) observers

0 2 4 6 8 10

−400

−200

0

200

400

600

800

Time [s]

0 0.05

0
0.5

1
1.5

Fig. 2. x4 (solid line) and its estimation x̂4 using the super-twisting (dot line) and adaptive (dash line) observersunertainties a�ets the behavior of the observers. In thease of the adaptive observer the parameter unertaintydestroy ompletely the estimation of the messages. Never-theless, no matter what observe is used, in this ase, theestimation of the messages an be onsider unaeptable.Remark. 5.1. For the super-twisting observer we do somesimulations with x̃ = 0, that is without using a linearestimator. In the simulations, not shown here, we obtaineda bigger error in the estimation of x4 whih had a big e�etin the error of the estimation of m2. It was due to thefat that using x̃ = 0, the variable to be estimated withthe super-twisting algorithm beame muh faster and forhaving an aeptable estimation the sampling step mustbe redue onsiderably.REFERENCESH. Hammouri, J. De Leon, `Observer synthesis for state-a�ne systems'Pro 29th IEEE Conferene on Deisionand Control, Honolulu, Hawaii. 1990.M. Ghanes, J. De Leon and A. Glumineau, `Observabil-ity Study and Observer-Based Interonneted Form forSensorless Indution Motor', Pro 45th IEEE Confer-ene on Deision and Control, San Diego, CA, Deem-ber, USA, 2006, 13-15 Deember, USA.



0 2 4 6 8 10
−200

−150

−100

−50

0

50

100

150

200

250

Time [s]

0 0.1 0.2

0

20

40

60

Fig. 3. Message m1 (solid line) and its estimation m̂1 usingthe super-twisting (dot line) and adaptive (dash line)observers

0 2 4 6 8 10
−150

−100

−50

0

50

100

150

Time [s]

0 0.2 0.4

0

20

40

Fig. 4. Message m2 (solid line) and its estimation m̂2 usingthe super-twisting (dot line) and adaptive (dash line)observers
0 2 4 6 8 10

−200

−100

0

100

200

0 2 4 6 8 10
−2000

0

2000

4000

Time [s]Fig. 5. Message m1 (solid line) and its estimation m̂1 (dotline) for the system with 1% of unertainty in theparameters. Above with the super-twisting observer,below with the adaptive observer

0 2 4 6 8 10

−100

0

100

200

0 2 4 6 8 10
−2

−1

0

1

2
x 10

4

Time [s]Fig. 6. Message m2 (solid line) and its estimation m̂2 (dotline) for the system with 1% of unertainty in theparameters. Above with the super-twisting observer,below with the adaptive observerA. Levant, 1996, `Sliding order and sliding auray insliding mode ontrol', International Journal of Control,vol. 58, no. 6, pp. 1247-1263.A. Levant, 1998, `Robust exat di�erentiation via slidingmode tehnique', International Journal of Control, vol.34, no. 3, pp. 379-384.J. Davila, L. Fridman and A. Levant, 2005, `Seond-OrderSliding-Mode Observer for Mehanial Systems', IEEETransations on Automati Control, vol. 50, no. 11, pp.1785-1789.F.J. Bejarano, L. Fridman and A. Poznyak, 2007, `Exatstate estimation for linear systems with unknown in-puts based on hierarhial super-twisting algorithm',International Journal of Robust and Nonlinear Control,Published on line [doi:10.1002/rn.1190℄.G.Y. Qi, S.Z. Du, G.R. Chen et al., 2005, `On a four-dimensional haoti system', Chaos, Solutions andFratals, vol. 23, no. 5, pp. 1671-1682.


