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Abstract. We present in this paper robust geometric feature estima-
tors on the border of a possibly noisy discrete object. We introduce the
notion of patch centered at a point of this border. Thanks to a width
parameter, attached to a patch, the noise on the border of the discrete
object can be considered, and an extended flat neighborhood of a border
point is computed. Stable geometric features are then extracted around
this point. A normal vector estimator is proposed as well as a detector
of convex and concave parts on the border of a discrete object.

1 Introduction

Geometric feature estimation on the surface of a discrete object is very important
in digital geometry. For instance, in computer vision, rendering algorithms rely
on the normal vector estimation on the surface of an object to produce a realistic
view of this object. In image analysis, features such as area or curvature can be
used for producing classification functions able to sort objects by shape or by
size. In bioinformatics, in the protein-protein docking framework, one tries to
associate two proteins according to their geometrical complementarity. Thus, it
is important to locate critical areas on the surface, like holes (concave parts) and
knobs (convex parts) or even big flat areas.

Several studies [1–7] have been done on different types of estimators but
the estimated geometric features are by definition very local. Thus, the noise
introduced by acquisition tools like scanners or MRI, even weak, is disturbing
for the estimator, and classical algorithms of digital geometry which rely on the
regularity of discrete primitives do not always yield good results.

Therefore, for the last few years, the interest around the geometry of noisy
objects has grown [8–11]. New discrete primitives such as blurred segments and
blurred pieces of discrete planes have been introduced and, thanks to a width
parameter, enable to take into account the noise in data while controlling the
approximation. Encouraging results have been obtained in 2D for the curvature
estimation, relying on blurred segments [12].
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In this paper we deal with the 3D case. In section 2, after recalling the
definition of blurred pieces of discrete planes, we introduce the notion of a width-

ν patch centered at p. In section 3, we then present some features (normal vector,
area, outline) of a width-ν patch centered at p. With this material we develop, in
section 4, an estimator able to distinguish between points that belong to concave,
convex or flat parts of the surface of a possibly noisy discrete object. The paper
ends up with some conclusions and perspectives in section 5.

2 Basic Notions and Definitions

Hereafter we denote by Ob a possibly noisy 6-connected discrete object. We call
surface or border of Ob the set of points Bb which have a 6-neighbor that does
not belong to Ob.

Before presenting the notion of a width-ν patch centered at p, we recall the
definition of a width-ν blurred piece of discrete plane [11], which is the underlying
discrete primitive of the patch.

2.1 Blurred Pieces of Discrete Planes

One can see a blurred piece of discrete plane as an arithmetic discrete plane for
which some points are missing. More formally:

Definition 1. Let N be a norm on R3 and E a set of points in Z3. We say that

the discrete plane P(a, b, c, µ, ω)1 is a bounding plane of E if all the points of

E belong to P, and we call width of P(a, b, c, µ, ω), the value ω−1
N(a,b,c) .

A bounding plane of E is said optimal if its width is minimal.

Definition 2. A set E of points in Z3 is a width-ν blurred piece of discrete

plane if and only if the width of its optimal bounding plane is less than or equal

to ν.

Two recognition algorithms of blurred pieces of discrete planes have been
proposed in [11]. The first one considers the Euclidean norm and, for a set of
points P in Z3, it solves the recognition problem by using the geometry of the
convex hull of P . The second one considers the infinity norm and uses methods
from linear programming to solve the recognition problem.

In the following sections, the results we present have been obtained by using
the geometrical approach which uses the Euclidean norm.

1 An arithmetic discrete plane P(a, b, c, µ, ω) is the set of integer points (x, y, z) veri-
fying µ ≤ ax+by+cz < µ+ω, where (a, b, c) ∈ Z

3 is the normal vector of the plane.
µ ∈ Z is named the translation constant and ω ∈ Z the arithmetical thickness.



(a) (b)

Fig. 1. (a) A width-3 blurred piece of discrete plane and (b) its optimal bounding
plane P(4, 8, 19,−80, 49), using the Euclidean norm.

2.2 Width-ν Discrete Patches

Here we are interested in the computation of different geometric features of
a possibly noisy discrete surface, such as the normal vector, the area or the
curvature. Numerous methods exist in the literature to compute such features in
the discrete space. One can refer to [1, 13, 2, 4, 5] for normal vectors estimation
and [3, 7] for curvature estimators.

The problem is that these geometric features are by definition very local.
And most of the defined estimators are very noise sensitive. But if we know that
we are working on a noisy surface, we would like to use estimators that take
into account the irregularity of this surface. A way to estimate these features at
a point p of the noisy surface is to use the information of the points lying in a
neighborhood of p. The notion of patch we present hereafter takes place in this
framework, considering an adaptive neighborhood around p.

Definition 3. Let Bb be the border of a discrete object and p a point in Bb. Let

T be a scan process of the neighboring points of p in Bb and ν the greatest real

value allowed. We call width-ν patch centered at p, and denote by Γν(p), a

width-ν blurred piece of discrete plane incrementally recognized from p by adding

points of Bb following the scan process T .

About the Incremental Recognition: We construct a width-ν patch centered

at p using the incremental recognition algorithm of blurred pieces of discrete
planes introduced in [11]. We add the points following the scan process T and
as soon as the width of the blurred piece of discrete plane becomes greater than
ν we stop the recognition process.

About the Scan Process T : To uniformly spread the patch in all directions
the best solution would be to scan the neighborhood of p according to a geodesic
distance. Nevertheless, for efficiency, we have chosen to scan this neighborhood
according to a chamfer mask 〈3, 4, 5〉 which is a good approximation of the
geodesic distance [14, 15]. The aim is to have a well-balanced patch around p



which looks almost circular. To implement this behaviour we use a priority queue
Q. This method has originaly been proposed by Verwer et al. [16] and first used
by Coeurjolly on digital surfaces [17]. We start by pushing p into the queue with
a weight equals to zero. Then, while we do not exceed the limit width ν, we
pop out of Q the point v with the lowest weight w and we add v to the blurred
piece of discrete plane we are recognizing. We then add the border voxels of the
26-neighborhood of v into the priority queue as follows:

– the 6-neighbors are added in Q with a weight of w + 3,
– the strict 18-neighbors are added in Q with a weight of w + 4,
– and finally the strict 26-neighbors are added in Q with a weight of w + 5.

To stay homeomorphic to a topological disk, we take care to add a point only if
it does not create a hole in the patch, by using the technique described in [18].
With this method we obtain patches like those in Fig. 2.

(a) (b) (c)

Fig. 2. An example of width-2 patches spread on the surface of different noisy objects.
(a) A sphere of radius 20, (b) a 150 × 6 × 200 box and (c) a cube of edge 25.

3 Patch Features

3.1 Intuition

A patch Γν(p), as previously defined, characterizes the planarity of the surface
around p (with respect to the width ν). Thus, the more the patch is spread, the
lesser the surface around p is bent.

In addition, if the growth of Γν(p) stopped, it means that the close neigh-
boring points outside Γν(p) would bend the patch too much if they were added.
In that case the patch could no longer be regarded as flat. Therefore, it is pos-
sible to deduce a conformation of the discrete surface around p by studying the



patches centered along the points of the outline of Γν(p).

To quantify these observations we have to compute the patch area, extract
the outline of Γν(p) and study the lie of the patches in the neighborhood of
Γν(p). This is what we present in the following sections.

3.2 Width-ν Normal

With the previous intuition we can see that the normal vector of Γν(p) is a good
estimation of the normal at p. Thus, assimilating the normal vector of Γν(p)
to the normal of the surface at p, we define a normal vector estimator for each
point of the surface of a possibly noisy discrete object.

Definition 4. Let Bb be the border of a discrete object and p a point of Bb. We

call width-ν normal at p the normal vector

−→nν(p) = −→n (Γν(p))

where −→n (Γν(p)) is the normal vector of the patch Γν(p).

Other normal estimators have been proposed before. For instance, L. Pa-
pier [4] estimates the normal vector at a point p of the surface using a weighted
mean of the elementary unit normals of the surfels in the neighborhood of p

(umbrella of order n). The size of the neighborhood around p can be set with
the parameter n. In [13], A. Lenoir uses the slices of the object along the three
canonical planes. He first computes tangential lines through p in these slices
using partial derivatives computation (implemented by convolution products).
He then gives a normal vector estimation using these tangential lines. The size
of the neighborhood around p can be set with a scale factor. Although these
methods can deal with noise, the considered neighborhood is not adaptive, con-
trary to our approach which fits the shape of the surface. Some results on noisy

(a) (b) (c)

Fig. 3. A discrete sphere of radius 10 (a) without noise, (b) weakly noisy and (c)
strongly noisy.

and non-noisy spheres (see Fig. 3) of different radius are presented in Tab. 1.



To synthetize noisy spheres we start to generate a discrete sphere (i.e. the set
of points

{

(x, y, z) ∈ Z3 | x2 + y2 + z2 < r(r + 1)
}

where r is the radius of the
sphere). We then add noise by randomly moving outward a border voxel of the
sphere. To add more noise we just repeat the last step.

We have compared the estimated normal vectors to the theoretical normal
vectors2 at p. The mean angular value δmoy, in degrees, the maximal angular
value δmax and the standard deviation σ are presented in Tab 1.

We can see that with our method the greater the radius of the spheres is, the
better the estimation is, contrary to the method based on the 26-neighborhood
where there is no real improvement. It is due to the fact that our method is
adaptive and considers a wider neighborhood when the sphere radius increases.
It behaves like this because when the sphere radius increases the surface around
p tends to be flat. For a given width the patch can thus spread more around p.

Table 1. Comparison between the proposed normal vector estimator and the one using
only the 26-neighborhood. Angle values δ are in degrees ◦.

Tested spheres Without noise Weakly noisy Strongly noisy

Radius 10 20 40 10 20 40 10 20 40

Width

δmoy 3.66 2.05 1.04 10.36 9.08 9.04 15.30 14.10 14.33

ν = 1 δmax 8.21 6.10 3.25 52.53 91.25 101.24 95.46 101.42 117.80

σ 1.83 1.07 0.58 7.70 7.50 7.82 12.46 11.90 11.95

δmoy 2.33 1.25 0.77 3.66 2.39 1.46 5.65 4.57 4.35

ν = 2 δmax 9.92 3.35 2.94 16.86 10.16 5.83 46.98 40.54 52.57

σ 1.49 0.61 0.44 2.19 1.35 0.78 3.77 3.33 3.97

δmoy 1.85 1.17 0.70 2.75 1.74 1.02 3.29 2.37 1.70

ν = 3 δmax 6.49 3.93 2.58 8.90 7.46 3.89 14.63 8.80 7.32

σ 0.98 0.69 0.40 1.54 0.92 0.55 1.90 1.30 0.93

26-neighborhood

δmoy 4.61 4.50 4.22 7.55 7.50 7.51 8.83 8.69 8.57

δmax 9.45 15.34 17.19 28.35 25.34 31.14 24.29 37.15 33.80

σ 2.70 2.75 2.81 4.19 4.10 4.19 4.52 4.87 4.80

Moreover, when the noise level increases the estimation of the normal vector
is less accurate. The bad results obtained when ν = 1 can be attributed to the
tiny size of patches which do not always cover the 26-neighborhood of the point
p. But when the width of the patches increases, say ν = 2 or 3, the results are
better than those obtained with the 26-neighborhood approach, and it is the
case for noisy spheres as well as for non-noisy ones.

2 The theoretical normal vector is the vector starting from the center of the sphere to
p



(a) (b)

Fig. 4. Normal vector estimation on a weakly noisy sphere of radius 20 (a) using only
the 26-neighborhood and (b) using the patch based approach with ν = 3.

3.3 Width-ν Patch Area

Here we use the notations from [6]. Let S be an Euclidean surface and {−→n } its
normal vector field. We can compute the area of S in the continuous space with
the formula:

A(S) =

∫

S

−→n (s) ds

Now, if we consider a digitization D(S) of S, we can replace the integral over S
by a finite sum over the surfels s of D(S), the vector −→n (s) by an estimation of
the normal vector at s and ds by a dot product with the unit orthogonal vector
of s pointing outward. The idea is to compute the contribution of each surfel to
the global area of D(S) by projecting the surfel according to the direction of the
normal vector. The discrete version of the previous equation is:

EA(D(S)) =
∑

s∈D(S)

−→n ∗(s).−→n el(s)

where −→n ∗(s) is an estimation of the normal vector associated to the surface
element s in D(S) and −→n el(s) is the elementary normal vector of s.

This method was first proposed in 3D by A. Lenoir in [13]. Then, in [6],
Coeurjolly et al. proved that this estimator is convergent if and only if the nor-
mal vector estimation is convergent.

In our case we can use the normal estimator proposed in section 3.2 with the
previous formula to obtain an estimation of the area for the surface of a width-ν
patch:

EA(Γν(p)) =
∑

s∈SΓν (p)

−→nν(p).−→n el(s) = −→nν(p).
∑

s∈SΓν (p)

−→n el(s)

where SΓν(p) denotes the set of surface surfels of Γν(p).



3.4 Patch Outline

To study the surrounding patches of Γν(p), we have to clarify the notion of
surrounding. We have chosen to study the conformation of the patches which
are centered on points belonging to the outline of Γν(p).

Let Bb be the border of a discrete object Ob. We denote by Sb the set of
surfels of Bb which are incident to a point that does not belong to Ob, and
SΓν(p) the subset of Sb that belongs to Γν(p). A point q belongs to the outline of
Γν(p) if the voxel representation of q has a surfel s ∈ SΓν(p) and if there exists
a surfel s′ ∈ Sb \ SΓν(p) such that s and s′ are adjacent by edge. An example of
the outline of a patch is shown in Fig. 5.

Fig. 5. The outline (in dark grey) of a width-2 grey patch centered at the black point.

4 Shape

4.1 Concave and Convex Parts

With the different notions defined in the previous sections, we present an esti-
mator that permits to characterize the shape (concave, convex or flat) around a
border point of a discrete object.

The idea is to start by spreading a patch Γν(p) and to compute its outline C.
For each point qi,1≤i≤|C| in C, we then develop the neighboring patches Γν(qi).
From these patches we obtain a vector field {−→nν(qi)} on the outline C. This
vector field is shown in Fig. 6 for a convex and a concave area.

Observation : In the concave parts the vector field {−→nν(qi)} points towards the
normal vector −→nν(p) of the central patch, but in the convex parts the vector field
has the reverse tendency. It is thus possible to distinguish concave and convex



parts with the value of the oriented angle between the normal vector −→nν(p) and
the vectors {−→nν(qi)}. Our estimator is based on this observation. Let C be the

(a) (b)

(c) (d)

Fig. 6. Vectors layout on the outline of a patch (a, c) in a convex area and (b, d) in a
concave area.

set of points that belong to the outline of Γν(p). Our shape estimator of the
surface around a point p is then given by the formula :

Fν(p) =
1

|C|

∑

∀q∈C

̂(−→nν(p),−→nν(q)) ·
EA(Γν(q))

EA(Γν(p))

where ̂(−→nν(p),−→nν(q)) is the oriented angle value between the two normal vectors.
So, the estimator Fν(p) is a weighted mean of the angle values between −→nν(p)
and the −→nν(qi)1≤i≤|C|.

Angle Orientation : We determine the sign of the angle value ̂(−→nν(p),−→nν(q))
as shown in Fig 7. To implement this process, we compute the cross products
−→nν(p) ∧ −→pq and −→nν(p) ∧ −→nν(q). If the two resulting vectors more or less point



Fig. 7. Angle orientation.

towards the same direction (i.e. if the scalar product (−→nν(p)∧−→pq) ·(−→nν(p)∧−→nν(q))
is positif) then the angle value is counted positively, otherwise the angle value is
counted negatively. The computation of the previous cross products are feasible
only if the vectors are not collinear. And the scalar product also does not have
to be nil. Usually, these conditions are always verified. But sometimes, especially
when the patch is very small, some degenerate cases can occur. Because they
do not bring a useful shape information we can easily get rid of these cases by
ignoring them and going on with the next point of the outline.

Weighting Factor : It is clear that a wide patch Γν(p) means that the surface
around p tends to be flat (according to the width ν). Thus, the wider Γν(p)
is, the lesser the influence of the surrounding patches is to consider. Hence, the
weighting factor 1

EA(Γν(p)) is used in Fν(p).

On the other hand, if a neighboring patch Γν(qi) is wider than another neigh-
boring patch Γν(qj), then it means that the surface around qi is a little more
stable than the surface around qj . Thus we choose to lend more influence to in-
formation given by bigger patches. Therefore, we associate the weighting factor

EA(Γν(q)) to the angle value ̂(−→nν(p),−→nν(q)) in the formula Fν(p).

Interpretation : As a result, F(p) is positive when the surface around p is
rather convex and F(p) is negative when the surface around p is rather concave.
An increasing value of |F(p)| means that the surface around p is more strongly
concave or convex. If Γν(p) is big, a value F(p) close to 0 means that the area
around p is almost flat (according to the width ν we chose). If Γν(p) is small,
then the border around p is strongly distorted, but in a way we can neither
qualify concave, nor qualify convex (a saddle point for instance).

Some results obtained with this estimator are given in Fig. 8. To render the
object we have associated to each face of a voxel v the normal −→nν(v).

5 Conclusion

In this paper we have introduced a new notion related to a point on a discrete
surface : the width-ν patch centered at p. From this patch we have designed a
robust normal vector estimator at the surface of a possibly noisy discrete object.



Moreover, based on the computation of the patch area, we have proposed an
estimator that characterizes the shape (concave, convex or flat) of the surface
around the point p.

Concave

Flat

Convex

Fig. 8. Concave, convex and flat areas (according to the color scale on the left) on
different objects using width-3 patches.

Although the approaches presented in this paper give plausible results, more
formal studies on the notion of noise have to be led. A work on the convergence
of the estimators could then be envisaged.

In addition more comparative studies with other methods have to be done
to confirm the reliability of these estimators. In a theoretical point of view it
would be interesting to see the relation of our shape estimator with the classical
notion of surface curvature.
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