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Abstract:

1. INTRODUCTION
2. PROBLEM STATEMENT

Consider the following chaotic system

&1 (t) = a(@2 (t) — 21 (1)) + @2 (t) w3 (t) + ma (1)
o (t) = b (21 (1) + 22 (t) — 21 (t) 23 (1)
i3 (t) = —cxs (t) — exq (t) + z1 (¢) x2 () + M1 (1) (1)
g () = fas (t) — doyg (1) + 21 () 23 (1) + m2 (¢)
y1(t) =1 (1)
y2 (1) = 22 (1)

where z; € R (i = 1,2,3,4) are the states of the system;
mq and mo represent the information to be transmitted,
which for the observation problem are considered as the
unknown inputs; y; and y» are the outputs of the system,
these are the signals to be sent by a public channel.

Assumption. 2.1. The signals m; and my are assumed
to be differentiable, bounded and with the derivative
bounded.

The goal is to reconstruct the states x3 and x4 which allows
to reconstruct the messages m; and mso. For achieving
such a goal two approaches are tested, namely, an ob-
server based on the super-twisting algorithm that basically
allows to obtain information from the derivatives of the
output and consequently to reconstruct the states and the
messages (unknown inputs), and an adaptive observer. A

comparison between these two methods will be discussed.

It should be notice that a singularity appears in the point
r1 = 0, that is, from the outputs z; and x5 is not possible
to know the states x3 and x4 and consequently neither the
messages m1 and ms.

3. SUPER-TWISTING OBSERVER

First in order to generate a new output, namely the vari-
able x3, we use the super-twisting algorithm for designing
the observer for z3 in the following way:

ia,l =b (Il + .IQ) —+ v
v =213+ M |sl|1/2 sign s

.f173 = (1 signs
‘91 = T2 — xa,l

In this way, the derivative of s, takes the form

51 = —T1T3 — ’Ul (3)

Choosing the gains \; (O‘IHK_I‘)Q(HQ) \/ alfMl and oy >

M, > ‘% (z1w3)] (0 < 6 < 1), we get, according to
(Levant, 93), (Levant, 98), and (Davila, 05), the second
order sliding motion, that is, s (¢) = 0, $ (¢t) = 0 after some
finite time 7. Notice that for s = 0, v' = Z3; therefore,

from (3), we get
T13(t) = —21 (t) 23 () (4)

v

From (4) we can reconstruct xg (¢) provided z; (t) # 0.
Thus, the observer for x3 is designed in the form

Z1,3(t) .
B30 ={ g Llm@l=e )

Li'3(t—7’) if |£L‘1(t)| <e€

where 7 and ¢ are enough small constants ! . Thus, we get
the identity

&3 (t) = 23 (t) for |z1 ()] > e.

Reconstruction of x4 Now, defining g3 (t) = 3 (t) as
a new output, we can rewrite the dynamic equations in
(1) as a linear system with output injection and unknown
inputs, that is,

1 The constant 7 is chosen enough small but bigger than the
sampling time used during the realization of the observer. The
constant e should be chosen sufficiently big to avoid the singularity,
but also should be notice that any estimation in this zone can not
be considered as an acceptable estimation.
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(6)

Now, let z be defined by the solution of the following
differential equation

é = AZ+¢(?/173J27?33)

Thus, defining e, = x — z we obtain the dynamic equation
for e,

e, (t) = Ae, (t) + Dw (t) (7)

y, = Ce,

Hence, the system (7) is basically a linear system with
unknown inputs, just the sort of systems considered in
(Bejarano, 07). Then, for the reconstruction of x4 we follow
in essence, but with a little modification, the algorithm
proposed in (Bejarano, 07). That is, the basic idea pro-
posed in (Bejarano, 07) is to obtain an algebraic expression
of e, in terms of the output y, and its derivatives. Thus,
we get the equalities 2

Y = Oez
% (CD)* y. = (CD)* CAe.
thus we get 3

Y- (t) ] (8)

e (t) = {(OD)OL CAT [( cD) . (1)

Since we already know the first 3 states, we solve (8) for
€4, the fourth state of e,. Thus,

1 £ s tal )
€z4 = e €z,1 €2,3 al€z 1 €2,2 (9)

—C€z3 + €2,1€2,2 — 62,262,3]
3.1 Realization of the observer using super-twisting

To reduce the fast dynamic and have a smaller gains in
the super-twisting algorithm, we design the following like-
linear estimator & whose dynamics is governed by the
following differential equation

o —C —€ | ~ Y1y2 _ ~

= 7 L —
v [f —d]x“L {ylys]“L (93 = 3is)
i i (10)
——

c
The matrix L is chosen so that the eigenvalues of the
matrix (A — LC’) have negative real part. In this way we

have that the dynamic equations for e = & — [ig] are
4

2 Y1 is a full row rank matrix such that Y1Y = 0.
3 The matrix X7 is defined to be the pseudo-inverse of X. The
matrix considered in (8) belongs to sort of matrices of full column

-1
rank. Hence, in such a case, X+ = (XTX) xXT.

e(t)y=(A-LC)e(t)+w(t)
where w is defined in (6). Hence we get some upper bounds

for the norm of & and for the norm of & that is

e @] < vexp (=At) [[e O)] + p[lw (#)]]
v, A, j are positive constants

That is, with the estimator (10), € is constrained to stayed
in a zone depending on the amplitude of m; and ms; and
this zone can be made smaller by moving the eigenvalues
of (A — LC) more to the left in the left half-plane.

Then, following the algebraic expression obtained in (9)
we design the observer for x4, using the super-twisting
algorithm as follows

) 1 . . N
Za2 = —la(z2 — 1) + ¢z — v122 + T2Z3] + T4 + vo
V2 = V2,1 + A2 |S2|sign sa, V21 = asign so
52 =~ (r1 —23) — Tap2

~ o .f4 + V2,1 if |$1 (t)| Z e

Za () = {554 (t —7) if o (1)] < &
where Z4 is the second component of the vector Z defined
in (10). Then, the time derivative of sy is

89 = Ty — T4 + V2

Thus, for Ay > (a2+1¥1722)(1+0)’/asz2 and ag > My >

‘% (x4 — 924)‘ (0 < 6 < 1), after some finite time T, we
get so = 0 and $9 = 0; therefore,

Ty = x4 for |z (t)| > e.

3.2 Messages reconstruction

The reconstruction of m; is made in the following way
:J'Sa)g =a (IQ — Il) + I2:f3 + V3
v3 = v31 + A3 |s3] sign s3
1'13)1 = Q3 sign S3
PR S-SR S AN O]
! my (t —7) if |zq (2)]
S3 = T1 — ,’Ei

Thus, for a3 and A3 satisfying A\ > (O‘”If[f)e(lw) \/ anMS

and a3 > M3 > || (0 < 0 < 1), after some finite time,
we get the equalities s3 = 0, $3 = 0. Thus, we get the
equality

m1 = mq, for |21 (8)] > ¢
The reconstruction of ms is made in a similar way, that is,
Taa =b(x1 4+ 22) + fos —dry + vy
Vg = Vg1 + Ay |S4|sign sy
1')4’1 = 04 sign S4
i >
iy = 1 vaa 3f |z1 (8)| > e
ma (t—7) if |21 (B)] <e
84 =2T2 + T4 — Taa
Thus, taking into account (1) and the derivative of z, 4,
with the choosing of a4 and A4 satisfying the inequalities

My)(1+6 i}
Ay > (Ot4+1:1)9( +6) a4fM4 and ag > My > || (0 <

f < 1) (see, (Levant, 93), (Levant, 98)), we get, after some
finite time,

ma = mg for |z (t)| > ¢



Remark. 3.1. At a glance, it seems that, during the esti-
mation of the state x3, it is sufficient with to use ;1 (t) # 0
instead of |z (t)] > €, but the justification is given in
the following lines. It is known that during the realiza-
tion of the super-twisting algorithm s; and $; are not
exactly zero, hence, instead of having (4) we really have
the equality #13(t) = —x1 (¢) 23 (¢) + A(t), where A
represents the estimation error and which does not tends
to zero. Then, after dividing over z1, it yields the equality
T3 = —wwl—f = 23 — ﬁ7 which means that, when z; is
very close to zero, the error between T3 and x3 is equal to
O (1/z1). Therefore, in a small neighborhood of z; = 0,
the error between 3 and z3 is extremely big. This justify
the structure of 3.

4. ADAPTIVE OBSERVER

The model of a chaotic system (1) can be rewritten in the
following interconnected compact form

{X1 = A1(y2) X1 + g1(y, X1, X2) + ¢4 (1) (11)
y1=C1Xy
{Xz = Az (y1) X2 + g2(y, X2, X1) + ¢ () (12)
Yo = C2.X
where X; = (x1,73,74,25)7 is the state of the first

subsystem with x5 := ma, Xo = (72,73, 36)7 is the state
of the second subsystem with zg := my. y = [x1,22]" are
the output of the whole system, and

Oy, 0 0

00 -0 0=y 0
Ar(y2) = ; Aa(yr)) =10 0 1

00 01 00 0

00 00

a(yr — y2) + e
—exy +Y1Y2 + ¢
frs —dry +y123

0

b(y1 +y2)
92(y, X2, X1) = | —cx3 —exs +y172

g1(y, X2, X1) =

0

0
o, (t) = lO} ,i=1,2
m;
C;=(1000),C,=(100).

Remark. 4.1. The choice of the variables of each subsys-
tem has been considered in order to separate in one sub-
system the message mi and in the other one the message
mo. It is clear that other choice can be considered in
order to represent these subsystems provided the necessary
conditions to design an adaptive are satisfied.

Next, let us introduce an adaptive observer in order to
estimate the system’s state and the unknown inputs simul-
taneously. It is based on interconnection between several
subsystems which satisfies some required properties, such
that the property of inputs persistency ((Hammouri, 90)
(Ghanes, 06)).

At first, let us introduce the following assumptions in order
to establish the results concerning the adaptive observer
design (see more details in (Ghanes, 06)).
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Assumption. 4.1.

1. The signals X; and X, are assumed bounded and
to be regularly persistent ((Hammouri, 90), (Ghanes,
06)) in order to guarantee the observability property of
subsystems (11) and (12), respectively.

2. A1(y2) and As(y1) are uniformly bounded.

3. g1(y, X1, X2) is globally Lipschitz with respect to Xo
and uniformly with respect to (y, X1).

4. go(y, X2, X1) is globally Lipschitz with respect X; and
uniformly with respect to (y, X2).

5. The unknown functions 7;(t) (i = 1,2) are assumed to
be bounded.

Then, an adaptive observer for interconnected subsystems
(11) and (12) estimating the state and unknown parame-
ters is given by

Z.l — A1 (yQ)Zl + gl(y; Zl; Z2) + Sflc{(yl - yl)
S1=—0151 — A] (y2)S1 — S14:1(y2) + C{ C1
h=Ci12;
(13)
Zy = As(y1)Z2 + 9a(y. Z2, Z1) + S5 ' C3 (y2 — G2)
Sy = —028> — AL (y1)S2 — S2A2(y1) + C3 Co
Yo = C22
(14)
where Z = (21,&3,24,85)"; Zo = (&2,13,486)" S =
ST > 0,i = 1,2. Note that S;'C{ and S;'CJ are the
gains of the observers (13) and (14), respectively.
Remark. 4.2. Tt is worth noticing that ||S1]| and ||Sz|| are
bounded for 6, and 65 large enough due to the persistency
of input considered in assumption 4.1.

Now, in order to guarantee the convergence of the pro-

posed observer, sufficient conditions are established in the

following result. Denote the estimation errors:
61:X1—Z1 and EQZXQ—ZQ

whose dynamics are given by

{ 6'1 = [Al(yg) — Sflcfcl]el (15)

+91(?J;X1aX2) - gl(yu 217 Z2) + ¢1 (t)

{ 6'2 = [Ag(yl) — 5510502]62 (16)
+92(y, X2, X1) — 92(y, Z2, Z1) + ¢ () -

The values of ; and 65 are chosen to satisfy the inequali-
ties r

51:(91—F77)>0, 52:(92—5)>0 (17)
_ = ~ R By

where I' = fi; + iy, with i1, = TN AL

i = 1,2; and py; = kika, py = ksks, n €]0,1[.

The parameters ki, ko, k3, k4 are positive constants and
Amin (S1), Amin(S2) are the minimal eigenvalues of S7 and
So respectively.
Lemma 4.1. Consider the system (13)-(14) and that as-
sumption 4.1 holds. Then, the system (13)-(14) is a practi-
cal exponential observer for system (11)-(12) for 6; and 65
satisfying the inequalities (17). Furthermore, the observer
converges arbitrarily fast with a convergence rate fixed by
a parameter 0, 6 = min(d1,02).
Sketch of proof 4.1. Consider the following Lyapunov func-
tion candidate:

Vo=V1+ Vs
where V] = elTS161 and Vy = e2TSQeQ.
From assumption 4.1, the following inequalities hold



Computing the time derivative of V,,, , by using the above
inequalities it follows that

Vo < —1€f Ster + 2y el llez]| + [l

— 0265 Saea + 21y [lea| [ex || + (|4
Now, consider that the following inequalities are satisfied
Amin(S;) Jlei|* < Jleils, < Amax(S;) [le]|* i = 1,2.
By writing (18) in terms of functions V; and V3, it follows
that

Vo < =01Vi = 05Va + 2(fiy + fig)\/Vi/Va + ks + ke
where the parameters fi;, iy, are defined just before lemma
4.1.

Next, by using the following inequality /Viv/Va < 5V1 +
5= Va, Vv €]0,1], one get

(18)

) I
Vo< —(01 —T)V1 — (02 — Z)VQ + ks + ke.

where I is defined just before lemma 4.1.

By taking 0 and r such that § = min(d1, d2) and r = ks+kg
one has )

Vo < =6V, + . (19)
Finally, by choosing 6; and 62 such that the inequalities
(17) are satisfied and sufficiently large, the inequality (19)
shows that arbitrarily bounded perturbation will not result
in large error estimation deviations. This ends the proof.

5. NUMERICAL EXAMPLE AND DISCUSSIONS

For the system (1) we use the parameters a = 42.5, b = 24,
c=13,d =20, e =50, f = 40. The parameters used for
the super-twisting observer are a; = 7 x 107, A} = 7 x 103,
ag = 300, Ao = 100, a3 = 1000, A3 = 200, ay = 600,
A4 = 300. For the adaptive observer the parameters used
are 91 = 92 = 400.

Figures 1 and 2 show the trajectories of the states 3 and
r4 as well as the ones of &3 and z4 for both the super-
twisting and the adaptive observers. We can see in the
figures that the trajectories of the super-twisting observer
converge much faster than the ones of the adaptive ob-
server.

Figures 3 and 4 show the messages m; and meo together
with their estimations m; and g, respectively. In this
figures we note that the singularity in the point z; = 0
affects more the estimation of the messages made with
the super-twisting than the one made with the adaptive
observer. This is clear due to the explanation of Remark
3.1 and the fact that, in a ball of radio £ and center in
x1 = 0, it is not done a estimation neither of the states
nor of the messages.

In order to test both observers with respect to parameters
uncertainties, we introduce a variation of 1% in the nomi-
nal parameters. Figures 5 and 6 show how the parameters

800

600 of~e = 1
-1
400} 0 0.02 0.04 0.06 0.08]
200+
0
-200(
-4001
0 2 4 6 8 10

Time [s]

Fig. 1. z3 (solid line) and its estimation 23 using the super-
twisting (dot line) and adaptive (dash line) observers

800F

600

4001

200+

-2001

-400}

Fig. 2. 24 (solid line) and its estimation &4 using the super-
twisting (dot line) and adaptive (dash line) observers

uncertainties affects the behavior of the observers. In the
case of the adaptive observer the parameter uncertainty
destroy completely the estimation of the messages. Never-
theless, no matter what observe is used, in this case, the
estimation of the messages can be consider unacceptable.

Remark. 5.1. For the super-twisting observer we do some
simulations with z = 0, that is without using a linear
estimator. In the simulations, not shown here, we obtained
a bigger error in the estimation of x4 which had a big effect
in the error of the estimation of ms. It was due to the
fact that using £ = 0, the variable to be estimated with
the super-twisting algorithm became much faster and for
having an acceptable estimation the sampling step must
be reduce considerably.
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